1
|
Lee WS, Lee SJ, Lee HJ, Yang H, Go EJ, Gansukh E, Song KH, Xiang X, Park DG, Alain T, Chon HJ, Kim C. Oral reovirus reshapes the gut microbiome and enhances antitumor immunity in colon cancer. Nat Commun 2024; 15:9092. [PMID: 39438458 PMCID: PMC11496807 DOI: 10.1038/s41467-024-53347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
The route of oncolytic virotherapy is pivotal for immunotherapeutic efficacy in advanced cancers. In this preclinical study, an oncolytic reovirus (RC402) is orally administered to induce antitumor immunity. Oral reovirus treatment shows no gross toxicities and effectively suppresses multifocal tumor lesions. Orally administered reovirus interacts with the host immune system in the Peyer's patch of the terminal ileum, increases IgA+ antibody-secreting cells in the lamina propria through MAdCAM-1+ blood vessels, and reshapes the gut microbiome. Oral reovirus promotes antigen presentation, type I/II interferons, and T cell activation within distant tumors, but does not reach or directly infect tumor cells beyond the gastrointestinal tract. In contrast to intratumoral reovirus injection, the presence of the gut microbiome, Batf3+ dendritic cells, type I interferons, and CD8+ T cells are indispensable for orally administered reovirus-induced antitumor immunity. Oral reovirus treatment is most effective when combined with αPD-1(L1) and/or αCTLA-4, leading to complete colon tumor regression and protective immune memory. Collectively, oral reovirus virotherapy is a feasible and effective immunotherapeutic strategy in preclinical studies.
Collapse
Affiliation(s)
- Won Suk Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seung Joon Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hye Jin Lee
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hannah Yang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Eun-Jin Go
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | | | | | - Xiao Xiang
- Department of Biochemistry, Microbiology, and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dong Guk Park
- Virocure Inc., Seoul, Republic of Korea
- Department of Surgery, School of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tommy Alain
- Department of Biochemistry, Microbiology, and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hong Jae Chon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
| | - Chan Kim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
3
|
Zaher KA, Alrahimi JS, Basingab FS, Aldahlawi AM. Newcastle Disease Virus Virotherapy: Unveiling Oncolytic Efficacy and Immunomodulation. Biomedicines 2024; 12:1497. [PMID: 39062070 PMCID: PMC11274839 DOI: 10.3390/biomedicines12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
In virotherapy, cancer cells are eradicated via viral infection, replication, and dissemination (oncolysis). BACKGROUND This study aims to evaluate the oncolytic potential of Newcastle disease virus (NDV) against colon cancer and explore the immune response associated with its therapeutic effects. METHODS NDV was tested for its oncolytic potential in colon cancer cell lines using MTT assays and apoptosis assessments. Tumor-induced mice were treated with NDV, tumor cell lysate (TCL), or a combination of both. After the euthanasia of murine subjects, an assessment of oncolytic efficacy was performed through flow cytometry analysis of murine blood and tumor tissue, targeting CD83, CD86, CD8, and CD4. An ELISA was also performed to examine interferon-gamma levels, interleukin-4 levels, interleukin-12 levels, and interleukin-10 levels in serum and spleen homogenate. RESULTS Cell viability was low in HCT116 and HT-29, indicating a cytotoxic effect in the MTT assay. NDV+TCL recorded the highest rate of cell death (56.72%). NDV+TCL had accelerated cell death after 48 h, reaching 58.4%. The flow cytometry analysis of the blood and tumor of mice with induced tumor treated with combined treatment revealed elevated levels of CD83, CD86, CD8, and CD4 (76.3, 66.9, 83.7, and 14.4%, respectively). The ELISA levels of IFN-γ, IL-4, and IL-12 in serum and the spleen homogenate were elevated (107.6 ± 9.25 pg/mL). In contrast, the expression of IL-10 was significantly reduced (1 ± 0.79).
Collapse
Affiliation(s)
- Kawther A. Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan S. Alrahimi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah S. Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alia M. Aldahlawi
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Sotiriadis S, Beil J, Berchtold S, Smirnow I, Schenk A, Lauer UM. Multimodal Therapy Approaches for NUT Carcinoma by Dual Combination of Oncolytic Virus Talimogene Laherparepvec with Small Molecule Inhibitors. Viruses 2024; 16:775. [PMID: 38793657 PMCID: PMC11125747 DOI: 10.3390/v16050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
NUT (nuclear-protein-in-testis) carcinoma (NC) is a highly aggressive tumor disease. Given that current treatment regimens offer a median survival of six months only, it is likely that this type of tumor requires an extended multimodal treatment approach to improve prognosis. In an earlier case report, we could show that an oncolytic herpes simplex virus (T-VEC) is functional in NC patients. To identify further combination partners for T-VEC, we have investigated the anti-tumoral effects of T-VEC and five different small molecule inhibitors (SMIs) alone and in combination in human NC cell lines. Dual combinations were found to result in higher rates of tumor cell reductions when compared to the respective monotherapy as demonstrated by viability assays and real-time tumor cell growth monitoring. Interestingly, we found that the combination of T-VEC with SMIs resulted in both stronger and earlier reductions in the expression of c-Myc, a main driver of NC cell proliferation, when compared to T-VEC monotherapy. These results indicate the great potential of combinatorial therapies using oncolytic viruses and SMIs to control the highly aggressive behavior of NC cancers and probably will pave the way for innovative multimodal clinical studies in the near future.
Collapse
Affiliation(s)
- Stavros Sotiriadis
- Department of Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital, 72076 Tübingen, Germany; (S.S.)
| | - Julia Beil
- Department of Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital, 72076 Tübingen, Germany; (S.S.)
- German Cancer Consortium (DKTK), Partner Site Tübingen, a Partnership between DKFZ and University Hospital Tübingen, 72076 Tübingen, Germany
| | - Susanne Berchtold
- Department of Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital, 72076 Tübingen, Germany; (S.S.)
| | - Irina Smirnow
- Department of Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital, 72076 Tübingen, Germany; (S.S.)
| | - Andrea Schenk
- Department of Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital, 72076 Tübingen, Germany; (S.S.)
| | - Ulrich M. Lauer
- Department of Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital, 72076 Tübingen, Germany; (S.S.)
- German Cancer Consortium (DKTK), Partner Site Tübingen, a Partnership between DKFZ and University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Xu MY, Zeng N, Liu CQ, Sun JX, An Y, Zhang SH, Xu JZ, Zhong XY, Ma SY, He HD, Hu J, Xia QD, Wang SG. Enhanced cellular therapy: revolutionizing adoptive cellular therapy. Exp Hematol Oncol 2024; 13:47. [PMID: 38664743 PMCID: PMC11046957 DOI: 10.1186/s40164-024-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.
Collapse
Affiliation(s)
- Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
7
|
Dash SR, Kundu A, Kundu CN. The role of viruses in cancer progression versus cancer treatment: A dual paradigm. Life Sci 2024; 341:122506. [PMID: 38373620 DOI: 10.1016/j.lfs.2024.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Most human malignancies are attributed to exposure to infectious organisms such as viruses. Certain infections that can induce cancer can evade the immune system, leading to persistent inflammation that facilitates uncontrolled cell growth. Moreover, these pathogens can increase the likelihood of oncogenic transformation, leading to cancer development. Despite significant advancements in medicine, oncological research continues to seek innovative treatment techniques in light of the constraints imposed by traditional therapeutic agents. Virus-based therapy is a novel treatment method that has garnered significant interest due to its broad range of applications. Virotherapy employs oncolytic viruses that are genetically modified to target tumor cells specifically, undergo replication inside them and destroy the malignant cells. Additionally, this therapeutic approach elicits an anticancer response by boosting the patient's immune system. In addition, viruses are commonly employed as targeted delivery vectors for the precise transportation of various genes, medicinal compounds and immune-stimulating substances. Furthermore, virotherapy offers more excellent anticancer activity in combination with established treatment modalities such as immune therapy, chemotherapy and radiation therapy. This review presents a concise overview of the roles played by infectious agents, such as viruses in cancer progression. In addition, we have thoroughly summarized the advancements in utilizing viruses for their oncolytic properties in conjunction with established cancer treatment modalities such as chemotherapy, radiation and immunotherapy.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Anushka Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
8
|
Chen C, Jung A, Yang A, Monroy I, Zhang Z, Chaurasiya S, Deshpande S, Priceman S, Fong Y, Park AK, Woo Y. Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers (Basel) 2023; 15:5661. [PMID: 38067366 PMCID: PMC10705752 DOI: 10.3390/cancers15235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Precision immune oncology capitalizes on identifying and targeting tumor-specific antigens to enhance anti-tumor immunity and improve the treatment outcomes of solid tumors. Gastric cancer (GC) is a molecularly heterogeneous disease where monoclonal antibodies against human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), and programmed cell death 1 (PD-1) combined with systemic chemotherapy have improved survival in patients with unresectable or metastatic GC. However, intratumoral molecular heterogeneity, variable molecular target expression, and loss of target expression have limited antibody use and the durability of response. Often immunogenically "cold" and diffusely spread throughout the peritoneum, GC peritoneal carcinomatosis (PC) is a particularly challenging, treatment-refractory entity for current systemic strategies. More adaptable immunotherapeutic approaches, such as oncolytic viruses (OVs) and chimeric antigen receptor (CAR) T cells, have emerged as promising GC and GCPC treatments that circumvent these challenges. In this study, we provide an up-to-date review of the pre-clinical and clinical efficacy of CAR T cell therapy for key primary antigen targets and provide a translational overview of the types, modifications, and mechanisms for OVs used against GC and GCPC. Finally, we present a novel, summary-based discussion on the potential synergistic interplay between OVs and CAR T cells to treat GCPC.
