1
|
Wang K, Liu T, Zhang Y, Lv H, Yao H, Zhao Y, Li J, Li X. Combined Placental Mesenchymal Stem Cells with Guided Nanoparticles Effective Against Diabetic Nephropathy in Mouse Model. Int J Nanomedicine 2024; 19:901-915. [PMID: 38293609 PMCID: PMC10826715 DOI: 10.2147/ijn.s446733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus and constitutes the primary cause of mortality in affected patients. Previous studies have shown that placental mesenchymal stem cells (PL-MSCs) can alleviate kidney dysfunction in animal models of DN. However, the limited ability of mesenchymal stem cells (MSCs) to home to damaged sites restricts their therapeutic potential. Enhancing the precision of PL-MSCs' homing to target tissues is therefore vital for the success of cell therapies in treating DN. Methods We developed Fe3O4 coated polydopamine nanoparticle (NP)-internalized MSCs and evaluated their therapeutic effectiveness in a mouse model of streptozotocin- and high-fat diet-induced DN, using an external magnetic field. Results Our study confirmed that NPs were effectively internalized into PL-MSCs without compromising their intrinsic stem cell properties. The magnetic targeting of PL-MSCs notably improved their homing to the kidney tissues in mice with DN, resulting in enhanced kidney function compared to the transplantation of PL-MSCs alone. Furthermore, the anti-inflammatory and antifibrotic attributes of PL-MSCs played a role in the recovery of kidney function and structure. Conclusion These results demonstrate that magnetically targeted therapy using PL-MSCs is a promising approach for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Ke Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Gynecology and Obstetrics Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yucheng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Huiying Lv
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Ye Zhao
- Dermatological Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Jing Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
2
|
Wang W, Zhang M, Ren X, Song Y, Xu Y, Zhuang K, Xiao T, Guo X, Wang S, Hong Q, Feng Z, Chen X, Cai G. Single-cell dissection of cellular and molecular features underlying mesenchymal stem cell therapy in ischemic acute kidney injury. Mol Ther 2023; 31:3067-3083. [PMID: 37533253 PMCID: PMC10556187 DOI: 10.1016/j.ymthe.2023.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exert beneficial therapeutic effects in acute kidney injury (AKI), while the detailed repair mechanism remains unclear. Herein, we probed the underlying mechanisms of MSC therapy in AKI by performing unbiased single-cell RNA sequencing in IRI model with/without MSC treatment. Our analyses uncovered the tubular epithelial cells (TECs) and immune cells transcriptomic diversity and highlighted a repair trajectory involving renal stem/progenitor cell differentiation. Our findings also suggested that profibrotic TECs expressing pro-fibrotic factors such as Zeb2 and Pdgfb promoted the recruitment of inflammatory monocytes and Th17 cells to injured kidney tissue, inducing TGF-β1 secretion and renal fibrosis. Finally, in addition to activating the repair properties of renal progenitor/stem cells, we uncovered a role for MSC-derived miR-26a-5p in mediating the therapeutic effects of MSCs by inhibiting Zeb2 expression and suppressing pro-fibrotic TECs and its subsequent recruitment of immune cell subpopulations. These findings may help to optimize future AKI treatment strategies.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xuejing Ren
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Academy of Medical Sciences, Zhengzhou, Henan 450001, China
| | - Yanqi Song
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Kaiting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xinru Guo
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Siyang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Guangyan Cai
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
3
|
Rampino T, Gregorini M, Germinario G, Pattonieri EF, Erasmi F, Grignano MA, Bruno S, Alomari E, Bettati S, Asti A, Ramus M, De Amici M, Testa G, Bruno S, Ceccarelli G, Serpieri N, Libetta C, Sepe V, Blasevich F, Odaldi F, Maroni L, Vasuri F, La Manna G, Ravaioli M. Extracellular Vesicles Derived from Mesenchymal Stromal Cells Delivered during Hypothermic Oxygenated Machine Perfusion Repair Ischemic/Reperfusion Damage of Kidneys from Extended Criteria Donors. BIOLOGY 2022; 11:biology11030350. [PMID: 35336724 PMCID: PMC8945029 DOI: 10.3390/biology11030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary In this study, we explore for the first time an innovative tool for organ preservation aimed to preventing ischemia reperfusion injury (IRI) in marginal kidneys from expanded criteria donors (ECD) unsuitable for transplantation. Ex vivo hypothermic oxygenated perfusion (HOPE) with and without MSC-derived EV and normothermic reperfusion (NR) with artificial blood composed of bovine hemoglobin were applied on kidneys to evaluate global renal ischemic damage score, renal ultrastructure, mitochondrial distress, apoptosis, cell proliferation index, and the mediators of energy metabolism. Our study demonstrates that kidney conditioning with HOPE+EV arrests the ischemic damage, prevents reoxygenation-dependent injury, and preserves tissue integrity. EV delivery during HOPE can be considered a new organ preservation strategy to increase the donor pool and improving transplant outcome. The originality of our study lies an EV and HOPE combined novel setting use in kidneys from ECD, but also in any condition for graft dysfunction such as ischemia/reperfusion. Abstract The poor availability of kidney for transplantation has led to a search for new strategies to increase the donor pool. The main option is the use of organs from extended criteria donors. We evaluated the effects of hypothermic oxygenated perfusion (HOPE) with and without extracellular vesicles (EV) derived from mesenchymal stromal cells on ischemic/reperfusion injury of marginal kidneys unsuitable for transplantation. For normothermic reperfusion (NR), we used artificial blood as a substitute for red blood cells. We evaluated the global renal ischemic dam-age score (GRS), analyzed the renal ultrastructure (RU), cytochrome c oxidase (COX) IV-1 (a mitochondrial distress marker), and caspase-3 renal expression, the tubular cell proliferation index, hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) tissue levels, and effluent lactate and glucose levels. HOPE+EV kidneys had lower GRS and better RU, higher COX IV-1 expression and HGF and VEGF levels and lower caspase-3 expression than HOPE kidneys. During NR, HOPE+EV renal effluent had lower lactate release and higher glucose levels than HOPE renal effluent, suggesting that the gluconeogenesis system in HOPE+EV group was pre-served. In conclusion, EV delivery during HOPE can be considered a new organ preservation strategy for increasing the donor pool and improving transplant outcome.
Collapse
Affiliation(s)
- Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-503896
| | - Giuliana Germinario
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Eleonora Francesca Pattonieri
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Fulvia Erasmi
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (S.B.); (E.A.)
