1
|
Liao S, Kang K, Yao Z, Lu Y. Nervous system contributions to small cell lung cancer: Lessons from diverse oncological studies. Biochim Biophys Acta Rev Cancer 2024; 1880:189252. [PMID: 39725176 DOI: 10.1016/j.bbcan.2024.189252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The nervous system plays a vital role throughout the entire lifecycle and it may regulate the formation, development and metastasis of tumors. Small cell lung cancer is a typical neuroendocrine tumor, and it is naturally equipped with neurotropism. In this review, we firstly summarize current preclinical and clinical evidence to demonstrate the reciprocal crosstalk among the nervous system, tumor, and tumor microenvironment in various ways, including neurotransmitter-receptor pathways, innervations of nerve fibers, different types of synapse formation by neurons, astrocytes, and cancer cells, neoneurogenesis. Futherly, we emphasize how the nervous system interacts with small cell lung cancer and discuss the limitations of current research methods for examining the interactions. We propose that integrating neuroscience, development biology, and tumor biology can be a promising direction to provide new insights into development and metastasis of small cell lung cancer and raise some novel treatment strategies.
Collapse
Affiliation(s)
- Shuangsi Liao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yang S, Zheng Y, Zhou C, Yao J, Yan G, Shen C, Kong S, Xiong Y, Sun Q, Sun Y, Shen H, Bian L, Qian K, Liu X. Multidimensional Proteomic Landscape Reveals Distinct Activated Pathways Between Human Brain Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410142. [PMID: 39716938 DOI: 10.1002/advs.202410142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Brain metastases (BrMs) and gliomas are two typical human brain tumors with high incidence of mortalities and distinct clinical challenges, yet the understanding of these two types of tumors remains incomplete. Here, a multidimensional proteomic landscape of BrMs and gliomas to infer tumor-specific molecular pathophysiology at both tissue and plasma levels is presented. Tissue sample analysis reveals both shared and distinct characteristics of brain tumors, highlighting significant disparities between BrMs and gliomas with differentially activated upstream pathways of the PI3K-Akt signaling pathway that have been scarcely discussed previously. Novel proteins and phosphosites such as NSUN2, TM9SF3, and PRKCG_S330 are also detected, exhibiting a high correlation with reported clinical traits, which may serve as potential immunohistochemistry (IHC) biomarkers. Moreover, tumor-specific altered phosphosites and glycosites on FN1 are highlighted as potential therapeutic targets. Further validation of 110 potential noninvasive biomarkers yields three biomarker panels comprising a total of 19 biomarkers (including DES, VWF, and COL1A1) for accurate discrimination of two types of brain tumors and normal controls. In summary, this is a full-scale dataset of two typical human brain tumors, which serves as a valuable resource for advancing precision medicine in cancer patients through targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Shuang Yang
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Yongtao Zheng
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Chengbin Zhou
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Jun Yao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Guoquan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd., Shanghai, 200000, P. R. China
| | - Siyuan Kong
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Yueting Xiong
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Yuhao Sun
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Huali Shen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Liuguan Bian
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Kun Qian
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
| | - Xiaohui Liu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Ozair A, Wilding H, Bhanja D, Mikolajewicz N, Glantz M, Grossman SA, Sahgal A, Le Rhun E, Weller M, Weiss T, Batchelor TT, Wen PY, Haas-Kogan DA, Khasraw M, Rudà R, Soffietti R, Vollmuth P, Subbiah V, Bettegowda C, Pham LC, Woodworth GF, Ahluwalia MS, Mansouri A. Leptomeningeal metastatic disease: new frontiers and future directions. Nat Rev Clin Oncol 2024:10.1038/s41571-024-00970-3. [PMID: 39653782 DOI: 10.1038/s41571-024-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Leptomeningeal metastatic disease (LMD), encompassing entities of 'meningeal carcinomatosis', neoplastic meningitis' and 'leukaemic/lymphomatous meningitis', arises secondary to the metastatic dissemination of cancer cells from extracranial and certain intracranial malignancies into the leptomeninges and cerebrospinal fluid. The clinical burden of LMD has been increasing secondary to more sensitive diagnostics, aggressive local therapies for discrete brain metastases, and improved management of extracranial disease with targeted and immunotherapeutic agents, resulting in improved survival. However, owing to drug delivery challenges and the unique microenvironment of LMD, novel therapies against systemic disease have not yet translated into improved outcomes for these patients. Underdiagnosis and misdiagnosis are common, response assessment remains challenging, and the prognosis associated with this disease of whole neuroaxis remains extremely poor. The dearth of effective therapies is further challenged by the difficulties in studying this dynamic disease state. In this Review, a multidisciplinary group of experts describe the emerging evidence and areas of active investigation in LMD and provide directed recommendations for future research. Drawing upon paradigm-changing advances in mechanistic science, computational approaches, and trial design, the authors discuss domain-specific and cross-disciplinary strategies for optimizing the clinical and translational research landscape for LMD. Advances in diagnostics, multi-agent intrathecal therapies, cell-based therapies, immunotherapies, proton craniospinal irradiation and ongoing clinical trials offer hope for improving outcomes for patients with LMD.
Collapse
Affiliation(s)
- Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah Wilding
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Debarati Bhanja
- Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tracy T Batchelor
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Daphne A Haas-Kogan
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumour Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin, Italy
- Department of Oncology, Candiolo Institute for Cancer Research, FPO-IRCCS, Candiolo, Turin, Italy
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, University Hospital Bonn, Bonn, Germany
- Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivek Subbiah
- Early Phase Drug Development Program, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Chetan Bettegowda
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lily C Pham
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
4
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
5
|
Zhai X, Mao L, Kang Q, Liu J, Zhou Y, Wang J, Yang X, Wang D, Wang J, Li Y, Duan J, Zhang T, Lin S, Zhao T, Li J, Wu M, Yu S. Proton pump inhibitor attenuates acidic microenvironment to improve the therapeutic effects of MSLN-CAR-T cells on the brain metastasis. Mol Ther 2024:S1525-0016(24)00737-8. [PMID: 39511890 DOI: 10.1016/j.ymthe.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
The incidence of brain metastasis (BM) is gradually increasing, and the prognosis and therapeutic effect are poor. The emergence of immunotherapy has brought hope for the development of BM treatments. This study revealed that compared with primary cancers, BMs have a colder and more acidic tumor microenvironment (TME), resulting in reduced protein levels of mesothelin (MSLN), a promising target for chimeric antigen receptor-T (CAR-T) cell therapy for triple-negative breast cancer (TNBC) with BMs. These factors could significantly decrease the efficiency of MSLN-CAR-T cells in TNBC BMs. Pantoprazole (PPZ) administration at the most commonly used dose in the clinic notably increased the pH of the TME, inhibited lysosomal activity, increased the membrane levels of the MSLN protein and improved the killing ability of MSLN-CAR-T cells both in vitro and in vivo. Similar results were obtained in non-small cell lung cancer BMs. Hence, when administered in combination with CAR-T cells, PPZ, which increases the protein levels of target antigens, may constitute a new immunotherapeutic strategy for treating solid tumors with BMs.
Collapse
Affiliation(s)
- Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qingmei Kang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Zhou
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China
| | - Xianyan Yang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junhan Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yao Li
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiangjie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China
| | - Tao Zhang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang Lin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
6
|
Roesler J, Spitzer D, Jia X, Aasen SN, Sommer K, Roller B, Olshausen N, Hebach NR, Albinger N, Ullrich E, Zhu L, Wang F, Macas J, Forster MT, Steinbach JP, Sevenich L, Devraj K, Thorsen F, Karreman MA, Plate KH, Reiss Y, Harter PN. Disturbance in cerebral blood microcirculation and hypoxic-ischemic microenvironment are associated with the development of brain metastasis. Neuro Oncol 2024; 26:2084-2099. [PMID: 38831719 PMCID: PMC11534324 DOI: 10.1093/neuonc/noae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Brain metastases (BM) constitute an increasing challenge in oncology due to their impact on neurological function, limited treatment options, and poor prognosis. BM occurs through extravasation of circulating tumor cells across the blood-brain barrier. However, the extravasation processes are still poorly understood. We here propose a brain colonization process which mimics infarction-like microenvironmental reactions, that are dependent on Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF). METHODS In this study, intracardiac BM models were used, and cerebral blood microcirculation was monitored by 2-photon microscopy through a cranial window. BM formation was observed using cranial magnetic resonance, bioluminescent imaging, and postmortem autopsy. Ang-2/VEGF targeting strategies and Ang-2 gain-of-function (GOF) mice were employed to interfere with BM formation. In addition, vascular and stromal factors as well as clinical outcomes were analyzed in BM patients. RESULTS Blood vessel occlusions by cancer cells were detected, accompanied by significant disturbances of cerebral blood microcirculation, and focal stroke-like histological signs. Cerebral endothelial cells showed an elevated Ang-2 expression both in mouse and human BM. Ang-2 GOF resulted in an increased BM burden. Combined anti-Ang-2/anti-VEGF therapy led to a decrease in brain metastasis size and number. Ang-2 expression in tumor vessels of established human BM negatively correlated with survival. CONCLUSIONS Our observations revealed a relationship between disturbance of cerebral blood microcirculation and brain metastasis formation. This suggests that vessel occlusion by tumor cells facilitates brain metastatic extravasation and seeding, while combined inhibition of microenvironmental effects of Ang-2 and VEGF prevents the outgrowth of macrometastases.
