1
|
Wutikeli H, Yu Y, Zhang T, Cao J, Nawy S, Shen Y. Role of Elavl-like RNA-binding protein in retinal development and signal transduction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167518. [PMID: 39307290 DOI: 10.1016/j.bbadis.2024.167518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RNA-binding proteins (RBPs) play central roles in post-transcriptional gene regulation. However, the function of RBP in retinal progenitor cell differentiation and synaptic signal transmission are largely unexplored. Previously we have shown that Elavl2 regulates amacrine cell (AC) differentiation during retinogenesis, by directly binding to Nr4a2 and Barhl2. Elavl2 is expressed in early neuronal progenitors to mature neurons, and Elavl4 expression begins slightly later, during cortical neuron development as a paralog. Here, Retinal-specific Elavl2 and Elavl4 double knockout mice were made to further explore the role of Elavl2 and Elavl4 in retinal development and signal transduction. We disclose that Elavl4 binds to Satb1 to regulate Neurod1, then promoting retinal progenitor and amacrine cells differentiation. We were also surprised to find that Elavl2 interacted with GABAB receptors at the RNA and protein levels. In conclusion, Elavl2 and Elavl4 regulate amacrine cells differentiation through different pathways, leading to decreased scotopic vision. Our findings reveal the roles of Elavl2 and Elavl4 in retinal amacrine cells differentiation in modulating visual functions.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yao Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | | | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Shamloo S, Schloßhauer JL, Tiwari S, Fischer KD, Ghebrechristos Y, Kratzenberg L, Bejoy AM, Aifantis I, Wang E, Imig J. RNA Binding of GAPDH Controls Transcript Stability and Protein Translation in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626357. [PMID: 39677748 PMCID: PMC11642814 DOI: 10.1101/2024.12.02.626357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Dysregulation of RNA binding proteins (RBPs) is a hallmark in cancerous cells. In acute myeloid leukemia (AML) RBPs are key regulators of tumor proliferation. While classical RBPs have defined RNA binding domains, RNA recognition and function in AML by non-canonical RBPs (ncRBPs) remain unclear. Given the inherent complexity of targeting AML broadly, our goal was to uncover potential ncRBP candidates critical for AML survival using a CRISPR/Cas-based screening. We identified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a pro-proliferative factor in AML cells. Based on cross-linking and immunoprecipitation (CLIP), we are defining the global targetome, detecting novel RNA targets mainly located within 5'UTRs, including GAPDH, RPL13a, and PKM. The knockdown of GAPDH unveiled genetic pathways related to ribosome biogenesis, translation initiation, and regulation. Moreover, we demonstrated a stabilizing effect through GAPDH binding to target transcripts including its own mRNA. The present findings provide new insights on the RNA functions and characteristics of GAPDH in AML.
Collapse
|
3
|
Wang J, Zheng L, Chen W, Zhang X, Lv D, Zeng C, Zhang C, Zhang R, Kang T, Zhong L. Targeting RBM39 suppresses tumor growth and sensitizes osteosarcoma cells to cisplatin. Oncogene 2024:10.1038/s41388-024-03242-7. [PMID: 39633066 DOI: 10.1038/s41388-024-03242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Osteosarcoma is one of the most common malignant primary bone tumors and lacks effective therapeutic targets. Recent studies have reported that RNA binding proteins (RBPs) could serve as promising therapeutic targets for cancers, as their critical roles in transcriptional regulation and RNA splicing. Nevertheless, the potential of pharmacologically inhibiting RBPs as a therapeutic strategy for patients with osteosarcoma remains unclear. In this study, we identified the RNA-binding protein RBM39 as a promising therapeutic target for osteosarcoma. RBM39 is essential for cell viability, and a higher expression of RBM39 was associated with poor prognosis in osteosarcoma. Mechanistically, RBM39 served as a coactivator of c-Jun to transcriptionally upregulate DKK1, leading to the activation of the GSK3β-NF-κB pathway. Importantly, our results reveal that the pharmacological depletion of RBM39 by using the anti-cancer aryl sulfonamide (E7820), a drug known for its oral bioavailability and safe administration, effectively represses osteosarcoma growth and sensitizes osteosarcoma cells to cisplatin treatment both in vitro and in vivo. Our findings unveil the crucial role of RBM39 in modulating tumor growth and cisplatin sensitivity in osteosarcoma cells, suggesting that the combination of aryl sulfonamides with cisplatin may benefit patients with osteosarcoma.
Collapse
Affiliation(s)
- Jingxuan Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanqi Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changlin Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhong
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Fan L, Wang Y, Huang H, Wang Z, Liang C, Yang X, Ye P, Lin J, Shi W, Zhou Y, Yan H, Long Z, Wang Z, Liu L, Qian J. RNA binding motif 4 inhibits the replication of ebolavirus by directly targeting 3'-leader region of genomic RNA. Emerg Microbes Infect 2024; 13:2300762. [PMID: 38164794 PMCID: PMC10773643 DOI: 10.1080/22221751.2023.2300762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Ebola virus (EBOV) belongs to Filoviridae family possessing single-stranded negative-sense RNA genome, which is a serious threat to human health. Nowadays, no therapeutics have been proven to be successful in efficiently decreasing the mortality rate. RNA binding proteins (RBPs) are reported to participate in maintaining cell integrity and regulation of viral replication. However, little is known about whether and how RBPs participate in regulating the life cycle of EBOV. In our study, we found that RNA binding motif protein 4 (RBM4) inhibited the replication of EBOV in HEK293T and Huh-7 cells by suppressing viral mRNA production. Such inhibition resulted from the direct interaction between the RRM1 domain of RBM4 and the "CU" enrichment elements located in the PE1 and TSS of the 3'-leader region within the viral genome. Simultaneously, RBM4 could upregulate the expression of some cytokines involved in the host innate immune responses to synergistically exert its antiviral function. The findings therefore suggest that RBM4 might serve as a novel target of anti-EBOV strategy.
Collapse
Affiliation(s)
- Linjin Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yulong Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Hongxin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Zequn Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Pengfei Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Jingyan Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Wendi Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yuandong Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Zhenyu Long
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Linna Liu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
Teng X, Shang J, Du L, Huang W, Wang Y, Liu M, Ma Y, Wang M, Tang H, Bai L. RNA-binding protein Trx regulates alternative splicing and promotes metastasis of HCC via interacting with LINC00152. J Gastroenterol Hepatol 2024; 39:2892-2902. [PMID: 39343436 DOI: 10.1111/jgh.16735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is central to HCC metastasis, in which RNA-binding proteins (RBPs) play a key role. METHODS To explore the role of RBPs in metastasis of hepatocellular carcinoma (HCC), whole transcriptome sequencing was conducted to identify differential RBPs between HCC with metastasis and HCC without metastasis. The influence of RBPs on metastasis of HCC was verified by in vitro and in vivo experiments. The interaction of RBPs with non-coding RNAs was evaluated by RNA immunoprecipitation and pull-down assays. RNA sequencing, whole-genome sequencing, and alternative splicing analysis were further performed to clarify post-transcriptional regulation mechanisms. RESULTS Whole transcriptome sequencing results showed that expression of thioredoxin (Trx) was significantly upregulated in HCC patients with metastasis. Trx was also found to be associated with poor prognosis in HCC patients. Overexpression of Trx could promote migration and invasion of HCC cells in vitro and increase the rate of lung metastasis of HCC cells in vivo. Moreover, binding assays showed that Trx could bind to LINC00152. As a result, LINC00152 was verified to determine the pro-metastasis function of Trx by knockdown assay. Furthermore, we revealed that Trx could regulate metastasis-associated alternative splicing program. Specifically, angiopoietin 1 (ANGPT1) was the splicing target; the splicing isoform switching of ANGPT1 could activate the PI3K-Akt pathway, upregulate EMT-associated proteins, and promote migration and invasion of HCC cells. CONCLUSIONS We found that Trx could interact with LINC00152 and promote HCC metastasis via regulating alternative splicing, indicating that Trx may serve as a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiangnan Teng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Shang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanji Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
7
|
Liu X, Liu X, Dong W, Wang P, Liu L, Liu L, E T, Wang D, Lin Y, Lin H, Ruan X, Xue Y. KHDRBS1 regulates the pentose phosphate pathway and malignancy of GBM through SNORD51-mediated polyadenylation of ZBED6 pre-mRNA. Cell Death Dis 2024; 15:802. [PMID: 39516455 PMCID: PMC11549417 DOI: 10.1038/s41419-024-07163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma is one of the most common and aggressive primary brain tumors. The aberration of metabolism is the important character of GBM cells and is tightly related to the malignancy of GBM. We mainly verified the regulatory effects of KHDRBS1, SNORD51 and ZBED6 on pentose phosphate pathway and malignant biological behavior in glioblastoma cells, such as proliferation, migration and invasion. KHDRBS1 and SNORD51 were upregulated in GBM tissues and cells. But ZBED6 had opposite tendency in GBM tissues and cells. KHDRBS1 may improve the stability of SNORD51 by binding to SNORD51, thus elevating the expression of SNORD51. More importantly, SNORD51 can competitively bind to WDR33 with 3'UTR of ZBED6 pre-mRNA which can inhibit the 3' end processing of ZBED6 pre-mRNA, thereby inhibiting the expression of ZBED6 mRNA. ZBED6 inhibited the transcription of G6PD by binding to the promoter region of G6PD. Therefore, the KHDRBS1/SNORD51/ZBED6 pathway performs an important part in regulating the pentose phosphate pathway to influence malignant biological behavior of GBM cells, providing new insights and potential targets for the treatment of GBM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Lu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
8
|
Ban KY, Na YW, Song J, Kim JS, Kim J. Protein-RNA interaction dynamics reveal key regulators of oncogenic KRAS-driven cancers. Sci Rep 2024; 14:27119. [PMID: 39511334 PMCID: PMC11544019 DOI: 10.1038/s41598-024-78333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
KRAS is one of the most frequently mutated oncogenes across various cancers. Oncogenic KRAS mutations rewire cellular signaling, leading to significant alterations in gene expression. RNA-binding proteins (RBPs) play a pivotal role in gene expression regulation by post-transcriptionally controlling various aspects of RNA metabolism. It has become clear that interactions between RBPs and RNA are frequently dysregulated in numerous cancers. However, how oncogenic KRAS mutations reshape the post-transcriptional regulatory network mediated by RBPs remains poorly understood. In this study, we systematically dissected oncogenic KRAS-driven alterations of RNA-RBP networks. We identified 35 cancer-associated RBPs with either increased or decreased RNA binding upon oncogenic KRAS activation, including PDCD11, which is essential for the viability of KRAS mutant cancers, and ELAVL2, which regulates cell migration in KRAS mutant lung cancers. Our study serves as a crucial resource for elucidating RBP regulatory networks in KRAS mutant cancers and may provide new avenues for therapeutic strategies targeting KRAS mutant malignancies.