Collapse
Affiliation(s)
- Courtney Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Audrey Jung
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Annie Yang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Isabel Monroy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Supriya Deshpande
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Saul Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Anthony K. Park
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Chen X, Liu J, Li Y, Zeng Y, Wang F, Cheng Z, Duan H, Pan G, Yang S, Chen Y, Li Q, Shen X, Li Y, Qin Z, Chen J, Huang Y, Wang X, Lu Y, Shu M, Zhang Y, Wang G, Li K, Lin X, Xing F, Zhang H. IDH1 mutation impairs antiviral response and potentiates oncolytic virotherapy in glioma. Nat Commun 2023; 14:6781. [PMID: 37880243 PMCID: PMC10600173 DOI: 10.1038/s41467-023-42545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
IDH1 mutations frequently occur early in human glioma. While IDH1 mutation has been shown to promote gliomagenesis via DNA and histone methylation, little is known regarding its regulation in antiviral immunity. Here, we discover that IDH1 mutation inhibits virus-induced interferon (IFN) antiviral responses in glioma cells. Mechanistically, D2HG produced by mutant IDH1 enhances the binding of DNMT1 to IRF3/7 promoters such that IRF3/7 are downregulated, leading to impaired type I IFN response in glioma cells, which enhances the susceptibility of gliomas to viral infection. Furthermore, we identify DNMT1 as a potential biomarker predicting which IDH1mut gliomas are most likely to respond to oncolytic virus. Finally, both D2HG and ectopic mutant IDH1 can potentiate the replication and oncolytic efficacy of VSVΔ51 in female mouse models. These findings reveal a pivotal role for IDH1 mutation in regulating antiviral response and demonstrate that IDH1 mutation confers sensitivity to oncolytic virotherapy.
Collapse
Affiliation(s)
- Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jun Liu
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuqin Li
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuequan Zeng
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Zexiong Cheng
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong, China
| | - Guopeng Pan
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Shangqi Yang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Ministry of Education (MOE) & Ministry of Health (MOH) Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Qing Li
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Xi Shen
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Ying Li
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Zixi Qin
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Youwei Huang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yuli Lu
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
- Shantou Centre for Disease Control and Prevention, 515000, Shantou, Guangdong, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Ministry of Education (MOE) & Ministry of Health (MOH) Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yubo Zhang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Kai Li
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, Guangdong, China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Fan Xing
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China.
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Tur-Planells V, García-Sastre A, Cuadrado-Castano S, Nistal-Villan E. Engineering Non-Human RNA Viruses for Cancer Therapy. Vaccines (Basel) 2023; 11:1617. [PMID: 37897020 PMCID: PMC10611381 DOI: 10.3390/vaccines11101617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Alongside the development and progress in cancer immunotherapy, research in oncolytic viruses (OVs) continues advancing novel treatment strategies to the clinic. With almost 50 clinical trials carried out over the last decade, the opportunities for intervention using OVs are expanding beyond the old-fashioned concept of "lytic killers", with promising breakthrough therapeutic strategies focused on leveraging the immunostimulatory potential of different viral platforms. This review presents an overview of non-human-adapted RNA viruses engineered for cancer therapy. Moreover, we describe the diverse strategies employed to manipulate the genomes of these viruses to optimize their therapeutic capabilities. By focusing on different aspects of this particular group of viruses, we describe the insights into the promising advancements in the field of virotherapy and its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Vicent Tur-Planells
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute (IGI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Estanislao Nistal-Villan
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| |
Collapse
|
11
|
Yin L, Wan Z, Sun P, Shuai P, Liu Y. Time to abandon CAR-T monotherapy for solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188930. [PMID: 37286147 DOI: 10.1016/j.bbcan.2023.188930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
In recent decades, chimeric antigen receptor T (CAR-T) cell therapy has achieved dramatic success in patients with hematological malignancies. However, CAR-T cell therapy failed to effectively treat solid tumors as a monotherapy. By summarizing the challenges of CAR-T cell monotherapy for solid tumors and analyzing the underlying mechanisms of combinatorial strategies to counteract these hurdles, we found that complementary therapeutics are needed to improve the scant and transient responses of CAR-T cell monotherapy in solid tumors. Further data, especially data from multicenter clinical trials regarding efficacy, toxicity, and predictive biomarkers are required before the CAR-T combination therapy can be translated into clinical settings.
Collapse
Affiliation(s)
- Limei Yin
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhengwei Wan
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Sun
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
12
|
Duan S, Wang S, Qiao L, Yu X, Wang N, Chen L, Zhang X, Zhao X, Liu H, Wang T, Wu Y, Li N, Liu F. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206948. [PMID: 36879416 DOI: 10.1002/smll.202206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Indexed: 06/08/2023]
Abstract
With advances in cancer biology and an ever-deepening understanding of molecular virology, oncolytic virus (OV)-driven therapies have developed rapidly and become a promising alternative to traditional cancer therapies. In recent years, satisfactory results for oncolytic virus therapy (OVT) are achieved at both the cellular and organismal levels, and efforts are being increasingly directed toward clinical trials. Unfortunately, OVT remains ineffective in these trials, especially when performed using only a single OV reagent. In contrast, integrated approaches, such as using immunotherapy, chemotherapy, or radiotherapy, alongside OVT have demonstrated considerable efficacy. The challenges of OVT in clinical efficacy include the restricted scope of intratumoral injections and poor targeting of intravenous administration. Further optimization of OVT delivery is needed before OVs become a viable therapy for tumor treatment. In this review, the development process and antitumor mechanisms of OVs are introduced. The advances in OVT delivery routes to provide perspectives and directions for the improvement of OVT delivery are highlighted. This review also discusses the advantages and limitations of OVT monotherapy and combination therapy through the lens of recent clinical trials and aims to chart a course toward safer and more effective OVT strategies.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Qiao
- Colorectal and Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Wu
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
13
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Oncolytic viruses (OVs) exert their antitumor effect through selective killing of cancer cells and induction of host anti-tumor immunity. This review aims to summarize the recent and current trials with OVs for the treatment of lung cancer. RECENT FINDINGS Several OVs have been developed for the treatment of lung cancer including adenovirus, coxsackievirus B3, reovirus, and vaccinia virus and trials have demonstrated a safe toxicity profile. Early-phase trials in lung cancer with OVs have reported antiviral immune responses and evidence of clinical benefit. However, clinical efficacy of OVs in lung cancer either as monotherapy or in combination with chemotherapy has not been confirmed in larger phase II or III trials. Development of OVs in lung cancer has been limited by difficulty in administering OVs in the tumor directly as well as achieving adequate viral load at all tumor sites with systemically administered OVs. Developing novel combinations with OVs, especially checkpoint inhibitors and other immunotherapeutics, may be a strategy to address the limited success seen thus far. Integrating appropriate biomarker studies and meaningful endpoints in future clinical trials will be imperative. Using novel viral delivery systems in addition to increasing tumor specificity through improved genetic modifications in the OVs are other strategies to improve efficacy.
