1
|
Lee WG, Kim ES. Precision Oncology in Pediatric Cancer Surgery. Surg Oncol Clin N Am 2024; 33:409-446. [PMID: 38401917 DOI: 10.1016/j.soc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Pediatric precision oncology has provided a greater understanding of the wide range of molecular alterations in difficult-to-treat or rare tumors with the aims of increasing survival as well as decreasing toxicity and morbidity from current cytotoxic therapies. In this article, the authors discuss the current state of pediatric precision oncology which has increased access to novel targeted therapies while also providing a framework for clinical implementation in this unique population. The authors evaluate the targetable mutations currently under investigation-with a focus on pediatric solid tumors-and discuss the key surgical implications associated with novel targeted therapies.
Collapse
Affiliation(s)
- William G Lee
- Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA. https://twitter.com/william_ghh_lee
| | - Eugene S Kim
- Division of Pediatric Surgery, Department of Surgery, Cedars-Sinai Medical Center, 116 North Robertson Boulevard, Suite PACT 700, Los Angeles, CA 90048, USA.
| |
Collapse
|
2
|
Belgiovine C, Mebelli K, Raffaele A, De Cicco M, Rotella J, Pedrazzoli P, Zecca M, Riccipetitoni G, Comoli P. Pediatric Solid Cancers: Dissecting the Tumor Microenvironment to Improve the Results of Clinical Immunotherapy. Int J Mol Sci 2024; 25:3225. [PMID: 38542199 PMCID: PMC10970338 DOI: 10.3390/ijms25063225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 01/03/2025] Open
Abstract
Despite advances in their diagnosis and treatment, pediatric cancers remain among the leading causes of death in childhood. The development of immunotherapies and other forms of targeted therapies has significantly changed the prognosis of some previously incurable cancers in the adult population. However, so far, the results in pediatric cohorts are disappointing, which is mainly due to differences in tumor biology, including extreme heterogeneity and a generally low tumor mutational burden. A central role in the limited efficacy of immunotherapeutic approaches is played by the peculiar characteristics of the tumor microenvironment (TME) in pediatric cancer, with the scarcity of tumor infiltration by T cells and the abundance of stromal cells endowed with lymphocyte suppressor and tumor-growth-promoting activity. Thus, progress in the treatment of pediatric solid tumors will likely be influenced by the ability to modify the TME while delivering novel, more effective therapeutic agents. In this review, we will describe the TME composition in pediatric solid tumors and illustrate recent advances in treatment for the modulation of immune cells belonging to the TME.
Collapse
Affiliation(s)
- Cristina Belgiovine
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Kristiana Mebelli
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandro Raffaele
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marica De Cicco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Jessica Rotella
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marco Zecca
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanna Riccipetitoni
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, University of Pavia, 27100 Pavia, Italy
- SC Chirurgia Pediatrica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Comoli
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
3
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
4
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Bottino C, Vitale C, Dondero A, Castriconi R. B7-H3 in Pediatric Tumors: Far beyond Neuroblastoma. Cancers (Basel) 2023; 15:3279. [PMID: 37444389 DOI: 10.3390/cancers15133279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
B7-H3 is a 4Ig transmembrane protein that emerged as a tumor-associated antigen in neuroblastoma. It belongs to the B7 family, shows an immunoregulatory role toward NK and T cells, and, therefore, has been included in the growing family of immune checkpoints. Besides neuroblastoma, B7-H3 is expressed by many pediatric cancers including tumors of the central nervous system, sarcomas, and acute myeloid leukemia. In children, particularly those affected by solid tumors, the therapeutic protocols are aggressive and cause important life-threatening side effects. Moreover, despite the improved survival observed in the last decade, a relevant number of patients show therapy resistance and fatal relapses. Immunotherapy represents a new frontier in the cure of cancer patients and the targeting of tumor antigens or immune checkpoints blockade showed exciting results in adults. In this encouraging scenario, researchers and clinicians are exploring the possibility to use immunotherapeutics targeting B7-H3; these include mAbs and chimeric antigen receptor T-cells (CAR-T). These tools are rapidly evolving to improve the efficacy and decrease the unwanted side effects; drug-conjugated mAbs, bi-tri-specific mAbs or CAR-T, and, very recently, NK cell engagers (NKCE), tetra-specific molecules engaging a tumor-associated antigen and NK cells, have been generated. Preclinical data are promising, and clinical trials are ongoing. Hopefully, the B7-H3 targeting will provide important benefits to cancer patients.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
6
|
Abdel-Monem MM, El-Khawaga OY, Awadalla AA, Hafez AT, Ahmed AE, Abdelhameed M, Abdelhalim A. Gene expression analysis and the risk of relapse in favorable histology Wilms' tumor. Arab J Urol 2023; 21:45-51. [PMID: 36818371 PMCID: PMC9930804 DOI: 10.1080/2090598x.2022.2127202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction and Objectives Wilms' tumor (WT) relapse occurs in 15% of patients. We aim to investigate the association between the expression of several genetic markers and WT relapse risk. Materials and methods The study included 51 children treated for WT at a tertiary center between 2001 and 2019: 23 patients had disease relapse (group A) and 28 remained relapse-free after at least 2 years of follow-up (group B). Patients with syndromic, bilateral synchronous or anaplastic WT were excluded. Autologous renal tissue from 20 patients served as control. Total RNA was isolated from tumor tissue and control. Gene expression levels of WT1, HIF1α, b-FGF, c-MYC and SLC22A18 were assessed using quantitative RT-PCR and normalized to GAPDH. Immunohistochemical staining for WT1 and gene expression levels were compared between the study groups. Results Median patient age was 3 (IQR = 2-5) years and 36 (70.6%) had stage I disease. Baseline characteristics were similar between study groups. Relapse occurred at a median of 6.8 (2.8-24.7) months, predominantly in the lungs (11/23, 47.8%). Tumors that relapsed expressed significantly higher levels of WT1, HIF1α, b-FGF and c-MYC and lower levels of SLC22A18 (p < 0.001). Strong immunohistochemical staining for WT1 was seen in 73.9% of group A and 14.29% of group B (p < 0.001). These associations retained statistical significance irrespective of patient and tumor characteristics. Conclusions Higher expression levels of WT1, HIF1 α, b-FGF and c-MYC and lower level of SLC22A18 are associated with increased risk of WT relapse. These genetic markers can serve as future prognostic predictors and help stratify patients for treatment.
Collapse
Affiliation(s)
- Mariam M. Abdel-Monem
- The Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Omali Y. El-Khawaga
- The Department of Biochemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira A. Awadalla
- The Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ashraf T. Hafez
- The Department of Urology, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Asmaa E. Ahmed
- The Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Abdelhameed
- The Department of Pathology, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ahmed Abdelhalim
- The Department of Urology, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt,CONTACT Ahmed Abdelhalim Mansoura Urology and Nephrology Center, Mansoura University, Mansoura35516, Egypt
| |
Collapse
|
7
|
Zang B, Ding L, Liu L, Arun Kumar S, Liu W, Zhou C, Duan Y. The immunotherapy advancement targeting malignant blastomas in early childhood. Front Oncol 2023; 13:1015115. [PMID: 36874100 PMCID: PMC9978522 DOI: 10.3389/fonc.2023.1015115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant blastomas develop relentlessly in all functional body organs inflicting severe health ailments in younger children. Malignant blastomas exhibit diverse clinical characteristics in compliance with their emergence in functional body organs. Surprisingly, neither of these preferred treatment types (surgery, radiotherapy, and chemotherapy) showed promise or were effective in treating malignant blastomas among child patients. N ew, innovative immunotherapeutic procedures including monoclonal antibodies and chimeric-antigen based receptor (CAR) cell therapy, coupled with the clinical study of reliable therapeutic targets and immune regulatory pathways targeting malignant blastomas, have attracted the attention of clinicians recently.
