1
|
Wang L, Zhang X, Ma C, Wu N. 1-Phosphate receptor agonists: A promising therapeutic avenue for ischemia-reperfusion injury management. Int Immunopharmacol 2024; 131:111835. [PMID: 38508097 DOI: 10.1016/j.intimp.2024.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Tsivilika M, Doumaki E, Stavrou G, Sioga A, Grosomanidis V, Meditskou S, Maranginos A, Tsivilika D, Stafylarakis D, Kotzampassi K, Papamitsou T. The adaptive immune response in cardiac arrest resuscitation induced ischemia reperfusion renal injury. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2020; 27:15. [PMID: 33014901 PMCID: PMC7526263 DOI: 10.1186/s40709-020-00125-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The present study aims to investigate, immunohistochemically, the role of the adaptive immune response in cardiac arrest/resuscitation-induced ischemia-reperfusion renal injury (IRI), namely to assess the presence of lymphocytes in renal tissue samples and the connection between the extent of the damage and the concentration of the lymphocytes by comparing the kidneys of non resuscitated swine with the kidneys of resuscitated swine. METHODS Twenty four swine underwent cardiac arrest (CA) via a pacemaker wire. After 7 min, without any intervention, Cardiopulmonary Resuscitation, CPR, was commenced. Five min after CPR was commenced advanced life-support, ALS. Animals were divided into resuscitated animals and non resuscitated animals. Tissue samples obtained from the two groups for immunohistological study aiming to detect T-cells, B-cells and plasma cells using CD3 + , CD20 + , and CD138 + antibodies. RESULTS There seems to be a strong concentration of T lymphocytes in the kidney tissues after ischemia of both non-resuscitated and resuscitated swine. B lymphocytes, also, appear to have infiltrated the ischemic kidneys of both animal groups; nevertheless, the contribution of T lymphocytes to the induction of injury remains greater. There is no strong evidence of correlation between the plasma cells and the damage. CONCLUSION The adaptive immune response seems to have a strong association with kidney injury and acute tubular necrosis after cardiac arrest/ resuscitation-induced ischemia-reperfusion. However, the extent to which the adaptive immune cells are involved in the induction of renal injury remains uncertain and there are many questions about the mechanism of function of these cells, the answers of which require further studies.
Collapse
Affiliation(s)
- Maria Tsivilika
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Gianni Chalkidi 45, Charilaou, 54249 Thessaloniki, Greece
| | - Eleni Doumaki
- 1st Department of Internal Medicine, Faculty of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Stavrou
- Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Colorectal Surgery, Addenbrooke’s Hospital, Cambridge, UK
| | - Antonia Sioga
- Laboratory of Histology- Embryology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Grosomanidis
- Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Soultana Meditskou
- Laboratory of Histology- Embryology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Dimitrios Stafylarakis
- 2nd Department of Urology of Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Katerina Kotzampassi
- Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology- Embryology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Rousselle TV, Kuscu C, Kuscu C, Schlegel K, Huang L, Namwanje M, Eason JD, Makowski L, Maluf D, Mas V, Bajwa A. FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Front Immunol 2020; 11:1278. [PMID: 32670281 PMCID: PMC7328774 DOI: 10.3389/fimmu.2020.01278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are central in regulating immune responses of kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in mice treated with S1PR agonist, FTY720 (FTY). We tested if ex vivo propagation of DCs with FTY could be used as cellular therapy to limit the off-target effects associated with systemic FTY administration in kidney IRI. DCs have the ability of regulate innate and adaptive responses and we posited that treatment of DC with FTY may underlie improvements in kidney IRI. Herein, it was observed that treatment of bone marrow derived dendritic cells (BMDCs) with FTY induced mitochondrial biogenesis, FTY-treated BMDCs (FTY-DCs) showed significantly higher oxygen consumption rate and ATP production compared to vehicle treated BMDCs (Veh-DCs). Adoptive transfer of FTY-DCs to mice 24 h before or 4 h after IRI significantly protected the kidneys from injury compared to mice treated with Veh-DCs. Additionally, allogeneic adoptive transfer of C57BL/6J FTY-DCs into BALB/c mice equally protected the kidneys from IRI. FTY-DCs propagated from S1pr1-deficient DCs derived from CD11cCreS1pr1fl/fl mice as well as blunting mitochondrial oxidation in wildtype (WT) FTY-DCs prior to transfer abrogated the protection observed by FTY-DCs. We queried if DC mitochondrial content alters kidney responses after IRI, a novel but little studied phenomenon shown to be integral to regulation of the immune response. Transfer of mitochondria rich FTY-DCs protects kidneys from IRI as transferred FTY-DCs donated their mitochondria to recipient splenocytes (i.e., macrophages) and prior splenectomy abrogated this protection. Adoptive transfer of FTY-DCs either prior to or after ischemic injury protects kidneys from IRI demonstrating a potent role for donor DC-mitochondria in FTY's efficacy. This is the first evidence, to our knowledge, that DCs have the potential to protect against kidney injury by donating mitochondria to splenic macrophages to alter their bioenergetics thus making them anti-inflammatory. In conclusion, the results support that ex vivo FTY720-induction of the regulatory DC phenotype could have therapeutic relevance that can be preventively infused to reduce acute kidney injury.
