1
|
Allen-Taylor D, Boro G, Cabato P, Mai C, Nguyen K, Rijal G. Staphylococcus epidermidis biofilm in inflammatory breast cancer and its treatment strategies. Biofilm 2024; 8:100220. [PMID: 39318870 PMCID: PMC11420492 DOI: 10.1016/j.bioflm.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bacterial biofilms represent a significant challenge in both clinical and industrial settings because of their robust nature and resistance to antimicrobials. Biofilms are formed by microorganisms that produce an exopolysaccharide matrix, protecting function and supporting for nutrients. Among the various bacterial species capable of forming biofilms, Staphylococcus epidermidis, a commensal organism found on human skin and mucous membranes, has emerged as a prominent opportunistic pathogen, when introduced into the body via medical devices, such as catheters, prosthetic joints, and heart valves. The formation of biofilms by S. epidermidis on these surfaces facilitates colonization and provides protection against host immune responses and antibiotic therapies, leading to persistent and difficult-to-treat infections. The possible involvement of biofilms for breast oncogenesis has recently created the curiosity. This paper therefore delves into S. epidermidis biofilm involvement in breast cancer. S. epidermidis biofilms can create a sustained inflammatory environment through their metabolites and can break DNA in breast tissue, promoting cellular proliferation, angiogenesis, and genetic instability. Preventing biofilm formation primarily involves preventing bacterial proliferation using prophylactic measures and sterilization of medical devices and equipment. In cancer treatment, common modalities include chemotherapy, surgery, immunotherapy, alkylating agents, and various anticancer drugs. Understanding the relationship between anticancer drugs and bacterial biofilms is crucial, especially for those undergoing cancer treatment who may be at increased risk of bacterial infections, for improving patient outcomes. By elucidating these interactions, strategies to prevent or disrupt biofilm formation, thereby reducing the incidence of infections associated with medical devices and implants, can be identified.
Collapse
Affiliation(s)
- D. Allen-Taylor
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Boro
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - P.M. Cabato
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - C. Mai
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - K. Nguyen
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Rijal
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| |
Collapse
|
2
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
3
|
Grosser B, Reitsam NG, Grochowski P, Rentschler L, Enke J, Märkl B. [SARIFA-a new multi-entity biomarker]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:397-403. [PMID: 39365350 DOI: 10.1007/s00292-024-01368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
A stroma a‑reactive invasion front area (SARIFA) is a new prognostic biomarker in carcinomas. Essentially, SARIFA describes the occurrence of direct contact between at least five tumor cells and adipocytes. This phenomenon is extremely easy and quick to identify, shows an extremely low interobserver variability, and does not require any additional staining as it can be identified on standard HE sections. The prognostic efficiency has now been demonstrated in gastric, colorectal, pancreatic, and prostate carcinoma.
Collapse
Affiliation(s)
- Bianca Grosser
- Institut für Pathologie und Molekulare Diagnostik, Medizinische Fakultät Augsburg, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland
| | - Nic G Reitsam
- Institut für Pathologie und Molekulare Diagnostik, Medizinische Fakultät Augsburg, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland
| | - Przmyslaw Grochowski
- Institut für Pathologie und Molekulare Diagnostik, Medizinische Fakultät Augsburg, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland
| | - Lukas Rentschler
- Institut für Pathologie und Molekulare Diagnostik, Medizinische Fakultät Augsburg, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland
| | - Johanna Enke
- Klinik für Nuklearmedizin, Medizinische Fakultät Augsburg, Universität Augsburg, Augsburg, Deutschland
| | - Bruno Märkl
- Institut für Pathologie und Molekulare Diagnostik, Medizinische Fakultät Augsburg, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland.
- Bayerisches Krebsforschungszentrum, Universitätsklinik Augsburg, Augsburg, Deutschland.
- WERA Cancer Comprehensive Center, Universitätsklinik Augsburg, Augsburg, Deutschland.
| |
Collapse
|
4
|
Miracle CE, McCallister CL, Denning KL, Russell R, Allen J, Lawrence L, Legenza M, Krutzler-Berry D, Salisbury TB. High BMI Is Associated with Changes in Peritumor Breast Adipose Tissue That Increase the Invasive Activity of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:10592. [PMID: 39408921 PMCID: PMC11476838 DOI: 10.3390/ijms251910592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer is the most common cancer in women with multiple risk factors including smoking, genetics, environmental factors, and obesity. Smoking and obesity are the top two risk factors for the development of breast cancer. The effect of obesity on adipose tissue mediates the pathogenesis of breast cancer in the context of obesity. Triple-negative breast cancer (TNBC) is a breast cancer subtype within which the cells lack estrogen, progesterone, and HER2 receptors. TNBC is the deadliest breast cancer subtype. The 5-year survival rates for patients with TNBC are 8-16% lower than the 5-year survival rates for patients with estrogen-receptor-positive breast tumors. In addition, TNBC patients have early relapse rates (3-5 years after diagnosis). Obesity is associated with an increased risk for TNBC, larger TNBC tumors, and increased breast cancer metastasis compared with lean women. Thus, novel therapeutic approaches are warranted to treat TNBC in the context of obesity. In this paper, we show that peritumor breast adipose-derived secretome (ADS) from patients with a high (>30) BMI is a stronger inducer of TNBC cell invasiveness and JAG1 expression than peritumor breast ADS from patients with low (<30) BMI. These findings indicate that patient BMI-associated changes in peritumor AT induce changes in peritumor ADS, which in turn acts on TNBC cells to stimulate JAG1 expression and cancer cell invasiveness.
Collapse
Affiliation(s)
- Cora E. Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Chelsea L. McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| | - Krista L. Denning
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Rebecca Russell
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Jennifer Allen
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Logan Lawrence
- Cabell Huntington Hospital Laboratory, Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (K.L.D.); (R.R.); (J.A.); (L.L.)
| | - Mary Legenza
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Diane Krutzler-Berry
- Edwards Comprehensive Cancer Center, Department of Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.L.); (D.K.-B.)
| | - Travis B. Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (C.E.M.); (C.L.M.)
| |
Collapse
|
5
|
Di Rocco G, Trivisonno A, Trivisonno G, Toietta G. Dissecting human adipose tissue heterogeneity using single-cell omics technologies. Stem Cell Res Ther 2024; 15:322. [PMID: 39334440 PMCID: PMC11437900 DOI: 10.1186/s13287-024-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Single-cell omics technologies that profile genes (genomic and epigenomic) and determine the abundance of mRNA (transcriptomic), protein (proteomic and secretomic), lipids (lipidomic), and extracellular matrix (matrisomic) support the dissection of adipose tissue heterogeneity at unprecedented resolution in a temporally and spatially defined manner. In particular, cell omics technologies may provide innovative biomarkers for the identification of rare specific progenitor cell subpopulations, assess transcriptional and proteomic changes affecting cell proliferation and immunomodulatory potential, and accurately define the lineage hierarchy and differentiation status of progenitor cells. Unraveling adipose tissue complexity may also provide for the precise assessment of a dysfunctional state, which has been associated with cancer, as cancer-associated adipocytes play an important role in shaping the tumor microenvironment supporting tumor progression and metastasis, obesity, metabolic syndrome, and type 2 diabetes mellitus. The information collected by single-cell omics has relevant implications for regenerative medicine because adipose tissue is an accessible source of multipotent cells; alternative cell-free approaches, including the use of adipose tissue stromal cell-conditioned medium, extracellular vesicles, or decellularized extracellular matrix, are clinically valid options. Subcutaneous white adipose tissue, which is generally harvested via liposuction, is highly heterogeneous because of intrinsic biological variability and extrinsic inconsistencies in the harvesting and processing procedures. The current limited understanding of adipose tissue heterogeneity impinges on the definition of quality standards appropriate for clinical translation, which requires consistency and uniformity of the administered product. We review the methods used for dissecting adipose tissue heterogeneity and provide an overview of advances in omics technology that may contribute to the exploration of heterogeneity and dynamics of adipose tissue at the single-cell level.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Angelo Trivisonno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | | | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
6
|
Calabrese C, Miserocchi G, De Vita A, Spadazzi C, Cocchi C, Vanni S, Gabellone S, Martinelli G, Ranallo N, Bongiovanni A, Liverani C. Lipids and adipocytes involvement in tumor progression with a focus on obesity and diet. Obes Rev 2024:e13833. [PMID: 39289899 DOI: 10.1111/obr.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The adipose tissue is a complex organ that can play endocrine, metabolic, and immune regulatory roles in cancer. In particular, adipocytes provide metabolic substrates for cancer cell proliferation and produce signaling molecules that can stimulate cell adhesion, migration, invasion, angiogenesis, and inflammation. Cancer cells, in turn, can reprogram adipocytes towards a more inflammatory state, resulting in a vicious cycle that fuels tumor growth and evolution. These mechanisms are enhanced in obesity, which is associated with the risk of developing certain tumors. Diet, an exogenous source of lipids with pro- or anti-inflammatory functions, has also been connected to cancer risk. This review analyzes how adipocytes and lipids are involved in tumor development and progression, focusing on the relationship between obesity and cancer. In addition, we discuss how diets with varying lipid intakes can affect the disease outcomes. Finally, we introduce novel metabolism-targeted treatments and adipocyte-based therapies in oncology.