Collapse
Affiliation(s)
- Jyoti Malhotra
- Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Pavilion Building- Medical Oncology, 1500 E. Duarte Road, Duarte, CA, 91020, USA.
| | - Edward S Kim
- Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Pavilion Building- Medical Oncology, 1500 E. Duarte Road, Duarte, CA, 91020, USA
| |
Collapse
|
15
|
Zhang P, Han X, Tan W, Chen D, Sun Q. RIG-I-mediated innate immune signaling in tumors reduces the therapeutic effect of oncolytic vesicular stomatitis virus. Thorac Cancer 2022; 14:246-253. [PMID: 36447430 PMCID: PMC9870728 DOI: 10.1111/1759-7714.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Oncolytic viral therapy is a promising method for tumor treatment. Currently, several oncolytic viruses (OVs) have been used as tumor therapy at different phases of research and clinical trials. OVs not only directly lyse tumor cells due to viral replication but also initiate host antitumor immune responses. Previous studies have primarily focused on how OVs activate adaptive immune responses in immune cells. However, the role of innate immune responses in tumors induced by OVs remains unclear. METHODS To determine the innate immune responses induced by vesicular stomatitis virus (VSV), the mutant VSVΔM51 strain was used for the infection and quantitative polymerase chain reaction (qPCR) was employed to measure the transcriptional levels of antiviral genes. The knockdown efficiency of RIG-I was examined by qPCR. Viral titers were measured by plaque assays. Tumor models were established by intradermally implanting RIG-I-knockdown and control LLC cells into the flank of wild type C57BL/6J mice. When the tumors reached approximately 50mm3 , they were infected with VSVΔM51 via intratumoral injections to examine its therapeutic effect. RESULTS Infection with VSVΔM51 triggered remarkable innate immune responses in several tumor cell lines through the cytoplasmic RIG-I sensing pathway. Moreover, we found that intratumoral injection of VSVΔM51 effectively reduced tumor growth in murine LCC lung cancer model. Importantly, VSVΔM51 -induced antitumor therapy was more effective in murine LLC tumor model established using Rig-I-knockdown cells compared with the tumor model established using control cells. CONCLUSION RIG-I-mediated innate immune signaling in tumor cells plays a negative role in regulating antitumor therapy with VSVΔM51 virus.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Life SciencesAnhui Agricultural UniversityHefeiChina,State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina,Institute of Stem Cells and RegenerationChinese Academy of SciencesBeijingChina
| | - Xinyu Han
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina,Institute of Stem Cells and RegenerationChinese Academy of SciencesBeijingChina
| | - Weiqi Tan
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina,Institute of Stem Cells and RegenerationChinese Academy of SciencesBeijingChina
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina,Institute of Stem Cells and RegenerationChinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Faria SS, Fernando AJ, de Lima VCC, Rossi AG, de Carvalho JMA, Magalhães KG. Induction of pyroptotic cell death as a potential tool for cancer treatment. J Inflamm (Lond) 2022; 19:19. [PMID: 36376979 PMCID: PMC9664674 DOI: 10.1186/s12950-022-00316-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex pathological disease and the existing strategies for introducing chemotherapeutic agents have restricted potential due to a lack of cancer cell targeting specificity, cytotoxicity, bioavailability, and induction of multi-drug resistance. As a prospective strategy in tackling cancer, regulating the inflammatory pyroptosis cell death pathway has been shown to successfully inhibit the proliferation and metastasis of various cancer cell types. Activation of inflammasomes such as the NLRP3 results in pyroptosis through cleavage of gasdermins, which forms pores in the cell membranes, inducing membrane breakage, cell rupture, and death. Furthermore, pyroptotic cells release pro-inflammatory cytokines such as IL-1β and IL-18 along with various DAMPs that prime an auxiliary anti-tumor immune response. Thus, regulation of pyroptosis in cancer cells is a way to enhance their immunogenicity. However, immune escape involving myeloid-derived suppressor cells has limited the efficacy of most pyroptosis-based immunotherapy strategies. In this review, we comprehensively summarize the cellular and molecular mechanisms involved in the inflammasome-mediated pyroptosis pathways in cancer cells, exploring how it could modulate the tumor microenvironment and be beneficial in anti-cancer treatments. We discuss various existing therapeutic strategies against cancer, including immunotherapy, oncolytic virus therapy, and nanoparticle-based therapies that could be guided to trigger and regulate pyroptosis cell death in cancer cells, and reduce tumor growth and spread. These pyroptosis-based cancer therapies may open up fresh avenues for targeted cancer therapy approaches in the future and their translation into the clinic.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, DF Brasilia, Brazil
| | - Anuruddika Jayawanthi Fernando
- Edinburgh BioQuarter, University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research. Institute, University of Edinburgh, Edinburgh, UK
| | | | - Adriano Giorgio Rossi
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, DF Brasilia, Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, DF Brasilia, Brazil
| |
Collapse
|
17
|
Cheng K, Zhang H, Guo Q, Zhai P, Zhou Y, Yang W, Wang Y, Lu Y, Shen Z, Wu H. Emerging trends and research foci of oncolytic virotherapy for central nervous system tumors: A bibliometric study. Front Immunol 2022; 13:975695. [PMID: 36148235 PMCID: PMC9486718 DOI: 10.3389/fimmu.2022.975695] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundCentral nervous system tumor (CNST) is one of the most complicated and lethal forms of human tumors with very limited treatment options. In recent years, growing evidence indicates that oncolytic virotherapy (OVT) has emerged as a promising therapeutic strategy for CNSTs. And a considerable amount of literature on OVT-CNSTs has been published. However, there are still no studies summarizing the global research trends and hotspots of this field through a bibliometric approach. To fulfill this knowledge gap, bibliometric analysis was conducted based on all publications relating to OVT-CNSTs since 2000s.MethodsWe searched the Web of Science Core Collection for all relevant studies published between 2000 and 2022. Four different tools (online analysis platform, R-bibliometrix, CiteSpace and VOSviewer) were used to perform bibliometric analysis and network visualization, including annual publication output, active journals, contribution of countries, institutions, and authors, references, as well as keywords.ResultsA total of 473 articles and reviews were included. The annual number of publications on OVT-CNSTs showed a significant increasing trend. Molecular Therapy and Cancer Research were the most active and co-cited journals, respectively. In terms of contributions, there is no doubt that the United States occupied a leading position with the most publications (n=307, 64.9%) and the highest H-index (57). The institution and author that contributed the largest number of publications were Ohio State University and Chiocca EA, respectively. As can be seen from citation analysis, the current studies mainly focused on preclinical and phase I/II clinical results of various oncolytic virus for CNSTs treatment. Keywords co-occurrence and burst analysis revealed that the following research topics including immunotherapy, T-cells, tumor microenvironment, vaccine, blood-brain-barrier, checkpoint inhibitors, macrophage, stem cell, and recurrent glioblastoma have been research frontiers of this field and also have great potential to continue to be research hotspots in the future.ConclusionThere has been increasing attention on oncolytic viruses for use as CNSTs therapeutics. Oncolytic immunotherapy is a topic of great concern in this field. This bibliometric study provides a comprehensive analysis of the knowledge base, research hotspots, development perspective in the field of OVT-CNSTs, which could become an essential reference for scholars in this area.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Qiang Guo
- Department of Orhopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhai
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of NeuroSpine Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zhou
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Weiguang Yang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yanqiu Lu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| |
Collapse
|
18
|
Guo D, Xiao J, Liang J, Fan J, Hou P, Li X, Zhang H, Li K, Bu L, Li P, He M, Zhong Y, Guo L, Jia P, Xiao Q, Wu J, Peng H, Li C, Xing F. CDK4/6 inhibition enhances oncolytic virus efficacy by potentiating tumor-selective cell killing and T cell activation in refractory glioblastoma. Cancer Res 2022; 82:3359-3374. [DOI: 10.1158/0008-5472.can-21-3656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive human cancers. Although oncolytic virus (OV) therapy has been proposed as a potential approach to treat GBM, it frequently fails because GBM cells are usually nonpermissive to OV. Here, we describe a dual-step drug screen for identifying chemical enhancers of oncolytic virus in GBM. From a high-throughput screen of 1416 FDA-approved drugs, an inhibitor of CDK4/6 was identified as the top enhancer, selectively increasing potency of two OV strains, VSVΔ51 and Zika virus. Mechanistically, CDK4/6 inhibition promoted autophagic degradation of MAVS, resulting in impaired antiviral responses and enhanced tumor-selective replication of VSVΔ51 in vitro and in vivo. CDK4/6 inhibition cooperated with VSVΔ51 to induce severe DNA damage stress and amplify oncolysis. In GBM xenograft models, combined treatment with CDK4/6 inhibitor and VSVΔ51 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice. Further investigation revealed that CDK4/6 inhibitor and VSVΔ51 synergistically induced immunogenic cell death and boosted anti-tumor immunity. Together, this study features a promising approach of treating aggressive GBM through the combination of CDK4/6 inhibitor with OV.
