1
|
Zhou M, Zhang H, Chen H, Qi B. Adiponectin protects skeletal muscle from ischaemia–reperfusion injury in mice through
miR
‐21/
PI3K
/Akt signalling pathway. Int Wound J 2022; 20:1647-1661. [PMID: 36426910 PMCID: PMC10088838 DOI: 10.1111/iwj.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have confirmed that adiponectin (APN) plays a protective role in myocardial ischaemia-reperfusion (IR) injury, and the aim of this study was to investigate its effect on skeletal muscle. ELISA was used to detect the levels of Creatinine Kinase (CK), LDH, SOD and MDA in the plasma of the lower limbs of mice, and the levels of IL-6, IL-1β and TNF-α in the gastrocnemius. Quantitative PCR was used to detect the expression level of miR-21. TUNEL staining was used to detect the apoptosis of the gastrocnemius. The expression levels of apoptosis proteins, autophagy marker proteins and downstream target genes of miR-21 in gastrocnemius were detected by Western Blot. The results of this study revealed that APN levels were significantly reduced in gastrocnemius of IR mice. The oxidative stress, inflammatory response, apoptosis and autophagy induced by IR were significantly ameliorated by APN injection. The above effects of APN may be achieved through miR-21/PI3K signalling pathway, as found by interfering gene expression levels with miRNA antagomir and lentiviral injection. Taken together, our study revealed that APN protects skeletal muscle from IR injury through miR-21 /PI3K/Akt signalling pathway through inhibiting inflammatory response, apoptosis and autophagy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Orthopedics Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan China
| | - Hairen Chen
- Department of Orthopedics Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
2
|
Morsy MA, Ibrahim YF, Abdel Hafez SMN, Zenhom NM, Nair AB, Venugopala KN, Shinu P, Abdel-Gaber SA. Paeonol Attenuates Hepatic Ischemia/Reperfusion Injury by Modulating the Nrf2/HO-1 and TLR4/MYD88/NF-κB Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11091687. [PMID: 36139761 PMCID: PMC9495847 DOI: 10.3390/antiox11091687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic ischemia/reperfusion (HIR) is the most common type of liver injury following several clinical situations. Modulating oxidative stress and inflammation by Nrf2/HO-1 and TLR4/MYD88/NF-κB pathways, respectively, is involved in alleviating HIR injury. Paeonol is a natural phenolic compound that demonstrates significant antioxidant and anti-inflammatory effects. The present study explored the possible protective effect of paeonol against HIR injury and investigated its possible molecular mechanisms in rats. Rats were randomly divided into four groups: sham-operated control, paeonol-treated sham-operated control, HIR untreated, and HIR paeonol-treated groups. The results confirmed that hepatic injury was significantly aggravated biochemically by elevated serum levels of alanine transaminase and aspartate transaminase, as well as by histopathological alterations, while paeonol reduced the increase in transaminases and alleviated pathological changes induced by HIR. Additionally, paeonol inhibited the HIR-induced oxidative stress in hepatic tissues by decreasing the upraised levels of malondialdehyde and nitric oxide and enhancing the suppressed levels of reduced glutathione and superoxide dismutase activity. Furthermore, paeonol activated the protective antioxidative Nrf2/HO-1 pathway. The protective effect of paeonol was associated with inhibiting the expression of the inflammatory key mediators TLR4, MYD88, NF-κB, and TNF-α. Finally, paeonol inhibited the increased mRNA levels of the pro-apoptotic marker Bax and enhanced the reduced mRNA levels of the anti-apoptotic marker Bcl-2. Taken together, our results proved for the first time that paeonol could protect against HIR injury by inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
- Correspondence: ; Tel.: +966-5496-72245
| | - Yasmine F. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | | | - Nagwa M. Zenhom
- Department of Biochemistry, Faculty of Medicine, Al-Baha University, Albaha 65525, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Seham A. Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
3
|