Collapse
Affiliation(s)
- Jenny Roesler
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Daniel Spitzer
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Xiaoxiong Jia
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Neurosurgery Department, Tianjin Huanhu Hospital, Tianjin, China
| | - Synnøve Nymark Aasen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Kathleen Sommer
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Bastian Roller
- Goethe University, University Hospital, Dr. Senckenberg Institute for Neurooncology, Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Niels Olshausen
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils R Hebach
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nawid Albinger
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University, University Hospital, Frankfurt, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University, University Hospital, Frankfurt, Germany
| | - Ling Zhu
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Fan Wang
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Jadranka Macas
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Marie-Therese Forster
- Department of Neurosurgery, Goethe University, University Hospital, Frankfurt, Germany
| | - Joachim P Steinbach
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Dr. Senckenberg Institute for Neurooncology, Frankfurt, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Frankfurt, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Kavi Devraj
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| | - Frits Thorsen
- Department of Biomedicine, Molecular Imaging Center, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Matthia A Karreman
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl H Plate
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Yvonne Reiss
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Patrick N Harter
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| |
Collapse
|
7
|
Wang Y, Xu H, Sa Q, Li L, Han Y, Wu Y, Zhou Y, Xu B, Wang J. Development of graded prognostic assessment for breast Cancer brain metastasis incorporating extracranial metastatic features: a retrospective analysis of 284 patients. BMC Cancer 2024; 24:1262. [PMID: 39390441 PMCID: PMC11465582 DOI: 10.1186/s12885-024-12983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer brain metastasis (BCBM) is associated with poor survival outcomes and reduced quality of life. The Graded Prognostic Assessment (GPA) score model serves as a well-established tool for predicting the prognosis of BCBM. Notably, the presence of extracranial metastasis (ECM) is considered as a significant prognostic factor in the breast GPA model. This study aims to further refine other features of ECM to enhance the prognostic prediction for BCBM. METHODS This study included all inpatients diagnosed with BCBM at the Cancer Hospital, Chinese Academy of Medical Sciences, from January 2010 to July 2021. Baseline characteristics of patients were compared based on features of ECM, including the presence, number, location, and control status of metastases. Overall survival (OS) were compared using the Kaplan-Meier method with log-rank tests. Cox regression analyses were conducted to identify significant prognostic factors. The aforementioned ECM features were incorporated into the original Breast-GPA model to enhance its prognostic accuracy. The concordance index (C-index) and restricted mean survival time (RMST) were utilized to evaluate and compare the predictive accuracy of the updated and original survival models. RESULTS 284 patients with BCBM were included in the study. Kaplan-Meier survival curves suggested that patients without ECM when diagnosed with BCBM showed better survival (p = 0.007). In the subgroups with ECM, more than 3 organs involved, both bone and visceral metastasis and progressive ECM portended dismal OS (p = 0.003, 0.001 and <0.001). Multivariate analysis demonstrated that molecular subtype, presence of ECM, and number of brain metastasis significantly influenced OS after BCBM. By modifying the current GPA model to include more precise characteristics of ECM, the predictive accuracy was further enhanced as indicated by the C-index and RMST curve. CONCLUSIONS More ECM sites, both bone and visceral invasion and uncontrolled ECM were dismal prognostic factors for survival outcomes of BCBM patients. A new Breast-GPA model with better predictive effect was constructed.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hangcheng Xu
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Qiang Sa
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Li Li
- Department of Medical Records, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yiqun Han
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yun Wu
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yiran Zhou
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Jiayu Wang
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
8
|
Martínez-Espinosa I, Serrato JA, Ortiz-Quintero B. MicroRNAs in Lung Cancer Brain Metastasis. Int J Mol Sci 2024; 25:10325. [PMID: 39408656 PMCID: PMC11476622 DOI: 10.3390/ijms251910325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Brain metastasis is a significant clinical challenge for patients with advanced lung cancer, occurring in about 20-40% of cases. Brain metastasis causes severe neurological symptoms, leading to a poor prognosis and contributing significantly to lung cancer-related mortality. However, the underlying molecular mechanism behind brain metastasis remains largely unknown. MicroRNAs (miRNAs) are small, non-coding RNAs linked to several aspects of cancer progression, including metastasis. In the context of lung cancer, significant research has shown the involvement of miRNAs in regulating critical pathways related to metastatic spread to the brain. This review summarizes the scientific evidence regarding the regulatory roles of intra- and extracellular miRNAs, which specifically drive the spread of lung cancer cells to the brain. It also revises the known molecular mechanisms of brain metastasis, focusing on those from lung cancer as the primary tumor to better understand the complex mechanisms underlying this regulation. Understanding these complex regulatory mechanisms holds promise for developing novel diagnostic biomarkers and potential therapeutic strategies in brain metastasis.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Mexico City, Mexico
| |
Collapse
|
9
|
Liu Q, Bao H, Zhang S, Li C, Sun G, Sun X, Fu T, Wang Y, Liang P. MicroRNA-522-3p promotes brain metastasis in non-small cell lung cancer by targeting Tensin 1 and modulating blood-brain barrier permeability. Exp Cell Res 2024; 442:114199. [PMID: 39103070 DOI: 10.1016/j.yexcr.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Brain metastases account for more than 50 % of intracranial central nervous system tumors. The blood-brain barrier (BBB) is mainly composed of endothelial cells, which exhibit low endocytosis and high efflux pumps. Although they are connected by continuous tight junctions and serve as a protective insulation, the BBB does not prevent the development of brain metastases from non-small cell lung cancer (NSCLC). Improving understanding on the mechanisms underlying the development of brain metastasis and the differential molecular characteristics relative to the primary tumor are therefore key in the treatment of brain metastases. This study evaluated the differential expression of miR-522-3p in NSCLC and brain metastases using the Gene Expression Omnibus database. NSCLC brain metastasis model was constructed to screen for cell lines that demonstrated high potential for brain metastasis; We also observed differential expression of miRNA-522-3p in the paraffin-embedded specimens of non-small cell lung cancer and brain metastases from our hospital. The molecular biological functions of miRNA-522-3p were verified using 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay and Transwell invasion assays. RNA-seq was employed to identify downstream target proteins, and the dual-luciferase reporter assay confirmed Tensin 1 (TNS1), a protein that links the actin cytoskeleton to the extracellular matrix, as the downstream regulatory target protein. In vitro blood-brain barrier models and co-culture models were constructed to further identify the role of miRNA-522-3p and TNS1; the expression of BBB-related proteins (ZO-1 and OLCN) was also identified. In vivo experiments were performed to verify the effects of miRNA-522-3p on the time and incidence of NSCLC brain metastasis. The results showed significantly high expression in GSE51666; consistent results were obtained in brain metastasis cells and paraffin samples. RNA-seq combined with miRNA target protein prediction demonstrated TNS1 to be directly downstream of miR-522-3p and to be associated with cell proliferation and invasion. By regulating ZO-1 and OCLN expression, mi-522-3p/TNS1 may increase tumor cell penetration through the BBB while decreasing its permeability. In vivo, miR-522-3p was further demonstrated to significantly promote the formation of brain metastases. miR-522-3p/TNS1 can affect BBB permeability and encourage the growth of brain metastases by modifying the BBB TJ proteins. This axis offers new therapeutic targets for the prevention of brain metastasis.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Sibin Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiyin Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoyang Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Fu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
10
|
Kamalabadi Farahani M, Farjadmehr M, Atashi A, Momeni A, Behzadifard M. Concise review: breast cancer stems cells and their role in metastases. Ann Med Surg (Lond) 2024; 86:5266-5275. [PMID: 39238997 PMCID: PMC11374310 DOI: 10.1097/ms9.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024] Open
Abstract
Background Breast cancer stem cells (BCSCs) have been suggested to be responsible for the development of Breast cancer (BC). The aim of this study was to evaluate BCSCs and the target organs microenvironment immunophenotyping markers in common BC metastases, and therapeutic targets regarding to the mentioned criteria. Material and methods This narrative review involved searching international databases; PubMed, Google Scholar using predetermined keywords including breast cancer, breast cancer stem cells, breast cancer metastases, immunophenotyping, immunohistochemistry and metastases. The search results were assessed based on the title, abstract, and full text of the articles, and relevant findings were included in the review. Results BCSCs express high amounts of aldehyde dehydrogenase 1 (ALDH1), Ganglioside 2 (GD2), CD44 and CD133 but are negative for CD24 marker. CXCR4 and OPN have high expression in the cells and may contribute in BC metastasis to the bone. Nestin, CK5, prominin-1 (CD133) markers in BCSCs have been reported to correlate with brain metastasis. High expression of CD44 in BCSCs and CXCL12 expression in the liver microenvironment may contribute to BC metastasis to the liver. Aberrantly expressed vascular cell adhesion molecule-1 (VCAM-1) that binds to collagen and elastin fibers on pulmonary parenchyma, and CXCR4 of BCSCs and CXCL12 in lung microenvironment may promote the cells homing and metastasis to lung. Conclusion As in various types of BC metastases different markers that expressed by the cells and target organ microenvironment are responsible, BCSCs immunophenotyping can be used as target markers to predict the disease prognosis and treatment.
Collapse
Affiliation(s)
| | | | - Amir Atashi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
| | - Alireza Momeni
- Department of hematology and Oncology, School of Medicine
| | - Mahin Behzadifard
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
11
|
Niedermeyer S, Schmutzer-Sondergeld M, Weller J, Katzendobler S, Kirchleitner S, Forbrig R, Harter PN, Baumgarten LV, Schichor C, Stoecklein V, Thon N. Neurosurgical resection of multiple brain metastases: outcomes, complications, and survival rates in a retrospective analysis. J Neurooncol 2024; 169:349-358. [PMID: 38904924 PMCID: PMC11341644 DOI: 10.1007/s11060-024-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE This study investigates the outcomes of microsurgical resection of multiple brain metastasis (BMs). METHODS This retrospective, monocentric analysis included clinical data from all consecutive BM patients, who underwent simultaneous resection of ≥ 2 BMs between January 2018 and May 2023. Postoperative neurological and functional outcomes, along with perioperative complications, as well as survival data were evaluated. RESULTS A total of 47 patients, with a median age of 61 years (IQR 48-69), underwent 73 craniotomies (median 2; range 1-3) for resection of 104 BMs. Among patients, 80.8% presented with symptomatic BMs, causing focal neurological deficits in 53% of cases. Gross total resection was achieved in 87.2% of BMs. Karnofsky Performance Scale (KPS) scores improved in 42.6% of patients, remained unchanged in 46.8%, and worsened in 10.6% after surgery. Perioperative complications were observed in 29.8% of cases, with transient complications occurring in 19.2% and permanent deficits in 10.6%. The 30-days mortality rate was 2.1%. Logistic regression identified eloquent localization (p = 0.036) and infratentorial craniotomy (p = 0.018) as significant predictors of postoperative complications. Concerning overall prognosis, patients with permanent neurological deficits post-surgery (HR 11.34, p = 0.007) or progressive extracranial disease (HR: 4.649; p = 0.006) exhibited inferior survival. CONCLUSION Microsurgical resection of multiple BMs leads to clinical stabilization or functional improvement in most patients. Although transient complications do not affect overall survival, the presence of persistent neurological deficits (> 3 months post-surgery) and progressive extracranial disease negatively impact overall survival. This highlights the importance of careful patient selection for resection of multiple BMs.