Collapse
Affiliation(s)
- Deyin Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junjie Fan
- Sun Yat-sen University, Guangzhou, China
| | - Panpan Hou
- Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Li
- Guangzhou Medical University, Guangzhou, United States
| | | | - Kai Li
- Sun Yat-sen University, China
| | - Lang Bu
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Ping Li
- Sun Yat-sen University, Guangzhou, China
| | - Miao He
- Sun Yat-sen University, Guangzhou, China
| | | | - Liping Guo
- Sun Yat-sen University, Guangzhou, China
| | | | | | - Junyu Wu
- Sun Yat-sen University, Guangzhou, China
| | - Hong Peng
- Sun Yat-sen University, Guangzhou, China
| | - Chunmei Li
- Sun Yat-sen University, Guangzhou, China
| | - Fan Xing
- Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Dependency of EGFR activation in vanadium-based sensitization to oncolytic virotherapy. Mol Ther Oncolytics 2022; 25:146-159. [PMID: 35572196 PMCID: PMC9065483 DOI: 10.1016/j.omto.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy is a clinically validated approach to treat cancers such as melanoma; however, tumor resistance to virus makes its efficacy variable. Compounds such as sodium orthovanadate (vanadate) can overcome viral resistance and synergize with RNA-based oncolytic viruses. In this study, we explored the basis of vanadate mode of action and identified key cellular components in vanadate’s oncolytic virus-enhancing mechanism using a high-throughput kinase inhibitor screen. We found that several kinase inhibitors affecting signaling downstream of the epidermal growth factor receptor (EGFR) pathway abrogated the oncolytic virus-enhancing effects of vanadate. EGFR pathway inhibitors such as gefitinib negated vanadate-associated changes in the phosphorylation and localization of STAT1/2 as well as NF-κB signaling. Moreover, gefitinib treatment could abrogate the viral sensitizing response of vanadium compounds in vivo. Together, we demonstrate that EGFR signaling plays an integral role in vanadium viral sensitization and that pharmacological EGFR blockade can counteract vanadium/oncolytic virus combination therapy.
Collapse
|
20
|
Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29:647-660. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an encouraging and fast-growing platform used for the treatment of various types of tumors in human body. Despite the recent success of CAR T-cell therapy in hematologic malignancies, especially in B-cell lymphoma and acute lymphoblastic leukemia, the application of this treatment approach in solid tumors faced several obstacles resulted from the heterogeneous expression of antigens as well as the induction of immunosuppressive tumor microenvironment. Oncolytic virotherapy (OV) is a new cancer treatment modality by the use of competent or genetically engineered viruses to replicate in tumor cells selectively. OVs represent potential candidates to synergize the current setbacks of CAR T-cell application in solid tumors and then and overcome them. As well, the application of OVs gives researches the ability to engineer the virus with payloads in the way that it selectively deliver a specific therapeutic agents in tumor milieu to reinforce the cytotoxic activity of CAR T cells. Herein, we made a comprehensive review on the outcomes resulted from the combination of CAR T-cell immunotherapy and oncolytic virotherapy for the treatment of solid cancers. In the current study, we also provided brief details on some challenges that remained in this field and attempted to shed a little light on the future perspectives.
Collapse
|
21
|
Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int 2022; 22:168. [PMID: 35488303 PMCID: PMC9052538 DOI: 10.1186/s12935-022-02585-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising and rapidly expanding therapeutic option for a wide range of human malignancies. Despite the ongoing progress of CAR T-cell therapy in hematologic malignancies, the application of this therapeutic strategy in solid tumors has encountered several challenges due to antigen heterogeneity, suboptimal CAR T-cell trafficking, and the immunosuppressive features of the tumor microenvironment (TME). Oncolytic virotherapy is a novel cancer therapy that employs competent or genetically modified oncolytic viruses (OVs) to preferentially proliferate in tumor cells. OVs in combination with CAR T-cells are promising candidates for overcoming the current drawbacks of CAR T-cell application in tumors through triggering immunogenic cell death (ICD) in cancer cells. ICD is a type of cellular death in which danger-associated molecular patterns (DAMPs) and tumor-specific antigens are released, leading to the stimulation of potent anti-cancer immunity. In the present review, we discuss the biological causes of ICD, different types of ICD, and the synergistic combination of OVs and CAR T-cells to reach potent tumor-specific immunity.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia V Shirokova
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Science, Cihan University of Sulaimaniya, Suleimanyah, Kurdistan region, Iraq.,College of. Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Talar Ahmad Merza Mohamad
- Department of Pharmacology and Toxicology, Clinical Pharmacy, Hawler Medical University, College of Pharmacy, Kurdistan Region-Erbil, Iraq
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Firoz A, Ali HM, Rehman S, Rather IA. Gastric Cancer and Viruses: A Fine Line between Friend or Foe. Vaccines (Basel) 2022; 10:vaccines10040600. [PMID: 35455349 PMCID: PMC9025827 DOI: 10.3390/vaccines10040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer (GC) is a significant health concern worldwide, with a GLOBOCAN estimate of 1.08 million novel cases in 2020. It is the leading cause of disability-adjusted life years lost to cancer, with the fourth most common cancer in males and the fifth most common cancer in females. Strategies are pursued across the globe to prevent gastric cancer progression as a significant fraction of gastric cancers have been linked to various pathogenic (bacterial and viral) infections. Early diagnosis (in Asian countries), and non-invasive and surgical treatments have helped manage this disease with 5-year survival for stage IA and IB tumors ranging between 60% and 80%. However, the most prevalent aggressive stage III gastric tumors undergoing surgery have a lower 5-year survival rate between 18% and 50%. These figures point to a need for more efficient diagnostic and treatment strategies, for which the oncolytic viruses (OVs) appear to have some promise. OVs form a new therapeutic agent class that induces anti-tumor immune responses by selectively killing tumor cells and inducing systemic anti-tumor immunity. On the contrary, several oncogenic viruses have been shown to play significant roles in malignancy progression in the case of gastric cancer. Therefore, this review evaluates the current state of research and advances in understanding the dual role of viruses in gastric cancer.
Collapse
Affiliation(s)
- Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia
- Correspondence: (S.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Correspondence: (S.R.); (I.A.R.)
| |
Collapse
|
23
|
Wedge ME, Jennings VA, Crupi MJF, Poutou J, Jamieson T, Pelin A, Pugliese G, de Souza CT, Petryk J, Laight BJ, Boileau M, Taha Z, Alluqmani N, McKay HE, Pikor L, Khan ST, Azad T, Rezaei R, Austin B, He X, Mansfield D, Rose E, Brown EEF, Crawford N, Alkayyal A, Surendran A, Singaravelu R, Roy DG, Migneco G, McSweeney B, Cottee ML, Jacobus EJ, Keller BA, Yamaguchi TN, Boutros PC, Geoffrion M, Rayner KJ, Chatterjee A, Auer RC, Diallo JS, Gibbings D, tenOever BR, Melcher A, Bell JC, Ilkow CS. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat Commun 2022; 13:1898. [PMID: 35393414 PMCID: PMC8990073 DOI: 10.1038/s41467-022-29526-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or “cancer-killing” viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy. RNA-based viruses can be engineered to express artificial microRNAs (amiRNAs). Here, the authors identify a candidate amiRNA that confers a replicative advantage to oncolytic viruses, enhancing their anticancer potency, and show that intercellular transfer of extracellular vesicles carrying the amiRNA promotes bystander killing of uninfected cancer cells.