Collapse
Affiliation(s)
- Thomas V Rousselle
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Kailo Schlegel
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - LiPing Huang
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Maria Namwanje
- Department of Pediatrics and Genetics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Liza Makowski
- Department of Medicine - Division of Hematology and Oncology, College of Medicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Valeria Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
4
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Effects of FTY720 on Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats. Mediators Inflamm 2017; 2017:5301312. [PMID: 29249870 PMCID: PMC5700482 DOI: 10.1155/2017/5301312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/09/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a biologically active lysophospholipid mediator involved in modulating inflammatory process. We investigated the effects of FTY720, a structural analogue of S1P after phosphorylation, on lung injury induced by hindlimb ischemia reperfusion (IR) in rats. Methods Fifty Sprague-Dawley rats were divided into groups SM, IR, F3, F5, and F10. Group SM received sham operation, and bilateral hindlimb IR was established in group IR. The rats in groups F3, F5, and F10 were pretreated with 3, 5, and 10 mg/kg/d FTY720 for 7 days before IR. S1P lyase (S1PL), sphingosine kinase (SphK) 1, and SphK2 mRNA expressions, wet/dry weight (W/D), and polymorphonuclear/alveolus (P/A) in lung tissues were detected, and the lung injury score was evaluated. Results W/D, P/A, and mRNA expressions of S1PL, SphK1, and SphK2 were higher in group IR than in group SM, while these were decreased in both groups F5 and F10 as compared to IR (p < 0.05). The lung tissue presented severe lesions in group IR, which were attenuated in groups F5 and F10 with lower lung injury scores than in group IR (p < 0.05). Conclusions FTY720 pretreatment could attenuate lung injury induced by hindlimb IR by modulating S1P metabolism and decreasing pulmonary neutrophil infiltration.
Collapse
|
6
|
Tian T, Zhang J, Zhu X, Wen S, Shi D, Zhou H. FTY720 ameliorates renal fibrosis by simultaneously affecting leucocyte recruitment and TGF-β signalling in fibroblasts. Clin Exp Immunol 2017; 190:68-78. [PMID: 28658504 DOI: 10.1111/cei.13003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is the common final manifestation of chronic kidney diseases and usually results in end-stage renal failure. In this study, we evaluated the effect of fingolimod (FTY720), an analogue of sphingosine 1-phosphate (S1P), as a treatment for the unilateral ureteral obstruction (UUO)-induced renal fibrosis animal model. We treated mice with FTY720 at a dosage of 1 mg/kg/day by intragastric administration from day 1 until day 7. The control group received the same amount of saline. FTY720 reduced significantly the urine albumin/creatinine ratio (UACR) in treated UUO mice. FTY720 treatment also caused a significant decrease in interstitial expansion and collagen deposition in the kidney, accompanied by reduced mononuclear cell recruitment and inflammatory cytokine expression. In addition, the expression levels of the endothelial cell adhesion molecules P-selectin and vascular cell adhesion protein 1 (VCAM-1) were suppressed in the ligated kidney by FTY720 administration, suggesting reduced renal endothelial cell activation. Furthermore, in renal interstitial fibroblast normal rat kidney (NRK)-49F cells, FTY720 significantly affected transforming growth factor (TGF)-β-induced α-smooth muscle actin (SMA) expression and collagen synthesis by inhibiting both the Mothers against decapentaplegic homologue (Smad)2/3 and phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase 3 beta (PI3K/AKT/GSK3β) signalling pathways. S1P1 knock-down by siRNA reversed this effect significantly in our fibroblast cell culture model. Therefore, FTY720 attenuates renal fibrosis via two different mechanisms: first, FTY720 suppresses the synthesis of extracellular matrix in interstitial fibroblasts by interfering with TGF-β signalling; and secondly, FTY720 affects endothelial cell activation and chemokine expression, thereby reducing immune cell recruitment into the kidney.
Collapse
Affiliation(s)
- T Tian
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - J Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - X Zhu
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - S Wen
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - D Shi
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - H Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Qian J, Ye Y, Lv L, Zhu C, Ye S. FTY720 attenuates paraquat-induced lung injury in mice. Int Immunopharmacol 2014; 21:426-31. [PMID: 24893116 DOI: 10.1016/j.intimp.2014.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/10/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
Paraquat (PQ) poisoning, with the lung as a primary target organ, is a devastating disease which irreversibly progresses to diffuse alveolitis followed by extensive lung fibrosis. In the present study, we aimed to investigate the effect of FTY720, an immune modulator, on PQ-induced lung injury in mice. C57BL/6 mice were randomized into four groups: 1) PQ group (n=12): mice was instilled with PQ (30 mg/kg, ip); 2) PQ+FTY720 group (n=12): animals received FTY720 (0.1mg/kg, ip) solution 2h after PQ exposure and twice a week for 4 consecutive weeks; 3) FTY720 group (n=5): FTY720 (0.1mg/kg, ip) was administrated twice a week for 4 consecutive weeks; and 4) Control group (n=10): same volumes of saline were injected. Mice were sacrificed on either day 3 or day 28 for histopathological, biochemical and immunohistochemical analyses of lung damage indicators. We found that FTY720 treatment attenuated PQ-induced acute lung injury and lung fibrosis as evaluated by histopathological changes and Ashcroft score. On day 3, FTY720 administration reduced PQ-induced increases in lung wet weight/body weight (LW/BW), total protein and cytokine levels including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in bronchoalceolar lavage fluid (BALF). On day 28, the expressions of alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β) and vascular endothelial growth factor (VEGF) detected by immunohistochemistry, as well as the mRNA levels of α-SMA, Type-I Collagen and Type-III Collagen examined by Real-time PCR were down-regulated after FTY720 treatment. These results indicate that FTY720 could attenuate PQ-induced lung injury, but further investigation is necessary.