Collapse
Affiliation(s)
- Bolun Zang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Luyue Ding
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Linlin Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Senthil Arun Kumar
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Hont AB, Dumont B, Sutton KS, Anderson J, Kentsis A, Drost J, Hong AL, Verschuur A. The tumor microenvironment and immune targeting therapy in pediatric renal tumors. Pediatr Blood Cancer 2022; 70 Suppl 2:e30110. [PMID: 36451260 DOI: 10.1002/pbc.30110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022]
Abstract
This review highlights the role of several immunomodulating elements contributing to the tumor microenvironment of various pediatric renal tumors including Wilms tumor. The roles of innate and adaptive immune cells in renal tumors are summarized as well as immunomodulatory cytokines and other proteins. The expression and the predictive role of checkpoint modulators like PD-L1 and immunomodulating proteins like glypican-3, B7-H3, COX-2 are highlighted with a translational view toward potential therapeutic innovations. We further discuss the current state of preclinical models in advancing this field of study. Finally, examples of clinical trials of immunomodulating strategies such as monoclonal antibodies and chimeric antigen receptor T (CAR-T) cells for relapsed/refractory/progressive pediatric renal tumors are described.
Collapse
Affiliation(s)
- Amy B Hont
- Department of Hematology/Oncology, Children's National Hospital, George Washington University, Washington, District of Columbia, USA
| | - Benoit Dumont
- Pediatric Hematology and Oncology Institute, Léon Bérard Cancer Center, Lyon, France
| | - Kathryn S Sutton
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - John Anderson
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, New York, USA
| | - Jarno Drost
- Princess Máxima Center and Oncode Institute, Utrecht, The Netherlands
| | - Andrew L Hong
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Arnauld Verschuur
- Department of Pediatric Hematology and Oncology, Hôpital d'Enfants de la Timone, APHM, Marseille, France
| |
Collapse
|
9
|
IL-2 Combined with IL-15 Enhanced the Expression of NKG2D Receptor on Patient Autologous NK Cells to Inhibit Wilms’ Tumor via MAPK Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:4544773. [PMID: 36213822 PMCID: PMC9546681 DOI: 10.1155/2022/4544773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Objective The dysfunction of immune surveillance, a hot spot in cancer research, could lead to the occurrence and development in multicancers. However, the potential mechanisms of immunity in Wilms' tumor (WT) remain unclear on Wilms' tumor (WT). In this study, we aim to investigate the immune cell in WT and explore the underlying treatment strategy. Method We quantified stromal and immune scores by using ESTIMATE algorithm based on gene expression matrix of WT patients in TCGA and GEO databases. Different expression genes (DEGs) and functional enrichments were analyzed by R studio and DAVID tools. Flow cytometry, immunofluorescence staining, ELISA assay, and qRT-PCR were used for detecting the NK cells, cytotoxic cytokines (INF-γ, PRF, and GZMB), and NK cell receptor expression, respectively. WT patient autologous NK cells were stimulated by IL-2 and IL-15, and the cytotoxicity of NK cells against WT cell lines was detected by LDH assay. Western blot experiment was used for measuring the MAPK signaling pathway protein maker in NK cells. Results ESTIMATE indicated that WT tissue had a lower immune score than adjacent kidney tissue. Meanwhile, the low immune score group was associated with poorly outcomes. DEG functional enrichment analysis showed that NK cell-mediated cytotoxicity was significantly different in low and high immune score groups. Although few of proportion of NK cells in WT patients were increased, most of that were significantly lower than normal children. Moreover, the proportion of NK cells and the expression level of INF-γ, PRF, and GZMB in WT tissue were lower than adjacent kidney tissue. Importantly, the NKG2D expression level of NK cells was significantly lower in WT tissue. Furthermore, in vitro, compared with uncultured NK cells, IL-2 and IL-15 could effectively enhance the cytotoxicity of NK cells on killing the WT cell lines. The FACS and WB results showed that the NKG2D and p-PI3K ratio PI3K, MEK1/2, and p-ERK1/2 ratio ERK1/2 were significantly increased in IL-2 and IL15 group compared with uncultured groups. Conclusion The abnormal NK cell-mediated cytotoxicity may cause the occurrence of WT. Costimulation of WT patients autologous NK cells could effectively enhance the antitumor reaction which involved in activation of NKG2D-mediated MAPK signaling pathway.
Collapse
|
10
|
Monzavi SM, Muhammadnejad A, Behfar M, Khorsand AA, Muhammadnejad S, Kajbafzadeh AM. Spontaneous xenogeneic GvHD in Wilms' tumor Patient-Derived xenograft models and potential solutions. Animal Model Exp Med 2022; 5:389-396. [PMID: 35726155 PMCID: PMC9434572 DOI: 10.1002/ame2.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022] Open
Abstract
Severely immunocompromised NOD.Cg-Prkdcscid Il2rgtm1Sug (NOG) mice are among the ideal animal recipients for generation of human cancer models. Transplantation of human solid tumors having abundant tumor-infiltrating lymphocytes (TILs) can induce xenogeneic graft-versus-host disease (xGvHD) following engraftment and expansion of the TILs inside the animal body. Wilms' tumor (WT) has not been recognized as a lymphocyte-predominant tumor. However, 3 consecutive generations of NOG mice bearing WT patient-derived xenografts (PDX) xenotransplanted from a single donor showed different degrees of inflammatory symptoms after transplantation before any therapeutic intervention. In the initial generation, dermatitis, auto-amputation of digits, weight loss, lymphadenopathy, hepatitis, and interstitial pneumonitis were observed. Despite antibiotic treatment, no response was noticed, and thus the animals were prematurely euthanized (day 47 posttransplantation). Laboratory and histopathologic evaluations revealed lymphoid infiltrates positively immunostained with anti-human CD3 and CD8 antibodies in the xenografts and primary tumor, whereas no microbial infection or lymphoproliferative disorder was found. Mice of the next generation that lived longer (91 days) developed sclerotic skin changes and more severe pneumonitis. Cutaneous symptoms were milder in the last generation. The xenografts of the last 2 generations also contained TILs, and lacked lymphoproliferative transformation. The systemic immunoinflammatory syndrome in the absence of microbial infection and posttransplant lymphoproliferative disorder was suggestive of xGvHD. While there are few reports of xGvHD in severely immunodeficient mice xenotransplanted from lymphodominant tumor xenografts, this report for the first time documented serial xGvHD in consecutive passages of WT PDX-bearing models and discussed potential solutions to prevent such an undesired complication.