Collapse
Affiliation(s)
- Marie-Eve Wedge
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Victoria A Jennings
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Institute of Cancer Research, London, UK.,Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Joanna Poutou
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adrian Pelin
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Giuseppe Pugliese
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Julia Petryk
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Brian J Laight
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Meaghan Boileau
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nouf Alluqmani
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hayley E McKay
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Larissa Pikor
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Sarwat Tahsin Khan
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Taha Azad
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Bradley Austin
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Xiaohong He
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Elaine Rose
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily E F Brown
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Natalie Crawford
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Almohanad Alkayyal
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abera Surendran
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominic G Roy
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gemma Migneco
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Benjamin McSweeney
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mary Lynn Cottee
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Egon J Jacobus
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Oncology, University of Oxford, Oxford, UK
| | - Brian A Keller
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Takafumi N Yamaguchi
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.,Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Avijit Chatterjee
- The Ottawa Hospital, Division of Gastroenterology, Ottawa, Ontario, Canada
| | - Rebecca C Auer
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
24
|
Ernst M, Giubellino A. The Current State of Treatment and Future Directions in Cutaneous Malignant Melanoma. Biomedicines 2022; 10:822. [PMID: 35453572 PMCID: PMC9029866 DOI: 10.3390/biomedicines10040822] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant melanoma is the leading cause of death among cutaneous malignancies. While its incidence is increasing, the most recent cancer statistics show a small but clear decrease in mortality rate. This trend reflects the introduction of novel and more effective therapeutic regimens, including the two cornerstones of melanoma therapy: immunotherapies and targeted therapies. Immunotherapies exploit the highly immunogenic nature of melanoma by modulating and priming the patient's own immune system to attack the tumor. Treatments combining immunotherapies with targeted therapies, which disable the carcinogenic products of mutated cancer cells, have further increased treatment efficacy and durability. Toxicity and resistance, however, remain critical challenges to the field. The present review summarizes past treatments and novel therapeutic interventions and discusses current clinical trials and future directions.
Collapse
Affiliation(s)
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
25
|
Enhancement of CD70-specific CAR T treatment by IFN-γ released from oHSV-1-infected glioblastoma. Cancer Immunol Immunother 2022; 71:2433-2448. [PMID: 35249119 DOI: 10.1007/s00262-022-03172-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Even with progressive combination treatments, the prognosis of patients with glioblastoma (GBM) remains extremely poor. OV is one of the new promising therapeutic strategies to treat human GBM. OVs stimulate immune cells to release cytokines such as IFN-γ during oncolysis, further improve tumor microenvironment (TME) and enhance therapeutic efficacy. IFN-γ plays vital role in the apoptosis of tumor cells and recruitment of tumor-infiltrating T cells. We hypothesized that oncolytic herpes simplex virus-1 (oHSV-1) enhanced the antitumor efficacy of novel CD70-specific chimeric antigen receptor (CAR) T cells by T cell infiltration and IFN-γ release. In this study, oHSV-1 has the potential to stimulate IFN-γ secretion of tumor cells rather than T cell secretion and lead to an increase of T cell activity, as well as CD70-specific CAR T cells can specifically recognize and kill tumor cells in vitro. Specifically, combinational therapy with CD70-specific CAR T and oHSV-1 promotes tumor degradation by enhancing pro-inflammatory circumstances and reducing anti-inflammatory factors in vitro. More importantly, combined therapy generated potent antitumor efficacy, increased the proportion of T cells and natural killer cells in TME, and reduced regulatory T cells and transformed growth factor-β1 expression in orthotopic xenotransplanted animal model of GBM. In summary, we reveal that oHSV-1 enhance the therapeutic efficacy of CD70-spefific CAR T cells by intratumoral T cell infiltration and IFN-γ release, supporting the use of CAR T therapy in GBM therapeutic strategies.
Collapse
|
26
|
Bezeljak U. Cancer gene therapy goes viral: viral vector platforms come of age. Radiol Oncol 2022; 56:1-13. [PMID: 35148469 PMCID: PMC8884858 DOI: 10.2478/raon-2022-0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Since the advent of viral vector gene therapy in 1990s, cancer treatment with viral vectors promised to revolutionize the field of oncology. Notably, viral vectors offer a unique combination of efficient gene delivery and engagement of the immune system for anti-tumour response. Despite the early potential, viral vector-based cancer treatments are only recently making a big impact, most prominently as gene delivery devices in approved CAR-T cell therapies, cancer vaccines and targeted oncolytic therapeutics. To reach this broad spectrum of applications, a number of challenges have been overcome - from our understanding of cancer biology to vector design, manufacture and engineering. Here, we take an overview of viral vector usage in cancer therapy and discuss the latest advancements. We also consider production platforms that enable mainstream adoption of viral vectors for cancer gene therapy. CONCLUSIONS Viral vectors offer numerous opportunities in cancer therapy. Recent advances in vector production platforms open new avenues in safe and efficient viral therapeutic strategies, streamlining the transition from lab bench to bedside. As viral vectors come of age, they could become a standard tool in the cancer treatment arsenal.
Collapse
|
27
|
Wnt signaling pathway in cancer immunotherapy. Cancer Lett 2022; 525:84-96. [PMID: 34740608 DOI: 10.1016/j.canlet.2021.10.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Wnt/β-catenin signaling is a highly conserved pathway that regulates cell proliferation, differentiation, apoptosis, stem cell self-renewal, tissue homeostasis, and wound healing. Dysregulation of the Wnt pathway is intricately involved in almost all stages of tumorigenesis in various cancers. Through direct and/or indirect effects on effector T cells, T-regulatory cells, T-helper cells, dendritic cells, and other cytokine-expressing immune cells, abnormal activation of Wnt/β-catenin signaling benefits immune exclusion and hinders T-cell-mediated antitumor immune responses. Activation of Wnt signaling results in increased resistance to immunotherapies. In this review, we summarize the process by which Wnt signaling affects cancer and immune surveillance, and the potential for targeting the Wnt-signaling pathway via cancer immunotherapy.
Collapse
|
28
|
Cristi F, Gutiérrez T, Hitt MM, Shmulevitz M. Genetic Modifications That Expand Oncolytic Virus Potency. Front Mol Biosci 2022; 9:831091. [PMID: 35155581 PMCID: PMC8826539 DOI: 10.3389/fmolb.2022.831091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) are a promising type of cancer therapy since they selectively replicate in tumor cells without damaging healthy cells. Many oncolytic viruses have progressed to human clinical trials, however, their performance as monotherapy has not been as successful as expected. Importantly, recent literature suggests that the oncolytic potential of these viruses can be further increased by genetically modifying the viruses. In this review, we describe genetic modifications to OVs that improve their ability to kill tumor cells directly, to dismantle the tumor microenvironment, or to alter tumor cell signaling and enhance anti-tumor immunity. These advances are particularly important to increase virus spread and reduce metastasis, as demonstrated in animal models. Since metastasis is the principal cause of mortality in cancer patients, having OVs designed to target metastases could transform cancer therapy. The genetic alterations reported to date are only the beginning of all possible improvements to OVs. Modifications described here could be combined together, targeting multiple processes, or with other non-viral therapies with potential to provide a strong and lasting anti-tumor response in cancer patients.
Collapse
Affiliation(s)
- Francisca Cristi
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tomás Gutiérrez
- Goping Laboratory, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary M. Hitt
- Hitt Laboratory, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| | - Maya Shmulevitz
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| |
Collapse
|
29
|
Vorobyev PO, Babaeva FE, Panova AV, Shakiba J, Kravchenko SK, Soboleva AV, Lipatova AV. Oncolytic Viruses in the Therapy of Lymphoproliferative Diseases. Mol Biol 2022; 56:684-695. [PMID: 36217339 PMCID: PMC9534467 DOI: 10.1134/s0026893322050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
Cancer is a leading causes of death. Despite significant success in the treatment of lymphatic system tumors, the problems of relapse, drug resistance and effectiveness of therapy remain relevant. Oncolytic viruses are able to replicate in tumor cells and destroy them without affecting normal, healthy tissues. By activating antitumor immunity, viruses are effective against malignant neoplasms of various nature. In lymphoproliferative diseases with a drug-resistant phenotype, many cases of remissions have been described after viral therapy. The current level of understanding of viral biology and the discovery of host cell interaction mechanisms made it possible to create unique strains with high oncoselectivity widely used in clinical practice in recent years.