Collapse
Affiliation(s)
- Jie Qian
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yan Ye
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Lixiong Lv
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Changqing Zhu
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China.
| |
Collapse
|
8
|
|
9
|
Sphingosine kinase 1 protects against renal ischemia-reperfusion injury in mice by sphingosine-1-phosphate1 receptor activation. Kidney Int 2011; 80:1315-27. [PMID: 21849969 DOI: 10.1038/ki.2011.281] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The roles of sphingosine kinases SK1 and SK2 in ischemia-reperfusion injury have not been fully elucidated since studies have found beneficial effects of SK1 while others showed no role in this injury. To help resolve this, we used SK1 or SK2 knockout mice and confirmed that renal ischemia-reperfusion injury induced SK1, but not SK2, in the kidneys. Furthermore, knockout or pharmacological inhibition of SK1 increased injury after renal ischemia-reperfusion injury. In contrast, lack of SK2 conferred renal protection following injury. In addition, we used lentiviral gene delivery to selectively express enhanced green fluorescent protein (EGFP) or human SK1 coexpressed with EGFP (EGFP-huSK1) in the kidney. Mice with kidney-specific overexpression of EGFP-huSK1 had significantly improved renal function with lower plasma creatinine, renal necrosis, apoptosis, and inflammation. Moreover, EGFP-huSK1 overexpression in cultured human proximal tubule (HK-2) cells protected against peroxide-induced necrosis. Selective overexpression of EGFP-huSK1 led to increased HSP27 mRNA and protein expression in vivo and in vitro. Functional protection as well as induction of HSP27 with EGFP-huSK1 overexpression in vivo was blocked with sphingosine-1-phosphate-1 receptor(1) (S1P(1)) antagonism. Thus, our findings suggest that SK1 is renoprotective by S1P(1) activation and perhaps HSP27 induction. Kidney-specific expression of SK1 through lentiviral delivery may be a viable therapeutic option to attenuate renal ischemia-reperfusion injury.
Collapse
|
10
|
Pedregosa JF, Haidar AA, Hirata AE, Franco M, Gomes GN, Bueno V. TLR2 and TLR4 expression after kidney ischemia and reperfusion injury in mice treated with FTY720. Int Immunopharmacol 2011; 11:1311-8. [PMID: 21571100 DOI: 10.1016/j.intimp.2011.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 12/11/2022]
Abstract
Ischemia and reperfusion injury (IR) is an antigen independent inflammatory process that causes tissue damage. After IR, kidneys up-regulate leukocyte adhesion molecules and toll-like receptors (TLRs). Moreover, injured kidneys can also secrete factors (i.e. heat shock protein) which bind to TLRs and trigger intracellular events culminating with the increase in the gene expression of inflammatory cytokines. FTY720 is an immunomodulatory compound and protects at least in part kidneys submitted to IR. The mechanisms associated with FTY720's beneficial effects on kidneys after IR remain elusive. We investigated whether FTY720 administration in mice submitted to kidney IR is associated with modulation of TLR2 and TLR4 expression. C57BL/6 mice submitted to 30min of renal pedicles clamp were evaluated for serum parameters (creatinine, urea and nitric oxide), kidney histology, spleen and kidney infiltrating cells expression of TLR2 and TLR4, resident kidney cells expression of TLR2 and TLR4 and IL-6 protein expression in kidney. FTY720-treated mice presented decrease in serum creatinine, urea and nitric oxide, diminished expression of TLR2 and TLR4 both in spleen and kidney infiltrating cells, and reduced kidney IL-6 protein expression in comparison with IR non-treated mice. However, acute tubular necrosis was present both in IR non-treated and IR+FTY720-treated groups. Also, FTY720 did not prevent TLR2 and TLR4 expression in kidney resident cells. In conclusion, FTY720 can promote kidney function recovery after IR by reducing the inflammatory process. Further studies are needed in order to establish whether TLR2 and TLR4 down regulation should be therapeutically addressed as protective targets of renal function and structure after IR.
Collapse
Affiliation(s)
- J F Pedregosa
- Nephrology Division, UNIFESP Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Rong S, Park JK, Kirsch T, Yagita H, Akiba H, Boenisch O, Haller H, Najafian N, Habicht A. The TIM-1:TIM-4 pathway enhances renal ischemia-reperfusion injury. J Am Soc Nephrol 2011; 22:484-95. [PMID: 21355054 DOI: 10.1681/asn.2010030321] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
CD4+ T cells contribute to the pathogenesis of ischemia-reperfusion injury, which is the primary cause of delayed graft failure after kidney transplantation. The TIM-1:TIM-4 pathway participates in the activation/differentiation of CD4+ T cells, suggesting that it may modulate ischemia-reperfusion injury. Here, we studied the role of TIM-1 in a murine uninephrectomized renal ischemia-reperfusion injury model. Blocking the TIM-1:TIM-4 pathway with an antagonistic monoclonal antibody protected renal function and diminished reperfusion injury resulting from 30 minutes of ischemia. Histologic examination showed significantly less evidence of renal damage as evidenced by diminished tubular necrosis, preservation of the brush border, fewer cast formations, and less tubular dilation. Blocking TIM-1 also reduced the number of apoptotic cells and diminished local inflammation within ischemic kidneys, the latter shown by decreased recruitment of macrophages, neutrophils, and CD4+ T cells and by reduced local production of proinflammatory cytokines. Furthermore, TIM-1 blockade significantly improved survival after ischemia-reperfusion injury. Taken together, these data suggest that the TIM-1:TIM-4 pathway enhances injury after renal ischemia-reperfusion injury and may be a therapeutic target.