Collapse
Affiliation(s)
- Ka-Yun Ban
- Department of Health Science and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Incheon, 21999, Republic of Korea
| | - Yong-Woo Na
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Juhan Song
- Department of Health Science and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Incheon, 21999, Republic of Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jimi Kim
- Department of Health Science and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Incheon, 21999, Republic of Korea.
- Department of Life Sciences, Gachon University, Seongnam, 13120, Korea.
| |
Collapse
|
9
|
Khan FA, Fouad D, Ataya FS, Fang N, Dong J, Ji S. FXR1 associates with and degrades PDZK1IP1 and ATOH8 mRNAs and promotes esophageal cancer progression. Biol Direct 2024; 19:104. [PMID: 39511680 PMCID: PMC11542266 DOI: 10.1186/s13062-024-00553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The growing body of evidence suggests that RNA-binding proteins (RBPs) have an important function in cancer biology. This research characterizes the expression status of fragile X-related protein 1 (FXR1) in esophageal cancer (ESCA) cell lines and understands its mechanistic importance in ESCA tumor biology. METHODS The role of FXR1, PDZK1IP1, and ATOH8 in the malignant biological behaviors of ESCA cells was investigated using in-vitro and in-vivo experiments. RESULTS FXR1 was aberrantly overexpressed at both the transcript and protein levels in ESCA cells. Deficiency of FXR1 in ESCA cells was associated with decreased cell proliferation, viability and compromised cell migration compared to the control group. In addition, the inhibition of FXR1 leads to the promotion of apoptosis and cell cycle arrest in ESCA cells. Furthermore, FXR1 knockdown stabilizes senescence markers, promoting cellular senescence and decreasing cancer growth. Mechanistically, FXR1 negatively regulated PDZK1IP1 or ATOH8 transcripts by promoting mRNA degradation via direct interaction with its 3'UTR. PDZK1IP1 or ATOH8 overexpression predominantly inhibited the tumor-promotive phenotype in FXR1-overexpressed cells. Furthermore, FXR1 inhibition and PDZK1IP1 or ATOH8 overexpression in combination with FXR1-overexpressed cells significantly decreased xenograft tumor formation and enhanced nude mouse survival without causing apparent toxicity (P < 0.01). In the FXR1 knockdown group, the tumor weight of mice decreased by 80% compared to the control group (p < 0.01). CONCLUSIONS Our results demonstrate FXR1's oncogenic involvement in ESCA cell lines, suggesting that FXR1 may be implicated in ESCA development by regulating the stability of PDZK1IP1 and ATOH8 mRNAs. For the first time, our findings emphasize the importance of FXR1-PDZK1IP1 and -ATOH8 functional modules in the development of ESCA, which might have potential diagnostic or therapeutic implications.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Middle Urumqi Road, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Middle Urumqi Road, Shanghai, China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Han H, Yuan Y, Li C, Liu L, Yu H, Han G, Wang Q, Lin M, Huang J. RNA-binding motif protein 28 enhances angiogenesis by improving STAT3 translation in hepatocellular carcinoma. Cancer Lett 2024; 604:217191. [PMID: 39181434 DOI: 10.1016/j.canlet.2024.217191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor characterized by extensive angiogenesis. However, the underlying mechanisms of HCC pathogenesis remain unclear. Previous studies have shown that RNA-binding proteins (RBPs) are implicated in HCC pathogenesis. In this study, we observed that increased RBM28 expression in HCC tissues was positively correlated with tumor microvascular density and negatively correlated with patient prognosis. Overexpression of RBM28 in HCC cells promoted tubule formation in human umbilical vein endothelial cells, whereas inhibition of RBM28 had the opposite effect, furthermore, the role of RBM28 in the progression of HCC was assessed using transgenic mouse models and chemically induced HCC models. We used various molecular assays and high-throughput detection methods to evaluate the role of RBM28 in promoting angiogenesis in HCC. Increased RBM28 expression in HCC directly binds to STAT3 mRNA, recruiting EIF4E to increase STAT3 expression and enhancing the secretion and expression of vascular endothelial growth factor A; consequently, promoting neovascularization in HCC. The potential of RBM28 as a viable diagnostic and therapeutic target for HCC was assessed using multi-cohort clinical samples and animal models. In summary, our results provide insights into the pathogenesis, clinical diagnosis, and treatment of HCC.
Collapse
Affiliation(s)
- Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Yin Yuan
- Department of Hepatobiliary Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Caiying Li
- Department of Vascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Lei Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, PR China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, PR China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Gaohua Han
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, PR China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, PR China.
| | - Mei Lin
- Department of Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Junxing Huang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| |
Collapse
|
11
|
Liu Y, Feng H, Zhao Q, Liang X, Wang Y, Xiao S, Shen S, Wu J. RNA binding motif protein 43 (RBM43) suppresses hepatocellular carcinoma metastasis by regulating Slug mRNA stability. Genes Dis 2024; 11:101192. [PMID: 39104422 PMCID: PMC11298866 DOI: 10.1016/j.gendis.2023.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/19/2023] [Indexed: 08/07/2024] Open
Affiliation(s)
- Yao Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huan Feng
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qi Zhao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao Liang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuai Xiao
- The First Affiliated Hospital, Cancer Research Institute, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Li C, Zhang Y, Wang Y, Ouyang J, Yang Y, Zhu Q, Lu Y, Kang T, Li Y, Xia M, Chen J, Li Q, Zhu C, Ye L. RNA-binding protein LSM7 facilitates breast cancer metastasis through mediating alternative splicing of CD44. Life Sci 2024; 356:123013. [PMID: 39182568 DOI: 10.1016/j.lfs.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
AIMS The RNA-binding protein LSM7 is essential for RNA splicing, acting as a key component of the spliceosome complex; however, its specific role in breast cancer (BC) has not been extensively investigated. MATERIALS AND METHODS LSM7 expression in BC samples was evaluated through bioinformatics analysis and immunohistochemistry. The impact of LSM7 on promoting metastatic tumor characteristics was examined using transwell and wound healing assays, as well as an orthotopic xenograft model. Additionally, the involvement of LSM7 in alternative splicing of CD44 was explored via RNA immunoprecipitation and third-generation sequencing. The regulatory role of TCF3 in modulating LSM7 gene expression was further elucidated using luciferase reporter assays and chromatin immunoprecipitation. KEY FINDINGS Our findings demonstrate that LSM7 was significantly overexpressed in metastatic BC tissues and was associated with poor prognostic outcomes in patients with BC. LSM7 overexpression markedly increased the migratory and invasive capabilities of BC cells in vitro and significantly promoted spontaneous lung metastasis in vivo. Furthermore, RIP-seq analysis revealed that LSM7 binded to CD44 RNA, enhancing the expression of its alternatively spliced isoform CD44s, thereby driving BC metastasis and invasion. Additionally, the transcription factor TCF3 was found to activate LSM7 transcription by directly binding to its promoter. SIGNIFICANCE In summary, this study highlights the pivotal role of LSM7 in the production of the CD44s isoform and the promotion of breast cancer metastasis. Targeting the TCF3/LSM7/CD44s axis may offer a promising therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Chenxin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuhao Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jing Ouyang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yingqian Yang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Ming Xia
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinrun Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Qiji Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
13
|
Tian B, Bian Y, Pang Y, Gao Y, Yu C, Zhang X, Zhou S, Li Z, Xin L, Lin H, Wang L. Dysregulated inclusion of BOLA3 exon 3 promoted by HNRNPC accelerates the progression of esophageal squamous cell carcinoma. Front Med 2024:10.1007/s11684-024-1068-4. [PMID: 39455467 DOI: 10.1007/s11684-024-1068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/31/2024] [Indexed: 10/28/2024]
Abstract
Dysregulated RNA splicing events produce transcripts that facilitate esophageal squamous cell carcinoma (ESCC) progression, but how this splicing process is abnormally regulated remains elusive. Here, we unveiled a novel alternative splicing axis of BOLA3 transcripts and its regulator HNRNPC in ESCC. The long-form BOLA3 (BOLA3-L) containing exon 3 exhibited high expression levels in ESCC and was associated with poor prognosis. Functional assays demonstrated the protumorigenic function of BOLA3-L in ESCC cells. Additionally, HNRNPC bound to BOLA3 mRNA and promoted BOLA3 exon 3 inclusion forming BOLA3-L. High HNRNPC expression was positively correlated with the presence of BOLA3-L and associated with an unfavorable prognosis. HNRNPC knockdown effectively suppressed the malignant biological behavior of ESCC cells, which were significantly rescued by BOLA3-L overexpression. Moreover, BOLA3-L played a significant role in mitochondrial structural and functional stability. E2F7 acted as a key transcription factor that promoted the upregulation of HNRNPC and inclusion of BOLA3 exon 3. Our findings provided novel insights into how alternative splicing contributes to ESCC progression.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chuting Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siwei Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Gutierrez-Riquelme T, Karkossa I, Schubert K, Liebscher G, Packeiser EM, Nolte I, von Bergen M, Murua Escobar H, Aguilera-Rojas M, Einspanier R, Stein T. Proteomic analysis of extracellular vesicles derived from canine mammary tumour cell lines identifies protein signatures specific for disease state. BMC Vet Res 2024; 20:488. [PMID: 39462388 PMCID: PMC11515202 DOI: 10.1186/s12917-024-04331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Canine mammary tumours (CMT) are among the most common types of tumours in female dogs. Diagnosis currently requires invasive tissue biopsies and histological analysis. Tumour cells shed extracellular vesicles (EVs) containing RNAs and proteins with potential for liquid biopsy diagnostics. We aimed to identify CMT subtype-specific proteome profiles by comparing the proteomes of EVs isolated from epithelial cell lines derived from morphologically normal canine mammary tissue, adenomas, and carcinomas. METHODS Whole-cell protein lysates (WCLs) and EV-lysates were obtained from five canine mammary cell lines: MTH53A (non-neoplastic); ZMTH3 (adenoma); MTH52C (simple carcinoma); 1305, DT1406TB (complex carcinoma); and their proteins identified by LC-MS/MS analyses. Gene Ontology analysis was performed on differentially abundant proteins from each group to identify up- and down-regulated biological processes. To establish CMT subtype-specific proteomic profiles, weighted gene correlation network analysis (WGCNA) was carried out. RESULTS WCL and EVs displayed distinct protein abundance signatures while still showing the same increase in adhesion, migration, and motility-related proteins in carcinoma-derived cell lines, and of RNA processing and RNA splicing factors in the adenoma cell line. WGCNA identified CMT stage-specific co-abundant EV proteins, allowing the identification of adenoma and carcinoma EV signatures not seen in WCLs. CONCLUSIONS EVs from CMT cell lines exhibit distinct protein profiles reflecting malignancy state, allowing us to identify potential biomarkers for canine mammary carcinomas, such as biglycan. Our dataset could therefore potentially serve as a basis for the development of a less invasive clinical diagnostic tool for the characterisation of CMT.