Collapse
Affiliation(s)
- P. O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - F. E. Babaeva
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - J. Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S. K. Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Soboleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
30
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
32
|
Lipatova AV, Soboleva AV, Gorshkov VA, Bubis JA, Solovyeva EM, Krasnov GS, Kochetkov DV, Vorobyev PO, Ilina IY, Moshkovskii SA, Kjeldsen F, Gorshkov MV, Chumakov PM, Tarasova IA. Multi-Omics Analysis of Glioblastoma Cells' Sensitivity to Oncolytic Viruses. Cancers (Basel) 2021; 13:cancers13215268. [PMID: 34771433 PMCID: PMC8582528 DOI: 10.3390/cancers13215268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This study aims to uncover the contribution of interferon-dependent antiviral mechanisms preserved in tumor cells to the resistance of glioblastoma multiforme cells to oncolytic viruses. To characterize the functionality of interferon signaling, we used omics profiling and titration-based measurements of cell sensitivity to a panel of viruses of diverse oncolytic potential. This study shows why patient-derived glioblastoma cultures can acquire increased resistance to oncolytic viruses in the presence of interferons and suggests an approach to ranking glioblastoma cells by the acquired resistance. Our findings are important for monitoring the oncolytic potential of viruses to overcome IFN-induced resistance of tumor cells and contribute to successful therapy. Abstract Oncolytic viruses have gained momentum in the last decades as a promising tool for cancer treatment. Despite the progress, only a fraction of patients show a positive response to viral therapy. One of the key variable factors contributing to therapy outcomes is interferon-dependent antiviral mechanisms in tumor cells. Here, we evaluated this factor using patient-derived glioblastoma multiforme (GBM) cultures. Cell response to the type I interferons’ (IFNs) stimulation was characterized at mRNA and protein levels. Omics analysis revealed that GBM cells overexpress interferon-stimulated genes (ISGs) and upregulate their proteins, similar to the normal cells. A conserved molecular pattern unambiguously differentiates between the preserved and defective responses. Comparing ISGs’ portraits with titration-based measurements of cell sensitivity to a panel of viruses, the “strength” of IFN-induced resistance acquired by GBM cells was ranked. The study demonstrates that suppressing a single ISG and encoding an essential antiviral protein, does not necessarily increase sensitivity to viruses. Conversely, silencing IFIT3 and PLSCR1 genes in tumor cells can negatively affect the internalization of vesicular stomatitis and Newcastle disease viruses. We present evidence of a complex relationship between the interferon response genes and other factors affecting the sensitivity of tumor cells to viruses.
Collapse
Affiliation(s)
- Anastasiya V. Lipatova
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alesya V. Soboleva
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
| | - Vladimir A. Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (V.A.G.); (F.K.)
| | - Julia A. Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
| | - Elizaveta M. Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
| | - George S. Krasnov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
| | - Dmitry V. Kochetkov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel O. Vorobyev
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
| | - Irina Y. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.Y.I.); (S.A.M.)
| | - Sergei A. Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.Y.I.); (S.A.M.)
- Department of Biochemistry, Medico-Biological Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (V.A.G.); (F.K.)
| | - Mikhail V. Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
| | - Peter M. Chumakov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.V.L.); (A.V.S.); (G.S.K.); (D.V.K.); (P.O.V.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (P.M.C.); (I.A.T.)
| | - Irina A. Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (J.A.B.); (E.M.S.); (M.V.G.)
- Correspondence: (P.M.C.); (I.A.T.)
| |
Collapse
|
33
|
Cook J, Acosta-Medina AA, Peng KW, Lacy M, Russell S. Oncolytic virotherapy - Forging its place in the immunomodulatory paradigm for Multiple Myeloma. Cancer Treat Res Commun 2021; 29:100473. [PMID: 34673439 DOI: 10.1016/j.ctarc.2021.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
The treatment focus for multiple myeloma (MM) has recently pivoted towards immune modulating strategies, with T-cell redirection therapies currently at the forefront of drug development. Yet, despite this revolution in treatment, MM remains without a sustainable cure. At the same time, tremendous advancement has been made in recombinant and gene editing techniques for oncolytic viruses (OV), which have increased their tumor specificity, improved safety, and enhanced the oncolytic and immunostimulatory potential. These breakthrough developments in oncolytic virotherapy have opened new avenues for OVs to be used in combination with other immune-based therapies such as checkpoint inhibitors, chimeric antigen receptor T-cells (CAR-T) and bispecific T-cell engagers. In this review, the authors place the spotlight on systemic oncolytic virotherapy as an adaptable immunotherapeutic for MM, highlight the unique mechanism of OVs in activating the immune-suppressive marrow microenvironment, and lastly showcase the OV platforms and the promising combination strategies in the pipeline for MM.
Collapse
Affiliation(s)
- Joselle Cook
- Division of Hematology, Mayo Clinic, Rochester MN, United States.
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| | - Martha Lacy
- Division of Hematology, Mayo Clinic, Rochester MN, United States
| | - Stephen Russell
- Division of Hematology, Mayo Clinic, Rochester MN, United States; Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| |
Collapse
|
34
|
Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev Rep 2021; 18:523-543. [PMID: 34319509 DOI: 10.1007/s12015-021-10207-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Evasion of growth suppression is among the prominent hallmarks of cancer. Phosphatase and tensin homolog (PTEN) and p53 tumor-suppressive pathways are compromised in most human cancers, including glioblastoma (GB). Hence, these signaling pathways are an ideal point of focus for novel cancer therapeutics. Recombinant viruses can selectivity kill cancer cells and carry therapeutic genes to tumors. Specifically, oncolytic viruses (OV) have been successfully employed for gene delivery in GB animal models and showed potential to neutralize immunosuppression at the tumor site. However, the associated systemic immunogenicity, inefficient transduction of GB cells, and inadequate distribution to metastatic tumors have been the major bottlenecks in clinical studies. Mesenchymal stem cells (MSCs), with tumor-tropic properties and immune privilege, can improve OVs targeting. Remarkably, combining the two approaches can address their individual issues. Herein, we summarize findings to advocate the reactivation of tumor suppressors p53 and PTEN in GB treatment and use MSCs as a "Trojan horse" to carry oncolytic viral cargo to disseminated tumor beds. The integration of MSCs and OVs can emerge as the new paradigm in cancer treatment.
Collapse
|
35
|
Virotherapy in Germany-Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses 2021; 13:v13081420. [PMID: 34452286 PMCID: PMC8402873 DOI: 10.3390/v13081420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review—as part of the special edition on “State-of-the-Art Viral Vector Gene Therapy in Germany”—the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.
Collapse
|
36
|
Abstract
Oxygen-sensing mechanisms allow cells to adapt and respond to changes in cellular oxygen tension, including hypoxic conditions. Hypoxia-inducible factor (HIF) is a central mediator in this fundamental adaptive response, and has critical functions in normal and disease physiology. Viruses have been shown to manipulate HIFs during their life cycle to facilitate replication and invasion. Conversely, HIFs are also implicated in the development of the host immune system and response to viral infections. Here, we highlight the recent revelations of host-pathogen interactions that involve the hypoxic response pathway and the role of HIF in emerging viral infectious diseases, as well as discussing potential antiviral therapeutic strategies targeting the HIF signaling axis.
Collapse
Affiliation(s)
- Richard Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Huestis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals? Cancers (Basel) 2021; 13:cancers13051106. [PMID: 33807553 PMCID: PMC7961585 DOI: 10.3390/cancers13051106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viruses (OVs) and adoptive T cell therapy (ACT) each possess direct tumour cytolytic capabilities, and their combination potentially seems like a match made in heaven to complement the strengths and weakness of each modality. While providing strong innate immune stimulation that can mobilize adaptive responses, the magnitude of anti-tumour T cell priming induced by OVs is often modest. Chimeric antigen receptor (CAR) modified T cells bypass conventional T cell education through introduction of a synthetic receptor; however, realization of their full therapeutic properties can be stunted by the heavily immune-suppressive nature of the tumour microenvironment (TME). Oncolytic viruses have thus been seen as a natural ally to overcome immunosuppressive mechanisms in the TME which limit CAR T cell infiltration and functionality. Engineering has further endowed viruses with the ability to express transgenes in situ to relieve T cell tumour-intrinsic resistance mechanisms and decorate the tumour with antigen to overcome antigen heterogeneity or loss. Despite this helpful remodeling of the tumour microenvironment, it has simultaneously become clear that not all virus induced effects are favourable for CAR T, begging the question whether viruses act as valets ushering CAR T into their active site, or vandals which cause chaos leading to both tumour and T cell death. Herein, we summarize recent studies combining these two therapeutic modalities and seek to place them within the broader context of viral T cell immunology which will help to overcome the current limitations of effective CAR T therapy to make the most of combinatorial strategies.