Protective mechanisms of telmisartan against hepatic ischemia/reperfusion injury in rats may involve PPARγ-induced TLR4/NF-κB suppression. Biomed Pharmacother 2021; 145:112374. [PMID: 34915671 DOI: 10.1016/j.biopha.2021.112374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic ischemia-reperfusion (I/R) is an important cause of liver damage in many clinical situations. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) is an inflammatory pathway activated in hepatic I/R injury. Telmisartan, a selective angiotensin II type 1 receptor antagonist and peroxisome proliferator-activated receptor-gamma (PPARγ) partial agonist, can inhibit the expression of pro-inflammatory cytokines. The present work investigated the possible protective effect of telmisartan against hepatic I/R injury and explored its possible mechanisms in rats. Rats were divided into four equal groups: sham-operated control, telmisartan-treated sham-operated control, I/R untreated, and I/R telmisartan-treated groups. Hepatic injury was evaluated biochemically by serum activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and histopathological examination. Hepatic oxidative stress biomarkers, myeloperoxidase level, PPARγ and TLR4 mRNA expression, and NF-κB and active caspase 3 immunoexpression were determined. The study showed that telmisartan attenuated hepatic I/R, as evidenced by decreased serum ALT and AST activities and confirmed by improvement of the histopathological changes. The protective effect of telmisartan was associated with modulation of oxidative stress parameters, myeloperoxidase level, PPARγ and TLR4 mRNA expression, and NF-κB and caspase 3 immunoexpression. Taken together, the current study showed that telmisartan could protect the rat liver from I/R injury. This hepatoprotective effect was attributed to, at least in part, increase in PPARγ expression and suppression of TLR4/NF-κB pathway.
Collapse
|
4
|
Wang H, Guo L, Wang Y, Song S. Isoflurane upregulates microRNA-9-3p to protect rats from hepatic ischemia-reperfusion injury through inhibiting fibronectin type III domain containing 3B. Cell Cycle 2021; 20:1527-1539. [PMID: 34308776 PMCID: PMC8409784 DOI: 10.1080/15384101.2021.1947548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022] Open
Abstract
Isoflurane has been studied in ischemia-reperfusion injury, while the regulatory mechanism by which isoflurane regulates microRNA(miR)-9-3p in hepatic ischemia/reperfusion injury (HIRI) via targeting fibronectin type III domain containing 3B (FNDC3B) remains seldom investigated. This study aims to determine the role of miR-9-3p in HIRI progression under the treatment of isoflurane. Rat HIRI models were established and treated with isoflurane. MiR-9-3p was altered to assess its role in inflammation, oxidative stress, transaminases, pathology, and hepatocyte apoptosis in HIRI rat liver tissues. Expression of miR-9-3p and FNDC3B in rat liver tissues was determined, and the targeting relationship between miR-9-3p and FNDC3B was confirmed using bioinformatic prediction and dual luciferase reporter gene assay. MiR-9-3p was downregulated, whereas FNDC3B was upregulated in HIRI rat liver tissues. Isoflurane treatment upregulated miR-9-3p and attenuated pathological changes, inflammation, oxidative stress, transaminases, and hepatocyte apoptosis in HIRI rat liver tissues. MiR-9-3p upregulation further strengthened the effect of isoflurane on HIRI, while miR-9-3p downregulation suppressed the therapeutic role of isoflurane. FNDC3B was confirmed as a target gene of miR-9-3p. Isoflurane upregulates miR-9-3p to protect rats from HIRI by inhibiting FNDC3VB. Our research may provide novel targets for HIRI treatment.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Longlong Guo
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yang Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shan Song
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
5
|
Lu J, Wang X, Feng Z, Chen Y, Wen D, Liu Z. The protective effect of isoflurane pretreatment on liver IRI by suppressing noncanonical pyroptosis of liver macrophages. Int Immunopharmacol 2021; 99:107977. [PMID: 34332342 DOI: 10.1016/j.intimp.2021.107977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Liver ischaemia-reperfusion injury (IRI) is a major complication in the perioperative period and often leads to liver failure and even systemic inflammation. Sufficient evidence has demonstrated that isoflurane has anti-inflammatory effects. We aimed to determine whether isoflurane pretreatment protects against liver IRI and to investigate the mechanisms involved in this protection. METHODS Male C57BL/6 mice were pretreated with or without isoflurane and subjected to 90 min of 70% liver ischaemia, followed by reperfusion for 6 h. Liver tissues and serum were analysed to assess liver IRI. To probe the mechanisms, liver macrophages isolated from C57BL/6 mice were pretreated with or without emulsified isoflurane for 30 min before incubation with 1 µg/ml lipopolysaccharide (LPS) for 24 h. Inflammatory cytokine production, intracellular Ca2+ levels, caspase-11 expression, NF-κB transcription, and NLRP3 inflammasome activation were assessed by ELISA, an intracellular Ca2+ concentration assay, immunohistochemistry, or Western