Collapse
Affiliation(s)
- Tania Gutierrez-Riquelme
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Gudrun Liebscher
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Hugo Murua Escobar
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | | | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
15
|
Fang Y, Liu X, Liu Y, Xu N. Insights into the Mode and Mechanism of Interactions Between RNA and RNA-Binding Proteins. Int J Mol Sci 2024; 25:11337. [PMID: 39518890 PMCID: PMC11545484 DOI: 10.3390/ijms252111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Both RNA and protein play important roles in the process of gene expression and regulation, and it has been widely discussed that the interactions between RNA and protein affect gene transcription, translation efficiency, and post-translational modification. As an important class of proteins, RNA-binding proteins bind to RNA and affect gene expression in various ways. Here, we review the structural and functional properties of RNA-binding proteins and illustrate the specific modes of interactions between RNA and RNA-binding proteins and describe the involvement of some representative RNA-binding protein families in this network of action. Furthermore, we also explore the association that exists between RNA-binding proteins and the onset of diseases, as well as their potential in terms of serving as a therapeutic tool for the treatment of diseases. The in-depth exploration of the interactions between RNA and RNA-binding proteins reveals the dynamic process of gene expression and regulation, as well as offering valuable insights to advance the progress in the dissection of disease mechanisms and research and discovery of drugs, which promote the development of molecular biology.
Collapse
Affiliation(s)
| | | | | | - Naiyi Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (Y.F.); (X.L.); (Y.L.)
| |
Collapse
|
16
|
Singh V, Singh A, Liu AJ, Fuchs SY, Sharma AK, Spiegelman VS. RNA Binding Proteins as Potential Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2024; 16:3502. [PMID: 39456596 PMCID: PMC11506615 DOI: 10.3390/cancers16203502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in regulating post-transcriptional gene expression, managing processes such as mRNA splicing, stability, and translation. In normal intestine, RBPs maintain the tissue homeostasis, but when dysregulated, they can drive colorectal cancer (CRC) development and progression. Understanding the molecular mechanisms behind CRC is vital for developing novel therapeutic strategies, and RBPs are emerging as key players in this area. This review highlights the roles of several RBPs, including LIN28, IGF2BP1-3, Musashi, HuR, and CELF1, in CRC. These RBPs regulate key oncogenes and tumor suppressor genes by influencing mRNA stability and translation. While targeting RBPs poses challenges due to their complex interactions with mRNAs, recent advances in drug discovery have identified small molecule inhibitors that disrupt these interactions. These inhibitors, which target LIN28, IGF2BPs, Musashi, CELF1, and HuR, have shown promising results in preclinical studies. Their ability to modulate RBP activity presents a new therapeutic avenue for treating CRC. In conclusion, RBPs offer significant potential as therapeutic targets in CRC. Although technical challenges remain, ongoing research into the molecular mechanisms of RBPs and the development of selective, potent, and bioavailable inhibitors should lead to more effective treatments and improved outcomes in CRC.
Collapse
Affiliation(s)
- Vikash Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Alvin John Liu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| |
Collapse
|
17
|
Kovalski JR, Sarioglu G, Subramanyam V, Hernandez G, Rademaker G, Oses-Prieto JA, Slota M, Mohan N, Yiakis K, Liu I, Wen KW, Kim GE, Miglani S, Burlingame AL, Goodarzi H, Perera RM, Ruggero D. Functional screen for mediators of onco-mRNA translation specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617637. [PMID: 39416102 PMCID: PMC11482963 DOI: 10.1101/2024.10.10.617637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Oncogenic protein dosage is tightly regulated to enable cancer cells to adapt and survive. Whether this is regulated at the level of translational control and the key factors in cis and trans remain unknown. The Myc oncogene is a central paradigm of an exquisitely regulated oncogene and a major driver of pancreatic ductal adenocarcinoma (PDAC). Using a functional genome-wide CRISPRi screen in PDAC cells, we identified activators of selective MYC translation through its 5' untranslated region (5'UTR) and validated four RNA binding proteins (RBPs), including epitranscriptome modifiers. Among these RBPs, our top hit was RBM42, which is highly expressed in PDAC and predicts poor survival. Combining polysome sequencing and CLIP-seq analyses, we find that RBM42 binds and selectively regulates the translation of MYC and a precise, yet vital suite of pro-oncogenic transcripts, including JUN and EGFR . Mechanistically, employing IP-mass spectrometry analysis, we find that RMB42 is a novel ribosome-associated protein (RAP). Using DMS-Seq and mutagenesis analysis, we show that RBM42 directly binds and remodels the MYC 5'UTR RNA structure, facilitating the formation of the translation pre-initiation complex. Importantly, RBM42 is necessary for human PDAC cell growth and fitness and PDAC tumorigenesis in xenograft mouse models in a Myc-dependent manner in vivo . In PDAC patient samples, RBM42 expression is correlated with Myc protein levels and transcriptional activity. This work transforms our understanding of the translational code in cancer and offers a new therapeutic opening to target the expression of oncogenes.
Collapse
|
18
|
Zheng J, Zhang X, Xue Y, Shao W, Wei Y, Mi S, Yang X, Hu L, Zhang Y, Liang M. PAIP1 binds to pre-mRNA and regulates alternative splicing of cancer pathway genes including VEGFA. BMC Genomics 2024; 25:926. [PMID: 39363305 PMCID: PMC11451205 DOI: 10.1186/s12864-024-10530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Poly (A) binding protein interacting protein 1 (PAIP1) has been shown to causally contribute to the development and progression of cancer. However, the mechanisms of the PAIP1 regulation in tumor cells remain poorly understood. RESULTS Here, we used a recently developed UV cross-linking and RNA immunoprecipitation method (iRIP-seq) to map the direct and indirect interaction sites between PAIP1 and RNA on a transcriptome-wide level in HeLa cells. We found that PAIP1 not only binds to 3'UTRs, but also to pre-mRNAs/mRNAs with a strong bias towards the coding region and intron. PAIP1 binding sites are enriched in splicing enhancer consensus GA-rich motifs. RNA-seq analysis revealed that PAIP1 selectively modulates the alternative splicing of genes in some cancer hallmarks including cell migration, the mTOR signaling pathway and the HIF-1 signaling pathway. PAIP1-regulated alternative splicing events were strongly associated with PAIP1 binding, demonstrating that the binding may promote selection of the nearby splice sites. Deletion of a PAIP1 binding site containing seven repeats of GA motif reduced the PAIP1-mediated suppression of the exon 6 inclusion in a VEGFA mRNA isoform. Proteomic analysis of the PAIP1-interacted proteins revealed the enrichment of the spliceosome components and splicing factors. CONCLUSIONS These findings suggest that PAIP1 is both a polyadenylation and alternative splicing regulator, that may play a large role in RNA processing via its role in alternative splicing regulation.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Laboratory Medicine, Baoan Central Hospital of Shenzhen, Shenzhen, 518102, Guangdong, P.R. China
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Xiaoyu Zhang
- First department of infection, second affiliated hospital of Harbin medical university, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Yaqiang Xue
- Center for Genome Analysis, ABLife Inc, Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, Wuhan, 430075, Hubei, China
- ABLife BioBigData Institute, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Wenhua Shao
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc, Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, Wuhan, 430075, Hubei, China
| | - Sisi Mi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Xiaojie Yang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Linan Hu
- Harbin Center for Disease Prevention and Control, Harbin, 150056, Heilongjiang, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc, Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, Wuhan, 430075, Hubei, China.
- ABLife BioBigData Institute, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China.
| | - Ming Liang
- First department of infection, second affiliated hospital of Harbin medical university, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
19
|
Shi Y, Wang J, Yuan Q, Chen Y, Zhao M, Li X, Wang Z, Zhou H, Zhu F, Wei B, Jiang Y, Zhao J, Qiao Y, Dong Z, Liu K. DDX5 promotes esophageal squamous cell carcinoma growth through sustaining VAV3 mRNA stability. Oncogene 2024; 43:3240-3254. [PMID: 39289531 DOI: 10.1038/s41388-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Novel therapeutic targets and their inhibitors for esophageal squamous cell carcinoma (ESCC) prevention and therapy are urgently needed. This study aimed to investigate the function of DEAD-box helicase 5 (DDX5) in ESCC progression and to identify a promising inhibitor of DDX5. We verified that DDX5 was highly expressed in ESCC and played an oncogenic role, binding with vav guanine nucleotide exchange factor 3 (VAV3) mRNA and facilitating VAV3 mRNA N6-methyladenosine (m6A) modification by interacting with the m6A methyltransferase 3 (METTL3). M6A-modified VAV3 mRNA was identified by insulin-like growth factor 1 (IGF2BP1), increasing mRNA stability. Methylnissolin-3-β-D-O-glucoside (MD) inhibited ESCC progression through the DDX5-VAV3 axis. Our findings suggest that DDX5 promotes ESCC progression. MD inhibits ESCC progression by targeting DDX5.