Collapse
|
38
|
Zhang B, Wang X, Cheng P. Remodeling of Tumor Immune Microenvironment by Oncolytic Viruses. Front Oncol 2021; 10:561372. [PMID: 33680911 PMCID: PMC7934618 DOI: 10.3389/fonc.2020.561372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oncolytic viruses (OVs) are potential antitumor agents with unique therapeutic mechanisms. They possess the ability of direct oncolysis and the induction of antitumor immunity. OV can be genetically engineered to potentiate antitumor efficacy by remodeling the tumor immune microenvironment. The present mini review mainly describes the effect of OVs on remodeling of the tumor immune microenvironment and explores the mechanism of regulation of the host immune system and the promotion of the immune cells to destroy carcinoma cells by OVs. Furthermore, this article focuses on the utilization of OVs as vectors for the delivery of immunomodulatory cytokines or antibodies.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xilei Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Cai J, Yan G. The Identification and Development of a Novel Oncolytic Virus: Alphavirus M1. Hum Gene Ther 2021; 32:138-149. [PMID: 33261513 DOI: 10.1089/hum.2020.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy represents an ideal therapeutic platform for cancer in which natural or engineered viruses selectively replicate in and destroy tumor cells, whereas sparing normal cells. Oncolytic virotherapy is considered as a key contributor in modern immunotherapy. However, several challenges remain with regard to exploiting the potential of oncolytic viruses, such as the lack of biomarkers for precise treatment, the difficulty of systemic administration because of pre-existing neutralizing antibodies to popular oncolytic viral vectors in human serum and the lack of mature lyophilization technology for convenient transport and preservation of viral preparations. The M1 strain, which was isolated on Hainan Island of China in the 1960s, is a member of the alphavirus genus Togaviridae family. It was identified as a novel oncolytic virus in 2014. During the development of M1 virus, many challenges have been overcome: several biomarkers have been identified for precise treatment; systematic administration of M1 is suitable and feasible because of the extremely low percentage of pre-existing neutralizing antibodies in the general population, and a lyophilized powder that maintains high biological stability has been developed. This review provides an encyclopedia of studies supporting M1 as an oncolytic virus, including the biological characteristics, tumor selectivity and its mechanism, tumor killing mechanism, combination therapy, and nonclinical pharmacokinetics of M1 virus. The future development direction of oncolytic virus M1 is also discussed at the end of the review.
Collapse
Affiliation(s)
- Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Cai J, Lin K, Cai W, Lin Y, Liu X, Guo L, Zhang J, Xu W, Lin Z, Wong CW, Sander M, Hu J, Yan G, Zhu W, Liang J. Tumors driven by RAS signaling harbor a natural vulnerability to oncolytic virus M1. Mol Oncol 2020; 14:3153-3168. [PMID: 33037696 PMCID: PMC7718955 DOI: 10.1002/1878-0261.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are potent anticancer agents that replicate within and kill cancer cells rather than normal cells, and their selectivity is largely determined by oncogenic mutations. M1, a novel oncolytic virus strain, has been shown to target cancer cells, but the relationship between its cancer selectivity and oncogenic signaling pathways is poorly understood. Here, we report that RAS mutation promotes the replication and oncolytic effect of M1 in cancer, and we further provide evidence that the inhibition of the RAS/RAF/MEK signaling axis suppresses M1 infection and the subsequent cytopathic effects. Transcriptome analysis revealed that the inhibition of RAS signaling upregulates the type I interferon antiviral response, and further RNA interference screen identified CDKN1A as a key downstream factor that inhibits viral infection. Gain- and loss-of-function experiments confirmed that CDKN1A inhibited the replication and oncolytic effect of M1 virus. Subsequent TCGA data mining and tissue microarray (TMA) analysis revealed that CDKN1A is commonly deficient in human cancers, suggesting extensive clinical application prospects for M1. Our report indicates that virotherapy is feasible for treating undruggable RAS-driven cancers and provides reliable biomarkers for personalized cancer therapy.
Collapse
Affiliation(s)
- Jing Cai
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Kaiying Lin
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wei Cai
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yuan Lin
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xincheng Liu
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Li Guo
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jifu Zhang
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Ziqing Lin
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Chun Wa Wong
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Max Sander
- Guangzhou Virotech Pharmaceutical Co., Ltd.GuangzhouChina
| | - Jun Hu
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Guangmei Yan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wenbo Zhu
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jiankai Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
41
|
Jamieson TR, Poutou J, Ilkow CS. Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine Growth Factor Rev 2020; 56:102-114. [DOI: 10.1016/j.cytogfr.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
|
42
|
Cai J, Zhu W, Lin Y, Hu J, Liu X, Xu W, Liu Y, Hu C, He S, Gong S, Yan G, Liang J. Lonidamine potentiates the oncolytic efficiency of M1 virus independent of hexokinase 2 but via inhibition of antiviral immunity. Cancer Cell Int 2020; 20:532. [PMID: 33292203 PMCID: PMC7607643 DOI: 10.1186/s12935-020-01598-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Viruses are obligate parasites that depend on host cells to provide the energy and molecular precursors necessary for successful infection. The main component of virus-induced metabolic reprogramming is the activation of glycolysis, which provides biomolecular resources for viral replication. However, little is known about the crosstalk between oncolytic viruses and host glycolytic processes. Methods A MTT assay was used to detect M1 virus-induced cell killing. Flow cytometry was used to monitor infection of M1 virus expressing the GFP reporter gene. qPCR and western blotting were used to detect gene expression. RNA sequencing was performed to evaluate gene expression under different drug treatments. Scanning electron microscopy was performed to visualize the endoplasmic reticulum (ER). Caspase activity was detected. Last, a mouse xenograft model was established to evaluate the antitumor effect in vivo. Most data were analyzed with a two-tailed Student’s t test or one-way ANOVA with Dunnett’s test for pairwise comparisons. Tumor volumes were analyzed by repeated measures of ANOVA. The Wilcoxon signed-rank test was used to compare nonnormally distributed data. Results Here, we showed that the glucose analog 2-deoxy-d-glucose (2-DG) inhibited infection by M1 virus, which we identified as a novel type of oncolytic virus, and decreased its oncolytic effect, indicating the dependence of M1 replication on glycolysis. In contrast, lonidamine, a reported hexokinase 2 (HK2) inhibitor, enhanced the infection and oncolytic effect of M1 virus independent of HK2. Further transcriptomic analysis revealed that downregulation of the antiviral immune response contributes to the lonidamine-mediated potentiation of the infection and oncolytic effect of M1 virus, and that MYC is the key factor in the pool of antiviral immune response factors inhibited by lonidamine. Moreover, lonidamine potentiated the irreversible ER stress-mediated apoptosis induced by M1 virus. Enhancement of M1′s oncolytic effect by lonidamine was also identified in vivo. Conclusions This research demonstrated the dependence of M1 virus on glycolysis and identified a candidate synergist for M1 virotherapy.
Collapse
Affiliation(s)
- Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Xincheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Songmin He
- Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Shoufang Gong
- Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
43
|
Oh CM, Chon HJ, Kim C. Combination Immunotherapy Using Oncolytic Virus for the Treatment of Advanced Solid Tumors. Int J Mol Sci 2020; 21:E7743. [PMID: 33086754 PMCID: PMC7589893 DOI: 10.3390/ijms21207743] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virus (OV) is a new therapeutic strategy for cancer treatment. OVs can selectively infect and destroy cancer cells, and therefore act as an in situ cancer vaccine by releasing tumor-specific antigens. Moreover, they can remodel the tumor microenvironment toward a T cell-inflamed phenotype by stimulating widespread host immune responses against the tumor. Recent evidence suggests several possible applications of OVs against cancer, especially in combination with immune checkpoint inhibitors. In this review, we describe the molecular mechanisms of oncolytic virotherapy and OV-induced immune responses, provide a brief summary of recent preclinical and clinical updates on this rapidly evolving field, and discuss a combinational strategy that is able to overcome the limitations of OV-based monotherapy.