Collapse
Affiliation(s)
- Seyed Mostafa Monzavi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Arsalan Khorsand
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,PDX Platform, Biomarker Evaluation and Supervision Team for Personalized Medicine, Molecular Tumor Board, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Meng J, Chen Y, Lu X, Ge Q, Yang F, Bai S, Liang C, Du J. Macrophages and monocytes mediated activation of oxidative phosphorylation implicated the prognosis and clinical therapeutic strategy of Wilms tumour. Comput Struct Biotechnol J 2022; 20:3399-3408. [PMID: 35832632 PMCID: PMC9271979 DOI: 10.1016/j.csbj.2022.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022] Open
Abstract
Wilms tumour is the fourth leading cause of paediatric malignancy, but the detailed relationship between the tumour microenvironment and prognosis remains largely unclear. In this research, gene expression profile and clinical information from TARGET and the First Affiliated Hospital of Anhui Medical University were collected. After comparing the prognostic value of the associated immune cells, we established a nomogram to predict the prognosis of Wilms tumour based on monocyte infiltration, macrophage infiltration, stage, and sex. Further results showed that the most significant relationship between matrix metallopeptidase 9 and prognosis or macrophage infiltration. Meanwhile, by gene set enrichment or variation analyses and immunohistochemistry staining, we demonstrated that the most highly enriched hub genes were closely related to the activated oxidative phosphorylation pathway. Finally, through tumour immune dysfunction and an exclusion algorithm, the satisfactory discriminative performance of our nomogram was revealed for predicting the response to clinical therapy. Anti-PD1 therapy is more suitable for Wilms tumour patients with high nomogram points, and chemotherapies are more effective for patients with low nomogram score.
Collapse
|
12
|
A Novel Inflammation-Related Gene Signature for Overall Survival Prediction and Comprehensive Analysis in Pediatric Patients with Wilms Tumor. DISEASE MARKERS 2022; 2022:2651105. [PMID: 35578692 PMCID: PMC9107364 DOI: 10.1155/2022/2651105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
Wilms tumor (WT) is a common pediatric renal cancer, with a poor prognosis and high-risk recurrence in some patients. The inflammatory microenvironment is gradually gaining attention in WT. In this study, novel inflammation-related signatures and prognostic model were explored and integrated using bioinformatics analysis. The mRNA profile of pediatric patients with WT and inflammation-related genes (IRGs) were acquired from Therapeutically Available Research to Generate Effective Treatments (TARGET) and Gene Set Enrichment Analysis (GSEA) databases, respectively. Then, a novel prognostic model founded on 7-IRGs signature (BICC1, CSPP1, KRT8, MYCN, NELFA, NXN, and RNF113A) was established by the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression to stratify pediatric patients with WT into high- and low-risk groups successfully. And a stable performance of the prognostic risk model was verified in predicting overall survival (OS) by receiver-operating characteristic (ROC) curves, Kaplan-Meier (KM) curves, and independent prognostic analysis (p < 0.05). In addition, a novel nomogram integrating risk scores with good robustness was developed and validated by C-index, ROC, and calibration plots. The potential function and pathway were explored via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA, with mainly inflammation and immune-related biological processes. The higher-risk scores, the lower immune infiltration, as shown in the single-sample GSEA (ssGSEA) and tumor microenvironment (TME) analysis. The drug sensitivity analysis showed that regulating 7-IRGs signature has a significant correlation with the chemotherapy drugs of WT patients. In summary, this study defined a prognostic risk model and nomogram based on 7-IRGs signature, which may provide novel insights into clinical prognosis and inflammatory study in WT patients. Besides, enhancing immune infiltration based on inflammatory response and regulating 7-IRGs signature are beneficial to ameliorating the efficacy in WT patients.
Collapse
|
13
|
Tian K, Du G, Wang X, Wu X, Li L, Liu W, Wu R. MMP-9 secreted by M2-type macrophages promotes Wilms' tumour metastasis through the PI3K/AKT pathway. Mol Biol Rep 2022; 49:3469-3480. [PMID: 35107742 DOI: 10.1007/s11033-022-07184-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Wilms' tumour (WT) is a malignant tumour of childhood with the typical symptoms of an abdominal mass. Tumour-associated macrophages (TAMs) accumulate and imply a poor prognosis in WT, but the mechanism of how TAMs affect the prognosis has not been fully elucidated. In this study, we aimed to present the molecular mechanisms underlying the protumorigenic capacities of TAMs in WT. METHODS TAMs were polarized into M1- and M2-type macrophages. The two types of macrophages were cocultured with SK-NEP-1 cells, and their cell viability and invasion ability were measured. Matrix metalloproteinase 9 (MMP9) expression was assessed in different types of macrophages, and the role of MMP9 in WT was explored. Then data from children diagnosed with WT in our department between February 2006 and July 2014 were retrospectively analysed, the tumour tissues were analysed to explore the distribution of MMP9. Kaplan-Meier analysis of the relationship between MMP9 expression and follow-up information was performed. RESULTS The results showed that M2-type macrophages could improve the viability and invasive ability of SK-NEP-1 cells. MMP9 expression in M2-type macrophages was significantly higher than that in M1-type macrophages. MMP9 could activate the AKT/PI3K signalling pathway to initiate the epithelial-mesenchymal transition (EMT) process, and promote the proliferation and invasion of WT. In WT tissue, the MMP9 expression level was elevated and it was located in the tumour stroma, which was the same as M2-type macrophage location, and a high level of MMP9 predicted poor survival. CONCLUSION M2-type macrophages facilitate tumour proliferation and metastasis by secreting MMP9 to enhance the EMT process via a PI3K/AKT dependent pathway in Wilms' tumour.
Collapse
Affiliation(s)
- Kaixuan Tian
- Department of Pediatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, People's Republic of China.,Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Xiangyu Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Long Li
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Su C, Huang R, Yu Z, Zheng J, Liu F, Liang H, Mo Z. Myelin and lymphocyte protein serves as a prognostic biomarker and is closely associated with the tumor microenvironment in the nephroblastoma. Cancer Med 2022; 11:1427-1438. [PMID: 35023304 PMCID: PMC8894696 DOI: 10.1002/cam4.4542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Nephroblastoma, also known as Wilms' tumor (WT), is the most common renal tumor that occurs in children. Although the efficacy of treatment has been significantly improved by a series of comprehensive treatments, some patients still have poor prognosis. Myelin and lymphocyte (MAL) protein, a highly hydrophobic integrated membrane‐bound protein, has been implicated in many tumors and is also closely linked to kidney development. However, the relationship between MAL and WT has not yet been elucidated. Therefore, we attempted to evaluate the feasibility of MAL as a promising prognosis factor for WT. The differential expression of MAL was investigated using TARGET database and was verified using the Gene Expression Omnibus database and real‐time quantitative PCR. The prognostic ability of MAL was determined using Kaplan–Meier and Cox regression analyses. Pearson correlation analysis was applied to explore the relationship between MAL expression and methylation sites. The ESTIMATE and CIBERSORT algorithms showed that MAL expression was associated with the WT tumor microenvironment. Gene Set Enrichment Analysis (GSEA) indicated that multiple signaling pathways closely associated with tumorigenesis were differentially enriched between the high‐ and low‐MAL groups. In conclusion, our study comprehensively explored the potential of MAL as a prognosis factor for WT. Meanwhile, we also demonstrated that MAL, as a prognostic factor for WT, may be closely related to the tumor microenvironment.