- Biopharmatec TEC, University of Parma, Tecnopolo Padiglione 33, 43124 Parma, Italy;
| | - Esra Alomari
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (S.B.); (E.A.)
| | - Stefano Bettati
- Biopharmatec TEC, University of Parma, Tecnopolo Padiglione 33, 43124 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Annalia Asti
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Marina Ramus
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Mara De Amici
- Laboratory of Immuno-Allergology of Clinical Chemistry and Pediatric Clinic, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Giorgia Testa
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Nicoletta Serpieri
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Carmelo Libetta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Vincenzo Sepe
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Flavia Blasevich
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, 20133 Milan, Italy;
| | - Federica Odaldi
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
| | - Lorenzo Maroni
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
| | - Francesco Vasuri
- “F. Addarii” Institute of Oncology and Transplantation Pathology, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Gaetano La Manna
- Department of Nephrology, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Matteo Ravaioli
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
5
|
Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal cells. Emerg Top Life Sci 2021; 4:677-689. [PMID: 33231260 PMCID: PMC7939697 DOI: 10.1042/etls20200151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have long been recognized to help regenerate tissues, by exploiting their intrinsic potentials for differentiation and secretion of therapeutic paracrine factors together with feasibility for cell banking. These unique MSC properties are attractive to provide effective new cell-based therapies for unmet medical needs. Currently, the infusion of suspended MSCs is accepted as a promising therapy to treat systemic inflammatory diseases. However, low cell engraftment/retention in target organs and off-target entrapment using conventional cell infusion must be improved to provide reliable localized disease treatments. Cell sheet technology offers an alternative: three-dimensional (3D) tissue-like structures can be harvested from culture using mild temperature reduction, and transplanted directly onto target tissue sites without suturing, yielding stable cell engraftment and prolonged cell retention in situ without off-target losses. Engineered MSC sheets directly address two major cell therapy strategies based on their therapeutic benefits: (1) tissue replacements based on mult-ilineage differentiation capacities, focusing on cartilage regeneration in this review, and (2) enhancement of tissue recovery via paracrine signaling, employing their various secreted cytokines to promote neovascularization. MSCs also have production benefits as a promising allogeneic cell source by exploiting their reliable proliferative capacity to facilitate expansion and sustainable cell banking for off-the-shelf therapies. This article reviews the advantages of both MSCs as allogeneic cell sources in contrast with autologous cell sources, and allogeneic MSC sheets engineered on thermo-responsive cell dishes as determined in basic studies and clinical achievements, indicating promise to provide robust new cell therapies to future patients.
Collapse
|
6
|
Wang X, Zhou C, Liu J, Yang T, Mao L, Hong X, Jiang N, Jia R. Administration of Donor-Derived Nonexpanded Adipose Stromal Vascular Fraction Attenuates Ischemia-Reperfusion Injury in Donation After Cardiac Death Rat Renal Transplantation. Transplant Proc 2021; 53:2070-2081. [PMID: 34266654 DOI: 10.1016/j.transproceed.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Donation after cardiac death (DCD) has become a potential source for transplantation organs. However, ischemia/reperfusion injury (IRI) induced by cardiac arrest has limited the use of DCD organs. Stromal vascular fraction (SVF) without the culturing step has been proposed as a safer and easier source for stem cell therapy, which has emerged as an attractive technology that could facilitate the recovery of renal function and structure from acute kidney injury induced by IRI after DCD renal transplantation. In this study, freshly isolated donor-derived SVF was identified and then delivered intra-arterially into the grafts in DCD rat renal transplantation. Administration of freshly isolated donor-derived SVF could significantly alleviate the IRI of renal grafts and enhance graft reparation by promoting graft cell proliferation and microvascularization in DCD renal transplantation. Moreover, results revealed that the oxidative stress in grafts was significantly alleviated with SVF treatment, and this might be attributed to the overexpression of antioxidative molecules including nuclear factor erythroid-related factor 2, superoxide dismutase-1, and heme oxygenase-1. In conclusion, our study demonstrated that the administration of freshly isolated donor-derived nonexpanded adipose SVF could attenuate IRI and protect the grafts after DCD rat renal transplantation.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Jiang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Center of Renal Transplantation, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Lohmann S, Eijken M, Møldrup U, Møller BK, Hunter J, Moers C, Leuvenink H, Ploeg RJ, Clahsen-van Groningen MC, Hoogduijn M, Baan CC, Keller AK, Jespersen B. Ex Vivo Administration of Mesenchymal Stromal Cells in Kidney Grafts Against Ischemia-reperfusion Injury-Effective Delivery Without Kidney Function Improvement Posttransplant. Transplantation 2021; 105:517-528. [PMID: 32956281 DOI: 10.1097/tp.0000000000003429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy may improve renal function after ischemia-reperfusion injury in transplantation. Ex vivo renal intraarterial administration is a targeted delivery method, avoiding the lung vasculature, a known barrier for cellular therapies. In a randomized and blinded study, we tested the feasibility and effectiveness of MSC therapy in a donation after circulatory death autotransplantation model to improve posttransplant kidney function, using an ex vivo MSC delivery method similar to the clinical standard procedure of pretransplant cold graft flush. METHODS Kidneys exposed to 75 minutes of warm ischemia and 16 hours of static cold storage were intraarterially infused ex vivo with 10 million male porcine MSCs (Tx-MSC, n = 8) or vehicle (Tx-control, n = 8). Afterwards, the kidneys were autotransplanted after contralateral nephrectomy. Biopsies an hour after reperfusion confirmed the presence of MSCs in the renal cortex. Animals were observed for 14 days. RESULTS Postoperatively, peak plasma creatinine was 1230 and 1274 µmol/L (Tx-controls versus Tx-MSC, P = 0.69). During follow-up, no significant differences over time were detected between groups regarding plasma creatinine, plasma neutrophil gelatinase-associated lipocalin, or urine neutrophil gelatinase-associated lipocalin/creatinine ratio. At day 14, measured glomerular filtration rates were 40 and 44 mL/min, P = 0.66. Renal collagen content and fibrosis-related mRNA expression were increased in both groups but without significant differences between the groups. CONCLUSIONS We demonstrated intraarterial MSC infusion to transplant kidneys as a safe and effective method to deliver MSCs to the graft. However, we could not detect any positive effects of this cell treatment within 14 days of observation.
Collapse
Affiliation(s)
- Stine Lohmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Møldrup
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - James Hunter
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Martin Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Zhao L, Hu C, Han F, Cai F, Wang J, Chen J. Preconditioning is an effective strategy for improving the efficiency of mesenchymal stem cells in kidney transplantation. Stem Cell Res Ther 2020; 11:197. [PMID: 32448356 PMCID: PMC7245776 DOI: 10.1186/s13287-020-01721-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The inevitable side effects caused by lifelong immunosuppressive agents in kidney transplantation patients spurred the exploration of novel immunosuppressive strategies with definite curative effects and minimal adverse effects. Mesenchymal stem cells (MSCs) have become a promising candidate due to their role in modulating the immune system. Encouraging results obtained from experimental models have promoted the translation of this strategy into clinical settings. However, the demonstration of only marginal or transient benefits by several recent clinical controlled studies has made physicians hesitant to adopt the routine utilization of this procedure in clinical settings. Impaired MSC function after infusion in vivo was thought to be the main reason for their limited effects. For this reason, some preconditioning methods were developed. In this review, we aim to outline the current understanding of the preconditioning methods being explored as a strategy to improve the therapeutic effects of MSCs in kidney transplantation and promote its clinical translation.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China. .,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Rangel ÉB, Gomes SA, Kanashiro-Takeuchi R, Hare JM. Progenitor/Stem Cell Delivery by Suprarenal Aorta Route in Acute Kidney Injury. Cell Transplant 2019; 28:1390-1403. [PMID: 31409111 PMCID: PMC6802150 DOI: 10.1177/0963689719860826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Progenitor/stem cell-based kidney regenerative strategies are a key step towards the development of novel therapeutic regimens for kidney disease treatment. However, the route of cell delivery, e.g., intravenous, intra-arterial, or intra-parenchymal, may affect the efficiency for kidney repair in different models of acute and chronic injury. Here, we describe a protocol of intra-aorta progenitor/stem cell injection in rats following either acute ischemia-reperfusion injury or acute proteinuria induced by puromycin aminonucleoside (PAN) - the experimental prototype of human minimal change disease and early stages of focal and segmental glomerulosclerosis. Vascular clips were applied across both renal pedicles for 35 min, or a single dose of PAN was injected via intra-peritoneal route, respectively. Subsequently, 2 x 106 stem cells [green fluorescent protein (GFP)-labeled c-Kit+ progenitor/stem cells or GFP-mesenchymal stem cells] or saline were injected into the suprarenal aorta, above the renal arteries, after application of a vascular clip to the abdominal aorta below the renal arteries. This approach contributed to engraftment rates of ∼10% at day 8 post ischemia-reperfusion injury, when c-Kit+ progenitor/stem cells were injected, which accelerated kidney recovery. Similar rates of engraftment were found after PAN-induced podocyte damage at day 21. With practice and gentle surgical technique, 100% of the rats could be injected successfully, and, in the week following injection, ∼ 85% of the injected rats will recover completely. Given the similarities in mammals, much of the data obtained from intra-arterial delivery of progenitor/stem cells in rodents can be tested in translational research and clinical trials with endovascular catheters in humans.