Collapse
Affiliation(s)
- Yunshu Shi
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Junyong Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Yuan
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yingying Chen
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Miao Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zitong Wang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fangli Zhu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bing Wei
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Jimin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yan Qiao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
20
|
Alkhateeb MA, Aljarba NH, Yousafi Q, Anwar F, Biswas P. Elucidating gastric cancer mechanisms and therapeutic potential of Adociaquinone A targeting EGFR: A genomic analysis and Computer Aided Drug Design (CADD) approach. J Cell Mol Med 2024; 28:e70133. [PMID: 39434198 PMCID: PMC11493557 DOI: 10.1111/jcmm.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Gastric cancer predominantly adenocarcinoma, accounts for over 85% of gastric cancer diagnoses. Current therapeutic options are limited, necessitating the discovery of novel drug targets and effective treatments. The Affymetrix gene expression microarray dataset (GSE64951) was retrieved from NCBI-GEO data normalization and DEGs identification was done by using R-Bioconductor package. Gene Ontology (GO) analysis of DEGs was performed using DAVID. The protein-protein interaction network was constructed by STRING database plugin in Cytoscape. Subclusters/modules of important interacting genes in main network were extracted by using MCODE. The hub genes from in the network were identified by using Cytohubba. The miRNet tool built a hub gene/mRNA-miRNA network and Kaplan-Meier-Plotter conducted survival analysis. AutoDock Vina and GROMACS MD simulations were used for docking and stability analysis of marine compounds against the 5CNN protein. Total 734 DEGs (507 up-regulated and 228 down-regulated) were identified. Differentially expressed genes (DEGs) were enriched in processes like cell-cell adhesion and ATP binding. Eight hub genes (EGFR, HSPA90AA1, MAPK1, HSPA4, PPP2CA, CDKN2A, CDC20, and ATM) were selected for further analysis. A total of 23 miRNAs associated with hub genes were identified, with 12 of them targeting PPP2CA. EGFR displayed the highest expression and hazard rate in survival analyses. The kinase domain of EGFR (PDBID: 5CNN) was chosen as the drug target. Adociaquinone A from Petrosia alfiani, docked with 5CNN, showed the lowest binding energy with stable interactions across a 50 ns MD simulation, highlighting its potential as a lead molecule against EGFR. This study has identified crucial DEGs and hub genes in gastric cancer, proposing novel therapeutic targets. Specifically, Adociaquinone A demonstrates promising potential as a bioactive drug against EGFR in gastric cancer, warranting further investigation. The predicted miRNA against the hub gene/proteins can also be used as potential therapeutic targets.
Collapse
Affiliation(s)
| | - Nada H. Aljarba
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Qudsia Yousafi
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Fatima Anwar
- Department of BiosciencesCOMSATS University Islamabad, Sahiwal CampusSahiwalPakistan
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJashoreBangladesh
| |
Collapse
|
21
|
Yadav V, Singh T, Sharma D, Garg VK, Chakraborty P, Ghatak S, Satapathy SR. Unraveling the Regulatory Role of HuR/microRNA Axis in Colorectal Cancer Tumorigenesis. Cancers (Basel) 2024; 16:3183. [PMID: 39335155 PMCID: PMC11430344 DOI: 10.3390/cancers16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden with high incidence and mortality. MicroRNAs (miRNAs) are small non-protein coding transcripts, conserved throughout evolution, with an important role in CRC tumorigenesis, and are either upregulated or downregulated in various cancers. RNA-binding proteins (RBPs) are known as essential regulators of miRNA activity. Human antigen R (HuR) is a prominent RBP known to drive tumorigenesis with a pivotal role in CRC. In this review, we discuss the regulatory role of the HuR/miRNA axis in CRC. Interestingly, miRNAs can directly target HuR, altering its expression and activity. However, HuR can also stabilize or degrade miRNAs, forming complex feedback loops that either activate or block CRC-associated signaling pathways. Dysregulation of the HuR/miRNA axis contributes to CRC initiation and progression. Additionally, HuR-miRNA regulation by other small non-coding RNAs, circular RNA (circRNAs), or long-non-coding RNAs (lncRNAs) is also explored here. Understanding this HuR-miRNA interplay could reveal novel biomarkers with better diagnostic or prognostic accuracy.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Payel Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Souvik Ghatak
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Shakti Ranjan Satapathy
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| |
Collapse
|
22
|
Sha Y, Reyimu A, Liu W, He C, Kaisaier A, Paerhati P, Li L, Zou X, Xu A, Cheng X, Abuduaini M. Construction and validation of a prognostic model for esophageal cancer based on prognostic-related RNA-binding protein. Medicine (Baltimore) 2024; 103:e39639. [PMID: 39287291 PMCID: PMC11404941 DOI: 10.1097/md.0000000000039639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Construction of a prognostic model for esophageal cancer (ESCA) based on prognostic RNA-binding proteins (RBPs) and preliminary evaluation of RBP function. METHODS RNA-seq data of ESCA was downloaded from The Cancer Genome Atlas database and mRNA was extracted to screen differentially expressed genes using R. After screening RBPs in differentially expressed genes, R packages clusterProfiler and pathview were used to analyze the RBPs for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway. Based on the prognosis-related RBPs, COX regression was used to establish the prognostic risk model of ESCA. Risk model predictive ability was assessed using calibration analysis, receiver operating characteristic curves, Kaplan-Meier curves, decision curve analysis, and Harrell consistency index (C-index). A nomogram was established by combining the risk model with clinicopathological features. RESULTS A total of 105 RBPs were screened from ESCA. A prognostic risk model consisting of 6 prognostic RBPs (ARHGEF28, BOLL, CIRBP, DKC1, SNRPB, and TRIT1) was constructed by COX regression analysis. The prognosis was worse in the high-risk group, and the receiver operating characteristic curve showed (area under the curve = 0.90) that the model better predicted patients' 5-year survival. In addition, 6 prognostic RBPs had good diagnostic power for ESCA. In addition, a total of 39 mRNAs were identified as predicted target molecules for DKC1. CONCLUSION ARHGEF28, BOLL, CIRBP, DKC1, SNRPB, and TRIT1, as RBPs, are associated with the prognosis of ESCA, which may provide new ideas for targeted therapy of ESCA.
Collapse
Affiliation(s)
- Yinzhong Sha
- Department of Laboratory Medicine, The First People’s Hospital of Kashi, Kashi City, China
| | - Abdusemer Reyimu
- Department of Laboratory Medicine, The First People’s Hospital of Kashi, Kashi City, China
| | - Wen Liu
- Department of Laboratory Medicine, The First People’s Hospital of Kashi, Kashi City, China
| | - Chuanjiang He
- Department of Laboratory Medicine, The First People’s Hospital of Kashi, Kashi City, China
| | | | - Pawuziye Paerhati
- Department of Laboratory Medicine, The First People’s Hospital of Kashi, Kashi City, China
| | - Li Li
- The First People’s Hospital of Kashi, Kashi City, China
| | - Xiaoguang Zou
- The First People’s Hospital of Kashi, Kashi City, China
| | - Aimin Xu
- Department of Laboratory Medicine, The First People’s Hospital of Kashi, Kashi City, China
| | - Xiang Cheng
- Department of Laboratory Medicine, The First People’s Hospital of Kashi, Kashi City, China
| | | |
Collapse
|
23
|
Guo Q, Zhou Y, Ni H, Niu M, Xu S, Zheng L, Zhang W. The SIX2/PFN2 feedback loop promotes the stemness of gastric cancer cells. J Transl Med 2024; 22:832. [PMID: 39256760 PMCID: PMC11389068 DOI: 10.1186/s12967-024-05618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The roles of the transcriptional factor SIX2 have been identified in several tumors. However, its roles in gastric cancer (GC) progression have not yet been revealed. Our objective is to explore the impact and underlying mechanisms of SIX2 on the stemness of GC cells. METHODS Lentivirus infection was employed to establish stable expression SIX2 or PFN2 in GC cells. Gain- and loss-of-function experiments were conducted to detect changes of stemness markers, flow cytometry profiles, tumor spheroid formation, and tumor-initiating ability. ChIP, RNA-sequencing, tissue microarray, and bioinformatics analysis were performed to reveal the correlation between SIX2 and PFN2. The mechanisms underlying the SIX2/PFN2 loop-mediated effects were elucidated through tissue microarray analysis, RNA stability assay, IP-MS, Co-Immunoprecipitation, and inhibition of the JNK signaling pathway. RESULTS The stemness of GC cells was enhanced by SIX2. Mechanistically, SIX2 directly bound to PFN2's promoter and promoted PFN2 activity. PFN2, in turn, promoted the mRNA stability of SIX2 by recruiting RNA binding protein YBX-1, subsequently activating the downstream MAPK/JNK pathway. CONCLUSION This study unveils the roles of SIX2 in governing GC cell stemness, defining a novel SIX2/PFN2 regulatory loop responsible for this regulation. This suggests the potential of targeting the SIX2/PFN2 loop for GC treatment (Graphical Abstracts).
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, P. R. China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Miaomiao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, 215132, P. R. China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, P. R. China.
| |
Collapse
|
24
|
Mizukoshi C, Kojima Y, Nomura S, Hayashi S, Abe K, Shimamura T. DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates. Genome Biol 2024; 25:229. [PMID: 39237934 PMCID: PMC11378460 DOI: 10.1186/s13059-024-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.
Collapse
Affiliation(s)
- Chikara Mizukoshi
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Aichi, Japan.
- Nagoya University Hospital, Aichi, Japan.
| | - Yasuhiro Kojima
- Laboratory of Computational Life Science, National Cancer Center Research Institute, Tokyo, Japan.
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Satoshi Nomura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Shuto Hayashi
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ko Abe
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Aichi, Japan.