Collapse
Affiliation(s)
- Sebastian Niedermeyer
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - M Schmutzer-Sondergeld
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - J Weller
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - S Katzendobler
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - S Kirchleitner
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - R Forbrig
- Department of Neuroradiology, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - P N Harter
- Center for Neuropathology and Prion Research, LMU Hospital, Ludwig-Maximilian- University Munich, Feodor-Lynen Strasse 23, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L V Baumgarten
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - C Schichor
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - V Stoecklein
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - N Thon
- Department of Neurosurgery, LMU Hospital, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
12
|
Altergot A, Ohlmann C, Nüsken F, Palm J, Hecht M, Dzierma Y. Effect of different optimization parameters in single isocenter multiple brain metastases radiosurgery. Strahlenther Onkol 2024; 200:815-826. [PMID: 38977432 PMCID: PMC11343813 DOI: 10.1007/s00066-024-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Automated treatment planning for multiple brain metastases differs from traditional planning approaches. It is therefore helpful to understand which parameters for optimization are available and how they affect the plan quality. This study aims to provide a reference for designing multi-metastases treatment plans and to define quality endpoints for benchmarking the technique from a scientific perspective. METHODS In all, 20 patients with a total of 183 lesions were retrospectively planned according to four optimization scenarios. Plan quality was evaluated using common plan quality parameters such as conformity index, gradient index and dose to normal tissue. Therefore, different scenarios with combinations of optimization parameters were evaluated, while taking into account dependence on the number of treated lesions as well as influence of different beams. RESULTS Different scenarios resulted in minor differences in plan quality. With increasing number of lesions, the number of monitor units increased, so did the dose to healthy tissue and the number of interlesional dose bridging in adjacent metastases. Highly modulated cases resulted in 4-10% higher V10% compared to less complex cases, while monitor units did not increase. Changing the energy to a flattening filter free (FFF) beam resulted in lower local V12Gy (whole brain-PTV) and even though the number of monitor units increased by 13-15%, on average 46% shorter treatment times were achieved. CONCLUSION Although no clinically relevant differences in parameters where found, we identified some variation in the dose distributions of the different scenarios. Less complex scenarios generated visually more dose overlap; therefore, a more complex scenario may be preferred although differences in the quality metrics appear minor.
Collapse
Affiliation(s)
- Angelika Altergot
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany.
| | - Carsten Ohlmann
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Frank Nüsken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| |
Collapse
|
13
|
Gurung SK, Shevde LA, Rao SS. Laminin I mediates resistance to lapatinib in HER2-positive brain metastatic breast cancer cells in vitro. Biochem Biophys Res Commun 2024; 720:150142. [PMID: 38788545 DOI: 10.1016/j.bbrc.2024.150142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The role of extracellular matrix (ECM) prevalent in the brain metastatic breast cancer (BMBC) niche in mediating cancer cell growth, survival, and response to therapeutic agents is not well understood. Emerging evidence suggests a vital role of ECM of the primary breast tumor microenvironment (TME) in tumor progression and survival. Possibly, the BMBC cells are also similarly influenced by the ECM of the metastatic niche; therefore, understanding the effect of the metastatic ECM on BMBC cells is imperative. Herein, we assessed the impact of various ECM components (i.e., Tenascin C, Laminin I, Collagen I, Collagen IV, and Fibronectin) on brain metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) cell lines in vitro. The highly aggressive TNBC cell line was minimally affected by ECM components exhibiting no remarkable changes in viability and morphology. On the contrary, amongst various ECM components tested, the HER2-positive cell line was significantly affected by Laminin I with higher viability and demonstrated a distinct spread morphology. In addition, HER2-positive BMBC cells exhibited resistance to Lapatinib in presence of Laminin I. Mechanistically, Laminin I-induced resistance to Lapatinib was mediated in part by phosphorylation of Erk 1/2 and elevated levels of Vimentin. Laminin I also significantly enhanced the migratory potential and replicative viability of HER2-positive BMBC cells. In sum, our findings show that presence of Laminin I in the TME of BMBC cells imparts resistance to targeted therapeutic agent Lapatinib, while increasing the possibility of its dispersal and clonogenic survival.
Collapse
Affiliation(s)
- Sumiran Kumar Gurung
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
14
|
Scandurra G, Lombardo V, Scibilia G, Sambataro D, Gebbia V, Scollo P, Pecorino B, Valerio MR. New Frontiers in the Treatment of Patients with HER2+ Cancer and Brain Metastases: Is Radiotherapy Always Useful? Cancers (Basel) 2024; 16:2466. [PMID: 39001528 PMCID: PMC11240652 DOI: 10.3390/cancers16132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Brain metastases (BM) pose a significant challenge in the management of HER2+ breast cancer since almost 50% of patients with HER2+ breast cancer develop brain tumors. The complex process of brain metastases involves genetic mutations, adaptations and mechanisms to overcome the blood-brain barrier. While radiotherapy is still fundamental in local therapy, its use is associated with cognitive adverse effects and limited long-term control, necessitating the exploration of alternative treatments. Targeted therapies, including tyrosine kinase inhibitors, monoclonal antibodies, and antibody-drug conjugates, offer promising options for HER2+ breast cancer patients with BM. Clinical trials have demonstrated the efficacy of these agents in controlling tumor growth and improving patient outcomes, posing the question of whether radiotherapy is always the unique choice in treating this cancer. Ongoing research into novel anti-HER2 antibodies and innovative combination therapies holds promise for advancing treatment outcomes and enhancing patient care in this clinical scenario. This narrative review provides a comprehensive overview of traditional medical treatments, molecularly targeted therapy and investigational agents in the management of HER2+ breast cancer with BM, highlighting the evolving landscape and potential future directions in treatment strategies to improve patient survival and quality of life.
Collapse
Affiliation(s)
- Giuseppa Scandurra
- Medical Oncology Unit, Cannizzaro Hospital, 95126 Catania, Italy
- Department of the Medicine and Surgery, Kore University, 94100 Enna, Italy
| | | | - Giuseppe Scibilia
- Department of the Medicine and Surgery, Kore University, 94100 Enna, Italy
- Gynecology Unit, Giovanni Paolo II Hospital, 97100 Ragusa, Italy
| | - Daniela Sambataro
- Department of the Medicine and Surgery, Kore University, 94100 Enna, Italy
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy
| | - Vittorio Gebbia
- Department of the Medicine and Surgery, Kore University, 94100 Enna, Italy
- Medical Oncology Unit, CdC Torina, 90145 Palermo, Italy
| | - Paolo Scollo
- Department of the Medicine and Surgery, Kore University, 94100 Enna, Italy
- Gynecology and Obstetrics Unit, Cannizzaro Hospital, 95126 Catania, Italy
| | - Basilio Pecorino
- Department of the Medicine and Surgery, Kore University, 94100 Enna, Italy
- Gynecology and Obstetrics Unit, Umberto I Hospital, 94100 Enna, Italy
| | | |
Collapse
|
15
|
Hu X, Deng X, Xie J, Zhang H, Zhang H, Feng B, Zou Y, Wang C. Evolutionary Trend Analysis of Research on Immunotherapy for Brain Metastasis Based on Machine-Learning Scientometrics. Pharmaceuticals (Basel) 2024; 17:850. [PMID: 39065701 PMCID: PMC11280367 DOI: 10.3390/ph17070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
Brain metastases challenge cancer treatments with poor prognoses, despite ongoing advancements. Immunotherapy effectively alleviates advanced cancer, exhibiting immense potential to revolutionize brain metastasis management. To identify research priorities that optimize immunotherapies for brain metastases, 2164 related publications were analyzed. Scientometric visualization via R software, VOSviewer, and CiteSpace showed the interrelationships among literature, institutions, authors, and topic areas of focus. The publication rate and citations have grown exponentially over the past decade, with the US, China, and Germany as the major contributors. The University of Texas MD Anderson Cancer Center ranked highest in publications, while Memorial Sloan Kettering Cancer Center was most cited. Clusters of keywords revealed six hotspots: 'Immunology', 'Check Point Inhibitors', 'Lung Cancer', 'Immunotherapy', 'Melanoma', 'Breast Cancer', and 'Microenvironment'. Melanoma, the most studied primary tumor with brain metastases offers promising immunotherapy advancements with generalizability and adaptability to other cancers. Our results outline the holistic overview of immunotherapy research for brain metastases, which pinpoints the forefront in the field, and directs researchers toward critical inquiries for enhanced mechanistic insight and improved clinical outcomes. Moreover, governmental and funding agencies will benefit from assigning financial resources to entities and regions with the greatest potential for combating brain metastases through immunotherapy.
Collapse
Affiliation(s)
- Xiaoqian Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hanqi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huiting Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Beibei Feng
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Monteran L, Erez N. An unexpected corridor to brain metastasis. Science 2024; 384:1302-1303. [PMID: 38900900 DOI: 10.1126/science.adq4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Breast cancer cells migrate from the bone marrow to the leptomeninges.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medical & Health Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medical & Health Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Silvestri VL, Tran AD, Chung M, Chung N, Gril B, Robinson C, Difilippantonio S, Wei D, Kruhlak MJ, Peer CJ, Figg WD, Khan I, Steeg PS. Distinct uptake and elimination profiles for trastuzumab, human IgG, and biocytin-TMR in experimental HER2+ brain metastases of breast cancer. Neuro Oncol 2024; 26:1067-1082. [PMID: 38363979 PMCID: PMC11145443 DOI: 10.1093/neuonc/noae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The aim of this study is an improved understanding of drug distribution in brain metastases. Rather than single point snapshots, we analyzed the time course and route of drug/probe elimination (clearance), focusing on the intramural periarterial drainage (IPAD) pathway. METHODS Mice with JIMT1-BR HER2+ experimental brain metastases were injected with biocytin-TMR and either trastuzumab or human IgG. Drugs/probes circulated for 5 min to 48 h, followed by perfusion. Brain sections were stained for human IgG, vascular basement membrane proteins laminin or collagen IV, and periarterial α-SMA. A machine learning algorithm was developed to identify metastases, metastatic microenvironment, and uninvolved brain in confocally scanned brain sections. Drug/probe intensity over time and total imaged drug exposure (iAUC) were calculated for 27,249 lesions and co-immunofluorescence with IPAD-vascular matrix analyzed in 11,668 metastases. RESULTS In metastases, peak trastuzumab levels were 5-fold higher than human IgG but 4-fold less than biocytin-TMR. The elimination phase constituted 85-93% of total iAUC for all drugs/probes tested. For trastuzumab, total iAUC during uptake was similar to the small molecule drug probe biocytin-TMR, but slower trastuzumab elimination resulted in a 1.7-fold higher total iAUC. During elimination trastuzumab and IgG were preferentially enriched in the α-SMA+ periarterial vascular matrix, consistent with the IPAD clearance route; biocytin-TMR showed heterogeneous elimination pathways. CONCLUSIONS Drug/probe elimination is an important component of drug development for brain metastases. We identified a prolonged elimination pathway for systemically administered antibodies through the periarterial vascular matrix that may contribute to the sustained presence and efficacy of large antibody therapeutics.