Collapse
Affiliation(s)
- Song Rong
- Transplant Center, University Hospital Munich, Marchioninistrasse 15, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T, Alsharif N, Brinkmann V, Liao JK, Lo EH, Waeber C. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 2011; 69:119-29. [PMID: 21280082 PMCID: PMC3200194 DOI: 10.1002/ana.22186] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/30/2010] [Accepted: 07/30/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The sphingosine-1-phosphate (S1P) receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver, and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species. METHODS We used rodent models of middle cerebral artery occlusion and cell-culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod. RESULTS In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema, and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by tumor necrosis factor alpha. INTERPRETATION These findings suggest that anti-inflammatory mechanisms, and possibly vasculoprotection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.
Collapse
Affiliation(s)
- Ying Wei
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Muge Yemisci
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Hyung-Hwan Kim
- Vascular Medicine Research, Brigham & Women's Hospital, Cambridge MA 02139, USA
- Jungwon University, International Research Center of Bioscience & Biotechnology, Goesan 367-805, Korea
| | - Lai Ming Yung
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Hwa Kyoung Shin
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Seo-Kyoung Hwang
- Vascular Medicine Research, Brigham & Women's Hospital, Cambridge MA 02139, USA
| | - Shuzhen Guo
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Tao Qin
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Nafiseh Alsharif
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Volker Brinkmann
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, WSJ-386.562, CH-4002 Basel, Switzerland
| | - James K. Liao
- Vascular Medicine Research, Brigham & Women's Hospital, Cambridge MA 02139, USA
| | - Eng H. Lo
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| | - Christian Waeber
- Massachusetts General Hospital, 149 13 Street, Charlestown MA 02129, USA
| |
Collapse
|
13
|
Facio FN, Sena AA, Araújo LP, Mendes GE, Castro I, Luz MAM, Yu L, Oliani SM, Burdmann EA. Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med (Berl) 2010; 89:51-63. [PMID: 20953576 DOI: 10.1007/s00109-010-0684-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/01/2010] [Accepted: 09/18/2010] [Indexed: 10/18/2022]
Abstract
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 μg) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Collapse
Affiliation(s)
- Fernando N Facio
- Division of Nephrology, São José do Rio Preto Medical School, Av. Brigadeiro Faria Lima 5416, São José do Rio Preto, São Paulo, 15090-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sildenafil attenuates renal ischemia reperfusion injury by decreasing leukocyte infiltration. Acta Histochem 2010; 112:337-44. [PMID: 19324400 DOI: 10.1016/j.acthis.2009.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 01/08/2023]
Abstract
The aim of the study was to investigate the effects of sildenafil citrate (SC) on renal ischemia reperfusion (I/R) injury in a rat model. Forty eight male Wistar albino rats were randomly assigned into six groups: sham, ischemia, I/R, SC+sham, SC+ischemia and SC+I/R. In the I/R groups, the right kidney was removed and the artery and vein of the left kidney were clamped for 45 min followed by reperfusion for 1 h. In the SC-treated groups, SC dissolved in saline solution was given as a single dose (1 mg/kg) 60 min before the operation. Renal histology was analyzed by scoring the tubular damage and neutrophil infiltration. Tissue myeloperoxidase activity and lipid peroxidation were analyzed. The histological damage and the neutrophil infiltration induced by I/R were significantly less in the SC+I/R group (p = 0.004 and p = 0.003, respectively). Pretreatment with SC significantly diminished the tissue myeloperoxidase activity, indicating the prevention of the neutrophil sequestration into the kidney in the SC+I/R group (p = 0.004); however, it did not result in any changes in lipid peroxidation. Our results in a rat model of ischemia-reperfusion indicate that pre-ischemic treatment with sildenafil citrate can significantly attenuate ischemia/reperfusion-induced renal injury by decreasing leukocyte infiltration.
Collapse
|
15
|
Bajwa A, Jo SK, Ye H, Huang L, Dondeti KR, Rosin DL, Haase VH, Macdonald TL, Lynch KR, Okusa MD. Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury. J Am Soc Nephrol 2010; 21:955-65. [PMID: 20338995 DOI: 10.1681/asn.2009060662] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Agonists of the sphingosine-1-phosphate receptor (S1PR) attenuate kidney ischemia-reperfusion injury (IRI). Previous studies suggested that S1P1R-induced lymphopenia mediates this protective effect, but lymphocyte-independent mechanisms could also contribute. Here, we investigated the effects of S1PR agonists on kidney IRI in mice that lack T and B lymphocytes (Rag-1 knockout mice). Administration of the nonselective S1PR agonist FTY720 or the selective S1P1R agonist SEW2871 reduced injury in both Rag-1 knockout and wild-type mice. In vitro, SEW2871 significantly attenuated LPS- or hypoxia/reoxygenation-induced apoptosis in cultured mouse proximal tubule epithelial cells, supporting a direct protective effect of S1P1R agonists via mitogen-activated protein kinase and/or Akt pathways. S1P1Rs in the proximal tubule mediated IRI in vivo as well: Mice deficient in proximal tubule S1P1Rs experienced a greater decline in renal function after IRI than control mice and their kidneys were no longer protected by SEW2871 administration. In summary, S1PRs in the proximal tubule are necessary for stress-induced cell survival, and S1P1R agonists are renoprotective via direct effects on the tubule cells. Selective agonists of S1P1Rs may hold therapeutic potential for the prevention and treatment of acute kidney injury.