Collapse
Affiliation(s)
- Érika B. Rangel
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Federal University of São Paulo, Brazil
| | - Samirah A. Gomes
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal
Division, University of São Paulo, Brazil
| | - Rosemeire Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Department of Molecular and Cellular Pharmacology, Leonard M Miller
School of Medicine, University of Miami, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Leonard M Miller School of
Medicine, University of Miami, USA
- Department of Molecular and Cellular Pharmacology, Leonard M Miller
School of Medicine, University of Miami, USA
- Division of Cardiology, Leonard M Miller School of Medicine,
University of Miami, USA
| |
Collapse
|
10
|
Sierra-Parraga JM, Munk A, Andersen C, Lohmann S, Moers C, Baan CC, Ploeg RJ, Pool M, Keller AK, Møller BK, Leuvenink H, Hoogduijn MJ, Jespersen B, Eijken M. Mesenchymal Stromal Cells Are Retained in the Porcine Renal Cortex Independently of Their Metabolic State After Renal Intra-Arterial Infusion. Stem Cells Dev 2019; 28:1224-1235. [PMID: 31280676 DOI: 10.1089/scd.2019.0105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The regenerative capacities of mesenchymal stromal cells (MSCs) make them suitable for renal regenerative therapy. The most common delivery route of MSC is through intravenous infusion, which is associated with off-target distribution. Renal intra-arterial delivery offers a targeted therapy, but limited knowledge is available regarding the fate of MSCs delivered through this route. Therefore, we studied the efficiency and tissue distribution of MSCs after renal intra-arterial delivery to a porcine renal ischemia-reperfusion model. MSCs were isolated from adipose tissue of healthy male pigs, fluorescently labeled and infused into the renal artery of female pigs. Flow cytometry allowed MSC detection and quantification in tissue and blood. In addition, quantitative polymerase chain reaction was used to trace MSCs by their Y-chromosome. During infusion, a minor number of MSCs left the kidney through the renal vein, and no MSCs were identified in arterial blood. Ischemic and healthy renal tissues were analyzed 30 min and 8 h after infusion, and 1-4 × 104 MSCs per gram of tissue were detected, predominantly, in the renal cortex, with a viability >70%. Confocal microscopy demonstrated mainly glomerular localization of MSCs, but they were also observed in the capillary network around tubuli. The infusion of heat-inactivated (HI) MSCs, which are metabolically inactive, through the renal artery showed that HI-MSCs were distributed in the kidney in a similar manner to regular MSCs, suggesting a passive retention mechanism. Long-term MSC survival was analyzed by Y-chromosome tracing, and demonstrated that a low percentage of the infused MSCs were present in the kidney 14 days after administration, while HI-MSCs were completely undetectable. In conclusion, renal intra-arterial MSC infusion limited off-target engraftment, leading to efficient MSC delivery to the kidney, most of them being cleared within 14 days. MSC retention was independent of the metabolic state of MSC, indicating a passive mechanism.
Collapse
Affiliation(s)
- Jesus M Sierra-Parraga
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Munk
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Stine Lohmann
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carla C Baan
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Merel Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna K Keller
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin J Hoogduijn
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands
| | - Bente Jespersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Eijken
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Lopes L, Setia O, Aurshina A, Liu S, Hu H, Isaji T, Liu H, Wang T, Ono S, Guo X, Yatsula B, Guo J, Gu Y, Navarro T, Dardik A. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther 2018; 9:188. [PMID: 29996912 PMCID: PMC6042254 DOI: 10.1186/s13287-018-0938-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a severe complication of diabetes, preceding most diabetes-related amputations. DFUs require over US$9 billion for yearly treatment and are now a global public health issue. DFU occurs in the setting of ischemia, infection, neuropathy, and metabolic disorders that result in poor wound healing and poor treatment options. Recently, stem cell therapy has emerged as a new interventional strategy to treat DFU and appears to be safe and effective in both preclinical and clinical trials. However, variability in the stem cell type and origin, route and protocol for administration, and concomitant use of angioplasty confound easy interpretation and generalization of the results. METHODS The PubMed, Google Scholar, and EMBASE databases were searched and 89 preclinical and clinical studies were selected for analysis. RESULTS There was divergence between preclinical and clinical studies regarding stem cell type, origin, and delivery techniques. There was heterogeneous preclinical and clinical study design and few randomized clinical trials. Granulocyte-colony stimulating factor was employed in some studies but with differing protocols. Concomitant performance of angioplasty with stem cell therapy showed increased efficiency compared to either therapy alone. CONCLUSIONS Stem cell therapy is an effective treatment for diabetic foot ulcers and is currently used as an alternative to amputation for some patients without other options for revascularization. Concordance between preclinical and clinical studies may help design future randomized clinical trials.
Collapse
Affiliation(s)
- Lara Lopes
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ocean Setia
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Afsha Aurshina
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haidi Hu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haiyang Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Tun Wang
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Xiangjiang Guo
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tulio Navarro
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- VA Connecticut Healthcare System, West Haven, CT USA
| |
Collapse
|
12
|
Marrow Mesenchymal Stem Cells Effectively Reduce Histologic Changes in a Rat Model of Chronic Renal Allograft Rejection. Transplant Proc 2018; 49:2194-2203. [PMID: 29149982 DOI: 10.1016/j.transproceed.2017.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 09/06/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic allograft rejection remains as the leading cause of the chronic renal grafts loss post-transplantation. No therapy has been found really effective to prevent and treat chronic allograft rejection. Mesenchymal stem cells (MSCs) have characteristics of immunomodulation and are expected to be used for inducing graft immune tolerance in organ transplantation. We investigated the efficacy and safety of early infusion of donor-derived marrow MSCs in a rat model of chronic renal allograft rejection. METHODS Orthotopic kidney transplantations were performed in a rat strain combination of Sprague-Dawley (SD) → Wistar. The native right kidneys of recipient rats were kept intact as internal control of each graft. Twenty-three successfully transplanted recipient rats were divided into 3 groups: group 1 (the MSCs therapy group) (n = 8) and group 2 (the control group) (n = 8) both received a 10-day course of cyclosporine (CsA) (2 mg/kg intraperitoneally) to prevent initial acute rejection. MSCs (1 × 107) of first dosage and an additional dosage were injected into group 1 postoperative days (PODs) 0, 3, and 7. Group 2 received 0.9% saline solution in addition to CsA as the control group. Group 3 consisted of recipients (n = 7) receiving neither immunosuppression nor MSCs. Renal histopathology and immunohistochemistry of transforming growth factor β1 (TGF-β1) was examined at week 12. Safety of MSC infusion was determined by observing symptoms and signs after infusion and performing gross anatomy at week 12. RESULTS All the grafts of group 3 developed acute rejection and were rejected within 4 weeks. Bone marrow MSCs significantly decreased the severity of mononuclear cell interstitial inflammation, tubular atrophy, interstitial fibrosis, and vascular fibrous intimal thickening in renal grafts (P < .001). MSCs also greatly reduced the glomerulosclerosis rate of the transplanted kidneys of group 1 (P < .001). The TGF-ß1 expression of group 1 was weaker than that of group 2 (P = .043). There were no symptoms or signs of severe adverse side effects observed. CONCLUSIONS Early bone marrow MSCs infusion on PODs 0, 3, and 7 are effective and safe for chronic renal allograft rejection in rats. MSCs hold significant promise for clinical transplantation to treat chronic renal allograft rejection and prolong the renal graft survival.