Collapse
Affiliation(s)
- Vanesa L Silvestri
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Andy D Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- CCR Microscopy Core, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Monika Chung
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Natalie Chung
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Brunilde Gril
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christina Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Debbie Wei
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- CCR Microscopy Core, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cody J Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - W Douglas Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Imran Khan
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patricia S Steeg
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Dankner M, Maritan SM, Priego N, Kruck G, Nkili-Meyong A, Nadaf J, Zhuang R, Annis MG, Zuo D, Nowakowski A, Biondini M, Kiepas A, Mourcos C, Le P, Charron F, Inglebert Y, Savage P, Théret L, Guiot MC, McKinney RA, Muller WJ, Park M, Valiente M, Petrecca K, Siegel PM. Invasive growth of brain metastases is linked to CHI3L1 release from pSTAT3-positive astrocytes. Neuro Oncol 2024; 26:1052-1066. [PMID: 38271182 PMCID: PMC11145453 DOI: 10.1093/neuonc/noae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.
Collapse
Affiliation(s)
- Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah M Maritan
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Georgia Kruck
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rebecca Zhuang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew G Annis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marco Biondini
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Caitlyn Mourcos
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Phuong Le
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - François Charron
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - Yanis Inglebert
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Paul Savage
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Louis Théret
- Research Institute of the University of Montreal (IRIC), Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - R Anne McKinney
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kevin Petrecca
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Lange F, Gade R, Einsle A, Porath K, Reichart G, Maletzki C, Schneider B, Henker C, Dubinski D, Linnebacher M, Köhling R, Freiman TM, Kirschstein T. A glutamatergic biomarker panel enables differentiating Grade 4 gliomas/astrocytomas from brain metastases. Front Oncol 2024; 14:1335401. [PMID: 38835368 PMCID: PMC11148222 DOI: 10.3389/fonc.2024.1335401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Background The differentiation of high-grade glioma and brain tumors of an extracranial origin is eminent for the decision on subsequent treatment regimens. While in high-grade glioma, a surgical resection of the tumor mass is a fundamental part of current standard regimens, in brain metastasis, the burden of the primary tumor must be considered. However, without a cancer history, the differentiation remains challenging in the imaging. Hence, biopsies are common that may help to identify the tumor origin. An additional tool to support the differentiation may be of great help. For this purpose, we aimed to identify a biomarker panel based on the expression analysis of a small sample of tissue to support the pathological analysis of surgery resection specimens. Given that an aberrant glutamate signaling was identified to drive glioblastoma progression, we focused on glutamate receptors and key players of glutamate homeostasis. Methods Based on surgically resected samples from 55 brain tumors, the expression of ionotropic and metabotropic glutamate receptors and key players of glutamate homeostasis were analyzed by RT-PCR. Subsequently, a receiver operating characteristic (ROC) analysis was performed to identify genes whose expression levels may be associated with either glioblastoma or brain metastasis. Results Out of a total of 29 glutamatergic genes analyzed, nine genes presented a significantly different expression level between high-grade gliomas and brain metastases. Of those, seven were identified as potential biomarker candidates including genes encoding for AMPA receptors GRIA1, GRIA2, kainate receptors GRIK1 and GRIK4, metabotropic receptor GRM3, transaminase BCAT1 and the glutamine synthetase (encoded by GLUL). Overall, the biomarker panel achieved an accuracy of 88% (95% CI: 87.1, 90.8) in predicting the tumor entity. Gene expression data, however, could not discriminate between patients with seizures from those without. Conclusion We have identified a panel of seven genes whose expression may serve as a biomarker panel to discriminate glioblastomas and brain metastases at the molecular level. After further validation, our biomarker signatures could be of great use in the decision making on subsequent treatment regimens after diagnosis.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Richard Gade
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Claudia Maletzki
- Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Christian Henker
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Cerutti C, Lucotti S, Menendez ST, Reymond N, Garg R, Romero IA, Muschel R, Ridley AJ. IQGAP1 and NWASP promote human cancer cell dissemination and metastasis by regulating β1-integrin via FAK and MRTF/SRF. Cell Rep 2024; 43:113989. [PMID: 38536816 DOI: 10.1016/j.celrep.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that β1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of β1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase β1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.
Collapse
Affiliation(s)
- Camilla Cerutti
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK; Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge UB8 3PH, UK.
| | - Serena Lucotti
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sofia T Menendez
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Nicolas Reymond
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ritu Garg
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Ruth Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK.
| |
Collapse
|
21
|
Lu S, Guo X, Yang Z, Sun Y, Niu J, Jing X, Zhu H. Immunotherapy combined with cranial radiotherapy for driver-negative non-small-cell lung cancer brain metastases: a retrospective study. Future Oncol 2024:1-14. [PMID: 38591950 DOI: 10.2217/fon-2023-1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Background: This study assesses immune checkpoint inhibitors' efficacy for non-small-cell lung cancer (NSCLC) with brain metastases (BM) and explores the role of cranial radiation therapy (CRT) in the immunotherapy era. Methods: The retrospective analysis screened NSCLC patients with BMs from July 2018 to December 2021. Treatment involved chemotherapy combined with immune checkpoint inhibitors as the first-line, with patients divided into CRT and non-CRT groups. Overall survival (OS), progression-free survival and intracranial progression-free survival were calculated and compared. Results: Among 113 patients, 74 who received CRT had significantly better median OS (not reached vs 15.31 months), particularly among those with one to three BMs. Factors correlating with better OS included CRT, PD-L1 expression and diagnosis-specific graded prognostic assessment scores. Conclusion: Integrating CRT with anti-PD-1 therapy notably enhanced long-term survival in NSCLC patients with BMs.
Collapse
Affiliation(s)
- Shuangqing Lu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xiaokang Guo
- Department of Surgical Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Zhengqiang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yulan Sun
- Department of Medical Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xuquan Jing
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| |
Collapse
|
22
|
Huang L, Chen S, Liu H, Meng L, Liu C, Wu X, Wang Y, Luo S, Tu H, Wang C, Zhang M, Gong X. PD-L1 inhibitors combined with whole brain radiotherapy in patients with small cell lung cancer brain metastases: Real-world evidence. Cancer Med 2024; 13:e7125. [PMID: 38613182 PMCID: PMC11015079 DOI: 10.1002/cam4.7125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated that brain metastases patients may benefit from intracranial radiotherapy combined with immune checkpoint inhibitors (ICIs). However, it is unclear whether this treatment is effective for patients with small cell lung cancer brain metastases (SCLC-BMs). METHODS We conducted a retrospective study by analyzing medical records of patients with SCLC-BMs from January 1, 2017 to June 1, 2022. Data related to median overall survival (mOS), median progression-free survival (mPFS), and intracranial progression-free survival (iPFS) were analyzed. RESULTS A total of 109 patients were enrolled, of which 60 received WBRT and 49 received WBRT-ICI. Compared to the WBRT alone cohort, the WBRT-ICI cohort showed longer mOS (20.4 months vs. 29.3 months, p = 0.021), mPFS (7.9 months vs. 15.1 months, p < 0.001), and iPFS (8.3 months vs. 16.5 months, p < 0.001). Furthermore, WBRT-ICI cohort had a better response rate for both BMs. (p = 0.035) and extracranial diseases (p < 0.001) compared to those receiving WBRT alone. Notably, the use of WBRT before ICI was associated with longer mOS compared to the use of WBRT after ICI (23.3 months for the ICI-WBRT group vs. 34.8 months for the WBRT-ICI group, p = 0.020). CONCLUSION Our results indicated that WBRT combined with immunotherapy improved survival in SCLC-BMs patients compared to WBRT monotherapy. Administering WBRT prior to ICI treatment is associated with improved survival outcomes compared to WBRT following ICI treatment, for patients with SCLC-BMs. These findings highlight the significance of conducting further prospective researches on combination strategies of intracranial radiotherapy and ICI in SCLC-BMs patients.
Collapse
Affiliation(s)
- Litang Huang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Shen Chen
- Department of Oncology, Shanghai Pulmonary HospitalTongji University, School of MedicineShanghaiChina
| | - Hui Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chengxing Liu
- Department of Cardiology, Tongji HospitalTongji University, School of MedicineShanghaiChina
| | - Xiaoting Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yingying Wang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Hongbin Tu
- Department of Integrated TCM and Western Medicine, Shanghai Pulmonary HospitalTongji University, School of MedicineShanghaiChina
| | - Chunlei Wang
- Department of EndocrinologyThe Fourth Affiliated Hospital of Nantong UniversityJiangsuChina
| | - Ming Zhang
- Department of Integrated Traditional Chinese and Western MedicineShanghai Jiao Tong University School of Medicine, Shanghai Chest HospitalShanghaiChina
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
23
|
Oshiro Y, Kato Y, Mizumoto M, Sakurai H. The Impact of Multileaf Collimator Size on Single Isocenter Dynamic Conformal Arcs-Based Radiosurgery for Brain Metastases. Cureus 2024; 16:e58816. [PMID: 38784358 PMCID: PMC11113089 DOI: 10.7759/cureus.58816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE To compare the plan quality of stereotactic radiosurgery (SRS) between 2.5-mm and 5-mm multileaf collimator (MLC) and investigate the factors' influence on the differences by MLC size. METHODS Seventy-six treatment plans including 145 targets calculated with a single isocenter multiple noncoplanar dynamic conformal arc (DCA) technique using automatic multiple brain metastases (MBM) treatment planning system. Conformity index (CI), gradient index (GI), lesion underdosage volume factor (LUF), healthy tissue overdose volume factor (HTOF), geometric conformity index (g), and mean dose to normal organs were compared between 2.5-mm and 5-mm MLC. Then the factors that influenced the differences of these parameters were investigated. The impact of target size was also investigated for CI and GI values of individual targets (n=145), and differences between 2.5-mm and 5-mm MLC were analyzed. RESULTS All parameters except for LUF were significantly better in plans with 2.5 mm MLC. Target size was a significant factor for difference in HTOF, and distance between targets was a significant factor for difference in brain dose and GI. Among 145 metastases, the average inverse CI was 1.35 and 1.47 with 2.5-mm and 5-mm MLC, respectively (p<0.001). The average GI was 3.21 and 3.53, respectively (p<0.001). For individual targets, target size was a significant factor in CI and GI both with 2.5-mm and 5-mm MLC (p-value: <0.001, each). CI and GI were significantly better with 2.5-mm than 5-mm MLC. CI was almost >0.67 except for ≤5mm targets with 5-mm MLC. Also, GI was almost smaller than 3.0 for >10 mm targets both with 2.5-mm and 5-mm MLC. CONCLUSIONS MBM with 5-mm MLC was almost fine. However, it may be better to use a conservative margin for larger metastases. It may also be better to avoid SRS with 5-mm MLC for patients with ≤5 mm target size.