Collapse
Affiliation(s)
- Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sofia Gabellone
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nicoletta Ranallo
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
7
|
Williams ME, Howard D, Donnelly C, Izadi F, Parra JG, Pugh M, Edwards K, Lutchman-Sigh K, Jones S, Margarit L, Francis L, Conlan RS, Taraballi F, Gonzalez D. Adipocyte derived exosomes promote cell invasion and challenge paclitaxel efficacy in ovarian cancer. Cell Commun Signal 2024; 22:443. [PMID: 39285292 PMCID: PMC11404028 DOI: 10.1186/s12964-024-01806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the deadliest gynaecological cancer with high mortality rates driven by the common development of resistance to chemotherapy. EOC frequently invades the omentum, an adipocyte-rich organ of the peritoneum and omental adipocytes have been implicated in promoting disease progression, metastasis and chemoresistance. The signalling mechanisms underpinning EOC omentum tropism have yet to be elucidated. METHODS Three-dimensional co-culture models were used to explore adipocyte-EOC interactions. The impact of adipocytes on EOC proliferation, response to therapy and invasive capacity was assessed. Primary adipocytes and omental tissue were isolated from patients with ovarian malignancies and benign ovarian neoplasms. Exosomes were isolated from omentum tissue conditioned media and the effect of omentum-derived exosomes on EOC evaluated. Exosomal microRNA (miRNA) sequencing was used to identify miRNAs abundant in omental exosomes and EOC cells were transfected with highly abundant miRNAs miR-21, let-7b, miR-16 and miR-92a. RESULTS We demonstrate the capacity of adipocytes to induce an invasive phenotype in EOC populations through driving epithelial-to-mesenchymal transition (EMT). Exosomes secreted by omental tissue of ovarian cancer patients, as well as patients without malignancies, induced proliferation, upregulated EMT markers and reduced response to paclitaxel therapy in EOC cell lines and HGSOC patient samples. Analysis of the omentum-derived exosomes from cancer patients revealed highly abundant miRNAs that included miR-21, let-7b, miR-16 and miR-92a that promoted cancer cell proliferation and protection from chemotherapy when transfected in ovarian cancer cells. CONCLUSIONS These observations highlight the capacity of omental adipocytes to generate a pro-tumorigenic and chemoprotective microenvironment in ovarian cancer and other adipose-related malignancies.
Collapse
Affiliation(s)
- Michael Ellis Williams
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - David Howard
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Claire Donnelly
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Fereshteh Izadi
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Jezabel Garcia Parra
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Megan Pugh
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kerryn Lutchman-Sigh
- Department of Gynaecology Oncology, Singleton Hospital, Swansea Bay University Health Board, Swansea, Wales, SA2 8QA, UK
| | - Sadie Jones
- Department of Obstetrics and Gynaecology, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lavinia Margarit
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, Wales, CF31 1RQ, UK
| | - Lewis Francis
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Deyarina Gonzalez
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
8
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
9
|
Feng J, Rouse CD, Coogan I, Byrd O, Nguyen E, Taylor L, Garcia S, Lee H, Berchuck A, Murphy SK, Huang Z. Regulation of Age-Related Lipid Metabolism in Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611709. [PMID: 39314468 PMCID: PMC11418935 DOI: 10.1101/2024.09.06.611709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Although a lot of effort has been dedicated to ovarian cancer (OC) research, the mortality rate is still among the highest in female gynecologic malignancies. The effects of the aged tumor microenvironment are still being undermined despite age being the highest risk factor in ovarian cancer development and progression. In this study, we have conducted RNA sequencing and lipidomics analysis of gonadal adipose tissues from young and aged rat xenografts before and after ovarian cancer formation. We have found significantly higher tumor formation rates and volumes in aged OC xenograft rat models compared to their young counterparts (p<0.05), suggesting the aged adipose microenvironment (AME) is more susceptible to OC outgrowth. We have revealed significant shifts in the gene expression enrichment from groups of young vs. aged rats before tumor formation, groups of young vs. aged rats when the tumor formed, and groups of aged rats before and after tumor formation. We also observed shifts in the lipid components of the gonadal adipose tissues between young and aged rat xenografts when tumors were generated. Additionally, we found that the aged AME was associated with age-related changes in the immune cell composition, especially inflammation-related cells. The top hits showing the most differences between aged and young adipose tissues were eight genes including S100a8, S100a9, Il1rl1, Lcn2, C3, Hba-a1, Fcna, and Pnpla3, 22 lipids including multiple isoforms of free fatty acids (FFA) and triglyceride (TG), as well as four immune cells including neutrophil, myeloid dendritic cell, T cell CD4+ (non-regulatory), and mast cell activation. The functional correlation among S100a8, S100a9, neutrophil, and FFA (18:3) was also determined. Furthermore, FFA (18:3), which was shown to be downregulated in aged xenograft rats, was capable of inhibiting OC cell proliferation. In conclusion, our study suggested that aging promoted OC proliferation through changes in genes/pathways, lipid metabolism, and immune cells. Targeting the aging adipose microenvironment, particularly lipid metabolism reprogramming, holds promise as a therapeutic strategy for OC, which warrants further investigation. Significance Aging microenvironment of OC may be regulated by S100a8 and S100a9 secreted by adipocytes, preadipocytes, or neutrophils through affecting the lipid metabolism, such as FFA (18:3).
Collapse
|
10
|
Lauridsen AR, Skorda A, Winther NI, Bay ML, Kallunki T. Why make it if you can take it: review on extracellular cholesterol uptake and its importance in breast and ovarian cancers. J Exp Clin Cancer Res 2024; 43:254. [PMID: 39243069 PMCID: PMC11378638 DOI: 10.1186/s13046-024-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Cholesterol homeostasis is essential for healthy mammalian cells and dysregulation of cholesterol metabolism contributes to the pathogenesis of various diseases including cancer. Cancer cells are dependent on cholesterol. Malignant progression is associated with high cellular demand for cholesterol, and extracellular cholesterol uptake is often elevated in cancer cell to meet its metabolic needs. Tumors take up cholesterol from the blood stream through their vasculature. Breast cancer grows in, and ovarian cancer metastasizes into fatty tissue that provides them with an additional source of cholesterol. High levels of extracellular cholesterol are beneficial for tumors whose cancer cells master the uptake of extracellular cholesterol. In this review we concentrate on cholesterol uptake mechanisms, receptor-mediated endocytosis and macropinocytosis, and how these are utilized and manipulated by cancer cells to overcome their possible intrinsic or pharmacological limitations in cholesterol synthesis. We focus especially on the involvement of lysosomes in cholesterol uptake. Identifying the vulnerabilities of cholesterol metabolism and manipulating them could provide novel efficient therapeutic strategies for treatment of cancers that manifest dependency for extracellular cholesterol.
Collapse
Affiliation(s)
- Anna Røssberg Lauridsen
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Aikaterini Skorda
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Nuggi Ingholt Winther
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Marie Lund Bay
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
| | - Tuula Kallunki
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Cai L, Kolonin MG, Anastassiou D. The fibro-adipogenic progenitor APOD+DCN+LUM+ cell population in aggressive carcinomas. Cancer Metastasis Rev 2024; 43:977-980. [PMID: 38466528 PMCID: PMC11300568 DOI: 10.1007/s10555-024-10181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
We identified a progenitor cell population highly enriched in samples from invasive and chemo-resistant carcinomas, characterized by a well-defined multigene signature including APOD, DCN, and LUM. This cell population has previously been labeled as consisting of inflammatory cancer-associated fibroblasts (iCAFs). The same signature characterizes naturally occurring fibro-adipogenic progenitors (FAPs) as well as stromal cells abundant in normal adipose tissue. Our analysis of human gene expression databases provides evidence that adipose stromal cells (ASCs) are recruited by tumors and undergo differentiation into CAFs during cancer progression to invasive and chemotherapy-resistant stages.
Collapse
Affiliation(s)
- Lingyi Cai
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| | - Dimitris Anastassiou
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Genard GC, Tirinato L, Pagliari F, Da Silva J, Giammona A, Alquraish F, Reyes MP, Bordas M, Marafioti MG, Franco SD, Janssen J, Garcia‐Calderón D, Hanley R, Nistico C, Fukasawa Y, Müller T, Krijgsveld J, Todaro M, Costanzo FS, Stassi G, Nessling M, Richter K, Maass KK, Liberale C, Seco J. Lipid droplets and small extracellular vesicles: More than two independent entities. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e162. [PMID: 39257626 PMCID: PMC11386333 DOI: 10.1002/jex2.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 09/12/2024]
Abstract
Despite increasing knowledge about small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we reveal for the first time that sEV biogenesis and release into the microenvironment are tightly connected with another important organelle, Lipid Droplets (LDs). The correlation was observed in several human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs). Our results demonstrated that external stimuli such as radiation, pH, hypoxia or lipid-interfering drugs, known to affect the number of LDs/cell, similarly influenced sEV secretion. Importantly, through multiple omics data, at both mRNA and protein levels, we revealed RAB5C as a potential important molecular player behind this organelle connection. Altogether, the potential to fine-tune sEV biogenesis by targeting LDs could significantly impact the amount, cargos and properties of these sEVs, opening new clinical perspectives.