blotting. RESULTS Isoflurane preconditioning significantly relieved liver IRI in mice and LPS-induced inflammation in liver macrophages. Additionally, isoflurane pretreatment inhibited caspase-11 expression and noncanonical pyroptosis-related production of cytokines (IL-1β and IL-18). Interestingly, isoflurane preconditioning reduced intracellular Ca2+ levels, NF-κB translocation, and NLRP3 inflammasome activation in LPS-induced macrophages. Our results indicated that isoflurane preconditioning ameliorated liver IRI by suppressing noncanonical pyroptosis in liver macrophages. These findings suggest that isoflurane could be a pharmacological agent for liver IRI prevention and thus deserves more attention and further investigation.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 40010, China
| | - Xiaoying Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 40010, China; The Third Affliated Hospital of Chongqing Medical University, Chongqing 40010, China
| | - Zhihao Feng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 40010, China
| | - Yucheng Chen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 40010, China
| | - Diguang Wen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 40010, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 40010, China.
| |
Collapse
|
6
|
Wang PP, Huang X, Yang MW, Fang SY, Hong FF, Yang SL. Effects of non-drug treatment on liver cells apoptosis during hepatic ischemia-reperfusion injury. Life Sci 2021; 275:119321. [PMID: 33711387 DOI: 10.1016/j.lfs.2021.119321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Hepatic ischemia reperfusion injury (HIRI) is an important cause of liver dysfunction after liver transplantation for the patients suffered from fatty liver, non-alcoholic cirrhosis, or liver cancer. It is closely related to liver cells apoptosis. Therefore, how to maintain the stable state of cell apoptosis is important to protect the liver from HIRI. Drug treatment basically applies some active substances directly or indirectly, reducing HIRI. But their toxic side effects limit the clinical applications. Differently, non-drug treatment means making use of other kinds of measures to reduce the damage, such as non-pharmaceutical preparations, surgical methods, inhalation or perfusion gas, and so on. Non-drug treatments have been shown to balance cell apoptosis and reduce liver damage during HIRI. This review summarized the progresses in the roles of non-drug treatments on liver cells apoptosis during HIRI in recent years, focusing on apoptosis inducing factors, its signal transduction pathway, and downstream molecules, etc., expecting to elucidate non-drug treatments of anti-HIRI more systematically.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China; Department of Stomatology, Affiliated Third Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, China
| | - Xia Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Shi-Yao Fang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
7
|
Lim H, Kim TY, Kim SY, Ro SJ, Koh SR, Ryu S, Ko JS, Jeong MA. The Protective Effects of Dexmedetomidine Preconditioning on Hepatic Ischemia/Reperfusion Injury in Rats. Transplant Proc 2020; 53:427-435. [PMID: 33280824 DOI: 10.1016/j.transproceed.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/01/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ischemia/reperfusion (IR) injury is 1 of the major problems in liver surgery. This study aims to evaluate the histologic and biochemical effects of dexmedetomidine on ischemia/reperfusion injury in the liver of rats. METHODS Twenty-two Sprague-Dawley male rats were separated into 3 groups: group sham, IR (IR injury), and IR-D (IR with dexmedetomidine). Ischemia was induced for 45 minutes with portal clampage and the reperfusion period was 120 minutes. Group IR-D received 3 μg/kg of dexmedetomidine with loading for 10 minutes and then 3 μg/kg/h of dexmedetomidine was continuously injected intravenously 30 minutes before portal clampage. Biochemical factors (alanine aminotransferase and aspartate aminotransferase), variable cytokines (B cell lymphoma-2 (Bcl-2), Bax, caspase 3, caspase 8, nuclear factor-kappa B, interleukin (IL)-1β, IL-6, IL-10, mixed lineage kinase domain-like protein, and receptor-interacting protein kinase-3), and histologic findings were investigated. RESULTS Dexmedetomidine preconditioning significantly suppressed the histologic damage. In the IR-D group, the expression of IL-6 was decreased and the Bcl-2 was increased when compared with the IR group. CONCLUSION Dexmedetomidine suppresses hepatic IR injury and the protective mechanism appears to involve the decrease of IL-6 and upregulation of Bcl-2 expression, which result in the attenuation of inflammatory response and the inhibition of apoptosis.