Collapse
Affiliation(s)
- Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13497, Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13497, Korea
| |
Collapse
|
44
|
Le TH, Lipatova AV, Volskaya MA, Tikhonova OA, Chumakov PM. The State of The Jak/Stat Pathway Affects the Sensitivity of Tumor Cells to Oncolytic Enteroviruses. Mol Biol 2020. [DOI: 10.1134/s002689332004010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Geoffroy K, Bourgeois-Daigneault MC. The pros and cons of interferons for oncolytic virotherapy. Cytokine Growth Factor Rev 2020; 56:49-58. [PMID: 32694051 DOI: 10.1016/j.cytogfr.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
Interferons (IFN) are potent immune stimulators that play key roles in both innate and adaptive immune responses. They are considered the first line of defense against viral pathogens and can even be used as treatments to boost the immune system. While viruses are usually seen as a threat to the host, an emerging class of cancer therapeutics exploits the natural capacity of some viruses to directly infect and kill cancer cells. The cancer-specificity of these bio-therapeutics, called oncolytic viruses (OVs), often relies on defective IFN responses that are frequently observed in cancer cells, therefore increasing their vulnerability to viruses compared to healthy cells. To ensure the safety of the therapy, many OVs have been engineered to further activate the IFN response. As a consequence of this IFN over-stimulation, the virus is cleared faster by the immune system, which limits direct oncolysis. Importantly, the therapeutic activity of OVs also relies on their capacity to trigger anti-tumor immunity and IFNs are key players in this aspect. Here, we review the complex cancer-virus-anti-tumor immunity interplay and discuss the diverse functions of IFNs for each of these processes.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer axis and Institut du cancer de Montréal, Centre de recherche du CHUM- CRCHUM, 900 St-Denis Street, Viger Tower, Room R10.480, Montreal, Quebec, H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Roger-Gaudry Building, Montreal, Quebec, H3T1J4, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer axis and Institut du cancer de Montréal, Centre de recherche du CHUM- CRCHUM, 900 St-Denis Street, Viger Tower, Room R10.480, Montreal, Quebec, H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Roger-Gaudry Building, Montreal, Quebec, H3T1J4, Canada.
| |
Collapse
|
46
|
Shi T, Song X, Wang Y, Liu F, Wei J. Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment. Front Immunol 2020; 11:683. [PMID: 32411132 PMCID: PMC7198760 DOI: 10.3389/fimmu.2020.00683] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent successes of tumor immunotherapy approaches, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cell (CAR-T) therapy, have revolutionized cancer treatment, improving efficacy and extending treatment to a larger proportion of cancer patients. However, due to high heterogeneity of cancer, poor tumor cell targeting, and the immunosuppressive status of the tumor microenvironment (TME), combinatorial agents are required to obtain more effective and consistent therapeutic responses in a wide range of cancers. Oncolytic viruses (OVs) are able to selectively replicate in and destroy tumor cells and subsequently induce systematic anti-tumor immune responses. Thus, they are ideal for combining with cancer immunotherapy. In this review, we discuss the current understanding of OVs, as well as the latest preclinical and clinical progress of combining OVs with cancer immunotherapies, including ICB, CAR-T therapy, bispecific T cell engagers (BiTEs), and cancer vaccines. Moreover, we consider future directions for applying OVs to personalized cancer immunotherapies, which could potentially launch a new generation of cancer treatments.
Collapse
Affiliation(s)
- Tao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fangcen Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Cervera-Carrascon V, Quixabeira DCA, Havunen R, Santos JM, Kutvonen E, Clubb JHA, Siurala M, Heiniö C, Zafar S, Koivula T, Lumen D, Vaha M, Garcia-Horsman A, Airaksinen AJ, Sorsa S, Anttila M, Hukkanen V, Kanerva A, Hemminki A. Comparison of Clinically Relevant Oncolytic Virus Platforms for Enhancing T Cell Therapy of Solid Tumors. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:47-60. [PMID: 32322662 PMCID: PMC7163046 DOI: 10.1016/j.omto.2020.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
Despite some promising results, the majority of patients do not benefit from T cell therapies, as tumors prevent T cells from entering the tumor, shut down their activity, or downregulate key antigens. Due to their nature and mechanism of action, oncolytic viruses have features that can help overcome many of the barriers currently facing T cell therapies of solid tumors. This study aims to understand how four different oncolytic viruses (adenovirus, vaccinia virus, herpes simplex virus, and reovirus) perform in that task. For that purpose, an immunocompetent in vivo tumor model featuring adoptive tumor-infiltrating lymphocyte (TIL) therapy was used. Tumor growth control (p < 0.001) and survival analyses suggest that adenovirus was most effective in enabling T cell therapy. The complete response rate was 62% for TILs + adenovirus versus 17.5% for TILs + PBS. Of note, TIL biodistribution did not explain efficacy differences between viruses. Instead, immunostimulatory shifts in the tumor microenvironment mirrored efficacy results. Overall, the use of oncolytic viruses can improve the utility of T cell therapies, and additional virus engineering by arming with transgenes can provide further antitumor effects. This phenomenon was seen when an unarmed oncolytic adenovirus was compared to Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123). A clinical trial is ongoing, where patients receiving TIL treatment also receive TILT-123 (ClinicalTrials.gov: NCT04217473).
Collapse
Affiliation(s)
- Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,TILT Biotherapeutics, 00290 Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,TILT Biotherapeutics, 00290 Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,TILT Biotherapeutics, 00290 Helsinki, Finland
| | - Emma Kutvonen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,TILT Biotherapeutics, 00290 Helsinki, Finland
| | - Mikko Siurala
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,TILT Biotherapeutics, 00290 Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Teija Koivula
- Department of Chemistry, Radiochemistry, University of Helsinki, 00560 Helsinki, Finland
| | - Dave Lumen
- Department of Chemistry, Radiochemistry, University of Helsinki, 00560 Helsinki, Finland
| | - Marjo Vaha
- Regenerative Pharmacology Group, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00560 Helsinki, Finland
| | - Arturo Garcia-Horsman
- Regenerative Pharmacology Group, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00560 Helsinki, Finland
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, 00560 Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,TILT Biotherapeutics, 00290 Helsinki, Finland
| | | | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland.,TILT Biotherapeutics, 00290 Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
| |
Collapse
|
48
|
Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med 2020; 14:160-184. [PMID: 32146606 PMCID: PMC7101593 DOI: 10.1007/s11684-020-0750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
Collapse
|
49
|
Cancer immunotherapy through the prism of adaptation: Will Achilles catch the tortoise? Med Hypotheses 2020; 137:109545. [PMID: 31952020 DOI: 10.1016/j.mehy.2019.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022]
Abstract
There is no secret that despite the rapid development of new methods of cancer therapy, we still are not able to completely destroy the tumor. Every time we attack the tumor, the tumor neutralizes our attempts. Carcinogenesis can be presented as a tree whose branches are different pro-tumor mechanisms and whose trunk is a biological phenomenon that "feeds" those branches. A tree can be destroyed in two ways: either by cutting a branch for a branch without a guarantee that new branches will not grow, or cutting down the trunk and letting the branches wither away. To cut down the trunk, it is necessary to understand the nature of the biological phenomenon, which helps the tumor to avoid attack by the immune system, drugs and immunotherapy. The clue is that the pro-tumor mechanisms are united by one goal - to increase the resistance of the tumor cell to immune factors and drugs. A phenomenon that improves cell resistance is well known in biology - adaptation. If the immunity does not immediately destroy the tumor cell, the cell begins to adapt to it. Our hypothesis is that short range adaptation to immune factors plays a role in the formation of tumor tolerance for immunity and immunotherapy. This gives rise to the idea of reducing the survival of tumor cells by disrupting adaptation mechanisms. Indeed, "turning off" the immune system for a period of time before therapy and applying immunotherapy only to tumor cells that have lost their increased resistance could be a new approach to increase the effectiveness of immunotherapy.
Collapse
|
50
|
Han S, Huang K, Gu Z, Wu J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. NANOSCALE 2020; 12:413-436. [PMID: 31829394 DOI: 10.1039/c9nr08086d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The past years have witnessed promising clinical feedback for anti-cancer immunotherapies, which have become one of the hot research topics; however, they are limited by poor delivery kinetics, narrow patient response profiles, and systemic side effects. To the best of our knowledge, the development of cancer is highly associated with the immune system, especially the tumor immune microenvironment (TIME). Based on the comprehensive understanding of the complexity and diversity of TIME, drug delivery strategies focused on the modulation of TIME can be of great significance for directing and improving cancer immunotherapy. This review highlights the TIME modulation in cancer immunotherapy and summarizes the versatile TIME modulation-based cancer immunotherapeutic strategies, medicative principles and accessory biotechniques for further clinical transformation. Remarkably, the recent advances of cancer immunotherapeutic drug delivery systems and future prospects of TIME modulation-based drug delivery systems for much more controlled and precise cancer immunotherapy will be emphatically discussed.
Collapse
Affiliation(s)
- Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China.
| | | | | | | |
Collapse
|