Collapse
Affiliation(s)
- Géraldine C. Genard
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Luca Tirinato
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Experimental and Clinical Medicine, Nanotechnology Research CenterUniversity of Magna GraeciaCatanzaroItaly
- Department of Medical and Surgical ScienceUniversity Magna GraeciaCatanzaroItaly
| | - Francesca Pagliari
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jessica Da Silva
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Alessandro Giammona
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Institute of Molecular Bioimaging and Physiology (IBFM)National Research Council (CNR)SegrateItaly
| | - Fatema Alquraish
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Maria Parra Reyes
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Marie Bordas
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Maria Grazia Marafioti
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Simone Di Franco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| | - Jeannette Janssen
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniel Garcia‐Calderón
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | - Rachel Hanley
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Clelia Nistico
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Experimental and Clinical MedicineUniversity of Magna GraeciaCatanzaroItaly
| | - Yoshinori Fukasawa
- Core Labs, King Abdullah University of Science and Technology(KAUST)ThuwalSaudi Arabia
| | - Torsten Müller
- German Cancer Research Center, DKFZHeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | - Jeroen Krijgsveld
- Medical FacultyHeidelberg UniversityHeidelbergGermany
- Proteomics of Stem Cells and CancerGerman Cancer Research CenterHeidelbergGermany
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| | | | - Giorgio Stassi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| | - Michelle Nessling
- Electron Microscopy FacilityGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Karsten Richter
- Electron Microscopy FacilityGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Kendra K. Maass
- Hopp‐Children's Cancer Center Heidelberg (KiTZ)HeidelbergGermany
| | - Carlo Liberale
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Joao Seco
- Division of Biomedical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
13
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen MC. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024. [PMID: 39206504 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Jürg Hafner
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Cezmi A Akdis
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, California, USA
| | - Marie-Charlotte Brüggen
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| |
Collapse
|
14
|
Qi H, Xuan Q, Liu P, An Y, Huang W, Miao S, Wang Q, Liu Z, Wang R. Deep Learning Radiomics Features of Mediastinal Fat and Pulmonary Nodules on Lung CT Images Distinguish Benignancy and Malignancy. Biomedicines 2024; 12:1865. [PMID: 39200329 PMCID: PMC11352131 DOI: 10.3390/biomedicines12081865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the relationship between mediastinal fat and pulmonary nodule status, aiming to develop a deep learning-based radiomics model for diagnosing benign and malignant pulmonary nodules. We proposed a combined model using CT images of both pulmonary nodules and the fat around the chest (mediastinal fat). Patients from three centers were divided into training, validation, internal testing, and external testing sets. Quantitative radiomics and deep learning features from CT images served as predictive factors. A logistic regression model was used to combine data from both pulmonary nodules and mediastinal adipose regions, and personalized nomograms were created to evaluate the predictive performance. The model incorporating mediastinal fat outperformed the nodule-only model, with C-indexes of 0.917 (training), 0.903 (internal testing), 0.942 (external testing set 1), and 0.880 (external testing set 2). The inclusion of mediastinal fat significantly improved predictive performance (NRI = 0.243, p < 0.05). A decision curve analysis indicated that incorporating mediastinal fat features provided greater patient benefits. Mediastinal fat offered complementary information for distinguishing benign from malignant nodules, enhancing the diagnostic capability of this deep learning-based radiomics model. This model demonstrated strong diagnostic ability for benign and malignant pulmonary nodules, providing a more accurate and beneficial approach for patient care.
Collapse
Affiliation(s)
- Hongzhuo Qi
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Qifan Xuan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Pingping Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| | - Yunfei An
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Wenjuan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| | - Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Qiujun Wang
- Department of General Practice, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
| | - Zengyao Liu
- Department of Interventional Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, China;
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| |
Collapse
|
15
|
Barbosa S, Pedrosa MB, Ferreira R, Moreira-Gonçalves D, Santos LL. The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting. Biochimie 2024; 223:1-12. [PMID: 38537739 DOI: 10.1016/j.biochi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.
Collapse
Affiliation(s)
- Samuel Barbosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.
| | - Mafalda Barbosa Pedrosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
| |
Collapse
|
16
|
Märkl B, Reitsam NG, Grochowski P, Waidhauser J, Grosser B. The SARIFA biomarker in the context of basic research of lipid-driven cancers. NPJ Precis Oncol 2024; 8:165. [PMID: 39085485 PMCID: PMC11291993 DOI: 10.1038/s41698-024-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
SARIFA was very recently introduced as a histomorphological biomarker with strong prognostic power for colorectal, gastric, prostate, and pancreatic cancer. It is characterized by the direct contact between tumor cells and adipocytes due to a lack of stromal reaction. This can be easily evaluated on routinely available H&E-slides with high interobserver agreement. SARIFA also reflects a specific tumor biology driven by metabolic reprogramming. Tumor cells in SARIFA-positive tumors benefit from direct interaction with adipocytes as an external source of lipids. Numerous studies have shown that lipid metabolism is crucial in carcinogenesis and cancer progression. We found that the interaction between tumor cells and adipocytes was not triggered by obesity, as previously assumed. Instead, we believe that this is due to an immunological mechanism. Knowledge about lipid metabolism in cancer from basic experiments can be transferred to develop strategies targeting this reprogramed metabolism.
Collapse
Affiliation(s)
- Bruno Märkl
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany.
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
- WERA Comprehensive Cancer Center, Augsburg, Germany.
| | - Nic G Reitsam
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Przemyslaw Grochowski
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| | - Johanna Waidhauser
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
- Hematology and Oncology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
| | - Bianca Grosser
- Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- WERA Comprehensive Cancer Center, Augsburg, Germany
| |
Collapse
|
17
|
Cai Q, Yang J, Shen H, Xu W. Cancer-associated adipocytes in the ovarian cancer microenvironment. Am J Cancer Res 2024; 14:3259-3279. [PMID: 39113876 PMCID: PMC11301307 DOI: 10.62347/xzri9189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor microenvironment (TME) plays a critical role in high energy metabolism during tumorigenesis, progression and metastasis. Among them, adipocytes, as an important component of the TME, can transform into cancer-associated adipocytes (CAAs) through dedifferentiation via interactions with tumor cells. These CAAs provide nutrients, growth factors, cytokines and metabolites to the tumor and later transdifferentiate into other stromal cells at a later stage to alter tumor growth, metastasis and the drug response and ultimately influence the treatment and prognosis of ovarian cancer. This review outlines the physiological functions of CAAs and discusses the progress in the use of CAAs as therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Qiuling Cai
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Jing Yang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Huiling Shen
- Department of Oncology, The First Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Wenlin Xu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| |
Collapse
|
18
|
Habanjar O, Nehme R, Goncalves-Mendes N, Cueff G, Blavignac C, Aoun J, Decombat C, Auxenfans C, Diab-Assaf M, Caldefie-Chézet F, Delort L. The obese inflammatory microenvironment may promote breast DCIS progression. Front Immunol 2024; 15:1384354. [PMID: 39072314 PMCID: PMC11272476 DOI: 10.3389/fimmu.2024.1384354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1β, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-β secretion. Discussion Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Gwendal Cueff
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - Jessy Aoun
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Céline Auxenfans
- Banque de tissus et de cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
19
|
Deng H, Rao X, Zhang S, Chen L, Zong Y, Zhou R, Meng R, Dong X, Wu G, Li Q. Protein kinase CK2: An emerging regulator of cellular metabolism. Biofactors 2024; 50:624-633. [PMID: 38158592 DOI: 10.1002/biof.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The protein kinase casein kinase 2 (CK2) exerts its influence on the metabolism of three major cellular substances by phosphorylating essential protein molecules involved in various cellular metabolic pathways. These substances include hormones, especially insulin, rate-limiting enzymes, transcription factors of key genes, and cytokines. This regulatory role of CK2 is closely tied to important cellular processes such as cell proliferation and apoptosis. Additionally, tumor cells undergo metabolic reprogramming characterized by aerobic glycolysis, accelerated lipid β-oxidation, and abnormally active glutamine metabolism. In this context, CK2, which is overexpressed in various tumors, also plays a pivotal role. Hence, this review aims to summarize the regulatory mechanisms of CK2 in diverse metabolic pathways and tumor development, providing novel insights for the diagnosis, treatment, and prognosis of metabolism-related diseases and cancers.
Collapse
Affiliation(s)
- Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Attia SM, Alshamrani AA, Ahmad SF, Albekairi NA, Nadeem A, Attia MSM, Ansari MA, Almutairi F, Bakheet SA. Dulaglutide reduces oxidative DNA damage and hypermethylation in the somatic cells of mice fed a high-energy diet by restoring redox balance, inflammatory responses, and DNA repair gene expressions. J Biochem Mol Toxicol 2024; 38:e23764. [PMID: 38963172 DOI: 10.1002/jbt.23764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Song Y, Na H, Lee SE, Kim YM, Moon J, Nam TW, Ji Y, Jin Y, Park JH, Cho SC, Lee J, Hwang D, Ha SJ, Park HW, Kim JB, Lee HW. Dysfunctional adipocytes promote tumor progression through YAP/TAZ-dependent cancer-associated adipocyte transformation. Nat Commun 2024; 15:4052. [PMID: 38744820 PMCID: PMC11094189 DOI: 10.1038/s41467-024-48179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.