Collapse
Affiliation(s)
- Yoshiko Oshiro
- Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, JPN
| | - Yuichi Kato
- Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, JPN
| | - Masashi Mizumoto
- Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| | - Hideyuki Sakurai
- Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| |
Collapse
|
24
|
Bejarano L, Kauzlaric A, Lamprou E, Lourenco J, Fournier N, Ballabio M, Colotti R, Maas R, Galland S, Massara M, Soukup K, Lilja J, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Interrogation of endothelial and mural cells in brain metastasis reveals key immune-regulatory mechanisms. Cancer Cell 2024; 42:378-395.e10. [PMID: 38242126 DOI: 10.1016/j.ccell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Brain metastasis (BrM) is a common malignancy, predominantly originating from lung, melanoma, and breast cancers. The vasculature is a key component of the BrM tumor microenvironment with critical roles in regulating metastatic seeding and progression. However, the heterogeneity of the major BrM vascular components, namely endothelial and mural cells, is still poorly understood. We perform single-cell and bulk RNA-sequencing of sorted vascular cell types and detect multiple subtypes enriched specifically in BrM compared to non-tumor brain, including previously unrecognized immune regulatory subtypes. We integrate the human data with mouse models, creating a platform to interrogate vascular targets for the treatment of BrM. We find that the CD276 immune checkpoint molecule is significantly upregulated in the BrM vasculature, and anti-CD276 blocking antibodies prolonged survival in preclinical trials. This study provides important insights into the complex interactions between the vasculature, immune cells, and cancer cells, with translational relevance for designing therapeutic interventions.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michelle Ballabio
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), University of Lausanne, Lausanne, Switzerland
| | - Roeltje Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Johanna Lilja
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
25
|
Rone JM, Faust Akl C, Quintana FJ. Astrocyte control of brain metastasis. Dev Cell 2024; 59:559-560. [PMID: 38471436 DOI: 10.1016/j.devcel.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Developing therapeutics to improve metastatic brain cancer prognosis is hampered by limited experimental systems that recapitulate the brain tumor microenvironment. In this issue of Developmental Cell, Ishibashi et al. describe a glial-cancer cell co-culture system that enabled the identification of a targetable, astrocyte-driven mechanism of brain metastasis.
Collapse
Affiliation(s)
- Joseph M Rone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
26
|
Monteran L, Zait Y, Erez N. It's all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 2024; 10:208-229. [PMID: 38072691 DOI: 10.1016/j.trecan.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024]
Abstract
The tumor microenvironment (TME) is an integral part of tumors and plays a central role in all stages of carcinogenesis and progression. Each organ has a unique and heterogeneous microenvironment, which affects the ability of disseminated cells to grow in the new and sometimes hostile metastatic niche. Resident stromal cells, such as fibroblasts, osteoblasts, and astrocytes, are essential culprits in the modulation of metastatic progression: they transition from being sentinels of tissue integrity to being dysfunctional perpetrators that support metastatic outgrowth. Therefore, better understanding of the complexity of their reciprocal interactions with cancer cells and with other components of the TME is essential to enable the design of novel therapeutic approaches to prevent metastatic relapse.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Wang X, Bai H, Zhang J, Wang Z, Duan J, Cai H, Cao Z, Lin Q, Ding X, Sun Y, Zhang W, Xu X, Chen H, Zhang D, Feng X, Wan J, Zhang J, He J, Wang J. Genetic Intratumor Heterogeneity Remodels the Immune Microenvironment and Induces Immune Evasion in Brain Metastasis of Lung Cancer. J Thorac Oncol 2024; 19:252-272. [PMID: 37717855 DOI: 10.1016/j.jtho.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Brain metastasis, with the highest incidence in patients with lung cancer, significantly worsens prognosis and poses challenges to clinical management. To date, how brain metastasis evades immune elimination remains unknown. METHODS Whole-exome sequencing and RNA sequencing were performed on 30 matched brain metastasis, primary lung adenocarcinoma, and normal tissues. Data from The Cancer Genome Atlas primary lung adenocarcinoma cohort, including multiplex immunofluorescence, were used to support the findings of bioinformatics analysis. RESULTS Our study highlights the key role of intratumor heterogeneity of genomic alterations in the metastasis process, mainly caused by homologous recombination deficiency or other somatic copy number alteration-associated mutation mechanisms, leading to increased genomic instability and genomic complexity. We further proposed a selection model of brain metastatic evolution in which intratumor heterogeneity drives immune remodeling, leading to immune escape through different mechanisms under local immune pressure. CONCLUSIONS Our findings provide novel insights into the metastatic process and immune escape mechanisms of brain metastasis and pave the way for precise immunotherapeutic strategies for patients with lung cancer with brain metastasis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiyang Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongqing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaosheng Ding
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiting Sun
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Xiaoya Xu
- Department of Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Hao Chen
- Department of Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Dadong Zhang
- Department of Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Zhang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Sereno M, Hernandez de Córdoba I, Gutiérrez-Gutiérrez G, Casado E. Brain metastases and lung cancer: molecular biology, natural history, prediction of response and efficacy of immunotherapy. Front Immunol 2024; 14:1297988. [PMID: 38283359 PMCID: PMC10811213 DOI: 10.3389/fimmu.2023.1297988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Brain metastases stemming from lung cancer represent a common and challenging complication that significantly impacts patients' overall health. The migration of these cancerous cells from lung lesions to the central nervous system is facilitated by diverse molecular changes and a specific environment that supports their affinity for neural tissues. The advent of immunotherapy and its varied combinations in non-small cell lung cancer has notably improved patient survival rates, even in cases involving brain metastases. These therapies exhibit enhanced penetration into the central nervous system compared to traditional chemotherapy. This review outlines the molecular mechanisms underlying the development of brain metastases in lung cancer and explores the efficacy of novel immunotherapy approaches and their combinations.
Collapse
Affiliation(s)
- Maria Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, Madrid, Spain
- European University of Madrid, Madrid, Spain
- Fundación para la Innovación e Investigación Biomédica (FIIB) Hospital Universitario Infanta Sofía (HUIS) Hospital de Henares (HHEN), Madrid, Spain
- Instituto Madrileño Investigación Estudios Avanzados (IMDEA), Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Gerardo Gutiérrez-Gutiérrez
- European University of Madrid, Madrid, Spain
- Fundación para la Innovación e Investigación Biomédica (FIIB) Hospital Universitario Infanta Sofía (HUIS) Hospital de Henares (HHEN), Madrid, Spain
- Neurology Department, Infanta Sofía University Hospital, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, Madrid, Spain
- European University of Madrid, Madrid, Spain
- Fundación para la Innovación e Investigación Biomédica (FIIB) Hospital Universitario Infanta Sofía (HUIS) Hospital de Henares (HHEN), Madrid, Spain
- Instituto Madrileño Investigación Estudios Avanzados (IMDEA), Precision Nutrition and Cancer Program, Clinical Oncology Group, IMDEA Food Institute, CEI Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
29
|
Liu X, Mei F, Fang M, Jia Y, Zhou Y, Li C, Tian P, Lu C, Li G. Cerebrospinal fluid ctDNA testing shows an advantage over plasma ctDNA testing in advanced non-small cell lung cancer patients with brain metastases. Front Oncol 2024; 13:1322635. [PMID: 38269023 PMCID: PMC10806520 DOI: 10.3389/fonc.2023.1322635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Background Brain metastases (BM), including brain parenchyma metastases (BPM) and leptomeningeal metastases (LM), are devastating metastatic complications in advanced cancer patients. Next-generation sequencing (NGS) is emerging as a new promising tool for profiling cancer mutation, which could facilitate the diagnosis of cancer. This retrospective study aimed to investigate the molecular genetic characteristics of non-small cell lung cancer (NSCLC) patients with BPM and LM using NGS. Methods Cerebrospinal fluid (CSF) samples and paired plasma samples were collected from 37 patients of NSCLC-BM. We profiled genetic mutation characteristics using NGS from NSCLC-BM by comparing CSF circulating tumour DNA (ctDNA) with plasma ctDNA and primary tumour tissues. Results Among the 37 patients with NSCLC-BM, 28 patients had LM with or without BPM, while 9 patients only had BPM. Driver and drug-resistant mutations in primary tumours with LM included: EGFR L858R (10, 35.7%), EGFR 19del (6, 21.4%), EGFR L858R+MET (1, 3.6%), EGFR L858R+S768I (1, 3.6%), ALK (2, 7.1%), ROS1 (1, 3.6%), negative (5, 17.9%), and unknown (2, 7.1%). In patients with NSCLC-LM, the detection rate and abundance of ctDNA in the CSF were significantly higher than those in paired plasma. The main driver mutations of NSCLC-LM remained highly consistent with those of the primary tumours, along with other unique mutations. Circulating tumour DNA was negative in the CSF samples of BPM patients. Patients with BMP had a higher ratio of EGFR 19del than L858R mutation (55.6% vs 11.1.%), whereas NSCLC patients with LM had a higher ratio of EGFR L858R than 19del mutation (50.0% vs 25.0%). Most patients with positive plasma ctDNA results were male (p = 0.058) and in an unstable state (p = 0.003). Conclusion Our study indicated that the CSF ctDNA detected by NGS may reflect the molecular characteristics and heterogeneity of NSCLC-LM. Timely screening of patients with NSCLC for CSF ctDNA, especially for patients with positive plasma ctDNA, may facilitate the early detection of LM. Furthermore, patients with the EGFR 19del may have a higher risk of developing BPM.