- Department of Computational and Systems Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
25
|
Liu H, Ye Z, Wang X, Wu Y, Deng C. Comprehensive analysis of the functions, prognostic and diagnostic values of RNA binding proteins in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101937. [PMID: 38844022 DOI: 10.1016/j.jormas.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Accumulating evidence has suggested that RNA binding protein (RBP) dysregulation plays an essential role during tumorigenesis. Here, we sought to explore the potential biological functions and clinical significance of RBP and develop diagnostic and prognostic signatures based on RBP in patients with head and neck squamous cell carcinoma (HNSCC). METHODS The differently expressed RBPs between HNSCC samples and their normal counterparts were identified using the Limma package. The immunohistochemistry (IHC) images of several RBPs were collected from the Human Protein Atlas database. The diagnostic signature based on RBP was built by LASSO-logistic regression and random forest. The prognostic signature based on RBP was constructed by LASSO and stepwise Cox regression analysis in the training cohort and validated in the validation cohort. RESULTS Eighty-four aberrantly expressed RBPs were obtained, comprising 41 up-regulated and 43 down-regulated RBPs. Seven RBP genes (CPEB3, PDCD4, ENDOU, PARP12, DNMT3B, IGF2BP1, EXO1) were identified as diagnostic-related hub genes. They were used to establish a diagnostic RBP signature risk score (DRBPS) model by the coefficients in least absolute shrinkage and selection operator (LASSO)-logistic regression analysis and showed high specificity and sensitivity in the training (area under the receiver operating characteristic curve (AUC) = 0.998), and in all validation cohorts (AUC > 0.95 for all). Similarly, seven RBP genes (MKRN3, ZC3H12D, EIF5A2, AFF3, SIDT1, RBM24, and NR0B1) were identified as prognosis-associated hub genes by LASSO and stepwise multiple Cox regression analyses and were used to construct the prognostic model named as PRBPS. The AUC of the time-dependent receiver operator characteristic curve of the prognostic model was 0.664 at 3 years and 0.635 at 5 years in the training cohort and 0.720, 0.777 in the validation cohort, showing a favorable predictive efficacy for prognosis in HNSCC. CONCLUSIONS Our results demonstrate the value of consideration of RBP in the diagnosis and prognosis for HNSCC and provide a novel insight into understanding the potential role of dysregulated RBP in HNSCC.
Collapse
Affiliation(s)
- Hai Liu
- School of Stomatology, Wannan Medical College, Wuhu, China; Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
| | - Zhenqi Ye
- School of Stomatology, Wannan Medical College, Wuhu, China; Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
| | - Xiaoying Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yaping Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, China; Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China.
| |
Collapse
|
26
|
Li W, Yang Y, Huang L, Yu X, Wang T, Zhang N, Yang M. The TDP-43/TP63 Positive Feedback Circuit Promotes Esophageal Squamous Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402913. [PMID: 39023169 PMCID: PMC11425248 DOI: 10.1002/advs.202402913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent malignancies with a 5-year survival rate of only 15% in patients with advanced diseases. Tumor protein 63 (TP63), a master transcription factor (TF) in ESCC, cooperates with other TFs to regulate enhancers and/or promoters of target oncogenes, which in turn promotes tumorigenesis. TAR-DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein with elevated expression in several neoplasms. However, it remains unclear how TDP-43 contributes to ESCC progression. In this study, TDP-43 is identified as a novel oncogene with markedly upregulated expression in ESCC tissues through profiling expression levels of one hundred and fifty canonical RNA binding protein (RBP) genes in multiple ESCC patient cohorts. Importantly, TDP-43 boosted TP63 expression via post-transcriptionally stabilizing TP63 mRNAs as a RBP and promoting TP63 transcription as a TF binding to the TP63 promoter in ESCC cells. In contrast, the master TF TP63 also bound to the TDP-43 promoter, accelerated TDP-43 transcription, and caused a noticeable increase in TDP-43 expression in ESCC cells. The findings highlight TDP-43 as a viable therapeutic target for ESCC and uncover a hitherto unrecognized TDP-43/TP63 circuit in cancer.
Collapse
Affiliation(s)
- Wenwen Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, 271021, China
| | - Yanting Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xinyuan Yu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Teng Wang
- Shandong University Cancer Center, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, 271021, China
- Shandong University Cancer Center, Jinan, Shandong, 250117, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
27
|
Shi X, Qi Z, Huang D, Zhu J, Shen X, Liu T. HuR facilitates miR-93-5p-induced activation of MAP3K2 translation via MAP3K2 3'UTR ARE2 in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 722:150152. [PMID: 38795452 DOI: 10.1016/j.bbrc.2024.150152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
MicroRNAs (miRNAs) can positively regulate gene expression through an unconventional RNA activation mechanism involving direct targeting 3' untranslated regions (UTRs). Our prior study found miR-93-5p activates mitogen-activated protein kinase kinase kinase 2 (MAP3K2) in hepatocellular carcinoma (HCC) via its 3'UTR. However, the underlying mechanism remains elusive. Here, we identified two candidate AU-rich element (ARE) motifs (ARE1 and ARE2) adjacent to the miR-93-5p binding site located within the MAP3K2 3'UTR using AREsite2. Luciferase reporter and translation assays validated that only ARE2 participated in MAP3K2 activation. Integrative analysis revealed that human antigen R (HuR), an ARE2-associated RNA-binding protein (RBP), physically and functionally interacted with the MAP3K2 3'UTR. Consequently, an HuR-ARE2 complex was shown to facilitate miR-93-5p-mediated upregulation of MAP3K2 expression. Furthermore, bioinformatics analysis and studies of HCC cells and specimens highlighted an oncogenic role for HuR and positive HuR-MAP3K2 expression correlation. HuR is also an enhancing factor in the positive feedback circuit comprising miR-93-5p, MAP3K2, and c-Jun demonstrated in our prior study. The newly identified HuR-ARE2 involvement enriches the mechanism of miR-93-5p-driven MAP3K2 activation and suggests new therapeutic strategies warranted for exploration in HCC.
Collapse
Affiliation(s)
- Xuan Shi
- Department of Gastroenterology and Hepatology, and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
| | - Zhuoran Qi
- Department of Gastroenterology and Hepatology, and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
| | - Dongbo Huang
- Department of Gastroenterology and Hepatology, and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Rd., Shanghai, 200032, China; Department of Gastroenterology and Hepatology, Shanghai Geriatric Medical Center, 2560 Chunshen Rd., Shanghai, 201104, China.
| |
Collapse
|
28
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2024. [PMID: 39183666 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group 'Non-Coding RNAs and RBPs in Human Diseases', Medical Faculty, Martin Luther University Halle/Wittenberg, Germany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle/Wittenberg, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen/Nürnberg, Germany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle/Wittenberg, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle/Wittenberg, Germany
| | - Marcel Köhn
- Junior Group 'Non-Coding RNAs and RBPs in Human Diseases', Medical Faculty, Martin Luther University Halle/Wittenberg, Germany
| |
Collapse
|
29
|
Liang Q, Yu T, Kofman E, Jagannatha P, Rhine K, Yee BA, Corbett KD, Yeo GW. High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues. Nat Commun 2024; 15:7067. [PMID: 39152130 PMCID: PMC11329496 DOI: 10.1038/s41467-024-50363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/09/2024] [Indexed: 08/19/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal functions in RNA metabolism, but current methods are limited in retrieving RBP-RNA interactions within endogenous biological contexts. Here, we develop INSCRIBE (IN situ Sensitive Capture of RNA-protein Interactions in Biological Environments), circumventing the challenges through in situ RNA labeling by precisely directing a purified APOBEC1-nanobody fusion to the RBP of interest. This method enables highly specific RNA-binding site identification across a diverse range of fixed biological samples such as HEK293T cells and mouse brain tissue and accurately identifies the canonical binding motifs of RBFOX2 (UGCAUG) and TDP-43 (UGUGUG) in native cellular environments. Applicable to any RBP with available primary antibodies, INSCRIBE enables sensitive capture of RBP-RNA interactions from ultra-low input equivalent to ~5 cells. The robust, versatile, and sensitive INSCRIBE workflow is particularly beneficial for precious tissues such as clinical samples, empowering the exploration of genuine RBP-RNA interactions in RNA-related disease contexts.
Collapse
Affiliation(s)
- Qishan Liang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| | - Gene W Yeo
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Praygod TF, Li J, Li H, Tan W, Hu Z, Zhou L. Identification of RNA-binding protein RBMS3 as a potential biomarker for immunotherapy in bladder cancer. Cancer Biomark 2024:CBM230489. [PMID: 39392600 DOI: 10.3233/cbm-230489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA-binding protein (RBP) plays pivotal roles in the malignant progression of cancer by regulating gene expression. In this paper, we aimed to develop RBP-based prognostic signature and identify critical hub RBPs in bladder cancer (BLCA). Firstly, a risk model based on differentially expressed RBP gens (DERBPs) between normal and tumor tissues was successfully established, which can predict the tumor stromal score and drug sensitivity. Then two another RBP risk models based on miRNA-correlated RBPs or lncRNA-correlated RBPs were also established, and RBMS3 was identified as the overlapping gene in the three models. Data from multiple bioinformatics databases revealed that RBMS3 was an independent prognostic factor for overall survival (OS), and was associated with an immunosuppressive tumor microenvironment (TME) in BLCA. Further, Single-cell RNA-Seq (scRNA-Seq) data and the human protein altas (HPA) database showed that RBMS3 expression (both mRNA and protein) were up-regulated in BLCA tumor and tumor stromal cells. Finally, RBMS3 was shown to be associated with worse response to BLCA immunotherapy. Overall, RBMS3 is a key prognostic RBP with TME remodeling function and may serve as a target for BLCA immunotherapy.
Collapse
Affiliation(s)
- Tarimo Fredrick Praygod
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Zhou
- Institute of Interdisciplinary Research, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, China
- Research Institute of Guangdong Polytechnic Normal University in Heyuan City, Guangdong, China
| |
Collapse
|
31
|
Zhang J, He J, Chen W, Chen G, Wang L, Liu Y, Wang Z, Yang M, Huang G, Yang Y, Ma W, Li Y. Single-cell RNA-binding protein pattern-mediated molecular subtypes depict the hallmarks of the tumor microenvironment in bladder urothelial carcinoma. ONCOLOGIE 2024; 26:657-669. [DOI: 10.1515/oncologie-2024-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Abstract
Objectives
Bladder carcinoma (BC) is a common malignancy of the urinary tract. As a new hallmark of cancer for drug therapy, RNA-binding proteins (RBPs) are key regulatory factors in alternative splicing events. This work is to uncover the relationship between BC and RBP in order to find drug targets in BC.