Collapse
Affiliation(s)
- Yaechan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Heeju Na
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - You Min Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihyun Moon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae Wook Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yul Ji
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seok Chan Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Gemcro, Inc, Seoul, 03722, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Gemcro, Inc, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Liu S, Zhang M, Yang Y, Cai F, Guo F, Dai Z, Cao F, Zhou D, Liang H, Zhang R, Deng J. Establishment and validation of a risk score model based on EUS: assessment of lymph node metastasis in early gastric cancer. Gastrointest Endosc 2024:S0016-5107(24)03162-6. [PMID: 38692516 DOI: 10.1016/j.gie.2024.04.2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/10/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND AIMS Lymph node metastasis significantly affects the prognosis of early gastric cancer patients. EUS plays a crucial role in the preoperative assessment of early gastric cancer. This study evaluated the efficacy of EUS in identifying lymph node metastasis in early gastric cancer patients and developed a risk score model to aid in choosing the best treatment options. METHODS We retrospectively analyzed the effectiveness of EUS for detecting lymph node metastasis in early gastric cancer patients. A risk score model for predicting lymph node metastasis preoperatively was created using independent risk factors identified through binary logistic regression analysis and subsequently validated. Receiver operating characteristic curves were generated for both the development and validation cohorts. RESULTS The overall accuracy of EUS in identifying lymph node metastasis was 85.3%, although its sensitivity (29.2%) and positive predictive value (38.7%) were relatively low. Patients were categorized based on preoperative risk factors for lymph node metastasis, including tumor size of ≥20 mm, lymph nodes of ≥10 mm, body mass index of ≥24 kg/m2, and lymph node metastasis on CT scans. A 7-point risk score model was developed to assess the likelihood of lymph node metastasis. The areas under the receiver operating characteristic curve for the development and validation sets were 0.842 and 0.837, respectively, with sensitivities of 64% and 79%, respectively. CONCLUSIONS We developed a practical risk score model based on preoperative factors to help EUS predict lymph node metastasis in early gastric cancer patients, guiding the selection of optimal treatment approaches for these patients.
Collapse
Affiliation(s)
- Siya Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Key Laboratory of Digestive Cancer, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Mengmeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Key Laboratory of Digestive Cancer, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Yang Yang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China; Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Fenglin Cai
- Department of Biochemistry and Molecular Biology, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Feng Guo
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China; Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Zhenbo Dai
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China; Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Fuliang Cao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China; Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Dejun Zhou
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China; Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Key Laboratory of Digestive Cancer, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Key Laboratory of Digestive Cancer, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P. R. China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China; Key Laboratory of Digestive Cancer, Tianjin, P. R. China; Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China.
| |
Collapse
|
23
|
Furberg H, Bradshaw PT, Knezevic A, Olsson L, Petruzella S, Stein E, Paris M, Scott J, Akin O, Hakimi AA, Russo P, Sanchez A, Caan B, Mourtzakis M. Skeletal muscle and visceral adipose radiodensities are pre-surgical, non-invasive markers of aggressive kidney cancer. J Cachexia Sarcopenia Muscle 2024; 15:726-734. [PMID: 38263932 PMCID: PMC10995262 DOI: 10.1002/jcsm.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION Most studies on body composition in kidney cancer have been conducted among patients with metastatic disease. Given that aggressive tumours can adversely impact body composition and even non-metastatic tumours can be aggressive, we evaluated associations between pre-surgical body composition features and tumour pathological features in patients with non-metastatic clear cell renal cell cancer (ccRCC). METHODS The Resolve Cohort consists of 1239 patients with non-metastatic ccRCC who underwent nephrectomy at Memorial Sloan Kettering Cancer Center between 2000 and 2020. The cross-sectional areas and radiodensities of skeletal muscle, visceral adipose, and subcutaneous adipose tissues were determined from pre-surgical computed tomography (CT) scans at the third lumbar vertebrae using Automatica software. Pearson's correlation coefficients describe inter-relationships among BMI and body composition variables, while odds ratios (OR) and 95% confidence intervals (CI) estimate associations between continuous body composition features (per 1-standard deviation) and advanced stage (Stage III vs. Stages I-II) and high Fuhrman grade (Grades 3-4 vs. 1-2) from multivariable logistic regression models that considered the potential impact of biological sex, contrast enhanced CTs, and early age at onset of ccRCC. RESULTS The cohort was predominantly male (69%), white (89%), and had a median age of 58. The proportion of patients presenting with advanced stage and high-grade disease were 31% and 51%, respectively. In models that adjusted for demographics and all body composition variables simultaneously, decreasing skeletal muscle radiodensity (i.e., more fat infiltration) but increasing visceral adipose tissue radiodensity (i.e., more lipid depletion) were associated with advanced tumour features. Per 8.4 HU decrease in skeletal muscle radiodensity, the odds of presenting with advanced stage was 1.61 (95% CI: 1.34-1.93). Per 7.22 HU increase in visceral adipose tissue radiodensity, the odds of presenting with advanced stage was 1.45 (95% CI: 1.22-1.74). Skeletal muscle index (i.e., sarcopenia) was not associated with either tumour feature. Similar associations were observed for Fuhrman grade, a more direct marker of tumour aggressiveness. Associations did not differ by sex, contrast use, or age at onset of ccRCC. CONCLUSIONS Lipid infiltrated skeletal muscle, but lipid depleted visceral adipose tissue were independently associated with advanced tumour features in non-metastatic ccRCC. Findings highlight the importance of evaluating the full range of body composition features simultaneously in multivariable models. Interpreting pre-surgical CTs for body composition for patients may be a novel and non-invasive way to identify patients with aggressive renal tumours, which is clinically relevant as renal biopsies are not routinely performed.
Collapse
Affiliation(s)
- Helena Furberg
- Department of Epidemiology and BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Patrick T. Bradshaw
- Division of Epidemiology, School of Public HealthUniversity of California BerkeleyBerkeleyCAUSA
| | - Andrea Knezevic
- Department of Epidemiology and BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Linnea Olsson
- Department of EpidemiologyUniversity of North CarolinaChapel HillNCUSA
| | - Stacey Petruzella
- Department of Epidemiology and BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Emily Stein
- Department of Epidemiology and BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Mike Paris
- Department of KinesiologyUniversity of WaterlooWaterlooCanada
| | - Jessica Scott
- Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Oguz Akin
- Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - A. Ari Hakimi
- Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Paul Russo
- Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Bette Caan
- Department of EpidemiologyKaiser PermanenteOaklandCAUSA
| | | |
Collapse
|
24
|
Kolonin MG, Anastassiou D. Adipose Stromal Cell-Derived Cancer-Associated Fibroblasts Suppress FGFR Inhibitor Efficacy. Cancer Res 2024; 84:648-649. [PMID: 38437636 DOI: 10.1158/0008-5472.can-23-3904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/06/2024]
Abstract
Cancer aggressiveness has been linked with obesity, and studies have shown that adipose tissue can enhance cancer progression. In this issue of Cancer Research, Hosni and colleagues discover a paracrine mechanism mediated by adipocyte precursor cells through which urothelial carcinomas become resistant to erdafitinib, a recently approved therapy inhibiting fibroblast growth factor receptors (FGFR). They identified neuregulin 1 (NRG1) secreted by adipocyte precursor cells as an activator of HER3 signaling that enables resistance. The NRG1-mediated FGFR inhibitor resistance was amenable to intervention with pertuzumab, an antibody blocking the NRG1/HER3 axis. To investigate the nature of the resistance-associated NRG1-expressing cells in human patients, the authors analyzed published single-cell RNA sequencing data and observed that such cells appear in a cluster assigned as inflammatory cancer-associated fibroblasts (iCAF). Notably, the gene signature corresponding to these CAFs is highly similar to that shared by adipose stromal cells (ASC) in fat tissue and fibro-adipogenic progenitors (FAP) in skeletal muscle of cancer-free individuals. Because fibroblasts with the ASC/FAP signature are enriched in various carcinomas, it is possible that the paracrine signaling conferred by NRG1 is a pan-cancer mechanism of FGFR inhibitor resistance and tumor aggressiveness. See related article by Hosni et al., p. 725.
Collapse
Affiliation(s)
- Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Dimitris Anastassiou
- Department of Systems Biology, Department of Electrical Engineering and Center for Cancer Systems Therapeutics, Columbia University, New York, New York
| |
Collapse
|
25
|
Özbalcı D, Erdoğan M, Alanoğlu EG, Şengül SS, Yüceer K, Eroğlu HN, Yağcı S. Adipose tissue indices predict prognosis in hodgkin lymphoma. Leuk Res 2024; 138:107457. [PMID: 38382169 DOI: 10.1016/j.leukres.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION BACKGROUND This study evaluated the impact of adipose tissue indices on prognosis of HL. METHODS Fifty-five patients with newly diagnosed Hodgkin Lymphoma were evaluated retrospectively for association with adipose tissue indices (total abdominal tissue volume, radiodensity, subcutaneous and visceral adipose tissue SUVmax value and prognostic factors for Hodgkin Lymphoma such as IPS-3, IPS-7, stage, sedimentation, progression free and overall survival. RESULTS For IPS-3, SAT SUVmax and TAAT radiodensity were significantly increased in high-risk patients (2and 3) compared to group 0 and 1. For IPS-7, total abdominal adipose volume was significantly decreased in high-risk patients, SAT SUVmax significantly increased in high-risk patients and decreased in low-risk patients. In addition, SAT SUVmax was significantly increased in patients with high sedimentation rate, with B symptoms and who passed away during follow-up. SAT SUVmax showed moderate positive correlation with sedimentation, IPS-3, IPS-7, and stage. In addition, it was observed that TAAT radiodensity and SAT SUVmax were significantly better for determining prognosis than other adipose tissue indices. Roc analysis showed that the diagnostic value of all adipose tissue indices in predicting IPS-3 and IPS-7 prognoses were statistically significant. CONCLUSION SAT SUVmax and TAAT radiodensity were two new and independent markers with diagnostic value in predicting prognosis.