Collapse
Affiliation(s)
- Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China
| | | | - Zhenyuan Yu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Jie Zheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | | | | | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Kunc M, Gabrych A, Dulak D, Hasko K, Styczewska M, Szmyd D, Nilsson K, Iwinski M, Sobocińska-Mirska A, Sawicka-Zukowska M, Krawczyk MA, Bien E. Systemic inflammatory markers and serum lactate dehydrogenase predict survival in patients with Wilms tumour. Arch Med Sci 2022; 18:1253-1261. [PMID: 36160344 PMCID: PMC9479718 DOI: 10.5114/aoms/125543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/19/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Markers of inflammation such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) have been found to be associated with survival in cancer patients. The aim of the current study was to establish the prognostic significance of simple laboratory markers of systemic inflammation in paediatric patients diagnosed with Wilms tumour (WT). Additionally, we aimed to compare the complete blood count (CBC) parameters of WT patients and the non-oncological control group. MATERIAL AND METHODS The study group included 88 children diagnosed with WT. Clinicopathological data, as well as CBC, C-reactive protein (CRP) and lactate dehydrogenase (LDH) levels at diagnosis, were obtained. Additionally, the laboratory results of 62 healthy control paediatric patients were collected. Uni- and multivariate proportional Cox's hazard analyses were computed to create a model predicting relapse-free survival (RFS) and overall survival (OS) in the study group. RESULTS High CRP, LDH, and NLR were associated with a higher stage of WT and shorter RFS, whereas all parameters correlated with OS. In multivariate analysis, only LDH levels had adverse significance in predicting RFS. C-reactive protein and LMR retained their prognostic value in the multivariate model predicting OS. Comparing the WT group with controls, high LDH, high CRP, high NLR, and high PLR were associated with WT presence. CONCLUSIONS Preoperative LDH, CRP, NLR, PLR, and LMR have significant prognostic value in patients with WT independently of age and stage. Combined low CRP and high LMR identified the group of patients with excellent OS. Patients with high LDH were characterized by the highest risk of relapse.
Collapse
Affiliation(s)
- Michał Kunc
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Gabrych
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Dominika Dulak
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Hasko
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Styczewska
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Dagmara Szmyd
- Coronary Care Unit, Cardiology Department, West Cumberland Hospital, Whitehaven, United Kingdom
| | - Kristoffer Nilsson
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Marek Iwinski
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, Gdansk, Poland
| | - Agata Sobocińska-Mirska
- Department of Pediatrics, Oncology and Hematology, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Sawicka-Zukowska
- Department of Pediatrics, Paediatric Oncology, and Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata A. Krawczyk
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bien
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Abstract
Results of immunotherapy in childhood solid cancer have been so far, with the exception of neuroblastoma, quite disappointing. Lack of knowledge of the immune contexture of these tumors may have contributed to the failure of immunotherapies so far. Here, we systematically reviewed the literature regarding the immunology of Wilms tumor (WT), one of the most frequent pediatric solid tumors of the abdomen. In Wilms tumor patients the high cure rate of >90%, achieved by the combination of surgery and radio-chemotherapy, is at the expense of a high early and late toxicity. Moreover, treatment-resistant entities, such as diffuse anaplastic tumors or recurrent disease, still pose unsolved clinical problems. Successful immunotherapy could represent a novel and possibly less-toxic treatment option. Employing the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) method of literature search, we analyzed the current knowledge of the immunological landscape of Wilms tumors in terms of tumor microenvironment, prognostic implications of single biomarkers, and immunotherapy response.
Collapse
|
17
|
Pelosi A, Fiore PF, Di Matteo S, Veneziani I, Caruana I, Ebert S, Munari E, Moretta L, Maggi E, Azzarone B. Pediatric Tumors-Mediated Inhibitory Effect on NK Cells: The Case of Neuroblastoma and Wilms' Tumors. Cancers (Basel) 2021; 13:cancers13102374. [PMID: 34069127 PMCID: PMC8156764 DOI: 10.3390/cancers13102374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroblastoma (NB) and Wilms’ tumor (WT) are the most common childhood solid extracranial tumors. The current treatments consist of a combination of surgery and chemotherapy or radiotherapy in high-risk patients. Such treatments are responsible for significant adverse events requiring long-term monitoring. Thus, a main challenge in NB and WT treatment is the development of novel therapeutic strategies to eliminate or minimize the adverse effects. The characterization of the immune environment could allow for the identification of new therapeutic targets. Herein, we described the interaction between these tumors and innate immune cells, in particular natural killer cells and monocytes. The detection of the immunosuppressive activity of specific NB and WT tumor cells on natural killer cells and on monocytes could offer novel cellular and molecular targets for an effective immunotherapy of NB and WT. Abstract Natural killer (NK) cells play a key role in the control of cancer development, progression and metastatic dissemination. However, tumor cells develop an array of strategies capable of impairing the activation and function of the immune system, including NK cells. In this context, a major event is represented by the establishment of an immunosuppressive tumor microenvironment (TME) composed of stromal cells, myeloid-derived suppressor cells, tumor-associated macrophages, regulatory T cells and cancer cells themselves. The different immunoregulatory cells infiltrating the TME, through the release of several immunosuppressive molecules or by cell-to-cell interactions, cause an impairment of the recruitment of NK cells and other lymphocytes with effector functions. The different mechanisms by which stromal and tumor cells impair NK cell function have been particularly explored in adult solid tumors and, in less depth, investigated and discussed in a pediatric setting. In this review, we will compare pediatric and adult solid malignancies concerning the respective mechanisms of NK cell inhibition, highlighting novel key data in neuroblastoma and Wilms’ tumor, two of the most frequent pediatric extracranial solid tumors. Indeed, both tumors are characterized by the presence of stromal cells acting through the release of immunosuppressive molecules. In addition, specific tumor cell subsets inhibit NK cell cytotoxic function by cell-to-cell contact mechanisms likely controlled by the transcriptional coactivator TAZ. These findings could lead to a more performant diagnostic approach and to the development of novel immunotherapeutic strategies targeting the identified cellular and molecular targets.
Collapse
Affiliation(s)
- Andrea Pelosi
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Piera Filomena Fiore
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Sabina Di Matteo
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Irene Veneziani
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Children’s Hospital of Würzburg, 97080 Würzburg, Germany; (I.C.); (S.E.)
| | - Stefan Ebert
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation, University Children’s Hospital of Würzburg, 97080 Würzburg, Germany; (I.C.); (S.E.)
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
| | - Enrico Maggi
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
- Correspondence: (E.M.); (B.A.)
| | - Bruno Azzarone
- Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.P.); (P.F.F.); (S.D.M.); (I.V.); (L.M.)
- Correspondence: (E.M.); (B.A.)
| |
Collapse
|
18
|
Cantoni C, Serra M, Parisi E, Azzarone B, Sementa AR, Nasto LA, Moretta L, Candiano G, Bottino C, Ghiggeri GM, Spaggiari GM. Stromal-like Wilms tumor cells induce human Natural Killer cell degranulation and display immunomodulatory properties towards NK cells. Oncoimmunology 2021; 10:1879530. [PMID: 33758675 PMCID: PMC7946041 DOI: 10.1080/2162402x.2021.1879530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The similarity of stromal-like Wilms tumor (str-WT) cells with mesenchymal stem cells (MSC), suggests their relevant role in the interplay with immune cells in the tumor microenvironment. We investigated the interaction between str-WT cells and NK cells. We observed that str-WT cells expressed some major ligands for activating and inhibitory NK cell receptors. Moreover, they expressed inhibitory checkpoint molecules involved in the negative regulation of anti-tumor immune response. The analysis of the interaction between str-WT cells and NK lymphocytes revealed that activated NK cells could efficiently degranulate upon interaction with str-WT cells. On the other hand, str-WT cells could exert potent inhibitory effects on cytokine-induced activation of NK cell proliferation and phenotype, which were mediated by the production of IDO and PGE2 inhibitory factors. Our data provide insight into the molecular interactions between str-WT cells and NK lymphocytes that may result in different outcomes possibly occurring in the WT microenvironment.