Collapse
|
13
|
Gregorini M, Corradetti V, Pattonieri EF, Rocca C, Milanesi S, Peloso A, Canevari S, De Cecco L, Dugo M, Avanzini MA, Mantelli M, Maestri M, Esposito P, Bruno S, Libetta C, Dal Canton A, Rampino T. Perfusion of isolated rat kidney with Mesenchymal Stromal Cells/Extracellular Vesicles prevents ischaemic injury. J Cell Mol Med 2017; 21. [PMID: 28639291 PMCID: PMC5706569 DOI: 10.1111/jcmm.13249] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Kidney donation after circulatory death (DCD) is a less than ideal option to meet organ shortages. Hypothermic machine perfusion (HMP) with Belzer solution (BS) improves the viability of DCD kidneys, although the graft clinical course remains critical. Mesenchymal stromal cells (MSC) promote tissue repair by releasing extracellular vesicles (EV). We evaluated whether delivering MSC-/MSC-derived EV during HMP protects rat DCD kidneys from ischaemic injury and investigated the underlying pathogenic mechanisms. Warm ischaemic isolated kidneys were cold-perfused (4 hrs) with BS, BS supplemented with MSC or EV. Renal damage was evaluated by histology and renal gene expression by microarray analysis, RT-PCR. Malondialdehyde, lactate, LDH, glucose and pyruvate were measured in the effluent fluid. MSC-/EV-treated kidneys showed significantly less global ischaemic damage. In the MSC/EV groups, there was up-regulation of three genes encoding enzymes known to improve cell energy metabolism and three genes encoding proteins involved in ion membrane transport. In the effluent fluid, lactate, LDH, MDA and glucose were significantly lower and pyruvate higher in MSC/EV kidneys as compared with BS, suggesting the larger use of energy substrates by MSC/EV kidneys. The addition of MSC/EV to BS during HMP protects the kidney from ischaemic injury by preserving the enzymatic machinery essential for cell viability and protects the kidney from reperfusion damage.
Collapse
Affiliation(s)
- Marilena Gregorini
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
| | - Valeria Corradetti
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
- PhD School of Experimental MedicineUniversity of PaviaPaviaItaly
| | - Eleonora Francesca Pattonieri
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
- PhD School of Experimental MedicineUniversity of PaviaPaviaItaly
| | - Chiara Rocca
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
| | - Samantha Milanesi
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Andrea Peloso
- Unit of General SurgeryFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Silvana Canevari
- Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Loris De Cecco
- Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Matteo Dugo
- Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Maria Antonietta Avanzini
- Cell Factory and Research Laboratory‐Department of PediatricsFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Melissa Mantelli
- Cell Factory and Research Laboratory‐Department of PediatricsFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Marcello Maestri
- PhD School of Experimental MedicineUniversity of PaviaPaviaItaly
- Unit of General SurgeryFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Pasquale Esposito
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Stefania Bruno
- Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Carmelo Libetta
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
| | - Antonio Dal Canton
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
| | - Teresa Rampino
- Unit of NephrologyDialysis and TransplantationFondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
14
|
Espinel JDO, Uribe C, Meyer FS, Bringheti R, Kulczynski JU, Saueressig MG. Cell therapy in the treatment of bronchiolitis obliterans in a murine model. Rev Col Bras Cir 2017; 42:181-8. [PMID: 26291260 DOI: 10.1590/0100-69912015003010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/10/2014] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate the importance of stem cells derived from adipose tissue in reducing graft inflammation in a murine model of allogeneic heterotopic tracheal transplant. METHODS We performed a heterotopic tracheal allografting in dorsal subcutaneous pouch and systemically injected 5x105 mesenchymal stem cells derived from adipose tissue. The animals were divided into two groups according to the time of sacrifice: T7 and T21. We also carried out histological analysis and digital morphometry. RESULTS The T7 animals treated with cell therapy had median obstructed graft area of 0 versus 0.54 of controls (p = 0.635). The treated T21 subjects had median obstructed graft area of 0.25 versus 0 in controls (p = 0.041). CONCLUSION The systemically injected cell therapy in experimental murine model of bronchiolitis obliterans did not reduce the severity of the allograft inflammation in a statistically significant way in seven days; Conversely, in 21 days, it increased the allograft inflammatory process.
Collapse
Affiliation(s)
| | | | | | - Rafael Bringheti
- Universidade Federal de Ciências da Saúde de Porto Alegre, RS, BR
| | | | | |
Collapse
|
15
|
Ismail AM, Abdou SM, Aty HA, Kamhawy AH, Elhinedy M, Elwageh M, Taha A, Ezzat A, Salem HA, Youssif S, Salem ML. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia. Cytotechnology 2016; 68:771-81. [PMID: 25511801 PMCID: PMC4960127 DOI: 10.1007/s10616-014-9828-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia.
Collapse
Affiliation(s)
| | - Said M Abdou
- Clinical Pathology Department, Tanta University, Tanta, Egypt
| | | | | | | | | | - Atef Taha
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amal Ezzat
- Clinical Pathology Department, Tanta University, Tanta, Egypt
| | - Hoda A Salem
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Said Youssif
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt.
| |
Collapse
|
16
|
Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:5896061. [PMID: 27293445 PMCID: PMC4886089 DOI: 10.1155/2016/5896061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases.
Collapse
|
17
|
Abstract
Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
18
|
Gregorini M, Corradetti V, Rocca C, Pattonieri EF, Valsania T, Milanesi S, Serpieri N, Bedino G, Esposito P, Libetta C, Avanzini MA, Mantelli M, Ingo D, Peressini S, Albertini R, Dal Canton A, Rampino T. Mesenchymal Stromal Cells Prevent Renal Fibrosis in a Rat Model of Unilateral Ureteral Obstruction by Suppressing the Renin-Angiotensin System via HuR. PLoS One 2016; 11:e0148542. [PMID: 26866372 PMCID: PMC4750962 DOI: 10.1371/journal.pone.0148542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
We studied Mesenchymal Stromal Cells (MSC) effects in experimental Unilateral Ureteral Obstruction (UUO), a fibrogenic renal disease. Rats were divided in 5 groups: sham, UUO, MSC treated-UUO, ACEi treated-UUO, MSC+ACEi treated- UUO. Data were collected at 1, 7, 21 days. UUO induced monocyte renal infiltration, tubular cell apoptosis, tubular atrophy, interstitial fibrosis and overexpression of TGFβ, Renin mRNA (RENmRNA), increase of Renin, Angiotensin II (AII) and aldosterone serum levels. Both lisinopril (ACEi) and MSC treatment prevented monocyte infiltration, reduced tubular cell apoptosis, renal fibrosis and TGFβ expression. Combined therapy provided a further suppression of monocyte infiltration and tubular injury. Lisinopril alone caused a rebound activation of Renin-Angiotensin System (RAS), while MSC suppressed RENmRNA and Renin synthesis and induced a decrease of AII and aldosterone serum levels. Furthermore, in in-vitro and in-vivo experiments, MSC inhibit Human antigen R (HuR) trascription, an enhancer of RENmRNA stability by IL10 release. In conclusion, we demonstrate that in UUO MSC prevent fibrosis, by decreasing HuR-dependent RENmRNA stability. Our findings give a clue to understand the molecular mechanism through which MSC may prevent fibrosis in a wide and heterogeneous number of diseases that share RAS activation as common upstream pathogenic mechanism.