Collapse
Affiliation(s)
- Demircan Özbalcı
- Suleyman Demirel University School of Medicine Department of Hematology.
| | - Mehmet Erdoğan
- Suleyman Demirel University School of Medicine Department of Nuclear Medicine
| | | | | | - Kamuran Yüceer
- Suleyman Demirel University School of Medicine Department of Internal Medicine
| | - Hande Nur Eroğlu
- Suleyman Demirel University School of Medicine Department of Public Health
| | - Samet Yağcı
- Suleyman Demirel University School of Medicine Department of Nuclear Medicine
| |
Collapse
|
26
|
Beaudry AG, Law ML, Gilley-Connor KR, Buley H, Dungan CM, Nascimento CMC, Vichaya EG, Wiggs MP. Diet-induced obesity does not exacerbate cachexia in male mice bearing Lewis-lung carcinoma tumors. Am J Physiol Regul Integr Comp Physiol 2024; 326:R254-R265. [PMID: 38252513 DOI: 10.1152/ajpregu.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Cachexia is a muscle-wasting syndrome commonly observed in patients with cancer, which can significantly worsen clinical outcomes. Because of a global rise in obesity, the coexistence of cachexia in obese individuals poses unique challenges, with the impact of excessive adiposity on cachexia severity and underlying pathophysiology not well defined. Understanding the interplay between cachexia and obesity is crucial for improving diagnosis and treatment strategies for these patients; therefore, the present study examined differences in cachexia between lean and obese mice bearing Lewis lung carcinoma (LLC) tumors. Nine-week-old, male C57Bl6J mice were placed on either a chow or a high-fat diet (HFD) for 9 wk. After the diet intervention, mice were inoculated with LLC or vehicle. Markers of cachexia, such as body and muscle loss, were noted in both chow and HFD groups with tumors. Tumor weight of HFD animals was greater than that of chow. LLC tumors reduced gastrocnemius, plantaris, and soleus mass, regardless of diet. The tibialis anterior and plantaris mass and cross-sectional area of type IIb/x fibers in the gastrocnemius were not different between HFD-chow, HFD-tumor, and chow-tumor. Using RNA sequencing (RNA-seq) of the plantaris muscle from chow-tumor and HFD-tumor groups, we identified ∼400 differentially expressed genes. Bioinformatic analysis identified changes in lipid metabolism, mitochondria, bioenergetics, and proteasome degradation. Atrophy was not greater despite larger tumor burden in animals fed an HFD, and RNA-seq data suggests that partial protection is mediated through differences in mitochondrial function and protein degradation, which may serve as future mechanistic targets.NEW & NOTEWORTHY This study provides timely information on the interaction between obesity and cancer cachexia. Lean and obese animals show signs of cachexia with reduced body weight, adipose tissue, and gastrocnemius muscle mass. There was not significant wasting in the tibialis anterior, plantaris, or fast twitch fibers in the gastrocnemius muscle of obese animals with tumors. RNA-seq analysis reveals that obese tumor bearing animals had differential expression of mitochondria- and degradation-related genes, which may direct future studies in mechanistic research.
Collapse
Affiliation(s)
- Anna G Beaudry
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Michelle L Law
- Department of Human Sciences and Design, Baylor University, Waco, Texas, United States
| | - Kayla R Gilley-Connor
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Hailey Buley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Cory M Dungan
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | | | - Elisabeth G Vichaya
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States
| | - Michael P Wiggs
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| |
Collapse
|
27
|
Kim S, Oh J, Park C, Kim M, Jo W, Kim CS, Cho SW, Park J. FAM3C in Cancer-Associated Adipocytes Promotes Breast Cancer Cell Survival and Metastasis. Cancer Res 2024; 84:545-559. [PMID: 38117489 DOI: 10.1158/0008-5472.can-23-1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Adipose tissue within the tumor microenvironment (TME) plays a critical role in supporting breast cancer progression. In this study, we identified FAM3 metabolism-regulating signaling molecule C (FAM3C) produced by cancer-associated adipocytes (CAA) as a key regulator of tumor progression. FAM3C overexpression in cultured adipocytes significantly reduced cell death in both adipocytes and cocultured breast cancer cells while suppressing markers of fibrosis. Conversely, FAM3C depletion in CAAs resulted in adipocyte-mesenchymal transition (AMT) and increased fibrosis within the TME. Adipocyte FAM3C expression was driven by TGFβ signaling from breast cancer cells and was reduced upon treatment with a TGFβ-neutralizing antibody. FAM3C knockdown in CAAs early in tumorigenesis in a genetically engineered mouse model of breast cancer significantly inhibited primary and metastatic tumor growth. Circulating FAM3C levels were elevated in patients with metastatic breast cancer compared with those with nonmetastatic breast cancer. These results suggest that therapeutic inhibition of FAM3C expression levels in CAAs during early tumor development could be a promising approach in the treatment of patients with breast cancer. SIGNIFICANCE High FAM3C levels in cancer-associated adipocytes contribute to tumor-supportive niches and are tightly associated with metastatic growth, indicating that FAM3C inhibition could be beneficial for treating patients with breast cancer.
Collapse
Affiliation(s)
- Sahee Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Min Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Woobeen Jo
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
28
|
Keesari PR, Jain A, Ganampet NR, Subhasri GSD, Edusa S, Muslehuddin Z, Theik NWY, Palisetti S, Salibindla D, Manaktala PS, Desai R. Association between prediabetes and breast cancer: a comprehensive meta-analysis. Breast Cancer Res Treat 2024; 204:1-13. [PMID: 38060076 DOI: 10.1007/s10549-023-07181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Breast cancer accounts for up to 30% of cancer cases in women in the US. Diabetes mellitus has been recognized as a risk factor for breast cancer. Some studies have suggested that prediabetes may also be associated with breast cancer whereas other studies have shown no or an inverse association; thus, we conducted a meta-analysis to assess the risk of breast cancer in prediabetes. METHODS We searched PubMed/Medline, EMBASE, Google Scholar, and Scopus to identify studies that reported breast cancer risks in patients having prediabetes compared to normoglycemic patients. Binary random-effects model was used to calculate a pooled odds ratio (OR) with 95% confidence intervals. I2 statistics were used to assess heterogeneity. Leave-one-out sensitivity analysis and subgroup analyses were performed. RESULTS We analyzed 7 studies with 24,586 prediabetic and 224,314 normoglycemic individuals (783 and 5739 breast cancer cases, respectively). Unadjusted odds ratio (OR) for breast cancer was 1.45 (95% CI = 1.14, 1.83); adjusted OR was 1.19 (95% CI = 1.07, 1.34) in prediabetes. Subgroup analysis revealed a higher breast cancer risk in individuals aged less than 60 years (OR = 1.86, 95% CI = 1.39, 2.49) than in those aged 60 years or more (OR = 1.07, 95% CI = 0.97, 1.18). Subgroup analysis by median follow-up length indicated a higher risk of breast cancer for follow-ups of less than or equal to 2 years (OR = 2.34, 95% CI = 1.85, 2.95) than in those of over 10 years (OR = 1.1, 95% CI = 0.99, 1.23) and 6 to 10 years (OR = 1.03, 95% CI = 0.88, 1.21). CONCLUSIONS In conclusion, individuals with prediabetes have higher risk of developing breast cancer than those with normoglycemia, especially younger prediabetes patients. These individuals may benefit from early identification, monitoring, and interventions to reverse prediabetes.
Collapse
Affiliation(s)
- Praneeth Reddy Keesari
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Akhil Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | | | | | - Samuel Edusa
- Department of Internal Medicine, Piedmont Athens Regional, Athens, GA, USA
| | - Zainab Muslehuddin
- Department of Internal Medicine, Detroit Medical Center, Wayne State University-Sinai Grace Hospital, Detroit, MI, USA
| | | | - Spandana Palisetti
- Department of Medicine, Jawaharlal Nehru Medical College, Belgaum, Karnataka, India
| | | | | | - Rupak Desai
- Independent Researcher, Outcomes Research, Atlanta, GA, USA
| |
Collapse
|
29
|
Lippi L, de Sire A, Folli A, Turco A, Moalli S, Marcasciano M, Ammendolia A, Invernizzi M. Obesity and Cancer Rehabilitation for Functional Recovery and Quality of Life in Breast Cancer Survivors: A Comprehensive Review. Cancers (Basel) 2024; 16:521. [PMID: 38339271 PMCID: PMC10854903 DOI: 10.3390/cancers16030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity is a global health challenge with increasing prevalence, and its intricate relationship with cancer has become a critical concern in cancer care. As a result, understanding the multifactorial connections between obesity and breast cancer is imperative for risk stratification, tailored screening, and rehabilitation treatment planning to address long-term survivorship issues. The review follows the SANRA quality criteria and includes an extensive literature search conducted in PubMed/Medline, Web of Science, and Scopus. The biological basis linking obesity and cancer involves complex interactions in adipose tissue and the tumor microenvironment. Various mechanisms, such as hormonal alterations, chronic inflammation, immune system modulation, and mitochondrial dysfunction, contribute to cancer development. The review underlines the importance of comprehensive oncologic rehabilitation, including physical, psychological, and nutritional aspects. Cancer rehabilitation plays a crucial role in managing obesity-related symptoms, offering interventions for physical impairments, pain management, and lymphatic disorders, and improving both physical and psychological well-being. Personalized and technology-driven approaches hold promise for optimizing rehabilitation effectiveness and improving long-term outcomes for obese cancer patients. The comprehensive insights provided in this review contribute to the evolving landscape of cancer care, emphasizing the importance of tailored rehabilitation in optimizing the well-being of obese cancer patients.