Collapse
Affiliation(s)
- Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Erica Parisi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Bruno Azzarone
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Luigi Aurelio Nasto
- Department of Paediatric Orthopaedics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Division of Nephrology, Dialysis & Transplantation, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Grazia Maria Spaggiari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Prognostic Gene Expression, Stemness and Immune Microenvironment in Pediatric Tumors. Cancers (Basel) 2021; 13:cancers13040854. [PMID: 33670534 PMCID: PMC7922568 DOI: 10.3390/cancers13040854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Tumors in children and young adults are rare and diagnostically distinct from those occurring in older patients. They frequently arise from developing cells, resembling stem cells, which may explain some of the clinical and biologic differences observed. The aim of this retrospective transcriptome study was to investigate the prognostic landscape, immune tumor microenvironment (TME) and stemness in a cohort of 4068 transcriptomes of such tumors. We find that patients’ prognosis correlates with distinct gene expression patterns similar to adult tumor types. Stemness defined by a computational stemness score (mRNAsi) correlates with clinical and molecular parameters that is distinct for each tumor type. In Wilms tumors that recapitulate normal kidney development microscopically, stemness correlates with distinct patterns of immune cell infiltration by transcriptome analysis and by cell localization in tumor tissue. Abstract Pediatric tumors frequently arise from embryonal cells, often displaying a stem cell-like (“small round blue”) morphology in tissue sections. Because recently “stemness” has been associated with a poor immune response in tumors, we investigated the association of prognostic gene expression, stemness and the immune microenvironment systematically using transcriptomes of 4068 tumors occurring mostly at the pediatric and young adult age. While the prognostic landscape of gene expression (PRECOG) and infiltrating immune cell types (CIBERSORT) is similar to that of tumor entities occurring mainly in adults, the patterns are distinct for each diagnostic entity. A high stemness score (mRNAsi) correlates with clinical and morphologic subtype in Wilms tumors, neuroblastomas, synovial sarcomas, atypical teratoid rhabdoid tumors and germ cell tumors. In neuroblastomas, a high mRNAsi is associated with shortened overall survival. In Wilms tumors a high mRNAsi correlates with blastemal morphology, whereas tumors with predominant epithelial or stromal differentiation have a low mRNAsi and a high percentage of M2 type macrophages. This could be validated in Wilms tumor tissue (n = 78). Here, blastemal areas are low in M2 macrophage infiltrates, while nearby stromal differentiated areas contain abundant M2 macrophages, suggesting local microanatomic regulation of the immune response.
Collapse
|
20
|
Fiore PF, Vacca P, Tumino N, Besi F, Pelosi A, Munari E, Marconi M, Caruana I, Pistoia V, Moretta L, Azzarone B. Wilms' Tumor Primary Cells Display Potent Immunoregulatory Properties on NK Cells and Macrophages. Cancers (Basel) 2021; 13:E224. [PMID: 33435455 PMCID: PMC7826641 DOI: 10.3390/cancers13020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The immune response plays a crucial defensive role in cancer growth and metastasis and is a promising target in different tumors. The role of the immune system in Wilm's Tumor (WT), a common pediatric renal malignancy, is still to be explored. The characterization of the immune environment in WT could allow the identification of new therapeutic strategies for targeting possible inhibitory mechanisms and/or lowering toxicity of the current treatments. In this study, we stabilized four WT primary cultures expressing either a blastematous (CD56+/CD133-) or an epithelial (CD56-/CD133+) phenotype and investigated their interactions with innate immune cells, namely NK cells and monocytes. We show that cytokine-activated NK cells efficiently kill WT cells. However, after co-culture with WT primary cells, NK cells displayed an impaired cytotoxic activity, decreased production of IFNγ and expression of CD107a, DNAM-1 and NKp30. Analysis of the effects of the interaction between WT cells and monocytes revealed their polarization towards alternatively activated macrophages (M2) that, in turn, further impaired NK cell functions. In conclusion, we show that both WT blastematous and epithelial components may contribute directly and indirectly to a tumor immunosuppressive microenvironment that is likely to play a role in tumor progression.
Collapse
Affiliation(s)
- Piera Filomena Fiore
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Paola Vacca
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Nicola Tumino
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Francesca Besi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Andrea Pelosi
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Marcella Marconi
- Department of Pathology, IRCCS Sacro Cuore Don Calabria, Negrar, 37024 Verona, Italy;
| | - Ignazio Caruana
- Department of Paediatric Haematology, Oncology and Stem Cell Transplantation University Children’s Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Vito Pistoia
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Lorenzo Moretta
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| | - Bruno Azzarone
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.F.F.); (P.V.); (N.T.); (F.B.); (A.P.); (V.P.)
| |
Collapse
|
21
|
Lehmann N, Paret C, El Malki K, Russo A, Neu MA, Wingerter A, Seidmann L, Foersch S, Ziegler N, Roth L, Backes N, Sandhoff R, Faber J. Tumor Lipids of Pediatric Papillary Renal Cell Carcinoma Stimulate Unconventional T Cells. Front Immunol 2020; 11:1819. [PMID: 32973759 PMCID: PMC7468390 DOI: 10.3389/fimmu.2020.01819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/07/2020] [Indexed: 01/25/2023] Open
Abstract
Papillary renal cell carcinoma (PRCC) is a rare entity in children with no established therapy protocols for advanced diseases. Immunotherapy is emerging as an important therapeutic tool for childhood cancer. Tumor cells can be recognized and killed by conventional and unconventional T cells. Unconventional T cells are able to recognize lipid antigens presented via CD1 molecules independently from major histocompatibility complex, which offers new alternatives for cancer immunotherapies. The nature of those lipids is largely unknown and α-galactosylceramide is currently used as a synthetic model antigen. In this work, we analyzed infiltrating lymphocytes of two pediatric PRCCs using flow cytometry, immunohistochemistry and qRT-PCR. Moreover, we analyzed the CD1d expression within both tumors. Tumor lipids of PRCC samples and three normal kidney samples were fractionated and the recognition of tumor own lipid fractions by unconventional T cells was analyzed in an in vitro assay. We identified infiltrating lymphocytes including γδ T cells and iNKT cells, as well as CD1d expression in both samples. One lipid fraction, containing ceramides and monoacylglycerides amongst others, was able to induce the proliferation of iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) of healthy donors and of one matched PRCC patient. Furthermore, CD1d tetramer stainings revealed that a subset of iNKT cells is able to bind lipids being present in fraction 2 via CD1d. We conclude that PRCCs are infiltrated by conventional and unconventional T cells and express CD1d. Moreover, certain lipids, present in pediatric PRCC, are able to stimulate unconventional T cells. Manipulating these lipids and T cells may open new strategies for therapy of pediatric PRCCs.