Collapse
Affiliation(s)
- Marilena Gregorini
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Valeria Corradetti
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
- * E-mail:
| | - Chiara Rocca
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eleonora Francesca Pattonieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Valsania
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Samantha Milanesi
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Nicoletta Serpieri
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giulia Bedino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Pasquale Esposito
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Melissa Mantelli
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Daniela Ingo
- Laboratory of Transplant Immunology/Cell Factory Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Sabrina Peressini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Dal Canton
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis, Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Monteiro Carvalho Mori da Cunha MG, Zia S, Oliveira Arcolino F, Carlon MS, Beckmann DV, Pippi NL, Luhers Graça D, Levtchenko E, Deprest J, Toelen J. Amniotic Fluid Derived Stem Cells with a Renal Progenitor Phenotype Inhibit Interstitial Fibrosis in Renal Ischemia and Reperfusion Injury in Rats. PLoS One 2015; 10:e0136145. [PMID: 26295710 PMCID: PMC4546614 DOI: 10.1371/journal.pone.0136145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Objectives Mesenchymal stem cells derived from human amniotic fluid (hAFSCs) are a promising source for cellular therapy, especially for renal disorders, as a subpopulation is derived from the fetal urinary tract. The purpose of this study was to evaluate if hAFSCs with a renal progenitor phenotype demonstrate a nephroprotective effect in acute ischemia reperfusion (I/R) model and prevent late stage fibrosis. Methods A total of 45 male 12-wk-old Wistar rats were divided into three equal groups;: rats subjected to I/R injury and treated with Chang Medium, rats subjected to I/R injury and treated with hAFSCs and sham-operated animals. In the first part of this study, hAFSCs that highly expressed CD24, CD117, SIX2 and PAX2 were isolated and characterized. In the second part, renal I/R injury was induced in male rats and cellular treatment was performed 6 hours later via arterial injection. Functional and histological analyses were performed 24 hours, 48 hours and 2 months after treatment using serum creatinine, urine protein to creatinine ratio, inflammatory and regeneration markers and histomorphometric analysis of the kidney. Statistical analysis was performed by analysis of variance followed by the Tukey’s test for multiple comparisons or by nonparametric Kruskal-Wallis followed by Dunn. Statistical significance level was defined as p <0.05. Results hAFSCs treatment resulted in significantly reduced serum creatinine level at 24 hours, less tubular necrosis, less hyaline cast formation, higher proliferation index, less inflammatory cell infiltration and less myofibroblasts at 48h. The treated group had less fibrosis and proteinuria at 2 months after injury. Conclusion hAFSCs contain a renal progenitor cell subpopulation that has a nephroprotective effect when delivered intra-arterially in rats with renal I/R injury, and reduces interstitial fibrosis on long term follow-up.
Collapse
Affiliation(s)
- Marina Gabriela Monteiro Carvalho Mori da Cunha
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne Sylvia Carlon
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Diego Vilibaldo Beckmann
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ney Luis Pippi
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Dominguita Luhers Graça
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
20
|
Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis 2015; 6:e1765. [PMID: 25996292 PMCID: PMC4669719 DOI: 10.1038/cddis.2015.91] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has achieved only modest success in the treatment of ischemic heart disease owing to poor cell viability in the diseased microenvironment. Activation of the NRG1 (neuregulin1)-ERBB4 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) signaling pathway has been shown to stimulate mature cardiomyocyte cell cycle re-entry and cell division. In this connection, we aimed to determine whether overexpression of ERBB4 in MSCs can enhance their cardio-protective effects following myocardial infarction. NRG1, MSCs or MSC-ERBB4 (MSC with ERBB4 overexpression), were transplanted into mice following myocardial infarction. Superior to that of MSCs and solely NRG1, MSC-ERBB4 transplantation significantly preserved heart functions accompanied with reduced infarct size, enhanced cardiomyocyte division and less apoptosis during early phase of infarction. The transduction of ERBB4 into MSCs indeed increased cell mobility and apoptotic resistance under hypoxic and glucose-deprived conditions via a PI3K/Akt signaling pathway in the presence of NRG1. Unexpectedly, introduction of ERBB4 into MSC in turn potentiates NRG1 synthesis and secretion, thus forming a novel NRG1-ERBB4-NRG1 autocrine loop. Conditioned medium of MSC-ERBB4 containing elevated NRG1, promoted cardiomyocyte growth and division, whereas neutralization of NRG1 blunted this proliferation. These findings collectively suggest that ERBB4 overexpression potentiates MSC survival in the infarcted heart, enhances NRG1 generation to restore declining NRG1 in the infarcted region and stimulates cardiomyocyte division. ERBB4 has an important role in MSC-mediated myocardial repairs.
Collapse
|
21
|
Tsuji W, Schnider JT, McLaughlin MM, Schweizer R, Zhang W, Solari MG, Rubin JP, Marra KG, Plock JA, Gorantla VS. Effects of immunosuppressive drugs on viability and susceptibility of adipose- and bone marrow-derived mesenchymal stem cells. Front Immunol 2015; 6:131. [PMID: 25932028 PMCID: PMC4399413 DOI: 10.3389/fimmu.2015.00131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023] Open
Abstract
The immunomodulatory potential of cell therapies using adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs) has been studied in vascularized composite allotransplantation (VCA). Most cell therapy-based experimental and clinical protocols integrate some degree of recipient conditioning/induction with antibodies or other immunosuppressive agents. We investigated the susceptibility of ASCs and BM-MSCs to anti-lymphocyte serum (ALS) and tacrolimus. Rat ASCs and BM-MSCs were exposed to varying concentrations of tacrolimus and ALS in vitro. Serum from ALS-treated animals was added to cell cultures. Viability, susceptibility, and cytotoxicity parameters were evaluated. ALS inhibited ASC and BM-MSC viability and susceptibility in vitro in a dose-dependent manner. ASCs were more susceptible to both ALS and tacrolimus than BM-MSCs. Trypsinized and adherent ASCs were significantly smaller than BM-MSCs. This is the first report on the viability and susceptibility characteristics of BM-MSCs or ASCs to collateral effects of ALS and tacrolimus. These in vitro insights may impact choice of cell type as well as concomitant conditioning agents and the logistical coordination of the timing, dosing, and frequency of drug or cell therapy in solid organ transplantation or VCA protocols.