Collapse
Affiliation(s)
- Hyunyoung Lim
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tae Yeon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Ro
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Su Rim Koh
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sun Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Justin Sangwook Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Ae Jeong
- Department of Anesthesiology and Pain Medicine, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Jowkar S, Khosravi MB, Sahmeddini MA, Eghbal MH, Samadi K. Preconditioning Effect of Remifentanil Versus Fentanyl in Prevalence of Early Graft Dysfunction in Patients After Liver Transplant: A Randomized Clinical Trial. EXP CLIN TRANSPLANT 2020; 18:598-604. [PMID: 32635883 DOI: 10.6002/ect.2019.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES One of the most prevalent complications of orthotopic liver transplant is primary graft dysfunction. Recent studies have shown the preconditioning effect of remifentanil on animal livers but not human livers. Here, we compared the preconditioning effects of remifentanil and fentanyl in orthotopic liver transplant in human patients. MATERIALS AND METHODS In this double-blind clinical trial, 100 patients who underwent liver transplant from deceased donors were randomly allocated into 2 groups. Patients in the remifentanil group received remifentanil infusion, and those in the fentanyl group received fentanyl infusion during maintenance of anesthesia. Serum aminotransferase levels, prothrombin time (international normalized ratio), partial thrombin time, arterial blood gas levels, and renal function tests were evaluated over 7 days posttransplant. Intensive care unit stay and hospitalization were also recorded. RESULTS The median peak alanine aminotransferase level during 7 days after transplant was 2100 U/L (interquartile range, 1230-3220) in the remifentanil group and 3815 U/L (interquartile range, 2385-5675) in the fentanyl group (P = .048). Metabolic acidosis, renal state, prothrombin time (international normalized ratio), and partial thrombin time were similar in both groups (P > .05). Durations of stay in the intensive care unit and hospital were not significantly different between the 2 groups (P = .75 and P = .23, respectively). Overall, the clinical outcomes were similar in the remifentanil and fentanyl groups (P > .05). CONCLUSIONS We found that remifentanil and fentanyl were not different with regard to their preconditioning effects and graft protection in orthotopic liver transplant recipients.