Collapse
Affiliation(s)
- Amandeep Bajwa
- Department of Medicine, Division of Nephrology, Box 800133, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Ischemia-reperfusion (I/R) injuries are implicated in a large array of pathological conditions such as myocardial infarction, cerebral stroke, and hepatic, renal, and intestinal ischemia, as well as following cardiovascular and transplant surgeries. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as one of the main contributors to pathogen-induced inflammation and, more recently, injury-induced inflammation. Endogenous ligands such as low-molecular hyaluronic acid, fibronectin, heat shock protein 70, and heparin sulfate were all found to be cleaved in the inflamed tissue and to activate TLR2 and TLR4, initiating an inflammatory response even in the absence of pathogens and infiltrating immune cells. In this review, we discuss the contribution of TLR activation in hepatic, renal, cerebral, intestinal, and myocardial I/R injuries. A greater understanding of the role of TLRs in I/R injuries may aid in the development of specific TLR-targeted therapeutics to treat these conditions.
Collapse
|
17
|
The influence of sphingosine-1-phosphate receptor signaling on lymphocyte trafficking: how a bioactive lipid mediator grew up from an "immature" vascular maturation factor to a "mature" mediator of lymphocyte behavior and function. Immunol Res 2009; 43:187-97. [PMID: 18854957 DOI: 10.1007/s12026-008-8066-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since the initial observations that highlighted the importance of lymphocyte trafficking for immune responses, the pathways utilized by B and T lymphocytes to recirculate and properly position themselves have been intensely studied. Most of the chemoattractants along with their cognate receptors that affect lymphocyte trafficking have been identified. Some of their functions are promotion of lymphocyte ingress into immune organs, localization of cells to specific regions within those organs, maintenance of lymphocyte basal motility in immune organs, facilitation of lymphocyte egress from these organs, and control of migration and homing of lymphocytes in the periphery. Since the seminal discovery that agonism of sphingosine-1-phosphate receptors evokes changes in lymphocyte homing and trafficking, considerable effort has been undertaken to characterize the mechanism utilized by these receptors to influence lymphocyte behavior. This review will focus on the influence of sphingosine-1-phosphate signaling system on lymphocyte localization, egress from lymph organs, and its effects on the lymphatic vasculature.
Collapse
|
18
|
Ascon M, Ascon DB, Liu M, Cheadle C, Sarkar C, Racusen L, Hassoun HT, Rabb H. Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int 2009; 75:526-35. [PMID: 19092796 PMCID: PMC2676145 DOI: 10.1038/ki.2008.602] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is well-established that significant ischemia-reperfusion injury during kidney transplantation results in increased incidence of long-term fibrosis and rejection. To test for a role of T cell infiltration and activation following ischemic injury, we induced both bilateral and unilateral renal ischemia in mice, followed by reperfusion, and then isolated mononuclear cells. Analysis of these cells by flow cytometry showed that 2 weeks after bilateral ischemia there was a significant increase of CD8(+) T cells. Furthermore, both CD4(+) and CD8(+) T cells infiltrated the injured kidney 6 weeks after unilateral ischemia. These T cells had increased expression of CD69(+) and CD44(hi)CD62L(-), markers of activation and effector-memory, respectively. CD4(+)NK1.1(+) and CD19(+) B cells were decreased in percentage both 6 and 11 weeks after bilateral or unilateral injury. There was a significant upregulation of IL-1beta, IL-6, TNF-alpha, IFN-gamma, MIP-2, and RANTES expression, measured by real-time PCR, 6 weeks after unilateral renal ischemia, further indicating T cell activation. Depletion of CD4(+) and CD8(+) T cells before ischemia caused less medullary damage and reduced kidney IFN-gamma expression, whereas their depletion following ischemia increased kidney IL-1beta; however, depletion of these cells had no effect on histological damage to the kidney. Our study demonstrates that moderate or severe kidney ischemia induces long-term T lymphocyte infiltration and cytokine/chemokine upregulation, leading to kidney structural changes.
Collapse
Affiliation(s)
- Miguel Ascon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lopes CT, Gallo AP, Palma PVB, Cury PM, Bueno V. Skin allograft survival and analysis of renal parameters after FTY720 + tacrolimus treatment in mice. Transplant Proc 2008; 40:856-60. [PMID: 18455036 DOI: 10.1016/j.transproceed.2008.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Calcineurin inhibitors such as cyclosporine (CsA) and tacrolimus (FK506) show similar efficacy to prevent rejection within the first year after organ transplantation. However, their use is limited by side effects, such as kidney damage, hypertension, new-onset diabetes, and hyperlipidemia. The consensus opinion suggests that compared with CsA, FK506 has fewer negative effects on blood pressure, serum lipids, and renal function. Nevertheless, FK506 use is associated with a higher incidence of posttransplantation diabetes mellitus. FTY720 is a new compound that has shown beneficial effects in animal models of rejection in transplantation, ischemia/reperfusion injury, autoimmune diseases, and tumor development. Our aim was to investigate whether FTY720 + tacrolimus association could provide additional immunosuppression without causing renal toxicity. FTY720 as a monotherapy or in association with FK506 was administered to C57BL/6 mice for 21 days to prevent skin graft rejection and to evaluate renal function and structure. Increased skin allograft survival in the FTY720 + FK506 group was associated with decreased cell numbers in the spleen, blood, and axillary lymph nodes. Changes in major histocompatibility complex (MHC) class II and intercellular adhesion molecule-1 (ICAM-1) expressions in splenocytes were also found in this group. The major effects already described for FK506 (diabetes) or FTY720 (lymphopenia) were observed after 21 days administration even when the drugs were associated. FTY720 associated with FK506 caused fewer changes in kidney structure, and blood glucose levels were lower than in FK506 monotherapy.