Methods
In this work, data from single-cell RNA-seq GSE1355337, PRJNA662018, and the TCGA-Bladder urothelial carcinoma (BLCA) cohorts are integrated to identify their relationships. A scoring system is constructed according to RBPs gene expression and patients’ survival. A network is constructed to analyze the alternative splicing events and RBP genes.
Results
A scoring system identified 321 RBPs significantly associated with the prognosis of patients. Subsequent typing of these RBP genes in two single-cell datasets demonstrated that most of the RBP genes had variable copy numbers. Three RBP clusters were identified. Using RBP genes as a signature in BC epithelial cells allows for differentiation between different grades of BC samples. The novel RBP genes-based subtype system reflects BC clinical staging. Notably, CellChat analysis revealed that the RBP genes-associated cell subtypes of T cells had extensive interactions with epithelial cells. Further analysis showed that the ligand-receptor pair MIF-CXCR4 mediated the communication between RBP-associated subtypes of BC epithelial cells and T cells.
Conclusions
Taken together, RBP genes are associated with BC progress and offer new indicators for precision medicine in BC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Urology Surgery , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Jiejie He
- Department of Surgical Oncology , Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Wen Chen
- Wuhan Ruixing Biotechnology Co. Ltd. , Wuhan , Hubei Province , China
| | - Guojun Chen
- Department of Urology Surgery , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Liang Wang
- Department of Gastrointestinal Oncology , Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Yuchan Liu
- Department of Gynecology and Obstetrics , Jingmen Central Hospital , Jingmen , Hubei Province , China
| | - Zhanjin Wang
- Medical College of Qinghai University , Xining , Qinghai Province , China
| | - Ming Yang
- Department of Medical Records and Statistic, Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Guoyi Huang
- Wuhan Ruixing Biotechnology Co. Ltd. , Wuhan , Hubei Province , China
| | - Yongli Yang
- Department of Gynecology , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Wei Ma
- Department of Surgery , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Yan Li
- Department of Gynecologic Oncology , Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University , Xining , Qinghai Province , China
| |
Collapse
|
32
|
Dai C, Cao J, Tang Y, Jiang Y, Luo C, Zheng J. YTHDF3 phase separation regulates HSPA13-dependent clear cell renal cell carcinoma development and immune evasion. Cancer Sci 2024; 115:2588-2601. [PMID: 38811341 PMCID: PMC11309927 DOI: 10.1111/cas.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Insufficient understanding about the immune evasion mechanism leads to the inability in predicting current immunotherapy effects in clear cell renal cell carcinoma (ccRCC) and sensitizing ccRCC to immunotherapy. RNA binding proteins (RBPs) can promote tumor progression and immune evasion. However, research on RBPs, particularly m6A reader YTHDF3, in ccRCC development and immune evasion is limited. In this study, we found that YTHDF3 level was downregulated in ccRCC and was an independent prognostic biomarker for ccRCC. Decreased YTHDF3 expression was correlated with the malignancy, immune evasion, and poor response to anti-programmed death ligand 1 (PD-L1)/CTLA-4 in ccRCC. YTHDF3 overexpression restrained ccRCC cell malignancy, PD-L1 expression, CD8+ T cell infiltration and activities in vivo, indicating its inhibitory role in ccRCC development and immune evasion. Mechanistically, YTHDF3 WT was found to have phase separation characteristics and suppress ccRCC malignancy and immune evasion. Whereas YTHDF3 mutant, which disrupted phase separation, abolished its function. YTHDF3 enhanced the degradation of its target mRNA HSPA13 by phase separation and recruiting DDX6, resulting in the downregulation of the downstream immune checkpoint PD-L1. HSPA13 overexpression restored ccRCC malignancy and immune evasion suppressed by YTHDF3 overexpression. In all, our results identify a new model of YTHDF3 in regulating ccRCC progression and immune evasion through phase separation.
Collapse
Affiliation(s)
- Chenyun Dai
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jianfu Cao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Yuangui Tang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Yuxiao Jiang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Chenghua Luo
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic DiseasesShihezi University School of MedicineShiheziChina
- Department of Pathology, The First Affiliated HospitalShihezi UniversityShiheziChina
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
33
|
Lu Y, Yang Z, Zhang J, Ma X, Bi X, Xu L, Feng K, Wu Z, Ma X, Zhuang L. RNA-binding protein QKI promotes the progression of HCC by interacting with long non-coding RNA EGOT. Int Immunopharmacol 2024; 136:112297. [PMID: 38810307 DOI: 10.1016/j.intimp.2024.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND RNA-binding proteins are revealed to play important roles during the progression of hepatocellular carcinoma (HCC). However, the regulatory mechanisms of RNA-binding protein Quaking (QKI) in the expression and role of long non-coding RNAs (lncRNAs) in HCC cells remain not well understood. METHODS Cell Counting Kit-8, wound-healing, Transwell and colony-forming assays were performed to evaluate the effects of QKI and lncRNA EGOT on proliferation and migration of HCC cells. Tumor growth of HCC was analyzed using a mouse xenograft model. Immunoprecipitation (RIP) assay was used to investigate the interaction between QKI and EGOT. RESULTS The expression of QKI was significantly upregulated in HCC tissues and the higher QKI level was significantly associated with a poorer prognosis. Overexpression of QKI promoted the proliferation, migration, and colony-forming ability of HCC cells in vitro and tumor growth of HCC in vivo. Mechanistically, QKI protein could bind to EGOT RNA and increase its expression. Inhibition of EGOT attenuated the effects of QKI on the malignant phenotypes of HCC cells. In addition, both QKI and EGOT could activate the SAPK/JNK signaling pathway in HCC cells. CONCLUSIONS Our findings indicated that QKI exerted promotive effects on the malignant phenotypes of HCC through its interaction with EGOT.
Collapse
Affiliation(s)
- Yi Lu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenpeng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jie Zhang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xuefeng Ma
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xiaoye Bi
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Longhai Xu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Keqing Feng
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zehua Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xiang Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Likun Zhuang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
34
|
Wassmer E, Koppány G, Hermes M, Diederichs S, Caudron-Herger M. Refining the pool of RNA-binding domains advances the classification and prediction of RNA-binding proteins. Nucleic Acids Res 2024; 52:7504-7522. [PMID: 38917322 PMCID: PMC11260472 DOI: 10.1093/nar/gkae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
From transcription to decay, RNA-binding proteins (RBPs) influence RNA metabolism. Using the RBP2GO database that combines proteome-wide RBP screens from 13 species, we investigated the RNA-binding features of 176 896 proteins. By compiling published lists of RNA-binding domains (RBDs) and RNA-related protein family (Rfam) IDs with lists from the InterPro database, we analyzed the distribution of the RBDs and Rfam IDs in RBPs and non-RBPs to select RBDs and Rfam IDs that were enriched in RBPs. We also explored proteins for their content in intrinsically disordered regions (IDRs) and low complexity regions (LCRs). We found a strong positive correlation between IDRs and RBDs and a co-occurrence of specific LCRs. Our bioinformatic analysis indicated that RBDs/Rfam IDs were strong indicators of the RNA-binding potential of proteins and helped predicting new RBP candidates, especially in less investigated species. By further analyzing RBPs without RBD, we predicted new RBDs that were validated by RNA-bound peptides. Finally, we created the RBP2GO composite score by combining the RBP2GO score with new quality factors linked to RBDs and Rfam IDs. Based on the RBP2GO composite score, we compiled a list of 2018 high-confidence human RBPs. The knowledge collected here was integrated into the RBP2GO database at https://RBP2GO-2-Beta.dkfz.de.
Collapse
Affiliation(s)
- Elsa Wassmer
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gergely Koppány
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Malte Hermes
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, and German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Maïwen Caudron-Herger
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Vijayakumar A, Majumder M, Yin S, Brobbey C, Karam J, Howley B, Howe P, Berto S, Madan L, Gan W, Palanisamy V. PRMT5-mediated arginine methylation of FXR1 is essential for RNA binding in cancer cells. Nucleic Acids Res 2024; 52:7225-7244. [PMID: 38709899 PMCID: PMC11229354 DOI: 10.1093/nar/gkae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Emerging evidence indicates that arginine methylation promotes the stability of arginine-glycine-rich (RGG) motif-containing RNA-binding proteins (RBPs) and regulates gene expression. Here, we report that post-translational modification of FXR1 enhances the binding with mRNAs and is involved in cancer cell growth and proliferation. Independent point mutations in arginine residues of FXR1's nuclear export signal (R386 and R388) and RGG (R453, R455 and R459) domains prevent it from binding to RNAs that form G-quadruplex (G4) RNA structures. Disruption of G4-RNA structures by lithium chloride failed to bind with FXR1, indicating its preference for G4-RNA structure containing mRNAs. Furthermore, loss-of-function of PRMT5 inhibited FXR1 methylation both in vivo and in vitro, affecting FXR1 protein stability, inhibiting RNA-binding activity and cancer cell growth and proliferation. Finally, the enhanced crosslinking and immunoprecipitation (eCLIP) analyses reveal that FXR1 binds with the G4-enriched mRNA targets such as AHNAK, MAP1B, AHNAK2, HUWE1, DYNC1H1 and UBR4 and controls its mRNA expression in cancer cells. Our findings suggest that PRMT5-mediated FXR1 methylation is required for RNA/G4-RNA binding, which promotes gene expression in cancer cells. Thus, FXR1's structural characteristics and affinity for RNAs preferentially G4 regions provide new insights into the molecular mechanism of FXR1 in oral cancer cells.