Collapse
Affiliation(s)
- Sanaz Jowkar
- From the Department of Anesthesia, Nemazee Hospital, Shiraz, Fars, Iran
| | | | | | | | | |
Collapse
|
9
|
Kim D, Choi JW, Han S, Gwak MS, Kim GS, Jeon SY, Ryu S, Hahm TS, Ko JS. Ischemic Preconditioning Protects Against Hepatic Ischemia-Reperfusion Injury Under Propofol Anesthesia in Rats. Transplant Proc 2020; 52:2964-2969. [PMID: 32586662 DOI: 10.1016/j.transproceed.2020.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/19/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Propofol is widely used in general anesthesia, and it has been reported to protect various organs against ischemia-reperfusion injury (IRI), including liver. To evaluate the hepatoprotective effects of ischemic preconditioning (IP) under propofol anesthesia, we investigated the possible underlying mechanisms in rats. METHODS Male Sprague-Dawley rats were randomly assigned to 3 groups: sham group (n = 5), non-IP group (n = 9; 45 minutes of hepatic ischemia followed by 2 hours of reperfusion), and IP group (n = 9; IP applied as 10 minutes of hepatic ischemia followed by 15 minutes of reperfusion before 45 minutes of ischemia). Anesthesia was maintained with intravenous (IV) infusion of propofol (800 μg/kg/min). Liver enzymes, histopathological changes, and cytokine expression were examined. RESULTS The IP group showed significantly lower liver enzyme levels (aspartate aminotransferase, P = .045; alanine aminotransferase, P = .006) and reduced the histologic grades of hepatic injury 2 hours after reperfusion (P = .004) compared to the non-IP group. Lactate dehydrogenase activity (P < .001) and interleukin-6 mRNA levels were significantly higher in the non-IP group than in the sham and IP groups (P = .002, both groups). CONCLUSIONS Our results demonstrate that IP under propofol anesthesia significantly attenuated hepatic IRI. The principal mechanism of the protective effects appeared to involve reduced expression of the IL-6 pro-inflammatory cytokine and subsequent reduction of the degree of necrosis.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Choi
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangbin Han
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi Sook Gwak
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gaab Soo Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Yeon Jeon
- Department of Laboratory Animal Research, Samsung Biomedical Research Institute, Seoul, Korea
| | - Sun Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Soo Hahm
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Justin Sangwook Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Alak G, Ucar A, Yeltekin AÇ, Çomaklı S, Parlak V, Taş IH, Özkaraca M, Topal A, Kirman EM, Bolat İ, Atamanalp M, Türkez H. Neuroprotective effects of dietary borax in the brain tissue of rainbow trout (Oncorhynchus mykiss) exposed to copper-induced toxicity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1409-1420. [PMID: 29959587 DOI: 10.1007/s10695-018-0530-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
We aimed to investigate the modulating effects of dietary borax on the pathways in rainbow trout brain exposed to copper. For this aim, a comprehensive assessment was performed including biochemical (acetylcholinesterase (AChE), malondialdehyde (MDA), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine (8-OHdG), and caspase-3 levels) and transcriptional parameters (heat shock protein 70 (HSP70) and cytochromes P450 (CYP1A), glutathione peroxidase (gpx), superoxide dismutase (sod), and catalase (cat)) parameters and immunohistochemically staining of 8-OHdG. Special fish feed diets were prepared for the trial. These diets contained different concentrations of borax (1.25, 2.5, and 5 mg/kg) and/or copper (500 and 1000 mg/kg) at the period of pre- and co-treatment strategies for 21 days. At the end of the treatment periods, brain tissue was sampled for each experimental group. As a result, the biochemical parameters were increased and AChE activity decreased in the copper and copper-combined groups in comparison with the control group and also with only borax applications (p < 0.05). We observed an increase or decrease in particular biochemical parameters for the borax group in every application and we established that borax had protective effect against copper toxicity by decreasing and/or increasing the relevant biochemical parameters in brain tissue of fish. The biochemical results of borax and its combinations corresponded to the observations of gene expression data, which similarly concluded that HSP70 and CYP1A genes were strongly induced by copper (p < 0.05). In addition, the expression levels of the sod, cat, and gpx genes in the fish brains exposed to borax and the borax combination groups were significantly higher than the only copper-treated groups. In conclusion, borax supplementation provided significant protection against copper-induced neurotoxicity in trout.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25240, Erzurum, Turkey.