Collapse
Affiliation(s)
- Xiaocui Liu
- Department of Neurology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Fengjun Mei
- Department of Neurology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mei Fang
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaqiong Jia
- Department of Neurology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yazhu Zhou
- Department of Neurology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chenxi Li
- Department of Neurology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Panpan Tian
- Department of Neurology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chufan Lu
- Department of Neurology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guangrui Li
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
30
|
Geng X, Kou C, Wang J. The association between graded prognostic assessment and the prognosis of brain metastases after whole brain radiotherapy: a meta-analysis. Front Oncol 2024; 13:1322262. [PMID: 38264750 PMCID: PMC10803601 DOI: 10.3389/fonc.2023.1322262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction This meta-analysis aims to provide evidence-based medical evidence for formulating rational treatment strategies and evaluating the prognosis of brain metastasis (BM) patients by assessing the effectiveness of the graded prognostic assessment (GPA) model in predicting the survival prognosis of patients with BM after whole-brain radiotherapy (WBRT). Methods A comprehensive search was conducted in multiple databases, including the China Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), PubMed, Wanfang database, Cochrane Library, Web of Science, and Embase. Cohort studies that met the inclusion and exclusion criteria were selected. The quality of the included literature was evaluated using the Newcastle-Ottawa Scale, and all statistical analyses were performed with R version 4.2.2. The effect size (ES) was measured by the hazard ratio (HR) of overall survival (OS). The OS rates at 3, 6, 12, and 24 months of patients with BM were compared between those with GPAs of 1.5-2.5, 3.0, and 3.5-4.0 and those with GPAs of 0-1 after WBRT. Results A total of 1,797 participants who underwent WBRT were included in this study. The meta-analysis revealed a significant association between GPA and OS rates after WBRT: compared with BM patients with GPA of 0-1, 3-month OS rates after WBRT were significantly higher in BM patients with GPA of 1.5-2.5 (HR = 0.48; 95% CI: 0.40-0.59), GPA of 3 (HR = 0.38; 95% CI: 0.25-0.57), and GPA of 3.5-4 (HR = 0.28; 95% CI: 0.15-0.52); 6-month OS rates after WBRT were significantly higher in BM patients with GPA of 1.5-2.5 (HR = 0.48; 95% CI: 0.41-0.56), GPA of 3 (HR = 0.33; 95% CI: 0.24-0.45), and GPA of 3.5-4 (HR = 0.24; 95% CI: 0.16-0.35); 12-month OS rates after WBRT were significantly higher in BM patients with GPA of 1.5-2.5 (HR = 0.49; 95% CI: 0.41-0.58), GPA of 3 (HR = 0.48; 95% CI: 0.32-0.73), and GPA of 3.5-4 (HR = 0.31; 95% CI: 0.12-0.79); and 24-month OS rates after WBRT were significantly higher in BM patients with GPA of 1.5-2.5 (HR = 0.49; 95% CI: 0.42-0.58), GPA of 3 (HR = 0.49; 95% CI: 0.32-0.74), and GPA of 3.5-4 (HR = 0.38; 95% CI: 0.15-0.94). Conclusion BM patients with higher GPAs generally exhibited better prognoses and survival outcomes after WBRT compared to those with lower GPAs. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023422914.
Collapse
Affiliation(s)
- Xiaohan Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
31
|
Kemmotsu N, Ninomiya K, Kunimasa K, Ishino T, Nagasaki J, Otani Y, Michiue H, Ichihara E, Ohashi K, Inoue T, Tamiya M, Sakai K, Ueda Y, Dansako H, Nishio K, Kiura K, Date I, Togashi Y. Low frequency of intracranial progression in advanced NSCLC patients treated with cancer immunotherapies. Int J Cancer 2024; 154:169-179. [PMID: 37611176 DOI: 10.1002/ijc.34700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Intracranial metastases are common in nonsmall-cell lung cancer (NSCLC) patients, whose prognosis is very poor. In addition, intracranial progression is common during systemic treatments due to the inability to penetrate central nervous system (CNS) barriers, whereas the intracranial effects of cancer immunotherapies remain unclear. We analyzed clinical data to evaluate the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies compared with those treated without PD-1 blockade therapies, and found that the frequency of intracranial progression in advanced NSCLC patients treated with PD-1 blockade therapies was significantly lower than that in patients treated with cytotoxic chemotherapies. In murine models, intracranial rechallenged tumors after initial rejection by PD-1 blockade were suppressed. Accordingly, long-lived memory precursor effector T cells and antigen-specific T cells were increased by PD-1 blockade in intracranial lesions. However, intracranial rechallenged different tumors are not suppressed. Our results indicate that cancer immunotherapies can prevent intracranial progression, maintaining long-term effects intracranially as well as systemically. If intracranial recurrence occurs during the treatment with PD-1 blockade therapies, aggressive local therapies could be worthwhile.
Collapse
Affiliation(s)
- Naoya Kemmotsu
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Joji Nagasaki
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroyuki Michiue
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Eiki Ichihara
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takako Inoue
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromichi Dansako
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Katsuyuki Kiura
- Department of Respiratory Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Zhao Z, Chen Y, Sun T, Jiang C. Nanomaterials for brain metastasis. J Control Release 2024; 365:833-847. [PMID: 38065414 DOI: 10.1016/j.jconrel.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Tumor metastasis is a significant contributor to the mortality of cancer patients. Specifically, current conventional treatments are unable to achieve complete remission of brain metastasis. This is due to the unique pathological environment of brain metastasis, which differs significantly from peripheral metastasis. Brain metastasis is characterized by high tumor mutation rates and a complex microenvironment with immunosuppression. Additionally, the presence of blood-brain barrier (BBB)/blood tumor barrier (BTB) restricts drug leakage into the brain. Therefore, it is crucial to take account of the specific characteristics of brain metastasis when developing new therapeutic strategies. Nanomaterials offer promising opportunities for targeted therapies in treating brain metastasis. They can be tailored and customized based on specific pathological features and incorporate various treatment approaches, which makes them advantageous in advancing therapeutic strategies for brain metastasis. This review provides an overview of current clinical treatment options for patients with brain metastasis. It also explores the roles and changes that different cells within the complex microenvironment play during tumor spread. Furthermore, it highlights the use of nanomaterials in current brain treatment approaches.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
33
|
Valiente M, Ortega-Paino E. Updating cancer research with patient-focused networks. Trends Cancer 2024; 10:1-4. [PMID: 37802739 PMCID: PMC10777485 DOI: 10.1016/j.trecan.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
Multidisciplinary patient-centered networks offer access to difficult-to-get samples and initiate projects from human material. Improving such networks to include 'living' samples could be transformative, not only for research but for clinical trial design, especially when focused on unmet clinical needs, such as brain metastasis.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; RENACER, Madrid, Spain.
| | - Eva Ortega-Paino
- RENACER, Madrid, Spain; Biobank, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
34
|
Zhang K, Zhang T, Guo Z, Zhao F, Li J, Li Y, Li Y, Wu X, Chen X, Zhang W, Pang Q, Wang P. Adding simultaneous integrated boost to whole brain radiation therapy improved intracranial tumour control and minimize radiation-induced brain injury risk for the treatment of brain metastases. BMC Cancer 2023; 23:1240. [PMID: 38104068 PMCID: PMC10724957 DOI: 10.1186/s12885-023-11739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Brain metastases (BMs) are the most frequent intracranial tumours associated with poor clinical outcomes. Radiotherapy is essential in the treatment of these tumours, although the optimal radiation strategy remains controversial. The present study aimed to assess whether whole brain radiation therapy with a simultaneous integrated boost (WBRT + SIB) provides any therapeutic benefit over WBRT alone. METHODS We included and retrospectively analysed 82 patients who received WBRT + SIB and 83 who received WBRT alone between January 2012 and June 2021. Intracranial progression-free survival (PFS), local tumour control (LTC), overall survival (OS), and toxicity were compared between the groups. RESULTS Compared to WBRT alone, WBRT + SIB improved intracranial LTC and PFS, especially in the lung cancer subgroup. Patients with high graded prognostic assessment score or well-controlled extracranial disease receiving WBRT + SIB had improved intracranial PFS and LTC. Moreover, WBRT + SIB also improved the long-term intracranial tumour control of small cell lung cancer patients. When evaluating toxicity, we found that WBRT + SIB might slightly increase the risk of radiation-induced brain injury, and that the risk increased with increasing dosage. However, low-dose WBRT + SIB had a tolerable radiation-induced brain injury risk, which was lower than that in the high-dose group, while it was comparable to that in the WBRT group. CONCLUSIONS WBRT + SIB can be an efficient therapeutic option for patients with BMs, and is associated with improved intracranial LTC and PFS. Furthermore, low-dose WBRT + SIB (biologically effective dose [BED] ≤ 56 Gy) was recommended, based on the acceptable risk of radiation-induced brain injury and satisfactory tumour control. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Kunning Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Tian Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Zhoubo Guo
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Fangdong Zhao
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Jiacheng Li
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Yanqi Li
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Yang Li
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xiaoyue Wu
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xi Chen
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Wencheng Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Qingsong Pang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China.
| | - Ping Wang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China.
| |
Collapse
|
35
|
Wijaya JH, Patel UD, Quintero-Consuegra MD, Aguilera-Peña MP, Madriñán-Navia HJ, Putra AW, July J, Kataria S. Liquid biopsy in the setting of leptomeningeal metastases: a systematic review and meta-analysis. J Neurooncol 2023; 165:431-438. [PMID: 38019327 DOI: 10.1007/s11060-023-04519-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE The blood-brain barrier can prevent circulating tumor DNA (ctDNA) derived from the central nervous system from entering the blood making it challenging to evaluate molecular features of leptomeningeal metastasis (LM). Accordingly, we sought to systematically compare the diagnostic power or significance of ctDNA derived from cerebrospinal fluid (CSF) compared to plasma ctDNA in patients with LM. METHODS A systematic review and meta-analysis was performed under the PRISMA guideline. We used PubMed, EMBASE, and the EuroPMC to search the literature using combinations of the following terms: circulating tumor DNA, ctDNA, circulating tumor cell, brain metastasis, leptomeningeal metastasis, outcome(s), and prognosis. We included all available English language studies that compared the diagnostic significance of CSF derived and serum ctDNA. All eligible studies level of bias was assessed using the New Castle Ottawa Scale (NOS). RESULTS Our meta-analysis from 6 included studies (n = 226) that confirmed the diagnostic power of liquid biopsies in detecting genomic alteration is better when taking a CSF-derived samples than from the plasma (RR 1.46 [0.93; 2.29]; I2 = 92%; p-value < 0.01). CONCLUSION CSF ctDNA is better at describing molecular landscape for LM; such an understanding may ultimately help inform patient treatment and responses to therapy.