Collapse
Affiliation(s)
- Lorenzo Lippi
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (A.F.); (A.T.); (S.M.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Arianna Folli
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (A.F.); (A.T.); (S.M.); (M.I.)
| | - Alessio Turco
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (A.F.); (A.T.); (S.M.); (M.I.)
| | - Stefano Moalli
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (A.F.); (A.T.); (S.M.); (M.I.)
| | - Marco Marcasciano
- Experimental and Clinical Medicine Department, Division of Plastic and Reconstructive Surgery, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (A.F.); (A.T.); (S.M.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
30
|
Liu M, Zhang Q. Polydatin ameliorates low-density lipoprotein cholesterol and lipid metabolism by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9) in triple-negative breast cancer with hyperlipidemia. Am J Cancer Res 2024; 14:52-72. [PMID: 38323270 PMCID: PMC10839302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
To investigate polydatin's effects on low-density lipoprotein cholesterol (LDL-C) and lipid metabolism in mice with triple-negative breast cancer (TNBC) and hyperlipidemia, as well as the underlying mechanism of proprotein convertase subtilisin/kexin type 9 (PCSK9). In vivo, we designed two animal models, namely breast pad in situ inoculation of TNBC model and TNBC with lung metastatic were inoculated with the caudal vein model. Mice were administered a high-fat diet. Upon the completion of the experiment, plasma triglycerides (TG), total plasma cholesterol (TC), plasma LDL-C, and plasma high-density lipoprotein cholesterol (HDL-C) were measured. ELISA was employed to measure PCSK9 and the low-density lipoprotein receptor (LDLR). The morphological alterations were observed using Oil-red O staining. Immunohistochemical labeling was used to determine the expression of PCSK9 and LDLR in mouse breast cancer (BC) tissues. MTT, wound healing assay, and the transwell migration and invasion test were conducted to examine co-cultured adipocytes' effects on the growth, invasion, and migration of BC cells. In the 4T1-luc cell model injected in situ into the breast pad and 4T1-luc cell model injected into the tail vein, we observed that a high-fat diet promoted the proliferation and lung metastasis of BC cells, whereas polydatin suppressed the proliferation and lung metastasis of BC cells. Co-culture of BC cells with adipocytes enhanced the proliferation, invasion, and metastasis, while polydatin intervention inhibited the growth, invasion, and metastasis. After treatment with polydatin, serum lipid levels decreased, PCSK9 decreased, LDLR increased, and LDL-C decreased in mouse BC, liver, and lung tissues. After polydatin treatment, PCSK9 decreased, LDLR increased, and LDL-C decreased in an in vitro co-culture system of BC cells and adipocytes. After transfection of siRNA PCSK9 in the co-culture system, the LDLR increased more significantly, and the LDL-C decreased more significantly. After transfection of LV-PCSK9, PCSK9 decreased, LDLR increased, and LDL-C decreased. We concluded that polydatin inhibited breast tumor proliferation and distant lung metastasis in mice promoted by a high lipid environment. By suppressing PCSK9, polydatin alters the lipid profile of hyperlipidemic TNBC mice and prevents distant metastases. Our findings provide credence to the established practice of using polydatin in treating TNBC combined with hyperlipidemia.
Collapse
Affiliation(s)
- Min Liu
- School of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100069, China
| | - Qing Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing 100010, China
| |
Collapse
|
31
|
Jawhar N, Nakanishi H, Marrero K, Tomey D, Alamy NH, Danaf J, Ghanem OM. Risk reduction of non-hormonal cancers following bariatric surgery. Minerva Surg 2023; 78:657-670. [PMID: 38059440 DOI: 10.23736/s2724-5691.23.10104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Metabolic and bariatric surgery (MBS) is the most effective intervention for weight loss leading to significant resolution of obesity-related medical conditions. Recent literature has demonstrated risk reduction of certain cancer types after MBS. Studies have shown an overall reduction in the risk of hormonal cancer, such as breast and endometrial cancer. However, the association between bariatric surgery and the incidence of various types of non-hormonal cancer such as esophageal, gastric, liver, gallbladder, colorectal, pancreatic and kidney cancer remains contested. The aim of this study was to highlight obesity and its relationship to cancer development as well as bariatric surgery and its role in cancer reduction with focus on non-hormonal cancers.
Collapse
Affiliation(s)
- Noura Jawhar
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Nakanishi
- St. George's University of London, London, UK
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Katie Marrero
- Department of Surgery, Carle Foundation Hospital General Surgery Residency, Champaign, IL, USA
| | - Daniel Tomey
- Department of General Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Nadine H Alamy
- Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jamil Danaf
- Kansas City University, Kansas City, MO, USA
| | - Omar M Ghanem
- Department of Surgery, Mayo Clinic, Rochester, MN, USA -
| |
Collapse
|
32
|
Mubtasim N, Gollahon L. The Effect of Adipocyte-Secreted Factors in Activating Focal Adhesion Kinase-Mediated Cell Signaling Pathway towards Metastasis in Breast Cancer Cells. Int J Mol Sci 2023; 24:16605. [PMID: 38068928 PMCID: PMC10706115 DOI: 10.3390/ijms242316605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Obesity-associated perturbations in the normal secretion of adipocytokines from white adipocytes can drive the metastatic progression of cancer. However, the association between obesity-induced changes in secretory factors of white adipocytes and subsequent transactivation of the downstream effector proteins impacting metastasis in breast cancer cells remains unclear. Focal adhesion kinase, a cytoplasmic signal transducer, regulates the biological phenomenon of metastasis by activating downstream targets such as beta-catenin and MMP9. Thus, the possible role of phosphorylated FAK in potentiating cancer cell migration was investigated. To elucidate this potential relationship, MCF7 (ER+), MDA-MB-231 (Triple Negative) breast cancer cells, and MCF-10A non-tumorigenic breast cells were exposed to in vitro murine adipocyte-conditioned medium derived from 3T3-L1 MBX cells differentiated to obesity with fatty acid supplementation. Our results show that the conditioned medium derived from these obese adipocytes enhanced motility and invasiveness of breast cancer cells. Importantly, no such changes were observed in the non-tumorigenic breast cells. Our results also show that increased FAK autophosphorylation was followed by increased expression of beta-catenin and MMP9 in the breast cancer cells when exposed to obese adipocyte-conditioned medium, but not in the MCF10A cells. These results indicate that adipocyte-derived secretory factors induced FAK activation through phosphorylation. This in turn increased breast cancer cell migration and invasion by activating its downstream effector proteins beta-catenin and MMP9.
Collapse
Affiliation(s)
- Noshin Mubtasim
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| |
Collapse
|
33
|
Terry AR, Nogueira V, Rho H, Ramakrishnan G, Li J, Kang S, Pathmasiri KC, Bhat SA, Jiang L, Kuchay S, Cologna SM, Hay N. CD36 maintains lipid homeostasis via selective uptake of monounsaturated fatty acids during matrix detachment and tumor progression. Cell Metab 2023; 35:2060-2076.e9. [PMID: 37852255 DOI: 10.1016/j.cmet.2023.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/11/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gopalakrishnan Ramakrishnan
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jing Li
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Soeun Kang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Koralege C Pathmasiri
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
34
|
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C, Amero P. Aptamers as Potential Therapeutic Tools for Ovarian Cancer: Advancements and Challenges. Cancers (Basel) 2023; 15:5300. [PMID: 37958473 PMCID: PMC10647731 DOI: 10.3390/cancers15215300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.
Collapse
Affiliation(s)
- Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| |
Collapse
|
35
|
Albenayyan HA, AlSubaie R, Alarfaj MO, Alshekhmobarak L, Alkhalifah MF, Alsaleem H, Almulhim D, AlJughaiman AA, Albahrani FA, Aleidan AA, Alzahrani RM, Alobaid L, Alhinidi T. Cancer Stigma Among 800 Saudi Citizens: A Cross-Sectional Study and Literature Review. Cureus 2023; 15:e49088. [PMID: 38125214 PMCID: PMC10731515 DOI: 10.7759/cureus.49088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Cancer-related stigmatization is a noteworthy phenomenon, yet it has not received sufficient attention in public health studies. Despite recent advancements in treatment and improvements in survival, the burden of stigma remains a challenging concern for individuals diagnosed with cancer. AIM This study aims to assess the presence of cancer stigma in the Saudi Arabian population by using the Cancer Stigma Scale (CASS). METHODS A cross-sectional study was conducted among the general population of Saudi Arabia. Data collection was facilitated through a self-administered online questionnaire, incorporating socio-demographic variables such as age, gender, and regional residence and employing the CASS instrument to gauge the prevalent attitudes and stigmas related to cancer. RESULTS Out of the 874 participants, a majority of 87.1% were female, with 60.2% aged between 20 and 39 years. Notably, 59% reported having a close friend or family member diagnosed with cancer. The average CASS score stood at 1.59 (SD 0.39) on a 5-point scale, with an overwhelming 97.1% registering scores under 2.5, suggesting a generally low stigma perception. In dissecting the CASS components, 'severity' recorded the highest mean score (mean: 2.23), followed by 'awkwardness' (mean: 1.86) and 'financial discrimination' (mean: 1.71). 'avoidance' registered the lowest mean score at 1.11. Notably, a trend of increasing stigma was observed with advancing age, and male respondents indicated a marginally higher propensity towards stigmatizing attitudes. CONCLUSION In Saudi Arabia, cancer-related stigma is generally low. However, 'severity' is the most prominent stigma aspect, with 'avoidance' being the least. Older individuals and males exhibit slightly higher stigmatizing attitudes. These insights highlight the need for targeted public health efforts to address remaining stigmatization, especially based on age and gender.