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25240, Erzurum, Turkey
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080, Van, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25240, Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25240, Erzurum, Turkey
| | | | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25240, Erzurum, Turkey
| | - Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25240, Erzurum, Turkey
| | - Esra Manavoğlu Kirman
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25240, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25240, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25240, Erzurum, Turkey
| | - Hasan Türkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, TR-25050, Erzurum, Turkey
| |
Collapse
|
11
|
Zhang Q, Ge Y, Li H, Bai G, Jiao Z, Kong X, Meng W, Wang H. Effect of hydrogen-rich saline on apoptosis induced by hepatic ischemia reperfusion upon laparoscopic hepatectomy in miniature pigs. Res Vet Sci 2018; 119:285-291. [PMID: 30077949 DOI: 10.1016/j.rvsc.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/15/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia reperfusion injury (HIRI) occurs commonly in liver surgery and liver transplantation. Hydrogen, a safe and effective antioxidant, exerts a protective effect against liver injury. In this study, we investigated the role of hydrogen-rich saline (HRS) in apoptosis in a miniature pig model of laparoscopic HIRI upon hepatectomy. Bama miniature pigs were randomly assigned to sham, I/R and HRS groups. The pigs received 10 mL/kg HRS by portal venous injection 10 min before reperfusion and at 1 d, 2 d, and 3 d after surgery. The results showed that HRS treatment significantly decreased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) activity and TUNEL-positive cells. Upon HRS treatment, the expression of P53 and Bax mRNA and protein by RT-qPCR and Western blot was markedly decreased, whereas the expression of bcl-2 mRNA and protein was significantly increased. Moreover, Caspase-3 and Caspase-9 activities were significantly decreased upon treatment with HRS. In conclusion, the results indicate that HRS could alleviate liver injury and improve liver function via inhibiting apoptosis after laparoscopic HIRI and hepatectomy injury in miniature pigs.
Collapse
Affiliation(s)
- Qianzhen Zhang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yansong Ge
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ge Bai
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Jiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiangdong Kong
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weijing Meng
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongbin Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Jeong JS, Kim D, Kim KY, Ryu S, Han S, Shin BS, Kim GS, Gwak MS, Ko JS. Ischemic Preconditioning Produces Comparable Protection Against Hepatic Ischemia/Reperfusion Injury Under Isoflurane and Sevoflurane Anesthesia in Rats. Transplant Proc 2018; 49:2188-2193. [PMID: 29149981 DOI: 10.1016/j.transproceed.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/30/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Various volatile anesthetics and ischemic preconditioning (IP) have been demonstrated to exert protective effect against ischemia/reperfusion (I/R) injury in liver. We aimed to determine whether application of IP under isoflurane and sevoflurane anesthesia would confer protection against hepatic I/R injury in rats. METHODS Thirty-eight rats weighing 270 to 300 grams were randomly divided into 2 groups: isoflurane (1.5%) and sevoflurane (2.5%) anesthesia groups. Each group was subdivided into sham (n = 3), non-IP (n = 8; 45 minutes of hepatic ischemia), and IP (n = 8, IP consisting of 10-minute ischemia plus 15-minute reperfusion before prolonged ischemia) groups. The degree of hepatic injury and expressions of B-cell lymphoma 2 (Bcl-2) and caspase 3 were compared at 2 hours after reperfusion. RESULTS Hepatic ischemia induced significant degree of I/R injuries in both isoflurane and sevoflurane non-IP groups. In both anesthetic groups, introduction of IP dramatically attenuated I/R injuries as marked by significantly lower aspartate aminotransferase and aminotransferase levels and better histologic grades compared with corresponding non-IP groups. There were 2.3- and 1.7-fold increases in Bcl-2 mRNA levels in isoflurane and sevoflurane IP groups, respectively, compared with corresponding non-IP groups (both P < .05). Caspase 3 level was significantly high in the isoflurane non-IP group compared with the sham group; however, there were no differences among the sevoflurane groups. CONCLUSIONS The degree of hepatic I/R injury was significantly high in both isoflurane and sevoflurane groups in rats. However, application of IP significantly protected against I/R injury in both volatile anesthetic groups to similar degrees, and upregulation of Bcl-2 might be an important mechanism.