Collapse
Affiliation(s)
- C T Lopes
- FAMERP São José do Rio Preto Medical School, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
20
|
|
21
|
da Silva LBL, Palma PVB, Cury PM, Bueno V. Evaluation of stem cell administration in a model of kidney ischemia-reperfusion injury. Int Immunopharmacol 2007; 7:1609-16. [PMID: 17996670 DOI: 10.1016/j.intimp.2007.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 07/16/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Ischemia-reperfusion injury is a common early event in kidney transplantation and contributes to a delay in organ function. Acute tubular necrosis, impaired kidney function and organ leukocyte infiltration are the major findings. The therapeutic potential of stem cells has been the focus of recent research as these cells possess capabilities such as self-renewal, multipotent differentiation and aid in regeneration after organ injury. FTY720 is a new synthetic compound that has been associated with preferential migration of blood lymphocytes to peripheral lymph nodes instead of inflammatory sites. Bone marrow stem cells (BMSC) and/or FTY720 were used as therapy to promote recovery of tubule cells and avoid inflammation at the renal site, respectively. Mice were submitted to renal ischemia-reperfusion injury and were either treated with two doses of FTY720, 10x10(6) BMSC, or both in order to compare the therapeutic effect with non-treated and control animals. Renal function and structure were investigated as were cell numbers in peripheral blood and spleen. Activation and apoptosis markers were also evaluated in splenocytes using flow cytometry. We found that the combined therapy (FTY720+BMSC) was associated with more significant changes in renal function and structure after ischemia-reperfusion injury when compared with the other groups. Also a decrease at cell numbers and prevention of spleen cells activation and apoptosis was observed. In conclusion, in our model it was not possible to demonstrate the potential of stem cells alone or in combination with FTY720 to promote early kidney recovery after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Léa Bueno Lucas da Silva
- Pathology Division, Medical School in São José do Rio Preto FAMERP, São José do Rio Preto, Brazil
| | | | | | | |
Collapse
|
22
|
Frink M, Kaudel CP, Hildebrand F, Pape HC, Klempnauer J, Winkler M, Krettek C, van Griensven M. FTY720 Improves Survival After Transient Ischemia and Reperfusion of the Hind Limbs. ACTA ACUST UNITED AC 2007; 63:263-7. [PMID: 17693822 DOI: 10.1097/ta.0b013e3180d0a6fc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ischemia and reperfusion (I/R) damage involves adhesion and transmigration of lymphocytes and neutrophils. FTY720 is an immunosuppressive agent that reduces the number of neutrophils and monocytes in peripheral blood as well as tissue lymphocyte infiltration. This study investigated the effect of FTY720 during hind limb I/R. METHODS Male C57/BL6 mice underwent temporary ligation of the infrarenal aorta for 4 hours. After 48 hours of reperfusion, animals were killed by exsanguination. Tissue myeloperoxidase content reflecting neutrophil infiltration and reverse transcription polymerase chain reaction analysis of local cytokine transcription in lung, liver, and kidney were performed. RESULTS After I/R, treatment with FTY720 improved survival and prevented upregulation of pro- and anti-inflammatory cytokines in evaluated organs, whereas no changes were detected in myeloperoxidase content after treatment with FTY720. CONCLUSIONS Whereas neutrophil infiltration was not affected by treatment with FTY720, other immunocompetent or intrinsic cells appear to be involved in changes of cytokine production in different organs.
Collapse
Affiliation(s)
- Michael Frink
- Trauma Department, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Delbridge MS, Shrestha BM, Raftery AT, El Nahas AM, Haylor JL. Reduction of ischemia-reperfusion injury in the rat kidney by FTY720, a synthetic derivative of sphingosine. Transplantation 2007; 84:187-195. [PMID: 17667810 DOI: 10.1097/01.tp.0000269794.74990.da] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The current shortage of organ donors has led many centers to use marginal and nonheart-beating donors (NHBDs). Recent research has implicated the infiltration of lymphocytes as an important mediator of ischemia-reperfusion injury (IRI). FTY720 is an immunosuppressant that promotes lymphocyte sequestration into lymph nodes. The purpose of this study was to examine the potential for FTY720 to abrogate IRI when subjected to increasing ischemic times. METHODS Male Sprague-Dawley rats underwent bilateral flank incision with removal of the right kidney and clamping of the left hilum. Groups were divided into ischemia times of 45, 55, and 65min; each group was further divided into a control group (IRI only), IRI+FTY720 (1 mg/kg/d), and IRI+cyclosporine (15 mg/kg/d), n=4 per group. RESULTS Thre days after 45 min of ischemia, serum creatinine in the ischemia only (477+/-37 micromol/L) and cyclosporine groups (698+/-32 micromol/L) was significantly increased compared with the FTY720-treated animals (194+/-66 micromol/L). The beneficial effect of FTY720 was also observed at 55 and 65 min; indeed, FTY720-treated animals demonstrated signs of recovery from 65 min of ischemia whereas control and cyclosporine-treated animals required sacrifice between days 3 and 5. Treatment with FTY720 reduced renal damage assessed histologically and also reduced apoptosis and increased cell proliferation. CONCLUSION Treatment with FTY720 reduced IRI and prevented unrecoverable acute renal failure after significant ischemic injury. This study suggests that FTY720 may help improve the quality of grafts from NHBD and marginal donors by abrogating the IRI insult.