Collapse
|
36
|
Khaledian B, Thibes L, Shimono Y. Adipocyte regulation of cancer stem cells. Cancer Sci 2023; 114:4134-4144. [PMID: 37622414 PMCID: PMC10637066 DOI: 10.1111/cas.15940] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Cancer stem cells (CSCs) are a highly tumorigenic subpopulation of the cancer cells within a tumor that drive tumor initiation, progression, and therapy resistance. In general, stem cell niche provides a specific microenvironment in which stem cells are present in an undifferentiated and self-renewable state. CSC niche is a specialized tumor microenvironment for CSCs which provides cues for their maintenance and propagation. However, molecular mechanisms for the CSC-niche interaction remain to be elucidated. We have revealed that adipsin (complement factor D) and its downstream effector hepatocyte growth factor are secreted from adipocytes and enhance the CSC properties in breast cancers in which tumor initiation and progression are constantly associated with the surrounding adipose tissue. Considering that obesity, characterized by excess adipose tissue, is associated with an increased risk of multiple cancers, it is reasonably speculated that adipocyte-CSC interaction is similarly involved in many types of cancers, such as pancreas, colorectal, and ovarian cancers. In this review, various molecular mechanisms by which adipocytes regulate CSCs, including secretion of adipokines, extracellular matrix production, biosynthesis of estrogen, metabolism, and exosome, are discussed. Uncovering the roles of adipocytes in the CSC niche will propose novel strategies to treat cancers, especially those whose progression is linked to obesity.
Collapse
Affiliation(s)
- Behnoush Khaledian
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Lisa Thibes
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Yohei Shimono
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
37
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
38
|
Liang J, Li L, Li L, Zhou X, Zhang Z, Huang Y, Xiao X. Lipid metabolism reprogramming in head and neck cancer. Front Oncol 2023; 13:1271505. [PMID: 37927468 PMCID: PMC10622980 DOI: 10.3389/fonc.2023.1271505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Lipid metabolism reprogramming is one of the most prominent metabolic anomalies in cancer, wherein cancer cells undergo dysregulation of lipid metabolism to acquire adequate energy, cell membrane building blocks, as well as signaling molecules essential for cell proliferation, survival, invasion, and metastasis. These adaptations enable cancer cells to effectively respond to challenges posed by the tumor microenvironment, leading to cancer therapy resistance and poor cancer prognosis. Head and neck cancer, ranking as the seventh most prevalent cancer, exhibits numerous abnormalities in lipid metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification System and cancer risk factors, the present review delves into the dysregulated molecules and pathways participating in the process of lipid uptake, biosynthesis, transportation, and catabolism. We also present an overview of the latest advancements in understanding alterations in lipid metabolism and how they intersect with the carcinogenesis, development, treatment, and prognosis of head and neck cancer. By shedding light on the significance of metabolic therapy, we aspire to improve the overall prognosis and treatment outcomes of head and neck cancer patients.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Limei Li
- Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
39
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
40
|
Muthusamy G, Liu CC, Johnston AN. Deletion of PGAM5 Downregulates FABP1 and Attenuates Long-Chain Fatty Acid Uptake in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4796. [PMID: 37835490 PMCID: PMC10571733 DOI: 10.3390/cancers15194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphoglycerate mutase 5 (PGAM5) is a Ser/His/Thr phosphatase responsible for regulating mitochondrial homeostasis. Overexpression of PGAM5 is correlated with a poor prognosis in hepatocellular carcinoma, colon cancer, and melanoma. In hepatocellular carcinoma, silencing of PGAM5 reduces growth, which has been attributed to decreased mitophagy and enhanced apoptosis. Yet in colon cancer, PGAM5's pro-tumor survival effect is correlated to lipid metabolism. We sought to identify whether deletion of PGAM5 modulated lipid droplet accrual in hepatocellular carcinoma. HepG2 and Huh7 PGAM5 knockout cell lines generated using CRISPR/Cas9 technology were used to measure cell growth, cellular ATP, and long-chain fatty acid uptake. Expression of hepatocellular fatty acid transporters, cluster of differentiation 36 (CD36), solute carrier family 27 member 2 (SLC27A2), solute carrier family 27 member 5 (SLC27A5), and fatty acid binding protein 1 (FABP1) was measured by quantitative PCR and Western blot. We found that deletion of PGAM5 attenuates hepatocellular carcinoma cell growth and ATP production. Further, PGAM5 knockout ameliorates palmitate-induced steatosis and reduces expression of FABP1 in HepG2 and Huh7 cell lines. PGAM5's role in hepatocellular carcinoma includes regulation of fatty acid metabolism, which may be related to expression of the fatty acid transporter, FABP1.
Collapse
Affiliation(s)
| | | | - Andrea N. Johnston
- Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (G.M.); (C.-C.L.)
| |
Collapse
|
41
|
Alvarez-Artime A, Garcia-Soler B, Gonzalez-Menendez P, Fernandez-Vega S, Cernuda-Cernuda R, Hevia D, Mayo JC, Sainz RM. Castration promotes the browning of the prostate tumor microenvironment. Cell Commun Signal 2023; 21:267. [PMID: 37770940 PMCID: PMC10536697 DOI: 10.1186/s12964-023-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Adipose tissue has gained attention due to its potential paracrine role. Periprostatic adipose tissue surrounds the prostate and the prostatic urethra, and it is an essential player in prostate cancer progression. Since obesity is directly related to human tumor progression, and adipose tissue depots are one of the significant components of the tumor microenvironment, the molecular mediators of the communication between adipocytes and epithelial cells are in the spotlight. Although periprostatic white adipose tissue contributes to prostate cancer progression, brown adipose tissue (BAT), which has beneficial effects in metabolic pathologies, has been scarcely investigated concerning cancer progression. Given that adipose tissue is a target of androgen signaling, the actual role of androgen removal on the periprostatic adipose tissue was the aim of this work. METHODS Surgical castration of the transgenic adenocarcinoma of the mouse prostate (TRAMP) was employed. By histology examination and software analysis, WAT and BAT tissue was quantified. 3T3-like adipocytes were used to study the role of Casodex® in modifying adipocyte differentiation and to investigate the function of the secretome of adipocytes on the proliferation of androgen-dependent and independent prostate cancer cells. Finally, the role of cell communication was assayed by TRAMP-C1 xenograft implanted in the presence of 3T3-like adipocytes. RESULTS Androgen removal increases brown/beige adipose tissue in the fat immediately surrounding the prostate glands of TRAMP mice, concomitant with an adjustment of the metabolism. Castration increases body temperature, respiratory exchange rate, and energy expenditure. Also, in vitro, it is described that blocking androgen signaling by Casodex® increases the uncoupling protein 1 (UCP1) marker in 3T3-like adipocytes. Finally, the effect of brown/beige adipocyte secretome was studied on the proliferation of prostate cancer cells in vivo and in vitro. The secretome of brown/beige adipocytes reduces the proliferation of prostate cancer cells mediated partly by the secretion of extracellular vesicles. CONCLUSIONS Consequently, we concluded that hampering androgen signaling plays a crucial role in the browning of the periprostatic adipose tissue. Also, the presence of brown adipocytes exhibits the opposite effect to that of white adipocytes in vitro regulating processes that govern the mechanisms of cell proliferation of prostate cancer cells. And finally, promoting the browning of adipose tissue in the periprostatic adipose tissue might be a way to handle prostate cancer cell progression. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Alvarez-Artime
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Belen Garcia-Soler
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Sheila Fernandez-Vega
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Rafael Cernuda-Cernuda
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - David Hevia
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain
| | - Juan C Mayo
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain.
| | - Rosa M Sainz
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, University of Oviedo, Julian Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario, 33011, Oviedo, Spain.
| |
Collapse
|
42
|
Shin S, Yang S, Kim M, Lee EK, Hur SC, Jeong SM. Fatty acid oxidation supports melanoma cell migration through autophagy regulation. Biochem Biophys Res Commun 2023; 674:124-132. [PMID: 37419033 DOI: 10.1016/j.bbrc.2023.06.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Metastasis is one of the most malignant characteristics of cancer cells, in which metabolic reprogramming is crucial for promoting and sustaining multi-steps of metastasis, including invasion, migration and infiltration. Recently, it has been shown that melanoma cells undergo a metabolic switching toward the upregulation of fatty acid oxidation (FAO) during metastasis. However, the underlying mechanisms by which FAO contributes to metastasis of melanoma cells remain obscure. Here, we report that FAO contributes to melanoma cell migration and invasion by regulating the formation of autophagosomes. Pharmacological or genetic inhibition of FAO impairs migration of melanoma cells, which seems not to be linked to energy production or redox homeostasis. Importantly, we reveal that acetyl-CoA production by FAO contributes to melanoma cell migration through autophagy regulation. Mechanistically, FAO inhibition results in increased autophagosome formation, which suppresses migration and invasion properties of melanoma cells. Our results underscore the crucial role of FAO in melanoma cell migration and support the potential therapeutic relevance of modulating cellular acetyl-CoA levels to inhibit cancer metastasis.