Collapse
Affiliation(s)
- Anitha Vijayakumar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles Brobbey
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joseph Karam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
36
|
Zhu DH, Su KK, Ou-Yang XX, Zhang YH, Yu XP, Li ZH, Ahmadi-Nishaboori SS, Li LJ. Mechanisms and clinical landscape of N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers. Mol Cell Biochem 2024; 479:1553-1570. [PMID: 38856795 PMCID: PMC11254988 DOI: 10.1007/s11010-024-05040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Epigenetics encompasses reversible and heritable chemical modifications of non-nuclear DNA sequences, including DNA and RNA methylation, histone modifications, non-coding RNA modifications, and chromatin rearrangements. In addition to well-studied DNA and histone methylation, RNA methylation has emerged as a hot topic in biological sciences over the past decade. N6-methyladenosine (m6A) is the most common and abundant modification in eukaryotic mRNA, affecting all RNA stages, including transcription, translation, and degradation. Advances in high-throughput sequencing technologies made it feasible to identify the chemical basis and biological functions of m6A RNA. Dysregulation of m6A levels and associated modifying proteins can both inhibit and promote cancer, highlighting the importance of the tumor microenvironment in diverse biological processes. Gastrointestinal tract cancers, including gastric, colorectal, and pancreatic cancers, are among the most common and deadly malignancies in humans. Growing evidence suggests a close association between m6A levels and the progression of gastrointestinal tumors. Global m6A modification levels are substantially modified in gastrointestinal tumor tissues and cell lines compared to healthy tissues and cells, possibly influencing various biological behaviors such as tumor cell proliferation, invasion, metastasis, and drug resistance. Exploring the diagnostic and therapeutic potential of m6A-related proteins is critical from a clinical standpoint. Developing more specific and effective m6A modulators offers new options for treating these tumors and deeper insights into gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kun-Kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Xi Ou-Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yan-Hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zu-Hong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | | | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
37
|
Arthur A, Nejmi S, Franchini DM, Espinos E, Millevoi S. PD-L1 at the crossroad between RNA metabolism and immunosuppression. Trends Mol Med 2024; 30:620-632. [PMID: 38824002 DOI: 10.1016/j.molmed.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
Programmed death ligand-1 (PD-L1) is a key component of tumor immunosuppression. The uneven therapeutic results of PD-L1 therapy have stimulated intensive studies to better understand the mechanisms underlying altered PD-L1 expression in cancer cells, and to determine whether, beyond its immune function, PD-L1 might have intracellular functions promoting tumor progression and resistance to treatments. In this Opinion, we focus on paradigmatic examples highlighting the central role of PD-L1 in post-transcriptional regulation, with PD-L1 being both a target and an effector of molecular mechanisms featured prominently in RNA research, such as RNA methylation, phase separation and RNA G-quadruplex structures, in order to highlight vulnerabilities on which future anti-PD-L1 therapies could be built.
Collapse
Affiliation(s)
- Axel Arthur
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Sanae Nejmi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France; Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Stefania Millevoi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.
| |
Collapse
|
38
|
Paizula X, Wulaying A, Chen D, Ou J. KHSRP has oncogenic functions and regulates the expression and alternative splicing of DNA repair genes in breast cancer MDA-MB-231 cells. Sci Rep 2024; 14:14694. [PMID: 38926398 PMCID: PMC11208542 DOI: 10.1038/s41598-024-64687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer has become the most common type of cancers worldwide. Its high prevalence and malignant features are associated with various environmental factors and molecules. The KH-type splicing regulatory protein (KHSRP) participates in the development of breast cancer, while the underlying mechanisms are largely unknown. In this study, we silenced KHSRP expression in MDA-MB-231 cells by small interfering RNA (siKHSRP), and then assessed its effects on cellular features. Finally, we performed whole transcriptome sequencing (RNA-seq) experiments to explore the downstream targets of KHSRP, and validated their changed pattern using quantitative polymerase chain reaction. We found KHSRP showed higher expression level and was associated with worse prognosis in breast cancer patients. In siKHSRP samples, the proliferation, invasion, and migration abilities were significantly repressed compared with negative control (NC) samples, while the apoptosis level was increased. By investigating the RNA-seq data, we found KHSRP globally regulates the expression and alternative splicing profiles of MDA-MB-231 cells by identifying 1632 differentially expressed genes (DEGs) and 1630 HKSRP-regulated AS events (RASEs). Functional enriched analysis of DEGs demonstrated that cilium assembly and movement and extracellular matrix organization pathways were specifically enriched in up DEGs, consistent with the repressed migration and invasion abilities in siKHSRP cells. Interestingly, the cell cycle and DNA damage and repair associated pathways were enriched in both down DEGs and RASE genes, suggesting that KHSRP may modulate cell proliferation by regulating genes in these pathways. Finally, we validated the changed expression and AS patterns of genes in cell cycle and DNA damage/repair pathways. Expression levels of BIRC5, CCNA2, CDK1, FEN1, FOXM1, PTTG1, and UHRF1 were downregulated in siKHSRP samples. The AS patterns of PARK7, ERCC1, CENPX, and UBE2A were also dysregulated in siKHSRP samples and confirmed PCR experiments. In summary, our study comprehensively explored the downstream targets and their functions of KHSRP in breast cancer cells, highlighting the molecular mechanisms of KHSRP on the oncogenic features of breast cancer. The identified molecular targets could be served as potential therapeutic targets for breast cancer in future.
Collapse
Affiliation(s)
- Xuelaiti Paizula
- The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, China
| | - Aliya Wulaying
- The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Dong Chen
- Innovation and Research Center, Wuhan Nissi Biotechnology Co., Ltd., Wuhan, China
| | - Jianghua Ou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
39
|
Hsieh MH, Wei Y, Li L, Nguyen LH, Lin YH, Yong JM, Sun X, Wang X, Luo X, Knutson SK, Bracken C, Daley GQ, Powers JT, Zhu H. Liver cancer initiation requires translational activation by an oncofetal regulon involving LIN28 proteins. J Clin Invest 2024; 134:e165734. [PMID: 38875287 PMCID: PMC11290964 DOI: 10.1172/jci165734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
It is unknown which posttranscriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate posttranscriptional RNA metabolism within ribonucleoprotein networks, is essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to LIN28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 was a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 was able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/Lin28b-deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.
Collapse
Affiliation(s)
- Meng-Hsiung Hsieh
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yonglong Wei
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liem H. Nguyen
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jung M. Yong
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuxu Sun
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xun Wang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Luo
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - George Q. Daley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - John T. Powers
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
40
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR. Disable 2, A Versatile Tissue Matrix Multifunctional Scaffold Protein with Multifaceted Signaling: Unveiling Role in Breast Cancer for Therapeutic Revolution. Cell Biochem Biophys 2024; 82:501-520. [PMID: 38594547 DOI: 10.1007/s12013-024-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The Disabled-2 (DAB2) protein, found in 80-90% of various tumors, including breast cancer, has been identified as a potential tumor suppressor protein. On the contrary, some hypothesis suggests that DAB2 is associated with the modulation of the Ras/MAPK pathway by endocytosing the Grb/Sos1 signaling complex, which produces oncogenes and chemoresistance to anticancer drugs, leading to increased tumor growth and metastasis. DAB2 has multiple functions in several disorders and is typically under-regulated in several cancers, making it a potential target for treatment of cancer therapy. The primary function of DAB2 is the modulation of transforming growth factor- β (TGF-β) mediated endocytosis, which is involved in several mechanisms of cancer development, including tumor suppression through promoting apoptosis and suppressing cell proliferation. In this review, we will discuss in detail the mechanisms through which DAB2 leads to breast cancer and various advancements in employing DAB2 in the treatment of breast cancer. Additionally, we outlined its role in other diseases. We propose that upregulating DAB2 could be a novel approach to the therapeutics of breast cancer.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
41
|
Wang B, Fan X, Wang L, Wei X. The RNA-binding protein sorbin and SH3 domain-containing 2 are transcriptionally regulated by specificity protein 1 and function as tumor suppressors in bladder cancer by stabilizing tissue factor pathway inhibitor. Mol Carcinog 2024; 63:1174-1187. [PMID: 38501385 DOI: 10.1002/mc.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Sorbin and SH3 domain-containing 2 (SORBS2) is an RNA-binding protein and has been implicated in the development of some cancers. However, its role in bladder cancer (BC) is yet to be established. The expression of SORBS2 in BC tissues was determined from the Gene Expression Omnibus and Gene Expression Profiling Interactive Analysis databases and collected paired tumor/normal samples. The effects of SORBS2 on BC cells were detected by CCK-8, colony formation, Transwell, dual-luciferase, RNA immunoprecipitation, chromatin immunoprecipitation, and DNA pull-down assays. In vivo, BC cell growth and metastasis were studied by a xenograft subcutaneous model and a tail-vein metastasis model. The results showed that SORBS2 expression was significantly decreased in BC tissues and cells. SORBS2 overexpression inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and tumor growth and metastasis in vivo, while silencing SORBS2 produced the opposite effect. Mechanistically, we found that SORBS2 enhanced the stability of tissue factor pathway inhibitor (TFPI) mRNA via direct binding to its 3' UTR. Restoration of TFPI expression reversed SORBS2 knockdown-induced malignant phenotypes of BC cells. In addition, SORBS2 expression was negatively regulated by the transcription factor specificity protein 1 (SP1). Conversely, SORBS2 can be transcriptionally regulated by SP1 and inhibit BC cell growth and metastasis via stabilization of TFPI mRNA, indicating SORBS2 may be a promising therapeutic target for BC.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingang Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaosong Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Ciocia A, Mestre-Farràs N, Vicent-Nacht I, Guitart T, Gebauer F. CSDE1: a versatile regulator of gene expression in cancer. NAR Cancer 2024; 6:zcae014. [PMID: 38600987 PMCID: PMC11005786 DOI: 10.1093/narcan/zcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
RNA-binding proteins (RBPs) have garnered significant attention in the field of cancer due to their ability to modulate diverse tumor traits. Once considered untargetable, RBPs have sparked renewed interest in drug development, particularly in the context of RNA-binding modulators of translation. This review focuses on one such modulator, the protein CSDE1, and its pivotal role in regulating cancer hallmarks. We discuss context-specific functions of CSDE1 in tumor development, its mechanisms of action, and highlight features that support its role as a molecular adaptor. Additionally, we discuss the regulation of CSDE1 itself and its potential value as biomarker and therapeutic target.