Collapse
|
24
|
Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses. Cell Immunol 2007; 248:4-11. [PMID: 17942086 PMCID: PMC2211448 DOI: 10.1016/j.cellimm.2007.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/30/2007] [Indexed: 12/12/2022]
Abstract
The pathogenesis of ischemia-reperfusion injury (IRI) is complex and not well understood. Inflammation plays an important role in IRI, with involvement of leukocytes, adhesion molecules, chemokines and cytokines. Emerging data suggest a role of T cells as mediators of IRI both in renal and extra-renal organs. Divergent roles of T cell subsets have also been elucidated, suggesting a more complicated role of T cells in the different phases of IRI. This review presents recent evidence from various animal models that advances our understanding of the role T cells play in IRI. These findings entertain the possibility of using immunotherapeutic agents for the prevention and treatment of IRI.
Collapse
Affiliation(s)
- Yanfei Huang
- Division of Nephrology, Johns Hopkins University School of Medicine, Ross 965, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
25
|
Keller CD, Rivera Gil P, Tölle M, van der Giet M, Chun J, Radeke HH, Schäfer-Korting M, Kleuser B. Immunomodulator FTY720 induces myofibroblast differentiation via the lysophospholipid receptor S1P3 and Smad3 signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:281-92. [PMID: 17200201 PMCID: PMC1762708 DOI: 10.2353/ajpath.2007.060485] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The novel immunomodulator FTY720 is an effective immunosuppressive agent in experimental models of transplantation and autoimmunity and is currently undergoing phase III clinical trials for multiple sclerosis. Phosphorylated FTY720 is a structural analogue of sphingosine 1-phosphate (S1P) and therefore acts as a high-affinity agonist at four of the five G protein-coupled S1P receptors. It has been well established that there exists a crosstalk between S1P and transforming growth factor (TGF)-beta signaling. Because TGF-beta is the most prominent inductor of fibrosis and myofibroblasts are primarily responsible for excessive matrix protein formation, we examined whether FTY720, in analogy to TGF-beta, induces differentiation of fibroblasts into myofibroblasts. Indeed, FTY720 provoked myofibroblast differentiation comparable with that of TGF-beta. For biological efficacy, FTY720 required endogenous phosphorylation because inhibition of sphingosine kinase completely prevented FTY720 from inducing the differentiation process. Moreover, we identified the lysophospholipid receptor S1P3 as the crucial receptor subtype for FTY720-induced myofibroblast differentiation because the effect was abolished in fibroblasts isolated from S1P3 knockout mice. Finally, we determined that downstream of S1P3 signaling Smad3 activation is essential for myofibroblast differentiation in response to FTY720. Thus, FTY720 may have adverse fibrotic effects related to its activity on S1P3 signaling.
Collapse
Affiliation(s)
- Christina D Keller
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Xin C, Ren S, Eberhardt W, Pfeilschifter J, Huwiler A. The immunomodulator FTY720 and its phosphorylated derivative activate the Smad signalling cascade and upregulate connective tissue growth factor and collagen type IV expression in renal mesangial cells. Br J Pharmacol 2007; 147:164-74. [PMID: 16299553 PMCID: PMC1615856 DOI: 10.1038/sj.bjp.0706452] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1.--The immunomodulating agent FTY720 is a substrate for the sphingosine kinase and the phosphorylated form is able to bind to sphingosine 1-phosphate (S1P) receptors. In this study, we show that exposure of renal mesangial cells to phospho-FTY720 leads to a rapid and transient activation of several protein kinase cascades, including the mitogen- and stress-activated protein kinases. The nonphosphorylated FTY720 also increased MAPK phosphorylation, but with a reduced potency and a more delayed time course. In addition, phospho-FTY720 and FTY720 are able to increase phosphorylation of Smad proteins which are classical members of the transforming growth factor-beta (TGF-beta) signalling device, thus suggesting a crosstalk between FTY720 and TGF-beta signalling. 2.--Pretreatment with the S1P(3) receptor antagonist suramin inhibits FTY720 and phospho-FTY720-induced Smad phosphorylation, whereas pertussis toxin pretreatment, which blocks G(i/0) proteins, has no effect on Smad phosphorylation. 3.--Since TGF-beta is a potent profibrotic cytokine in mesangial cells and upregulates the connective tissue growth factor (CTGF) and collagen as important hallmarks in the fibrotic sequelae, we investigated whether FTY720 and phospho-FTY720 are able to mimic these effects of TGF-beta. Indeed, FTY720 and phospho-FTY720 markedly upregulate CTGF and collagen type IV protein expressions. In addition, the tissue inhibitor of metalloproteinase-1 is transcriptionally activated by FTY720, whereas cytokine-induced matrix metalloproteinase-9 is down-regulated by FTY720. 4.--Depletion of the TGF-beta receptor type II by the siRNA transfection technique blocks not only Smad phosphorylation but also CTGF upregulation. Similarly, Smad-4 depletion by siRNA transfection also abrogates CTGF upregulation induced by FTY720 and phospho-FTY720. 5.--In summary, our data show that FTY720 and phospho-FTY720 not only activate the Smad signalling cascade in mesangial cells, but also upregulate the expression of CTGF and collagen. These findings suggest that FTY720 may have additional effects besides the established immunomodulatory action and, importantly, a profibrotic activity has to be considered in future experimental approaches.