Collapse
Affiliation(s)
- Seungmin Shin
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seungyeon Yang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Minjoong Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
43
|
Bingham PM, Zachar Z. Toward a Unifying Hypothesis for Redesigned Lipid Catabolism as a Clinical Target in Advanced, Treatment-Resistant Carcinomas. Int J Mol Sci 2023; 24:14365. [PMID: 37762668 PMCID: PMC10531647 DOI: 10.3390/ijms241814365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We review extensive progress from the cancer metabolism community in understanding the specific properties of lipid metabolism as it is redesigned in advanced carcinomas. This redesigned lipid metabolism allows affected carcinomas to make enhanced catabolic use of lipids in ways that are regulated by oxygen availability and is implicated as a primary source of resistance to diverse treatment approaches. This oxygen control permits lipid catabolism to be an effective energy/reducing potential source under the relatively hypoxic conditions of the carcinoma microenvironment and to do so without intolerable redox side effects. The resulting robust access to energy and reduced potential apparently allow carcinoma cells to better survive and recover from therapeutic trauma. We surveyed the essential features of this advanced carcinoma-specific lipid catabolism in the context of treatment resistance and explored a provisional unifying hypothesis. This hypothesis is robustly supported by substantial preclinical and clinical evidence. This approach identifies plausible routes to the clinical targeting of many or most sources of carcinoma treatment resistance, including the application of existing FDA-approved agents.
Collapse
Affiliation(s)
- Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | | |
Collapse
|
44
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be? Biomed Pharmacother 2023; 165:115251. [PMID: 37523985 DOI: 10.1016/j.biopha.2023.115251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Ferroptosis, an established form of programmed cell death discovered in 2012, is characterized by an imbalance in iron metabolism, lipid metabolism, and antioxidant metabolism. Activated CD8 + T cells can trigger ferroptosis in tumor cells by releasing interferon-γ, which initiates the ferroptosis program. Despite the remarkable progress made in treating various tumors with immunotherapy, such as anti-PD1/PDL1, there are still significant challenges to overcome, including limited treatment options and drug resistance. In this review, we exam the potential biological significance of the ferroptosis phenotype using bioinformatics and review the latest advancements in understanding the mechanism of ferroptosis-mediated anti-tumor immunotherapy. Furthermore, we revisit the host immune system, immune microenvironment, ferroptotic defense system, metabolic reprogramming, and key genes that regulate the occurrence and resistance of ferroptosis of tumor cell. Additionally, several immune-combined ferroptosis treatment strategies were put forward to improve immunotherapy efficacy and to provide new insights into reversing anti-tumor immune drug resistance.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Chunyu Tao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Jiakai Yuan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Fan Pan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| |
Collapse
|
45
|
Mukherjee A, Bezwada D, Greco F, Zandbergen M, Shen T, Chiang CY, Tasdemir M, Fahrmann J, Grapov D, La Frano MR, Vu HS, Faubert B, Newman JW, McDonnell LA, Nezi L, Fiehn O, DeBerardinis RJ, Lengyel E. Adipocytes reprogram cancer cell metabolism by diverting glucose towards glycerol-3-phosphate thereby promoting metastasis. Nat Metab 2023; 5:1563-1577. [PMID: 37653041 DOI: 10.1038/s42255-023-00879-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/27/2023] [Indexed: 09/02/2023]
Abstract
In the tumor microenvironment, adipocytes function as an alternate fuel source for cancer cells. However, whether adipocytes influence macromolecular biosynthesis in cancer cells is unknown. Here we systematically characterized the bidirectional interaction between primary human adipocytes and ovarian cancer (OvCa) cells using multi-platform metabolomics, imaging mass spectrometry, isotope tracing and gene expression analysis. We report that, in OvCa cells co-cultured with adipocytes and in metastatic tumors, a part of the glucose from glycolysis is utilized for the biosynthesis of glycerol-3-phosphate (G3P). Normoxic HIF1α protein regulates the altered flow of glucose-derived carbons in cancer cells, resulting in increased glycerophospholipids and triacylglycerol synthesis. The knockdown of HIF1α or G3P acyltransferase 3 (a regulatory enzyme of glycerophospholipid synthesis) reduced metastasis in xenograft models of OvCa. In summary, we show that, in an adipose-rich tumor microenvironment, cancer cells generate G3P as a precursor for critical membrane and signaling components, thereby promoting metastasis. Targeting biosynthetic processes specific to adipose-rich tumor microenvironments might be an effective strategy against metastasis.
Collapse
Affiliation(s)
- Abir Mukherjee
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology-Center for Integrative Sciences, University of Chicago, Chicago, IL, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesco Greco
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Malu Zandbergen
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology-Center for Integrative Sciences, University of Chicago, Chicago, IL, USA
| | - Tong Shen
- NIH West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Chun-Yi Chiang
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology-Center for Integrative Sciences, University of Chicago, Chicago, IL, USA
| | - Medine Tasdemir
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology-Center for Integrative Sciences, University of Chicago, Chicago, IL, USA
| | - Johannes Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dmitry Grapov
- NIH West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Michael R La Frano
- NIH West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Department of Medicine/Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - John W Newman
- NIH West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Liam A McDonnell
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- 9Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology-Center for Integrative Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Xue W, Lee D, Kong Y, Kuss M, Huang Y, Kim T, Chung S, Dudley AT, Ro SH, Duan B. A Facile Strategy for the Fabrication of Cell-laden Porous Alginate Hydrogels Based on Two-phase Aqueous Emulsions. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2214129. [PMID: 38131003 PMCID: PMC10732541 DOI: 10.1002/adfm.202214129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 12/23/2023]
Abstract
Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 μm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.
Collapse
Affiliation(s)
- Wen Xue
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Donghee Lee
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Yunfan Kong
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Mitchell Kuss
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Ying Huang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Taesung Kim
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Andrew T Dudley
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Seung-Hyun Ro
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Bin Duan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
47
|
Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes V, Escolà-Gil JC. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol 2023; 93:36-51. [PMID: 37156344 DOI: 10.1016/j.semcancer.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.
Collapse
Affiliation(s)
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mireia Tondo
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Vicenta Llorente-Cortes
- Wihuri Research Institute, Helsinki, Finland; Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
48
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
49
|
Simiczyjew A, Wądzyńska J, Pietraszek-Gremplewicz K, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells induce dedifferentiation and metabolic changes in adipocytes present in the tumor niche. Cell Mol Biol Lett 2023; 28:58. [PMID: 37481560 PMCID: PMC10363323 DOI: 10.1186/s11658-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND One of the factors that affect the progression of melanoma is the tumor microenvironment, which consists of cellular elements, extracellular matrix, acidification, and a hypoxic state. Adipocytes are one of the types of cell present in the niche and are localized in the deepest layer of the skin. However, the relationship between fat cells and melanoma remains unclear. METHODS We assessed the influence of melanoma cells on adipocytes using an indirect coculture system. We estimated the level of cancer-associated adipocyte (CAA) markers through quantitative PCR analysis. The fibroblastic phenotype of CAAs was confirmed by cell staining and western blotting analysis. The lipid content was estimated by lipid detection in CAAs using LipidSpot and by quantitative analysis using Oil Red O. The expression of proteins involved in lipid synthesis, delipidation, and metabolic processes were assessed through quantitative PCR or western blotting analysis. Lactate secretion was established using a Lactate-Glo™ assay. Proteins secreted by CAAs were identified in cytokine and angiogenesis arrays. The proliferation of melanoma cells cocultured with CAAs was assessed using an XTT proliferation assay. Statistical analysis was performed using a one-way ANOVA followed by Tukey's test in GraphPad Prism 7 software. RESULTS Obtained CAAs were identified by decreased levels of leptin, adiponectin, resistin, and FABP4. Adipocytes cocultured with melanoma presented fibroblastic features, such as a similar proteolytic pattern to that of 3T3L1 fibroblasts and increased levels of vimentin and TGFβRIII. Melanoma cells led to a reduction of lipid content in CAAs, possibly by downregulation of lipid synthesis pathways (lower FADS, SC4MOL, FASN) or enhancement of lipolysis (higher level of phosphorylation of ERK and STAT3). Adipocytes cocultured with melanoma cells secreted higher IL6 and SerpinE1 levels and produced less CCL2, CXCL1, and angiogenic molecules. CAAs also showed metabolic changes comprising the increased secretion of lactate and enhanced production of glucose, lactate, and ion transporters. In addition, changes in adipocytes observed following melanoma coculture resulted in a higher proliferation rate of cancer cells. CONCLUSIONS Melanoma cells led to decreased lipid content in adipocytes, which might be related to enhanced delipidation or reduction of lipid synthesis. Fibroblast-like CAAs showed metabolic changes that may be the reason for accelerated proliferation of melanoma cells.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | | | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| |
Collapse
|
50
|
Miao S, Zhang Q. Circulating circRNA: a social butterfly in tumors. Front Oncol 2023; 13:1203696. [PMID: 37546422 PMCID: PMC10401440 DOI: 10.3389/fonc.2023.1203696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded non-coding RNAs that form circular structures through irregular splicing or post-splicing events. CircRNAs are abnormally expressed in many cancers and regulate the occurrence and development of tumors. Circulating circRNAs are cell-free circRNAs present in peripheral blood, they are considered promising biomarkers due to their high stability. In recent years, more and more studies have revealed that circulating circRNAs participate in various cellular communication and regulate the occurrence and development of tumors, which involve many pathological processes such as tumorigenesis, tumor-related immunity, tumor angiogenesis, and tumor metastasis. Understanding the role of cell communication mediated by circulating circRNAs in tumor will further reveal the value and significance behind their use as biomarkers and potential therapeutic targets. In this review, we summarize the recent findings and provide an overview of the cell-cell communication mediated by circulating circRNAs, aiming to explore the role and application value of circulating circRNAs in tumors.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|