Collapse
Affiliation(s)
- Wakako Tsuji
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, Shiga Medical Center for Adults , Moriyama , Japan
| | - Jonas T Schnider
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Meghan M McLaughlin
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Riccardo Schweizer
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | - Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Jan A Plock
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | - Vijay S Gorantla
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
22
|
Gregorini M, Bosio F, Rocca C, Corradetti V, Valsania T, Pattonieri EF, Esposito P, Bedino G, Collesi C, Libetta C, Frassoni F, Canton AD, Rampino T. Mesenchymal stromal cells reset the scatter factor system and cytokine network in experimental kidney transplantation. BMC Immunol 2014; 15:44. [PMID: 25277788 PMCID: PMC4193986 DOI: 10.1186/s12865-014-0044-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In former studies we showed in a rat model of renal transplantation that Mesenchymal Stromal Cells (MSC) prevent acute rejection in an independent way of their endowing in the graft. In this study we investigated whether MSC operate by resetting cytokine network and Scatter Factor systems, i.e. Hepatocyte Growth Factor (HGF), Macrophage Stimulating Protein (MSP) and their receptors Met and RON, respectively. METHODS MSC were injected into the renal artery soon after reperfusion. Controls were grafted untreated and normal rats. Rats were sacrificed 7 days after grafting. Serum and renal tissue levels of IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-10, MSP/RON, HGF/Met systems, Treg lymphocytes were investigated. RESULTS In grafted untreated rats IFN-γ increased in serum and renal tissue and IL-6 rose in serum. MSC prevented both the phenomena, increased IL-10 serum levels and Treg number in the graft. Furthermore MSC increased serum and tissue HGF levels, Met tubular expression and prevented the suppression of tubular MSP/RON expression. CONCLUSIONS Our results demonstrate that MSC modify cytokine network to a tolerogenic setting, they suppress Th1 cells, inactivate monocytes/macrophage, recruit Tregs. In addition, MSC sustain the expression of the Scatter Factor systems expression, i.e. systems that are committed to defend survival and stimulate regeneration of tubular cells.
Collapse
Affiliation(s)
- Marilena Gregorini
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Francesca Bosio
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Chiara Rocca
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Valeria Corradetti
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Teresa Valsania
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Eleonora Francesca Pattonieri
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo, viale Golgi 19, 27100 Pavia, Italy
| | - Giulia Bedino
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Chiara Collesi
- ICGEB, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carmelo Libetta
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Francesco Frassoni
- Stem Cells Therapy and Hemato-Oncology, S.Martino Hospital, 16100 Genoa, Italy
| | - Antonio Dal Canton
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo and University of Pavia, viale Golgi 19, 27100 Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis and Transplantation, Fondazione, IRCCS Policlinico San Matteo, viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
23
|
Srijaya TC, Ramasamy TS, Kasim NHA. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J Transl Med 2014; 12:243. [PMID: 25182194 PMCID: PMC4163166 DOI: 10.1186/s12967-014-0243-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The inadequacy of existing therapeutic tools together with the paucity of organ donors have always led medical researchers to innovate the current treatment methods or to discover new ways to cure disease. Emergence of cell-based therapies has provided a new framework through which it has given the human world a new hope. Though relatively a new concept, the pace of advancement clearly reveals the significant role that stem cells will ultimately play in the near future. However, there are numerous uncertainties that are prevailing against the present setting of clinical trials related to stem cells: like the best route of cell administration, appropriate dosage, duration and several other applications. A better knowledge of these factors can substantially improve the effectiveness of disease cure or organ repair using this latest therapeutic tool. From a certain perspective, it could be argued that by considering certain proven clinical concepts and experience from synthetic drug system, we could improve the overall efficacy of cell-based therapies. In the past, studies on synthetic drug therapies and their clinical trials have shown that all the aforementioned factors have critical ascendancy over its therapeutic outcomes. Therefore, based on the knowledge gained from synthetic drug delivery systems, we hypothesize that by employing many of the clinical approaches from synthetic drug therapies to this new regenerative therapeutic tool, the efficacy of stem cell-based therapies can also be improved.
Collapse
Affiliation(s)
| | - Thamil Selvee Ramasamy
- />Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- />Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Sun L, Fan X, Zhang L, Shi G, Aili M, Lu X, Jiang T, Zhang Y. Bone mesenchymal stem cell transplantation via four routes for the treatment of acute liver failure in rats. Int J Mol Med 2014; 34:987-96. [PMID: 25110277 PMCID: PMC4152144 DOI: 10.3892/ijmm.2014.1890] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In the present study, we assessed the efficiency of four BMSC transplantation methods as a therapy for liver failure. A rat model (80 Sprague-Dawley rats) of D-galactosamine (D-gal)/lipopolysaccharide (LPS)-induced acute liver failure (ALF) was established and the rats were divided into 5 groups: a hepatic artery injection group, a portal vein injection group, a vena caudalis injection group, an intraperitoneal injection group and a control group (16 per group). Following transplantation, the liver tissue and blood samples were collected on days 1, 3 and 7, we detected the EdU (5-ethynyl-2′-deoxyuridine)-labeled cells homing to the liver tissue and assessed the proliferating cell nuclear antigen (PCNA) and cysteine-containing aspartate-specific protease (caspase)-3 expression in the liver tissue and detected the levels of stromal cell-derived factor 1 (SDF-1) and hepatocyte growth factor (HGF) in the liver tissues. Compared with the control group, the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and damage to the liver tissue in the hepatic artery group, the portal vein group and the vena caudalis group improved in vivo. The expression of PCNA and HGF in the liver was higher and caspase-3 expression was lower in the hepatic artery injection group, the portal vein injection group and the vena caudalis injection group than that in the intraperitoneal injection and control groups. The EdU-labeled BMSCs were only observed homing to the liver tissue in these three groups. However, no significant differences were observed between these three groups. Liver function in the rats with ALF was improved following BMSC transplantation via 3 endovascular implantation methods (through the hepatic artery, portal vein and vena caudalis). These 3 methods were effective in transplanting BMSCs for the treatment of ALF. However, the selection of blood vessel in the implantation pathway does not affect the transplantation outcome. Transplantation via intraperitoneal injection showed no therapeutic effect in our animal experiments.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaotang Fan
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lijuan Zhang
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Guixiu Shi
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Maimaiti Aili
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaobo Lu
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Tao Jiang
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yuexin Zhang
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
25
|
Horton JA, Hudak KE, Chung EJ, White AO, Scroggins BT, Burkeen JF, Citrin DE. Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells 2014; 31:2231-41. [PMID: 23897677 DOI: 10.1002/stem.1483] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
Exposure to ionizing radiation (IR) can result in the development of cutaneous fibrosis, for which few therapeutic options exist. We tested the hypothesis that bone marrow-derived mesenchymal stem cells (BMSC) would favorably alter the progression of IR-induced fibrosis. We found that a systemic infusion of BMSC from syngeneic or allogeneic donors reduced skin contracture, thickening, and collagen deposition in a murine model. Transcriptional profiling with a fibrosis-targeted assay demonstrated increased expression of interleukin-10 (IL-10) and decreased expression of IL-1β in the irradiated skin of mice 14 days after receiving BMSC. Similarly, immunoassay studies demonstrated durable alteration of these and several additional inflammatory mediators. Immunohistochemical studies revealed a reduction in infiltration of proinflammatory classically activated CD80(+) macrophages and increased numbers of anti-inflammatory regulatory CD163(+) macrophages in irradiated skin of BMSC-treated mice. In vitro coculture experiments confirmed that BMSC induce expression of IL-10 by activated macrophages, suggesting polarization toward a regulatory phenotype. Furthermore, we demonstrated that tumor necrosis factor-receptor 2 (TNF-R2) mediates IL-10 production and transition toward a regulatory phenotype during coculture with BMSC. Taken together, these data demonstrate that systemic infusion of BMSC can durably alter the progression of radiation-induced fibrosis by altering macrophage phenotype and suppressing local inflammation in a TNF-R2-dependent fashion.