Collapse
Affiliation(s)
- J S Jeong
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - D Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K Y Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S Han
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - B S Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - G S Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - M S Gwak
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J S Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Wang J, Yan B. A polysaccharide (PNPA) from Pleurotus nebrodensis ameliorates hepatic ischemic/reperfusion (I/R) injury in rats. Int J Biol Macromol 2017; 105:447-451. [PMID: 28709897 DOI: 10.1016/j.ijbiomac.2017.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/02/2017] [Accepted: 07/09/2017] [Indexed: 11/17/2022]
Abstract
The effects of a polysaccharide (PNPA) from the fruiting bodies of Pleurotus nebrodensis on hepatic ischemia/reperfusion (I/R) injury in rats were explored. Severe liver injury was shown in rats following I/R with high content of serum AST and ALT, as evidenced by histological examination, whereas less damage was noted after PNPA treatment compared to rats in the I/R group. Also, pre-treatment with PNPA (400mg/kg) could reduce the level of MDA in liver tissue and increase the activity of ROS scavengers (T-AOC, SOD, CAT, GSH-PX), Nitric oxide synthase (T-NOS and iNOS), and GSH. Moreover, PNPA could still reduce the production of I/R-induced inflammatory cytokines (IL-1β, IL-6, TNF-α and NF-κB) in liver, along with MPO. I/R-induced high level of pro-apoptotic indicators (cytochrome c, Bax, and caspase 3) and low level of anti-apoptotic indicators Bcl-2 were reversed after PNPA pretreatment. Therefore, PNPA might be a promising candidate for preventing hepatic I/R injury.
Collapse
Affiliation(s)
- Jun Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Bingju Yan
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
14
|
Go KL, Lee S, Behrns KE, Kim JS. Mitochondrial Damage and Mitophagy in Ischemia/Reperfusion-Induced Liver Injury. MOLECULES, SYSTEMS AND SIGNALING IN LIVER INJURY 2017:183-219. [DOI: 10.1007/978-3-319-58106-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Mitochondrial Dysfunction and Autophagy in Hepatic Ischemia/Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:183469. [PMID: 26770970 PMCID: PMC4684839 DOI: 10.1155/2015/183469] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/26/2022]
Abstract
Ischemia/reperfusion (I/R) injury remains a major complication of liver resection, transplantation, and hemorrhagic shock. Although the mechanisms that contribute to hepatic I/R are complex and diverse involving the interaction of cell injury in hepatocytes, immune cells, and endothelium, mitochondrial dysfunction is a cardinal event culminating in hepatic reperfusion injury. Mitochondrial autophagy, so-called mitophagy, is a key cellular process that regulates mitochondrial homeostasis and eliminates damaged mitochondria in a timely manner. Growing evidence accumulates that I/R injury is attributed to defective mitophagy. This review aims to summarize the current understanding of autophagy and its role in hepatic I/R injury and highlight the various therapeutic approaches that have been studied to ameliorate injury.
Collapse
|
16
|
Dalal AR. Split liver transplantation: What’s unique? World J Transplant 2015; 5:89-94. [PMID: 26421261 PMCID: PMC4580931 DOI: 10.5500/wjt.v5.i3.89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/26/2014] [Accepted: 06/19/2015] [Indexed: 02/05/2023] Open
Abstract
The intraoperative management of split liver transplantation (SLT) has some unique features as compared to routine whole liver transplantations. Only the liver has this special ability to regenerate that confers benefits in survival and quality of life for two instead of one by splitting livers. Primary graft dysfunction may result from small for size syndrome. Graft weight to recipient body weight ratio is significant for both trisegmental and hemiliver grafts. Intraoperative surgical techniques aim to reduce portal hyperperfusion and decrease venous portal pressure. Ischemic preconditioning can be instituted to protect against ischemic reperfusion injury which impacts graft regeneration. Advancement of the technique of SLT is essential as use of split cadaveric grafts expands the donor pool and potentially has an excellent future.
Collapse
|
17
|
Vitamin D ameliorates hepatic ischemic/reperfusion injury in rats. J Physiol Biochem 2014; 70:659-66. [PMID: 24752458 DOI: 10.1007/s13105-014-0335-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 04/02/2014] [Indexed: 02/08/2023]
Abstract
Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70%) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.