Collapse
Affiliation(s)
- Jeremiah H Wijaya
- Department of Neurosurgery, Universitas Pelita Harapan, Tangerang, Banten, Indonesia.
| | | | | | | | - Humberto J Madriñán-Navia
- Center for Research and Training in Neurosurgery, Department of Neurosurgery, Hospital Universitario de la Samaritana, Bogota, Colombia
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Aulia W Putra
- Department of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Julius July
- Department of Neurosurgery, Universitas Pelita Harapan, Tangerang, Banten, Indonesia
| | - Saurabh Kataria
- Department of Neurology, Louisiana State University Health Science Center at Shreveport, Los Angeles, CA, USA
| |
Collapse
|
36
|
Lan Y, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm (Beijing) 2023; 4:e431. [PMID: 38020711 PMCID: PMC10665600 DOI: 10.1002/mco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer of the central nervous system (CNS) can crosstalk systemically and locally in the tumor microenvironment and has become a topic of attention for tumor initiation and advancement. Recently studied neuronal and cancer interaction fundamentally altered the knowledge about glioma and metastases, indicating how cancers invade complex neuronal networks. This review systematically discussed the interactions between neurons and cancers and elucidates new therapeutic avenues. We have overviewed the current understanding of direct or indirect communications of neuronal cells with cancer and the mechanisms associated with cancer invasion. Besides, tumor-associated neuronal dysfunction and the influence of cancer therapies on the CNS are highlighted. Furthermore, interactions between peripheral nervous system and various cancers have also been discussed separately. Intriguingly and importantly, it cannot be ignored that exosomes could mediate the "wireless communications" between nervous system and cancer. Finally, promising future strategies targeting neuronal-brain tumor interactions were reviewed. A great deal of work remains to be done to elucidate the neuroscience of cancer, and future more research should be directed toward clarifying the precise mechanisms of cancer neuroscience, which hold enormous promise to improve outcomes for a wide range of malignancies.
Collapse
Affiliation(s)
- Yu‐Long Lan
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Yongjian Zhu
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
37
|
Passalacqua MI, Ciappina G, Di Pietro M, Spagnolo CC, Squeri A, Granata B, Muscolino P, Santarpia M. Therapeutic strategies for HER2-positive breast cancer with central nervous system involvement: a literature review and future perspectives. Transl Cancer Res 2023; 12:3179-3197. [PMID: 38130295 PMCID: PMC10731379 DOI: 10.21037/tcr-23-1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 12/23/2023]
Abstract
Background and Objective Brain metastases (BMs) are present in approximately 55% of patients with HER2-positive breast cancer (HER2+ BC). The introduction of anti-HER2 agents has radically changed the prognosis of these patients by prolonging overall survival. Methods In this review, we describe the biology of central nervous system (CNS) spreading in patients with HER2+ BC. We also provide a literature review of current treatment strategies of brain metastatic BC, focusing on HER2+ disease, and future perspectives. Key Content and Findings Treatment of symptomatic BMs includes traditionally neurosurgery and/or radiotherapy, depending on the number of metastases, performance status and systemic disease control. Local treatments, such as surgical excision of BM and stereotactic radiosurgery (SRS), when feasible, are preferred over whole-brain radiotherapy, because of related cognitive impairment. These treatments can lead to a local control of the disease, however, systemic relapses can affect the prognosis of these patients. Recently, new anti-HER2 agents have demonstrated to be effective on BMs, thereby leading to improved survival outcomes with an acceptable quality of life. Despite the clinical benefit of these approaches, BMs still represent a cause of death and effective therapeutic strategies are needed. Conclusions Different targeted agents have demonstrated significant efficacy with tolerable safety profiles in HER2+ BC patients with BM, and have already been approved for clinical use in this setting. A better understanding of the molecular mechanisms underlying the onset of BMs could suggest novel targeted approaches in order to prevent CNS localization or delay progression to CNS in HER-2 metastatic patients.
Collapse
Affiliation(s)
| | | | - Martina Di Pietro
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Calogera Claudia Spagnolo
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrea Squeri
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Barbara Granata
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Paola Muscolino
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | | |
Collapse
|
38
|
James F, Lorger M. Immunotherapy in the context of immune-specialized environment of brain metastases. DISCOVERY IMMUNOLOGY 2023; 2:kyad023. [PMID: 38567052 PMCID: PMC10917168 DOI: 10.1093/discim/kyad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 04/04/2024]
Abstract
Brain metastases (BrM) develop in 20-40% of patients with advanced cancer. They mainly originate from lung cancer, melanoma, breast cancer, and renal cell carcinoma, and are associated with a poor prognosis. While patients with BrM traditionally lack effective treatment options, immunotherapy is increasingly gaining in importance in this group of patients, with clinical trials in the past decade demonstrating the efficacy and safety of immune checkpoint blockade in BrM originating from specific tumor types, foremost melanoma. The brain is an immune-specialized environment with several unique molecular, cellular, and anatomical features that affect immune responses, including those against tumors. In this review we discuss the potential role that some of these unique characteristics may play in the efficacy of immunotherapy, mainly focusing on the lymphatic drainage in the brain and the role of systemic anti-tumor immunity that develops due to the presence of concurrent extracranial disease in addition to BrM.
Collapse
Affiliation(s)
- Fiona James
- School of Medicine, University of Leeds, Leeds, UK
| | | |
Collapse
|
39
|
Alexopoulos G, Zhang J, Karampelas I, Patel M, Mercier P. Prognostics of Systemic Malignancy ICD-O Topography and Morphology Types on Brain Metastases: An NCDB Time-to-event Cohort. Am J Clin Oncol 2023; 46:475-485. [PMID: 37561070 DOI: 10.1097/coc.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
BACKGROUND The primary site and histology of systemic malignancy are known predictors of progression to brain metastases (BM). We investigated the combinational interactions of International Classification of Diseases for Oncology (ICD-O) primary topography and morphology types on the survival of BM after adjusting for relevant clinical and demographic prognostic factors. METHODS The cohort included all adult patients with BM at diagnosis of an invasive malignancy in the National Cancer Database (2010 to 2018). The sample consisted of 180,150 entries out of 14,279,749 cancer patients screened. A survival analysis of the topography-specific and histology-specific time to death was performed. Multivariate Cox regression revealed violations of the proportional hazard assumption for multiple covariates. Parametric models using a log-logistic distribution best described the population survival pattern. RESULTS The primary topography "prostate" and morphology "choriocarcinoma" provided the strongest survival benefit among ICD-O types, whereas BM from prostate demonstrated a 14-month median overall increase in survival probability. Favorable prognostics were BM from breast, bone/joints, and testis; also, the morphologies of carcinoid tumor, mature B-cell lymphoma, and papillary adenocarcinoma. Poor prognostics were BM from gastrointestinal (liver, biliary tree, pancreas, and gallbladder) and gynecologic malignancies. All morphologies of spindle cell carcinoma, hemangiosarcoma, undifferentiated carcinoma, Ewing sarcoma, pseudosarcomatous carcinoma, renal cell carcinoma/sarcomatoid, signet ring cell carcinoma, spindle cell sarcoma, and squamous cell carcinoma/spindle cell were associated with poor survival. CONCLUSIONS This is the largest cohort providing an unbiased estimate of the adjusted ICD-O topography and morphology effect sizes. The results can be summarized as a booklet for prognostic classification of disease in patients with BM secondary to systemic malignancy.
Collapse
Affiliation(s)
- Georgios Alexopoulos
- Department of Neurosurgery, Saint Louis University Hospital
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME
| | - Justin Zhang
- School of Medicine, Saint Louis University, St. Louis, MO
| | - Ioannis Karampelas
- Department of Neurosurgery, Banner Neurological Surgery Clinic, Greeley, CO
| | - Mayur Patel
- School of Medicine, Saint Louis University, St. Louis, MO
| | - Philippe Mercier
- Department of Neurosurgery, Saint Louis University Hospital
- School of Medicine, Saint Louis University, St. Louis, MO
| |
Collapse
|
40
|
Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, Drainas AP, Bhattacharya D, Tomasich E, Lee MC, Yang D, Kim J, Peiris-Pagès M, Simpson KL, Dive C, Preusser M, Toland A, Kong C, Das M, Winslow MM, Pasca AM, Sage J. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol 2023; 25:1506-1519. [PMID: 37783795 PMCID: PMC11230587 DOI: 10.1038/s41556-023-01241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Siqi C Brough
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wojciech Michno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chioma J Madubata
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erwin Tomasich
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Peiris-Pagès
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Angus Toland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Huang Q, Liu L, Xiao D, Huang Z, Wang W, Zhai K, Fang X, Kim J, Liu J, Liang W, He J, Bao S. CD44 + lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell 2023; 41:1621-1636.e8. [PMID: 37595587 DOI: 10.1016/j.ccell.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Brain metastasis of lung cancer causes high mortality, but the exact mechanisms underlying the metastasis remain unclear. Here we report that vascular pericytes derived from CD44+ lung cancer stem cells (CSCs) in lung adenocarcinoma (ADC) potently cause brain metastases through the G-protein-coupled receptor 124 (GPR124)-enhanced trans-endothelial migration (TEM). CD44+ CSCs in perivascular niches generate the majority of vascular pericytes in lung ADC. CSC-derived pericyte-like cells (Cd-pericytes) exhibit remarkable TEM capacity to effectively intravasate into the vessel lumina, survive in the circulation, extravasate into the brain parenchyma, and then de-differentiate into tumorigenic CSCs to form metastases. Cd-pericytes uniquely express GPR124 that activates Wnt7-β-catenin signaling to enhance TEM capacity of Cd-pericytes for intravasation and extravasation, two critical steps during tumor metastasis. Furthermore, selective disruption of Cd-pericytes, GPR124, or the Wnt7-β-catenin signaling markedly reduces brain and liver metastases of lung ADC. Our findings uncover an unappreciated cellular and molecular paradigm driving tumor metastasis.
Collapse
Affiliation(s)
- Qian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Liping Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Dakai Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Zhi Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wenjun Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Kui Zhai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jongmyung Kim
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wenhua Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China.