Collapse
Affiliation(s)
- Jason A Horton
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhu XY, Lerman A, Lerman LO. Concise review: mesenchymal stem cell treatment for ischemic kidney disease. Stem Cells 2014; 31:1731-6. [PMID: 23766020 DOI: 10.1002/stem.1449] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/30/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022]
Abstract
Ischemic kidney diseases are common clinical entities that bear high mortality and morbidity and may lead to irreversible loss of kidney function. Their pathophysiology is multifaceted, involves complex hormonal-immunological-cellular interactions, and leads to damage in multiple cell types, which is often resistant to conventional therapy. Thus, novel strategies are needed to repair the renal parenchyma and preserve kidney function. Mesenchymal stem cells (MSC) confer renal protection through paracrine/endocrine effects and to some degree possibly by direct engraftment. Their anti-inflammatory and immune-modulatory properties target multiple cascades in the mechanisms of ischemic kidney disease. This review focuses on recent progress on the use of MSC to prevent kidney injury in ischemic kidney injury, with a focus on the chronic form.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
27
|
Barros MA, Martins JFP, Maria DA, Wenceslau CV, De Souza DM, Kerkis A, Câmara NOS, Balieiro JCC, Kerkis I. Immature Dental Pulp Stem Cells Showed Renotropic and Pericyte-Like Properties in Acute Renal Failure in Rats. CELL MEDICINE 2014; 7:95-108. [PMID: 26858898 DOI: 10.3727/215517914x680038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute renal failure (ARF) is a common renal disease that can lead to high mortality. Recovery from ARF occurs with the replacement of necrotic tubular cells by functional tubular epithelial cells and the normalization of microvascular endothelial cell function in the peritubular capillaries. Conventional therapeutic techniques are often ineffective against ARF. Hence, stem cell therapies, which act through multiple trophic and regenerative mechanisms, are encouraging. We investigated the homing of human immature dental pulp stem cells (IDPSCs) after endovenous (EV) or intraperitoneal (IP) injection, in immunocompetent Wistar rats with ARF induced by intramuscular injection of glycerol, without the use of immunosuppression. The cells, which had been cryopreserved for 6 years, were CD105(+), CD73(+), CD44(+), and partly, STRO-1(+) and CD146(+), and presented unaltered mesoderm differentiation potential. The presence of these cells in the tubular region of the kidney and in the peritubular capillaries was demonstrated. These cells accelerate tubular epithelial cell regeneration through significant increase of Ki-67-immunoreactive cells in damaged kidney. Flow cytometry analysis confirmed that IDPSCs home to the kidneys (EV 34.10% and IP 33.25%); a lower percentage of cells was found in the liver (EV 19.05% and IP 9.10%), in the muscles (EV 6.30% and IP 1.35%), and in the lungs (EV 2.0% and IP 1.85%). After infusion into rat, these cells express pericyte markers, such as CD146(+), STRO-1(+), and vascular endothelial growth factor (VEGF(+)). We found that IDPSCs demonstrate renotropic and pericyte-like properties and contributed to restore renal tubule structure in an experimental rat ARF model.
Collapse
Affiliation(s)
- Michele A Barros
- Laboratory of Genetics, Butantan Institute, São Paulo, SP, Brazil; †School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Durvanei Augusto Maria
- § Laboratory of Biochemistry and Biophysics, Butantan Institute , São Paulo, SP , Brazil
| | | | | | - Alexandre Kerkis
- Laboratory of Genetics, Butantan Institute , São Paulo, SP , Brazil
| | - Niels Olsen S Câmara
- ¶ Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Julio Cesar C Balieiro
- # Department of Basic Science of Faculty of Animal Science and Food Engineering, University of São Paulo , São Paulo , Brazil
| | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute , São Paulo, SP , Brazil
| |
Collapse
|
28
|
Protective effects of mesenchymal stem cells with CXCR4 up-regulation in a rat renal transplantation model. PLoS One 2013; 8:e82949. [PMID: 24386129 PMCID: PMC3875425 DOI: 10.1371/journal.pone.0082949] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/30/2013] [Indexed: 12/14/2022] Open
Abstract
The homing of mesenchymal stem cells to injured tissue, which is important for the correction of conditions such as ischemia-reperfusion injury (IRI) and immunolesions, has been performed previously, but with poor efficiency. Substantial improvements in engraftment are required to derive clinical benefits from MSC transplantation. Chemokines are the most important factors that control cellular migration. Stromal derived factor-1 (SDF-1) is up-regulated during tissue/organ ischemia damage, and its cognate receptor, chemokine receptor 4 (CXCR4), is involved in stem cell migration. The aim of our study was to investigate CXCR4 expression in MSCs and to validate both its role in mediating migration to transplanted kidneys and its immunoregulatory effects in renal protection. Specifically, the present study was designed to investigate the short-term tissue homing of MSCs carrying genetically modified CXCR4 in a rat renal transplantation model. We tested the hypothesis that MSCs with CXCR4 over-expression can more efficiently regulate immunological reactions. Lentiviral vectors were used to over-express CXCR4 or to introduce a short hairpin ribonucleic acid (shRNA) construct targeting endogenous CXCR4 in rat MSCs. MSCs were labeled with enhanced green fluorescent protein (eGFP). After cell sorting, recipient kidneys were regionally perfused; recipient animals were injected with transduced MSCs, native MSCs, or PBS via tail vein following renal transplantation; and the effects of MSC injection were observed.
Collapse
|
29
|
Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ 2013; 21:216-25. [PMID: 24185619 PMCID: PMC3890955 DOI: 10.1038/cdd.2013.158] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.
Collapse
Affiliation(s)
- S Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - W Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - B Yuan
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Beijing 100050, China
| | - Y Shi
- 1] Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China [2] Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
30
|
Monteiro Carvalho Mori da Cunha MG, Beckmann DV, Carlon MS, Zia S, Pippi NL, Mazzanti A, Van der Perren A, Deprest J, Toelen J. A surgical technique for homogenous renal distribution of substances in rats. ACTA ACUST UNITED AC 2013; 51:58-65. [PMID: 24081026 DOI: 10.1159/000354389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/16/2013] [Indexed: 11/19/2022]
Abstract
Intra-arterial injection of mesenchymal stem cells has been proven to result in a superior nephroprotection compared to intravenous injection. This avoids initial passage through filter organs such as the lung, liver and spleen. The aim of the present study was to investigate whether suprarenal aortic delivery results in a homogenous distribution to both kidneys. Chinese ink was used to evaluate the renal distribution pattern for the comparison of two retrograde intra-aortic injection methods. In the first, the aorta caudal to the renal branches was temporarily clamped and Chinese ink was injected at the level of the renal arteries. In the second, a distal aortic clamp was combined with alternated clamping of the contralateral arteries. Immediately after injection, kidneys were harvested for histological analysis. Amniotic fluid stem cells labeled with LacZ were injected in the aorta by alternated clamping of the renal arteries in order to track the cells in a rat ischemia/reperfusion model. Without renal artery clamping, intra-aortic administration resulted in a delivery of the ink into the right kidney, whereas administration with alternated clamping of the contralateral renal artery, together with distal aortic artery clamping, resulted in a more homogenous distribution of the ink in both kidneys. Moreover, LacZ-positive cells were found in both kidneys after 6 h of injection. In conclusion, the retrograde administration of Chinese ink in two steps is a fast and reproducible technique, which results in a more homogenous distribution of the stain in both kidneys than a single administration combined by only clamping the aorta.