Collapse
|
18
|
Su MW, Chang SS, Chen CH, Huang CC, Chang SW, Tsai YC, Lam CF. Preconditioning renoprotective effect of isoflurane in a rat model of virtual renal transplant. J Surg Res 2014; 189:135-42. [PMID: 24674838 DOI: 10.1016/j.jss.2014.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The development of warm-cold ischemia-reperfusion (IR) injury of the kidney grafts is inevitable during renal transplantation. However, there is currently no definite renoprotective strategy available in the protection of the graft tissue. In the present study, we compared the renal protection of preconditioning isoflurane with N-acetylcysteine (NAC) in a novel rat model of warm-cold renal IR injury. MATERIALS AND METHODS Adult Sprague-Dawley rats were randomly assigned to receive inhaled isoflurane (1.5% for 2 h), NAC (1 g/kg, intra-arterial injection) or placebo before the induction of brief warm ischemia (10 min) followed by cold ischemia (45 min) periods. Plasma levels of creatinine and tissue inflammatory reaction in the kidney were analyzed 72 h after reperfusion. RESULTS Elevated plasma level of creatinine and urea indicated the development of acute renal injury secondary to IR injury. The creatinine levels were reduced in animals pretreated with inhaled isoflurane and NAC, and the level was more significantly decreased in the isoflurane-treated group. Preconditioning with volatile isoflurane also significantly suppressed the tissue myeloperoxidase activity and expression of the inducible nitric oxide synthase. Immunostaining confirmed that myeloperoxidase expression was most significantly attenuated in the glomerulus and peritubular capillaries of rats pre-exposed to isoflurane. CONCLUSIONS We present the first study demonstrating that the administration of volatile isoflurane before induction of experimental warm-cold renal IR injury provides preconditioning renoprotective effect, which is superior to the treatment with NAC. The beneficial renoprotective effect of isoflurane is most likely mediated by attenuation of proinflammatory reaction in the injured kidney.
Collapse
Affiliation(s)
- Min-Wen Su
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shen-Shin Chang
- Department of Surgery, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chung-Hao Chen
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chien-Chi Huang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Wei Chang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Yu-Chuan Tsai
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan; Department of Anesthesiology, Buddhist Tzu-Chi General Hospital and Tzu-Chi University School of Medicine, Hualien, Taiwan.
| |
Collapse
|
19
|
Zhao XC, Zhang LM, Qiang-Li, Tong DY, Fan LC, An P, Wu XY, Chen WM, Zhao P, Wang J. Isoflurane post-conditioning protects primary cultures of cortical neurons against oxygen and glucose deprivation injury via upregulation of Slit2/Robo1. Brain Res 2013; 1537:283-9. [PMID: 23994690 PMCID: PMC3820100 DOI: 10.1016/j.brainres.2013.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
Abstract
Different mechanisms have been suggested to contribute to isoflurane-mediated neuroprotection. Previous studies have suggested that the protein Slit can abrogate neuronal death in mixed neuronal-glial cultures exposed to oxygen-glucose deprivation (OGD) and reperfusion (OGD/R). We hypothesized that isoflurane increases the expression of Slit and its receptor Robo when cortical neurons are exposed to OGD/R. To test this hypothesis, we exposed primary cortical neurons to OGD for 90 min and reperfusion for 24h and investigated how isoflurane post-conditioning affected cell survival and expression of Slit2 and receptors Robo1 and Robo4. Cell survival increased after administration of isoflurane, as assessed by the lactate dehydrogenase assay, trypan blue analysis, and propidium iodide staining. Western blot analysis showed that cleaved caspase-3 was increased after OGD/R(P<0.01) but reduced by isoflurane post-conditioning. Real-time PCR and Western blot analysis showed that the expression levels of Slit2 and Robo1, but not Robo4, were increased after OGD/R (P<0.5) and increased even further by isoflurane post-conditioning (P<0.01). Our results suggest that isoflurane post-conditioning markedly attenuates apoptosis and necrosis of cortical neurons exposed to OGD/R possibly in part via elevation of Slit2 and Robo1 expression. These findings provide a novel explanation for the pleiotropic effects of isoflurane that could benefit the central nervous system.
Collapse
Affiliation(s)
- Xiao-Chun Zhao
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Li-Min Zhang
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Qiang-Li
- Department of Neurology, The Ninth People’s Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, China
| | - Dong-Yi Tong
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Long-Chang Fan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping An
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Xiu-Ying Wu
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Wei-Min Chen
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|