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
Sanchez-Aguilera A, Masmudi-Martín M, Navas-Olive A, Baena P, Hernández-Oliver C, Priego N, Cordón-Barris L, Alvaro-Espinosa L, García S, Martínez S, Lafarga M, Lin MZ, Al-Shahrour F, Menendez de la Prida L, Valiente M. Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits. Cancer Cell 2023; 41:1637-1649.e11. [PMID: 37652007 PMCID: PMC10507426 DOI: 10.1016/j.ccell.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sonia Martínez
- Experimental Therapeutics Programme, CNIO, 28029 Madrid, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and CIBERNED, University of Cantabria- IDIVAL, 39011 Santander, Spain
| | - Michael Z Lin
- Departments of Neurobiology and Bioengineering, Stanford University, Stanford, CA 94305-5090, USA
| | | | | | | |
Collapse
|
43
|
Diehl CD, Giordano FA, Grosu AL, Ille S, Kahl KH, Onken J, Rieken S, Sarria GR, Shiban E, Wagner A, Beck J, Brehmer S, Ganslandt O, Hamed M, Meyer B, Münter M, Raabe A, Rohde V, Schaller K, Schilling D, Schneider M, Sperk E, Thomé C, Vajkoczy P, Vatter H, Combs SE. Opportunities and Alternatives of Modern Radiation Oncology and Surgery for the Management of Resectable Brain Metastases. Cancers (Basel) 2023; 15:3670. [PMID: 37509330 PMCID: PMC10377800 DOI: 10.3390/cancers15143670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Postsurgical radiotherapy (RT) has been early proven to prevent local tumor recurrence, initially performed with whole brain RT (WBRT). Subsequent to disadvantageous cognitive sequalae for the patient and the broad distribution of modern linear accelerators, focal irradiation of the tumor has omitted WBRT in most cases. In many studies, the effectiveness of local RT of the resection cavity, either as single-fraction stereotactic radiosurgery (SRS) or hypo-fractionated stereotactic RT (hFSRT), has been demonstrated to be effective and safe. However, whereas prospective high-level incidence is still lacking on which dose and fractionation scheme is the best choice for the patient, further ablative techniques have come into play. Neoadjuvant SRS (N-SRS) prior to resection combines straightforward target delineation with an accelerated post-surgical phase, allowing an earlier start of systemic treatment or rehabilitation as indicated. In addition, low-energy intraoperative RT (IORT) on the surgical bed has been introduced as another alternative to external beam RT, offering sterilization of the cavity surface with steep dose gradients towards the healthy brain. This consensus paper summarizes current local treatment strategies for resectable brain metastases regarding available data and patient-centered decision-making.
Collapse
Affiliation(s)
- Christian D Diehl
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, University Medical Center, Medical Faculty, 79106 Freiburg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Klaus-Henning Kahl
- Department of Radiation Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Comprehensive Cancer Center Niedersachsen (CCC-N), 37075 Göttingen, Germany
| | - Gustavo R Sarria
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Arthur Wagner
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Oliver Ganslandt
- Neurosurgical Clinic, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Marc Münter
- Department of Radiation Oncology, Klinikum Stuttgart Katharinenhospital, 70174 Stuttgart, Germany
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Veit Rohde
- Department of Neurosurgery, Universitätsmedizin Göttingen, 37075 Göttingen, Germany
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, 1211 Geneva, Switzerland
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Elena Sperk
- Mannheim Cancer Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| |
Collapse
|
44
|
Kim AE, Nieblas-Bedolla E, de Sauvage MA, Brastianos PK. Leveraging translational insights toward precision medicine approaches for brain metastases. NATURE CANCER 2023; 4:955-967. [PMID: 37491527 PMCID: PMC10644911 DOI: 10.1038/s43018-023-00585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/15/2023] [Indexed: 07/27/2023]
Abstract
Due to increasing incidence and limited treatments, brain metastases (BM) are an emerging unmet need in modern oncology. Development of effective therapeutics has been hindered by unique challenges. Individual steps of the brain metastatic cascade are driven by distinctive biological processes, suggesting that BM possess intrinsic biological differences compared to primary tumors. Here, we discuss the unique physiology and metabolic constraints specific to BM as well as emerging treatment strategies that leverage potential vulnerabilities.
Collapse
Affiliation(s)
- Albert E Kim
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin Nieblas-Bedolla
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Magali A de Sauvage
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Priscilla K Brastianos
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Samia AM, Boyer PJ. Atrial Myxoma Presenting With Hemorrhage and Multifocal Infarcts in the Brain of a 59-Year-Old Man: An Uncommon Outcome for the Most Common Primary Heart Neoplasm. Cureus 2023; 15:e41323. [PMID: 37539427 PMCID: PMC10394492 DOI: 10.7759/cureus.41323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 08/05/2023] Open
Abstract
Atrial myxomas are the most common primary neoplasm of the heart. Due to their mass effect, they may lead to dysfunction of the heart or mitral valve. Rarely, neoplastic fragments may embolize or a thrombus secondary to stasis may form, which can infarct downstream structures (e.g., the brain). We report the case of a 59-year-old man presenting with headaches, visual changes, and word-finding difficulty secondary to multifocal brain lesions that were identified on computed tomography and magnetic resonance imaging. After an extensive workup, the etiology of the patient's neurological symptoms was determined to be embolization from a large atrial myxoma (2.3x3.5 cm). Histologic and immunohistochemical examination of the atrial myxoma and largest brain lesion yielded similarities, including the presence of spindle-shaped and stellate cells, myxoid regions, Alcian blue pH 2.5 positivity, calretinin positivity, cluster of differentiation 34 (CD34) positivity, and cluster of differentiation 68 (CD68) negativity. This case was remarkable due to the patient's late presentation, the large size of the atrial myxoma, the presence of abundant cerebral hemisphere and cerebellar lesions, and the histologic comparison of the heart and brain lesions. Atrial myxomas have been reported from childhood to late adulthood and when symptoms typically present clinically due to the mass effect. However, neurologic manifestations from embolization or thrombus formation can occur, as in the present case. Therefore, considering the presence of atrial myxomas is important in patients with neurologic manifestations and heart murmurs.
Collapse
Affiliation(s)
| | - Philip J Boyer
- Pathology and Laboratory Medicine, Vidant Medical Center/East Carolina University, Greenville, USA
| |
Collapse
|
46
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Sunderland A, Williams J, Andreou T, Rippaus N, Fife C, James F, Kartika YD, Speirs V, Carr I, Droop A, Lorger M. Biglycan and reduced glycolysis are associated with breast cancer cell dormancy in the brain. Front Oncol 2023; 13:1191980. [PMID: 37456245 PMCID: PMC10339804 DOI: 10.3389/fonc.2023.1191980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Exit of quiescent disseminated cancer cells from dormancy is thought to be responsible for metastatic relapse and a better understanding of dormancy could pave the way for novel therapeutic approaches. We used an in vivo model of triple negative breast cancer brain metastasis to identify differences in transcriptional profiles between dormant and proliferating cancer cells in the brain. BGN gene, encoding a small proteoglycan biglycan, was strongly upregulated in dormant cancer cells in vivo. BGN expression was significantly downregulated in patient brain metastases as compared to the matched primary breast tumors and BGN overexpression in cancer cells inhibited their growth in vitro and in vivo. Dormant cancer cells were further characterized by a reduced expression of glycolysis genes in vivo, and inhibition of glycolysis in vitro resulted in a reversible growth arrest reminiscent of dormancy. Our study identified mechanisms that could be targeted to induce/maintain cancer dormancy and thereby prevent metastatic relapse.
Collapse
Affiliation(s)
| | | | - Tereza Andreou
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Nora Rippaus
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Fiona James
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Valerie Speirs
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Ian Carr
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Alastair Droop
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Mihaela Lorger
- School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
48
|
Geissler M, Jia W, Kiraz EN, Kulacz I, Liu X, Rombach A, Prinz V, Jussen D, Kokkaliaris KD, Medyouf H, Sevenich L, Czabanka M, Broggini T. The Brain Pre-Metastatic Niche: Biological and Technical Advancements. Int J Mol Sci 2023; 24:10055. [PMID: 37373202 DOI: 10.3390/ijms241210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.
Collapse
Affiliation(s)
- Maximilian Geissler
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Weiyi Jia
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Emine Nisanur Kiraz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Ida Kulacz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Xiao Liu
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Adrian Rombach
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Vincent Prinz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
49
|
Cui Q, Jiang D, Zhang Y, Chen C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev 2023; 42:543-574. [PMID: 36997828 PMCID: PMC10349033 DOI: 10.1007/s10555-023-10095-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
It is well established that innervation is one of the updated hallmarks of cancer and that psychological stress promotes the initiation and progression of cancer. The breast tumor environment includes not only fibroblasts, adipocytes, endothelial cells, and lymphocytes but also neurons, which is increasingly discovered important in breast cancer progression. Peripheral nerves, especially sympathetic, parasympathetic, and sensory nerves, have been reported to play important but different roles in breast cancer. However, their roles in the breast cancer progression and treatment are still controversial. In addition, the brain is one of the favorite sites of breast cancer metastasis. In this review, we first summarize the innervation of breast cancer and its mechanism in regulating cancer growth and metastasis. Next, we summarize the neural-related molecular markers in breast cancer diagnosis and treatment. In addition, we review drugs and emerging technologies used to block the interactions between nerves and breast cancer. Finally, we discuss future research directions in this field. In conclusion, the further research in breast cancer and its interactions with innervated neurons or neurotransmitters is promising in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Qiuxia Cui
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanqi Zhang
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
50
|
Peña-Pino I, Chen CC. Stereotactic Radiosurgery as Treatment for Brain Metastases: An Update. Asian J Neurosurg 2023; 18:246-257. [PMID: 37397044 PMCID: PMC10310446 DOI: 10.1055/s-0043-1769754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is a mainstay treatment option for brain metastasis (BM). While guidelines for SRS use have been outlined by professional societies, consideration of these guidelines should be weighed in the context of emerging literature, novel technology platforms, and contemporary treatment paradigms. Here, we review recent advances in prognostic scale development for SRS-treated BM patients and survival outcomes as a function of the number of BM and cumulative intracranial tumor volume. Focus is placed on the role of stereotactic laser thermal ablation in the management of BM that recur after SRS and the management of radiation necrosis. Neoadjuvant SRS prior to surgical resection as a means of minimizing leptomeningeal spread is also discussed.
Collapse
Affiliation(s)
- Isabela Peña-Pino
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|