Collapse
Affiliation(s)
- Cuiyan Xin
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Shuyu Ren
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Wolfgang Eberhardt
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Andrea Huwiler
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- Author for correspondence:
| |
Collapse
|
27
|
Ascon DB, Lopez-Briones S, Liu M, Ascon M, Savransky V, Colvin RB, Soloski MJ, Rabb H. Phenotypic and Functional Characterization of Kidney-Infiltrating Lymphocytes in Renal Ischemia Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2006; 177:3380-7. [PMID: 16920979 DOI: 10.4049/jimmunol.177.5.3380] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
T and B lymphocytes have been implicated in the pathogenesis of renal ischemia reperfusion injury (IRI). The trafficking of lymphocytes into kidneys during IRI has been postulated to underlie this effect, but has not been rigorously studied. We therefore characterized the lymphocyte populations infiltrating into mouse kidneys 3 and 24 h after renal IRI. Immunohistochemistry and flow cytometry staining of kidney lymphocytes showed increased trafficking of CD3+ T cells and CD19+ B cells in both sham-operated and IRI mice 3 h after renal IRI. In the IRI mice, increased infiltration of NK1.1+ and CD4+ NK1.1+ cells compared with normal and sham-operated mice was observed 3 and 24 h after renal IRI, respectively. After 24 h of renal IRI, the decreased percentages of CD3+, CD19+, and NK1.1+ populations in the IRI mice compared with control groups were observed. Increased TNF-alpha and IFN-gamma production of kidney infiltration CD3+ T cells in IRI mice but not sham-operated mice was found. Unexpectedly, isolation and transfer of kidney-infiltrating lymphocytes 24 h after renal IRI into T cell-deficient mice reduced their functional and histological injury after renal IRI, suggesting that kidney-infiltrating lymphocytes could have a protective function. These quantitative, qualitative, and functional changes in kidney lymphocytes provide mechanistic insight into how lymphocytes modulate IRI, as well as demonstrating that abdominal surgery alone leads to lymphocyte changes in kidney.
Collapse
Affiliation(s)
- Dolores B Ascon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Silva FR, Silva LBL, Cury PM, Burdmann EA, Bueno V. FTY720 in combination with cyclosporine--an analysis of skin allograft survival and renal function. Int Immunopharmacol 2006; 6:1911-8. [PMID: 17161344 DOI: 10.1016/j.intimp.2006.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 01/23/2023]
Abstract
Acute and chronic nephrotoxicity caused by CsA continuous administration impair kidney allograft survival. Several clinical and experimental protocols have shown benefits to the kidney after decreasing CsA dose, withdrawing the drug or delaying its introduction after transplantation. FTY720 is a new compound that has immunosuppressive characteristics and increase allograft survival in animal models without causing the side effects of calcineurin inhibitors (CNIs). FTY720 described mechanism of action that consists to alter the lymphocyte migration pattern without impairment of the immune system response against pathogens. In our mice model, FTY720 administered alone or in combination with CsA during 21 days increased skin allograft survival in a fully mismatched strain combination and did not cause significant changes in renal function. Moreover, renal structure was normal in all groups suggesting that at low doses (10 mg/kg/day) CsA can be associated during short-term period to other immunosuppressive drugs, i.e. FTY720 without affecting the kidney. Combination of immunosuppressive compounds with FTY720 and/or delayed introduction of low cyclosporine dose could prevent graft rejection and avoid nephrotoxicity.
Collapse
|
29
|
Guerra JA, Molina MF, Abad MJ, Villar AM, Paulina B. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids isolated from Tanacetum microphyllum. Int Immunopharmacol 2006; 6:1723-8. [PMID: 16979127 DOI: 10.1016/j.intimp.2006.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
Plant flavonoids show anti-inflammatory activity both in vitro and in vivo. Some flavonoids have been reported previously to inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. The present study focuses on the effect of various naturally occurring flavonoids (santin, ermanin, centaureidin and 5,3'-dihydroxy-4'-methoxy-7-methoxycarbonylflavonol) on modulation of lipopolysaccharide (LPS)-induced iNOS and COX-2 expression in RAW 264.7 cells. Western blotting showed that all flavonoids suppressed the induction of both iNOS and COX-2. Ermanin and 5,3'-dihydroxy-4'-methoxy-7-methoxycarbonylflavonol were the most potent inhibitors. This study suggests that inhibition of iNOS and COX-2 expression by flavonoids may be one of the mechanisms responsible for their anti-inflammatory effects, and that they may be potential agents for use in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- José Antonio Guerra
- Department of Pharmacology, Faculty of Pharmacy, University Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Ikeda M, Prachasilchai W, Burne-Taney MJ, Rabb H, Yokota-Ikeda N. Ischemic acute tubular necrosis models and drug discovery: a focus on cellular inflammation. Drug Discov Today 2006; 11:364-70. [PMID: 16580979 DOI: 10.1016/j.drudis.2006.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/09/2006] [Accepted: 02/24/2006] [Indexed: 11/18/2022]
Abstract
Acute renal failure (ARF) is a common cause of mortality and morbidity in hospitalized patients. Ischemia is an important cause of ARF, and ARF caused by ischemic injury is referred to as ischemic acute tubular necrosis (ATN). There is growing evidence from models that ischemic ATN is associated with intrarenal inflammation. Consequently, intrarenal inflammation is an attractive target for the development of novel drug therapies for ARF. This review outlines ischemic ATN models, the pathophysiological roles of inflammatory cells such as T and B cells in ischemic ATN models, and effective T and B cell therapeutic reagents.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Department of Veterinary Pharmacology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | | | | | | | | |
Collapse
|