Collapse
Affiliation(s)
- Nadine Lehmann
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marie Astrid Neu
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Larissa Seidmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nicole Ziegler
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lea Roth
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nora Backes
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, Heidelberg, Germany
| | - Joerg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Tian K, Wang X, Wu Y, Wu X, Du G, Liu W, Wu R. Relationship of tumour-associated macrophages with poor prognosis in Wilms' tumour. J Pediatr Urol 2020; 16:376.e1-376.e8. [PMID: 32299765 DOI: 10.1016/j.jpurol.2020.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Wilms' tumour (WT) is the most common childhood renal tumour. Tumour-associated macrophages (TAMs) are a critical component of tumour microenvironments and contain two main subtypes, classically (M1) or alternatively (M2) activated macrophages. Evidence has revealed TAMs in predicting poor prognosis in some malignant tumours. However, the role of TAMs in WT is still unclear, and the relationship of different types of TAMs with prognosis has not been elucidated. OBJECTIVE The aim of the study was to explore the presence of two types of TAMs in WT and analyse the relationship of TAMs with prognosis. STUDY DESIGN Overall, 61 paediatric patients with WT underwent nephrectomy before any chemotherapy from April 2006 to March 2014. The tumour tissues were analysed by Western blot, immunohistochemistry, and immunofluorescence to explore the distribution of M1 and M2 macrophages in different stages. Kaplan-Meier analysis with regard to the relationship between the presence of TAMs and follow-up information was performed. RESULTS In the 61 patients (44 males and 17 females), there was a median age of 19 months (IQR 13-35.5); 47 patients are still alive, 11 died, 3 were lost to follow-up. According to the National Wilms Tumor Study (NWTS)-5 guidelines, the distribution of tumour stages was as follows: stage I, 27 patients; stage II, 18 patients; and stage III, 16 patients. The Western blot analysis showed that the density of M1 and M2 macrophages in tumour tissues were significantly greater than that in adjacent normal tissues. Immunohistochemistry showed the proportion of patients with positive M1-type macrophages across different stages: stage I, 66.7% (18/27); stage II, 44.4% (8/18); and stage III, 25% (4/16) (p = 0.027). The proportion of patients with positive M2-type macrophages across different stages: stage I, 25.9% (7/27); stage II, 55.6% (10/18); and stage III, 81.3% (13/16) (p = 0.002). Kaplan-Meier analysis suggested that patients with high densities of M2-type macrophages had shorter overall survival time than those with low densities (log-rank test, p = 0.011). DISCUSSION TAMs play a pivotal comments in the tumour microenvironment and tumorigenesis. With the progression of clinical stage, M2 macrophage densities increased greatly, and M1 macrophage density decreased. M2 macrophages represent a poor prognosis and can be utilized as a new indicator in pathological examination. CONCLUSION There is a high density of TAMs in WT, and M2-type macrophage density increases with tumour progression and implies a poor prognosis.
Collapse
Affiliation(s)
- Kaixuan Tian
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yidi Wu
- School of Medicine, Shandong University, Jinan, Shandong, 250021, PR China
| | - Xiangyu Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
23
|
Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1699-1713. [PMID: 32777908 PMCID: PMC7649072 DOI: 10.5713/ajas.20.0156] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Bovine mastitis, an inflammation of the mammary gland, is the most common disease of dairy cattle causing economic losses due to reduced yield and poor quality of milk. The etiological agents include a variety of gram-positive and gram-negative bacteria, and can be either contagious (e.g., Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma spp.) or environmental (e.g., Escherichia coli, Enterococcus spp., coagulase-negative Staphylococcus, Streptococcus uberis). Improving sanitation such as enhanced milking hygiene, implementation of post-milking teat disinfection, maintenance of milking machines are general measures to prevent new cases of mastitis, but treatment of active mastitis infection is dependant mainly on antibiotics. However, the extensive use of antibiotics increased concerns about emergence of antibiotic-resistant pathogens and that led the dairy industries to reduce the use of antibiotics. Therefore, alternative therapies for prevention and treatment of bovine mastitis, particularly natural products from plants and animals, have been sought. This review provides an overview of bovine mastitis in the aspects of risk factors, control and treatments, and emerging therapeutic alternatives in the control of bovine mastitis.
Collapse
Affiliation(s)
- Wei Nee Cheng
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
24
|
Raguraman R, Parameswaran S, Kanwar JR, Khetan V, Rishi P, Kanwar RK, Krishnakumar S. Evidence of Tumour Microenvironment and Stromal Cellular Components in Retinoblastoma. Ocul Oncol Pathol 2019; 5:85-93. [PMID: 30976585 PMCID: PMC6422135 DOI: 10.1159/000488709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The tumour microenvironment (TME) consisting of tumour cells and multiple stromal cell types regulate tumour growth, invasion and metastasis. While the concept of TME and presence of stromal cellular components is widely established in cancers, its significance in the paediatric intraocular malignancy, retinoblastoma (RB), remains unknown. METHODS The study qualitatively identified the presence of multiple stromal cellular subtypes in RB TME by immunohistochemistry. RESULTS Results of the study identified the presence of stromal cell types such as endothelial cells, tumour-associated macrophages, fibroblasts, cancer-associated fibroblasts, retinal astrocytes and glia in RB TME. The extent of stromal marker positivity, however, did not correlate with histopathological features of RB. CONCLUSIONS The findings of the study convincingly suggest the presence of a stromal component in RB tumours. The interactions between stromal cells and tumour cells might be of profound importance in RB progression.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Larsen and Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Jagat Rakesh Kanwar
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Vikas Khetan
- Department of Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Department of Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Rupinder Kaur Kanwar
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Subramanian Krishnakumar
- Department of Larsen and Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
25
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|
26
|
Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra-articular lymphocyte recruitment in vivo. Oncotarget 2018; 7:62439-62459. [PMID: 27566567 PMCID: PMC5308738 DOI: 10.18632/oncotarget.11516] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/13/2016] [Indexed: 01/01/2023] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor-1 is important for leukocyte migration to lymphoid organs and inflamed tissues and stimulates tumor development. In vitro, CXCL12 activity through CXCR4 is abolished by proteolytic processing. However, limited information is available on in vivo effects of posttranslationally modified CXCL12. Natural CXCL12 was purified from the coculture supernatant of stromal cells stimulated with leukocytes and inflammatory agents. In this conditioned medium, CXCL12 with a nitration on Tyr7, designated [3-NT7]CXCL12, was discovered via Edman degradation. CXCL12 and [3-NT7]CXCL12 were chemically synthesized to evaluate the biological effects of this modification. [3-NT7]CXCL12 recruited β-arrestin 2 and phosphorylated the Akt kinase similar to CXCL12 in receptor-transfected cells. Also the affinity of CXCL12 and [3-NT7]CXCL12 for glycosaminoglycans, the G protein-coupled chemokine receptor CXCR4 and the atypical chemokine receptor ACKR3 were comparable. However, [3-NT7]CXCL12 showed a reduced ability to enhance intracellular calcium concentrations, to generate inositol triphosphate, to phosphorylate ERK1/2 and to induce monocyte and lymphocyte chemotaxis in vitro. Moreover, nitrated CXCL12 failed to induce in vivo extravasation of lymphocytes to the joint. In summary, nitration on Tyr7 under inflammatory conditions is a novel natural posttranslational regulatory mechanism of CXCL12 which may downregulate the CXCR4-mediated inflammatory and tumor-promoting activities of CXCL12.