Collapse
|
31
|
Plock JA, Schnider JT, Schweizer R, Gorantla VS. Are cultured mesenchymal stromal cells an option for immunomodulation in transplantation? Front Immunol 2013; 4:41. [PMID: 23447748 PMCID: PMC3581807 DOI: 10.3389/fimmu.2013.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/05/2013] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jan A Plock
- Division of Plastic and Hand Surgery, University Hospital Zurich Zurich, Switzerland ; Department of Plastic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
32
|
Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. Biol Blood Marrow Transplant 2013; 19:538-46. [PMID: 23295166 DOI: 10.1016/j.bbmt.2013.01.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 01/02/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSC) attenuate albuminuria and preserve normal renal histology in diabetic mice. However, the effects of MSC on glomerular podocyte injury remain uncertain. The aim of this study was to evaluate the effects of MSC on podocyte injury in streptozotocin (STZ)-induced diabetic rats. Thirty days after diabetes induction by STZ injection (65 mg/kg, intraperitoneally) in Sprague-Dawley rats, the diabetic rats received medium or 2 × 10(6) enhanced green fluorescent protein-labeled MSC via the renal artery. In vivo tracking of MSC was followed by immunofluorescence analysis. Diabetes-related physical and biochemical parameters were measured on day 60 after the MSC infusion. The expression of podocyte markers (nephrin and podocin), podocyte survival factors (VEGF and BMP-7), and the ultrastructural pathology of podocytes were also assessed. MSC were only detected in the glomeruli from the left kidney receiving MSC infusion. Compared with medium-treated diabetic rats, rats treated with MSC showed a suppressed increase in kidney weight, kidney to body weight index, creatinine clearance rate, and urinary albumin to creatinine ratio; however, the treatment had no effect on blood glucose or body weight levels. Furthermore, the MSC treatment reduced the loss of podocytes, effacement of foot processes, widening of foot processes, thickening of glomerular basal membrane (GBM), and loss of glomerular nephrin and podocin. Most important, MSC-injected kidneys expressed higher levels of BMP-7 but not of VEGF. Our results clearly demonstrated that intra-arterial administration of MSC prevented the development of albuminuria as well as any damage to or loss of podocytes, though there was no improvement in blood sugar levels. The protective effects of MSC may be mediated in part by increasing BMP-7 secretion.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
33
|
Kholodenko IV, Konieva AA, Kholodenko RV, Yarygin KN. Molecular mechanisms of migration and homing of intravenously transplanted mesenchymal stem cells. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-1218-2-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Franquesa M, Herrero E, Torras J, Ripoll E, Flaquer M, Gomà M, Lloberas N, Anegon I, Cruzado JM, Grinyó JM, Herrero-Fresneda I. Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem Cells Dev 2012; 21:3125-35. [PMID: 22494435 DOI: 10.1089/scd.2012.0096] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In solid organ transplantation, mesenchymal stem cell (MSC) therapy is strongly emerging among other cell therapies due to the positive results obtained in vitro and in vivo as an immunomodulatory agent and their potential regenerative role. We aimed at testing whether a single dose of MSCs, injected at 11 weeks after kidney transplantation for the prevention of chronic mechanisms, enhanced regeneration and provided protection against the inflammatory and fibrotic processes that finally lead to the characteristic features of chronic allograft nephropathy (CAN). Either bone marrow mononuclear cells (BMCs) injection or no-therapy (NT) were used as control treatments. A rat kidney transplantation model of CAN with 2.5 h of cold ischemia was used, and functional, histological, and molecular parameters were assessed at 12 and 24 weeks after transplantation. MSC and BMC cell therapy preserves renal function at 24 weeks and abrogates proteinuria, which is typical of this model (NT24w: 68.9 ± 26.5 mg/24 h, MSC24w: 16.6 ± 2.3 mg/24 h, BMC24w: 24.1 ± 5.3 mg/24 h, P<0.03). Only MSC-treated animals showed a reduction in interstitial fibrosis and tubular atrophy (NT24w: 2.3 ± 0.29, MSC24w: 0.4 ± 0.2, P<0.03), less T cells (NT: 39.6 ± 9.5, MSC: 8.1 ± 0.9, P<0.03) and macrophages (NT: 20.9 ± 4.7, MSC: 5.9 ± 1.7, P<0.05) infiltrating the parenchyma and lowered expression of inflammatory cytokines while increasing the expression of anti-inflammatory factors. MSCs appear to serve as a protection from injury development rather than regenerate the damaged tissue, as no differences were observed in Ki67 expression, and kidney injury molecule-1, Clusterin, NGAL, and hepatocyte growth factor expression were only up-regulated in nontreated animals. Considering the results, a single delayed MSC injection is effective for the long-term protection of kidney allografts.
Collapse
Affiliation(s)
- Marcella Franquesa
- Experimental Renal Transplantation, Laboratory of Experimental Nephrology, Bellvitge Biomedical Research Institute (IDIBELL)- Universitat de Barcelona (UB), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Engela AU, Baan CC, Dor FJMF, Weimar W, Hoogduijn MJ. On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation. Front Immunol 2012; 3:126. [PMID: 22629256 PMCID: PMC3355477 DOI: 10.3389/fimmu.2012.00126] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022] Open
Abstract
Experimental studies have established the use of mesenchymal stem cells (MSC) as a candidate immunosuppressive therapy. MSC exert their immunomodulatory function through the inhibition of CD4+ and CD8+ T cell proliferation. It is unknown whether MSC impair the immunosuppressive function of regulatory T cells (Treg). In vitro and in vivo studies suggest that MSC mediate their immunomodulatory effects through the induction of Treg. In this review we will focus on the interactions between MSC and Treg, and evaluate the consequences of these cellular interplays for prospective MSC immunotherapy in organ transplantation.
Collapse
Affiliation(s)
- Anja U Engela
- Transplantation Laboratory, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | | | | | | |
Collapse
|
36
|
Hara Y, Stolk M, Ringe J, Dehne T, Ladhoff J, Kotsch K, Reutzel-Selke A, Reinke P, Volk HD, Seifert M. In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transpl Int 2011; 24:1112-23. [PMID: 21880071 DOI: 10.1111/j.1432-2277.2011.01328.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain death and prolonged cold ischemia are major contributors to the poorer long-term outcome of transplants from deceased donor kidney transplants, with an even higher impact if expanded criteria donors ('marginal organs') are used. Targeting ischemia-reperfusion injury-related intragraft inflammation is an attractive concept to improve the outcome of those grafts. As mesenchymal stem cells (MSCs) express both immunomodulatory and tissue repair properties, we evaluated their therapeutic efficacy in a rat kidney transplant model of prolonged cold ischemia. The in vitro immunomodulatory capacity of bone marrow-derived rat MSCs was tested in co-cultures with rat lymph node cells. For in vivo studies, Dark Agouti rat kidneys were cold preserved and transplanted into Lewis rats. Syngeneic Lewis MSCs were administered intravenously. Transplants were harvested on day 3, and inflammation was examined by quantitative RT-PCR and histology. Similarly to MSCs from other species, rat MSCs in vitro also showed a dose-dependent immunomodulatory capacity. Most importantly, in vivo administration of MSCs reduced the intragraft gene expression of different pro-inflammatory cytokines, chemokines, and intercellular adhesion molecule-1. In addition, fewer antigen-presenting cells were recruited into the renal allograft. In conclusion, rat MSCs ameliorate inflammation induced by prolonged cold ischemia in kidney transplantation.
Collapse
Affiliation(s)
- Yoshiaki Hara
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|