Collapse
Affiliation(s)
- Annagiulia Ciocia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Neus Mestre-Farràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Ignacio Vicent-Nacht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| |
Collapse
|
43
|
Sun C, Feng Y. EPDRNA: A Model for Identifying DNA-RNA Binding Sites in Disease-Related Proteins. Protein J 2024; 43:513-521. [PMID: 38491248 DOI: 10.1007/s10930-024-10183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/18/2024]
Abstract
Protein-DNA and protein-RNA interactions are involved in many biological processes and regulate many cellular functions. Moreover, they are related to many human diseases. To understand the molecular mechanism of protein-DNA binding and protein-RNA binding, it is important to identify which residues in the protein sequence bind to DNA and RNA. At present, there are few methods for specifically identifying the binding sites of disease-related protein-DNA and protein-RNA. In this study, so we combined four machine learning algorithms into an ensemble classifier (EPDRNA) to predict DNA and RNA binding sites in disease-related proteins. The dataset used in model was collated from UniProt and PDB database, and PSSM, physicochemical properties and amino acid type were used as features. The EPDRNA adopted soft voting and achieved the best AUC value of 0.73 at the DNA binding sites, and the best AUC value of 0.71 at the RNA binding sites in 10-fold cross validation in the training sets. In order to further verify the performance of the model, we assessed EPDRNA for the prediction of DNA-binding sites and the prediction of RNA-binding sites on the independent test dataset. The EPDRNA achieved 85% recall rate and 25% precision on the protein-DNA interaction independent test set, and achieved 82% recall rate and 27% precision on the protein-RNA interaction independent test set. The online EPDRNA webserver is freely available at http://www.s-bioinformatics.cn/epdrna .
Collapse
Affiliation(s)
- CanZhuang Sun
- College of Science, Inner Mongolia Agriculture University, Hohhot, 010018, People's Republic of China
| | - YongE Feng
- College of Science, Inner Mongolia Agriculture University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
44
|
Kweon TH, Jung H, Ko JY, Kang J, Kim W, Kim Y, Kim HB, Yi EC, Ku NO, Cho JW, Yang WH. O-GlcNAcylation of RBM14 contributes to elevated cellular O-GlcNAc through regulation of OGA protein stability. Cell Rep 2024; 43:114163. [PMID: 38678556 DOI: 10.1016/j.celrep.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation. By investigating the correlation between elevated O-GlcNAcylation and increased RBM14 expression in lung cancer cells, we discovered that RBM14 promotes ubiquitin-dependent proteasomal degradation of OGA, ultimately mediating cellular O-GlcNAcylation levels. In addition, RBM14 itself is O-GlcNAcylated at serine 521, regulating its interaction with the E3 ligase TRIM33, consequently affecting OGA protein stability. Moreover, we demonstrated that mutation of serine 521 to alanine abrogated the oncogenic properties of RBM14. Collectively, our findings reveal a previously unknown mechanism for the regulation of OGA and suggest a potential therapeutic target for the treatment of cancers with dysregulated O-GlcNAcylation.
Collapse
Affiliation(s)
- Tae Hyun Kweon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Yeon Ko
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jingu Kang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wonyoung Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han Byeol Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin Won Cho
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
45
|
Hawkins S, Mondaini A, Namboori SC, Nguyen GG, Yeo GW, Javed A, Bhinge A. ePRINT: exonuclease assisted mapping of protein-RNA interactions. Genome Biol 2024; 25:140. [PMID: 38807229 PMCID: PMC11134894 DOI: 10.1186/s13059-024-03271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.
Collapse
Affiliation(s)
- Sophie Hawkins
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Alexandre Mondaini
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Seema C Namboori
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Grady G Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, UC San Diego, La Jolla, CA, USA
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Akshay Bhinge
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK.
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
46
|
Rosenblum SL, Soueid DM, Giambasu G, Vander Roest S, Pasternak A, DiMauro EF, Simov V, Garner AL. Live cell screening to identify RNA-binding small molecule inhibitors of the pre-let-7-Lin28 RNA-protein interaction. RSC Med Chem 2024; 15:1539-1546. [PMID: 38784453 PMCID: PMC11110735 DOI: 10.1039/d4md00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulation of the networking of RNA-binding proteins (RBPs) and RNAs drives many human diseases, including cancers, and the targeting of RNA-protein interactions (RPIs) has emerged as an exciting area of RNA-targeted drug discovery. Accordingly, methods that enable the discovery of cell-active small molecule modulators of RPIs are needed to propel this emerging field forward. Herein, we describe the application of live-cell assay technology, RNA interaction with protein-mediated complementation assay (RiPCA), for high-throughput screening to identify small molecule inhibitors of the pre-let-7d-Lin28A RPI. Utilizing a combination of RNA-biased small molecules and virtual screening hits, we discovered an RNA-binding small molecule that can disrupt the pre-let-7-Lin28 interaction demonstrating the potential of RiPCA for advancing RPI-targeted drug discovery.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | - Dalia M Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| | - George Giambasu
- Computational Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | | | - Erin F DiMauro
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Vladimir Simov
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| |
Collapse
|
47
|
Wang Z, Zhang C, Guo J, Yang Y, Li P, Wang Z, Liu S, Zhang L, Zeng X, Zhai J, Wang X, Zhao Q, Chen Z, Zhu P, He Q. CRISPR-Cas9 screening identifies INTS3 as an anti-apoptotic RNA-binding protein and therapeutic target for colorectal cancer. iScience 2024; 27:109676. [PMID: 38665208 PMCID: PMC11043890 DOI: 10.1016/j.isci.2024.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Growing evidences indicate that RNA-binding proteins (RBPs) play critical roles in regulating the RNA splicing, polyadenylation, stability, localization, translation, and turnover. Abnormal expression of RBPs can promote tumorigenesis. Here, we performed a CRISPR screen using an RBP pooled CRISPR knockout library and identified 27 potential RBPs with role in supporting colorectal cancer (CRC) survival. We found that the deletion/depletion of INTS3 triggered apoptosis in CRC. The in vitro experiments and RNA sequencing revealed that INTS3 destabilized pro-apoptotic gene transcripts and contributed to the survival of CRC cells. INTS3 loss delayed CRC cells growth in vivo. Furthermore, delivery of DOTAP/cholesterol-mshINTS3 nanoparticles inhibited CRC tumor growth. Collectively, our work highlights the role of INTS3 in supporting CRC survival and provides several novel therapeutic targets for treatment.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Cheng Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jing Guo
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Yanmei Yang
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peixian Li
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Ziyan Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Lulu Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiaoyu Zeng
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jincheng Zhai
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xinyong Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qi Zhao
- Department of oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
48
|
Liu X, Wu L, Wang L, Li Y. Identification and classification of glioma subtypes based on RNA-binding proteins. Comput Biol Med 2024; 174:108404. [PMID: 38582000 DOI: 10.1016/j.compbiomed.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Glioma is a common and aggressive primary malignant cancer known for its high morbidity, mortality, and recurrence rates. Despite this, treatment options for glioma are currently restricted. The dysregulation of RBPs has been linked to the advancement of several types of cancer, but their precise role in glioma evolution is still not fully understood. This study sought to investigate how RBPs may impact the development and prognosis of glioma, with potential implications for prognosis and therapy. METHODS RNA-seq profiles of glioma and corresponding clinical data from the CGGA database were initially collected for analysis. Unsupervised clustering was utilized to identify crucial tumor subtypes in glioma development. Subsequent time-series analysis and MS model were employed to track the progression of these identified subtypes. RBPs playing a significant role in glioma progression were then pinpointed using WGCNA and Lasso Cox regression models. Functional analysis of these key RBP-related genes was conducted through GSEA. Additionally, the CIBERSORT algorithm was utilized to estimate immune infiltrating cells, while the STRING database was consulted to uncover potential mechanisms of the identified biomarkers. RESULTS Six tumor subgroups were identified and found to be highly homogeneous within each subgroup. The progression stages of these tumor subgroups were determined using time-series analysis and a MS model. Through WGCNA, Lasso Cox, and multivariate Cox regression analysis, it was confirmed that BCLAF1 is correlated with survival in glioma patients and is closely linked to glioma progression. Functional annotation suggests that BCLAF1 may impact glioma progression by influencing RNA splicing, which in turn affects the cell cycle, Wnt signaling pathway, and other cancer development pathways. CONCLUSIONS The study initially identified six subtypes of glioma progression and assessed their malignancy ranking. Furthermore, it was determined that BCLAF1 could serve as an RBP-related prognostic marker, offering significant implications for the clinical diagnosis and personalized treatment of glioma.
Collapse
Affiliation(s)
- Xudong Liu
- School of Medicine, Chongqing University, Chongqing, 400044, China; Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
49
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
50
|
Abdelsam SS, Ghanem SK, Zahid MA, Abunada HH, Bader L, Raïq H, Khan A, Parray A, Djouhri L, Agouni A. Human antigen R: Exploring its inflammatory response impact and significance in cardiometabolic disorders. J Cell Physiol 2024; 239:e31229. [PMID: 38426269 DOI: 10.1002/jcp.31229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) play a crucial role in the regulation of posttranscriptional RNA networks, which can undergo dysregulation in many pathological conditions. Human antigen R (HuR) is a highly researched RBP that plays a crucial role as a posttranscriptional regulator. HuR plays a crucial role in the amplification of inflammatory signals by stabilizing the messenger RNA of diverse inflammatory mediators and key molecular players. The noteworthy correlations between HuR and its target molecules, coupled with the remarkable impacts reported on the pathogenesis and advancement of multiple diseases, position HuR as a promising candidate for therapeutic intervention in diverse inflammatory conditions. This review article examines the significance of HuR as a member of the RBP family, its regulatory mechanisms, and its implications in the pathophysiology of inflammation and cardiometabolic illnesses. Our objective is to illuminate potential directions for future research and drug development by conducting a comprehensive analysis of the existing body of research on HuR.
Collapse
Affiliation(s)
- Shahenda Salah Abdelsam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sarah Khalaf Ghanem
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hanan H Abunada
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Loulia Bader
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hicham Raïq
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Laiche Djouhri
- Department of Basic Medical Science, College of Medicine, QU health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Office of Vice President for Medical & Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|