Collapse
|
27
|
Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY, Glynn SA, Ambs S, Wink DA, Ridnour LA. Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression. Antioxid Redox Signal 2017; 26:1044-1058. [PMID: 27464521 PMCID: PMC5488348 DOI: 10.1089/ars.2016.6813] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Breast cancer is the second leading cause of cancer-related deaths among women in the United States. Development and progression of malignancy are associated with diverse cell signaling pathways that control cell proliferation, survival, motility, invasion, and metastasis. Recent Advances: An increasing number of clinical studies have implicated a strong relationship between elevated tumor nitric oxide synthase-2 (NOS2) expression and poor patient survival. CRITICAL ISSUES Herein, we review what we believe to be key mechanisms in the role(s) of NOS2-derived nitric oxide (NO) as a driver of breast cancer disease progression. High NO increases cyclooxygenase-2 activity, hypoxia inducible factor-1 alpha protein stabilization, and activation of important cell signaling pathways, including phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinase, epidermal growth factor receptor, and Ras, through post-translational protein modifications. Moreover, dysregulated NO flux within the tumor microenvironment has other important roles, including the promotion of angiogenesis and modulation of matrix metalloproteinase/tissue inhibitor matrix metalloproteinase associated with tumor progression. FUTURE DIRECTIONS The elucidation of these and other NO-driven pathways implicates NOS2 as a key driver of breast cancer disease progression and provides a new perspective in the identification of novel targets that may be therapeutically beneficial in the treatment of estrogen receptor-negative disease. Antioxid. Redox Signal. 26, 1044-1058.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Veena Somasundaram
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | | | - Aparna Kesarwala
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Julie L. Heinecke
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Robert Y. Cheng
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Sharon A. Glynn
- Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland
| |
Collapse
|
28
|
Amarante MK, de Oliveira CEC, Ariza CB, Sakaguchi AY, Ishibashi CM, Watanabe MAE. The predictive value of transforming growth factor-β in Wilms tumor immunopathogenesis. Int Rev Immunol 2017; 36:233-239. [PMID: 28481647 DOI: 10.1080/08830185.2017.1291639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Wilms tumor is the most common kidney malignancy in children, especially in children aged less than 6 years. Although therapeutic approach has reached successful rates, there is still room for improvement. Considering the tumor microenvironment, cytokines represent important elements of interaction and communication between tumor cells, stroma, and immune cells. In this regard, the transforming growth factor beta (TGF-β) family members play significant functions in physiological and pathological conditions, particularly in cancer. By regulating cell growth, death, and immortalization, TGF-β signaling pathways exert tumor suppressor effects in normal and early tumor cells. Thus, it is not surprising that a high number of human tumors arise due to alterations in genes coding for various TGF-β signaling components. Understanding the ambiguous role of TGF-β in human cancer is of paramount importance for the development of new therapeutic strategies to specifically block the metastatic signaling pathway of TGF-β without affecting its tumor suppressive effect. In this context, this review attempt to summarize the involvement of TGF-β in Wilms tumor.
Collapse
Affiliation(s)
- Marla Karine Amarante
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carlos Eduardo Coral de Oliveira
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carolina Batista Ariza
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Alberto Yoichi Sakaguchi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Cintya Mayumi Ishibashi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Maria Angelica Ehara Watanabe
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| |
Collapse
|
29
|
Maturu P, Jones D, Ruteshouser EC, Hu Q, Reynolds JM, Hicks J, Putluri N, Ekmekcioglu S, Grimm EA, Dong C, Overwijk WW. Role of Cyclooxygenase-2 Pathway in Creating an Immunosuppressive Microenvironment and in Initiation and Progression of Wilms' Tumor. Neoplasia 2017; 19:237-249. [PMID: 28254151 PMCID: PMC6197604 DOI: 10.1016/j.neo.2016.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Wilms' tumors (WT), which accountfor 6% of all childhood cancers, arise from dysregulated differentiation of nephrogenic progenitor cells from embryonic kidneys. Though there is an improvement in the prognosis of WT, still 10% of patients with WT die due to recurrence. Thus more effective treatment approaches are necessary. We previously characterized the inflammatory microenvironment in human WT and observed the robust expression of COX-2. The aim of this study was to extend our studies to analyze the role of COX-2 pathway components in WT progression using a mouse model of WT. Herein, COX-2 pathway components such as COX-2, HIF1-α, p-ERK1/2, and p-STAT3 were upregulated in mouse and human tumor tissues. In our RPPA analysis, COX-2 was up-regulated in M15 cells after Wt1 gene was knocked down. Flow cytometry analysis showed the increased infiltration of immune suppressive inflammatory cells such as pDC's and Treg cells in tumors. The chemotactic chemokines responsible for the infiltration of these cells were also induced in CCR5 and CXCR4 dependent manner respectively. The immunosuppressive cytokines IL-10, TGF-β, and TNF-α were also up-regulated. Furthermore, more pronounced Th2 and Treg induced cytokine response was observed than Th1 response in tumors. Basing on all these evidences it is speculated that COX-2 pathway may be a beneficial target for the treatment of WT. It may be most effective as an adjuvant therapy together with other inhibitors. Thus, our current study provides a good rationale for initiating animal studies to confirm the efficacy of COX-2 inhibitors in decreasing tumor cell growth in vivo.
Collapse
Key Words
- wt, wilms' tumor
- cox-2, cyclooxygenase-2
- wt1, wilms' tumor 1 gene
- igf2, insulin growth factor2
- hif-1α, hypoxia-inducible factor 1-alpha
- ido, indolamine 2, 3-dioxygenase
- tgf-β, transforming growth factor beta
- tnf-α, tumor necrosis factor alpha
- pdcs, plasmacytoid dendritic cells
- tregs, t regulatory cells
- rppa, reverse phase protein array
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA; Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Devin Jones
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA
| | - E Cristy Ruteshouser
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA
| | - Qianghua Hu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA
| | - Joseph M Reynolds
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John Hicks
- Department of Pathology, Texas Children's Hospital, 6621 Fannin, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0904, Houston, TX, USA
| | - Elizabeth A Grimm
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0904, Houston, TX, USA
| | - Chen Dong
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0904, Houston, TX, USA
| |
Collapse
|
30
|
Abebayehu D, Spence AJ, Qayum AA, Taruselli MT, McLeod JJA, Caslin HL, Chumanevich AP, Kolawole EM, Paranjape A, Baker B, Ndaw VS, Barnstein BO, Oskeritzian CA, Sell SA, Ryan JJ. Lactic Acid Suppresses IL-33-Mediated Mast Cell Inflammatory Responses via Hypoxia-Inducible Factor-1α-Dependent miR-155 Suppression. THE JOURNAL OF IMMUNOLOGY 2016; 197:2909-17. [PMID: 27559047 DOI: 10.4049/jimmunol.1600651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023]
Abstract
Lactic acid (LA) is present in tumors, asthma, and wound healing, environments with elevated IL-33 and mast cell infiltration. Although IL-33 is a potent mast cell activator, how LA affects IL-33-mediated mast cell function is unknown. To investigate this, mouse bone marrow-derived mast cells were cultured with or without LA and activated with IL-33. LA reduced IL-33-mediated cytokine and chemokine production. Using inhibitors for monocarboxylate transporters (MCT) or replacing LA with sodium lactate revealed that LA effects are MCT-1- and pH-dependent. LA selectively altered IL-33 signaling, suppressing TGF-β-activated kinase-1, JNK, ERK, and NF-κB phosphorylation, but not p38 phosphorylation. LA effects in other contexts have been linked to hypoxia-inducible factor (HIF)-1α, which was enhanced in bone marrow-derived mast cells treated with LA. Because HIF-1α has been shown to regulate the microRNA miR-155 in other systems, LA effects on miR-155-5p and miR-155-3p species were measured. In fact, LA selectively suppressed miR-155-5p in an HIF-1α-dependent manner. Moreover, overexpressing miR-155-5p, but not miR-155-3p, abolished LA effects on IL-33-induced cytokine production. These in vitro effects of reducing cytokines were consistent in vivo, because LA injected i.p. into C57BL/6 mice suppressed IL-33-induced plasma cytokine levels. Lastly, IL-33 effects on primary human mast cells were suppressed by LA in an MCT-dependent manner. Our data demonstrate that LA, present in inflammatory and malignant microenvironments, can alter mast cell behavior to suppress inflammation.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Alena P Chumanevich
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208; and
| | | | - Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Victor S Ndaw
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208; and
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284;
| |
Collapse
|
31
|
Murgai M, Giles A, Kaplan R. Physiological, Tumor, and Metastatic Niches: Opportunities and Challenges for Targeting the Tumor Microenvironment. Crit Rev Oncog 2016; 20:301-14. [PMID: 26349421 DOI: 10.1615/critrevoncog.2015013668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The primary tumor niche and the related but distinct premetastatic/metastatic niche comprise a number of essential players, including immune cells, stromal cells, and extracellular matrix. The cross-talk between these components is key to tumor progression. Many of these cell types and signaling pathways in the tumor microenvironment also are found in physiological and stem cell niches, such as the bone marrow, colonic crypt, and skin bulge. Here they play tightly regulated roles in wound healing and tissue homeostasis. Understanding the similarities and differences between these distinct niches may better inform our ability to therapeutically target the tumor microenvironment. In this review we discuss a number of tumor and metastatic niche components as they relate to stem cell niches and highlight potential therapeutic strategies in pediatric cancers.
Collapse
Affiliation(s)
- Meera Murgai
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amber Giles
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rosandra Kaplan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Predonzani A, Calì B, Agnellini AHR, Molon B. Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide. World J Exp Med 2015; 5:64-76. [PMID: 25992321 PMCID: PMC4436941 DOI: 10.5493/wjem.v5.i2.64] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, nitric oxide (NO) has been definitively recognised as one of the key players involved in immunity and inflammation. NO generation was originally described in activated macrophages, which still represent the prototype of NO-producing cells. Notwithstanding, additional cell subsets belonging to both innate and adaptive immunity have been documented to sustain NO propagation by means of the enzymatic activity of different nitric oxide synthase isoforms. Furthermore, due to its chemical characteristics, NO could rapidly react with other free radicals to generate different reactive nitrogen species (RNS), which have been intriguingly associated with many pathological conditions. Nonetheless, the plethora of NO/RNS-mediated effects still remains extremely puzzling. The aim of this manuscript is to dig into the broad literature on the topic to provide intriguing insights on NO-mediated circuits within immune system. We analysed NO and RNS immunological clues arising from their biochemical properties, immunomodulatory activities and finally dealing with their impact on different pathological scenarios with far prompting intriguing perspectives for their pharmacological targeting.
Collapse
|
33
|
Lu J, Tao YF, Li ZH, Cao L, Hu SY, Wang NN, Du XJ, Sun LC, Zhao WL, Xiao PF, Fang F, Xu LX, Li YH, Li G, Zhao H, Ni J, Wang J, Feng X, Pan J. Analyzing the gene expression profile of anaplastic histology Wilms' tumor with real-time polymerase chain reaction arrays. Cancer Cell Int 2015; 15:44. [PMID: 26136641 PMCID: PMC4486424 DOI: 10.1186/s12935-015-0197-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Wilms’ tumor (WT) is one of the most common malignant neoplasms of the urinary tract in children. Anaplastic histology (unfavorable histology) accounts for about 10% of whole WTs, and it is the single most important histologic predictor of treatment response and survival in patients with WT; however, until now the molecular basis of this phenotype is not very clearly. Methods A real-time polymerase chain reaction (PCR) array was designed and tested. Next, the gene expression profile of pediatric anaplastic histology WT and normal adjacent tissues were analyzed. These expression data were anlyzed with Multi Experiment View (MEV) cluster software further. Datasets representing genes with altered expression profiles derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool (IPA). Results 88 real-time PCR primer pairs for quantitative gene expression analysis of key genes involved in pediatric anaplastic histology WT were designed and tested. The gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal controls; we identified 15 genes that are up-regulated and 16 genes that are down-regulated in the former. To investigate biological interactions of these differently regulated genes, datasets representing genes with altered expression profiles were imported into the IPA for further analysis, which revealed three significant networks: Cancer, Hematological Disease, and Gene Expression, which included 27 focus molecules and a significance score of 43. The IPA analysis also grouped the differentially expressed genes into biological mechanisms related to Cell Death and Survival 1.15E−12, Cellular Development 2.84E−11, Cellular Growth and Proliferation 2.84E-11, Gene Expression 4.43E−10, and DNA Replication, Recombination, and Repair 1.39E−07. The important upstream regulators of pediatric anaplastic histology WT were TP53 and TGFβ1 signaling (P = 1.15E−14 and 3.79E−13, respectively). Conclusions Our study demonstrates that the gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal tissues with real-time PCR array. We identified some genes that are dysregulated in pediatric anaplastic histology WT for the first time, such as HDAC7, and IPA analysis showed the most important pathways for pediatric anaplastic histology WT are TP53 and TGFβ1 signaling. This work may provide new clues into the molecular mechanisms behind pediatric anaplastic histology WT. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yan-Fang Tao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Zhi-Heng Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Lan Cao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Na-Na Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao-Juan Du
- Department of Gastroenterology, the 5th Hospital of Chinese PLA, Yin chuan, China
| | - Li-Chao Sun
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wen-Li Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Pei-Fang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Xiao Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yan-Hong Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Gang Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - He Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Ni
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China
| | - Jian Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Feng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Guldner IH, Zhang S. A journey to uncharted territory: new technical frontiers in studying tumor-stromal cell interactions. Integr Biol (Camb) 2015; 7:153-61. [PMID: 25500646 PMCID: PMC4324098 DOI: 10.1039/c4ib00192c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crosstalk between tumor cells and cells of the tumor stroma dictate malignant progression and represent an intriguing and viable anticancer therapeutic target. The successful development of therapeutics targeting tumor-stroma interactions is tied to the insight provided by basic research on such crosstalk. Tumor-stroma interactions can be transient and dynamic, and they occur within defined spatiotemporal contexts among genetically and compositionally heterogeneous populations of cells, yet methods currently applied to study the said crosstalk do not sufficiently address these features. Emerging imaging and genetic methods, however, can overcome limitations of traditional approaches and provide unprecedented insight into tumor-stroma crosstalk with unparalleled accuracy. The comprehensive data obtained by applying emerging methods will require processing and analysis by multidisciplinary teams, but the efforts will ultimately rejuvenate hope in developing novel therapies against pro-tumorigenic tumor-stroma crosstalk.
Collapse
Affiliation(s)
- Ian H Guldner
- Department of Biological Science, Harper Cancer Research Institute, University of Notre Dame, A130 Harper Hall, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
35
|
Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 2015; 4:20-32. [PMID: 26835356 PMCID: PMC4729069 DOI: 10.3978/j.issn.2224-4336.2015.01.04] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies.
Collapse
|