1
|
Hu K, Zhao X, Zhang N, Ma J, Zhang R, Lu Z, Wu W, Ji Y, Li X. Effect of tumor microenvironment in pancreatic cancer on the loss of β-cell mass: implications for type 3c diabetes. J Gastroenterol 2025:10.1007/s00535-024-02204-w. [PMID: 39760782 DOI: 10.1007/s00535-024-02204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND To explore the complex interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, further elucidating the mechanisms of type 3c diabetes mellitus (T3cDM) onset. METHODS Single-cell RNA sequencing was employed to analyze the PDAC TME, identifying cell interactions and gene expression changes of endocrine cells. Pathological changes and paraneoplastic islets were assessed in the proximal paratumor (PP) and distal paratumor (DP). Fractional β-cell area and islet density were compared among normal pancreas from donors and paraneoplastic tissues from non-diabetes mellitus (NDM) and T3cDM patients. TUNEL staining, RT-qPCR and CCK8 assay were applied to demonstrate the β-cell apoptosis. RESULTS Tumor cells, immune cells and fibroblasts could interact with endocrine cells, and apoptotic pathways were activated in endocrine cells of the PP. The PDAC TME was characterized by marked inflammation, sever fibrosis and atrophy. The islets in the PP had lower fractional β-cell area (0.68 ± 0.65% vs. 0.86 ± 1.02%, P = 0.037) and islet density (0.54 ± 0.42 counts/mm2 vs. 0.83 ± 0.90 counts/mm2, P = 0.001) compared to those in the DP. The PDAC TME in T3cDM exerted a more significant impact on the paraneoplastic islets compared to NDM. Moreover, β-cell apoptosis was markedly increased in the PP compared to the DP in PDAC patients without diabetes, particularly in smaller islets. Apoptosis-related genes were highly expressed in INS-1E cells exposed to PANC-1 medium. CONCLUSION Our research revealed that the PDAC TME is usually accompanied by some pathological changes, including inflammation, fibrosis, and atrophy. These pathological changes are related to a reduction in β-cell mass and trigger the development of T3cDM.
Collapse
Affiliation(s)
- Ke Hu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuelian Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Na Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Ruonan Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
2
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
3
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
4
|
Chen P, Chen Y, Sharma A, Gonzalez-Carmona Maria A, Schmidt-Wolf IGH. Inhibition of ERO1L induces autophagy and apoptosis via endoplasmic reticulum stress in colorectal cancer. Cell Signal 2024; 127:111560. [PMID: 39657838 DOI: 10.1016/j.cellsig.2024.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer with high incidence and mortality. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) is overexpressed in CRC. This study aims to explore the role of ERO1L in CRC progression and evaluate the anti-tumor efficacy of the combination treatment of ERO1L inhibition with endoplasmic reticulum (ER) stress-inducing therapies. Herein, we found that ERO1L was elevated in CRC cell lines and patients. ER stress upregulated the expression of ERO1L, and ERO1L deficiency induced ER stress in CRC. ERO1L knockdown increased the susceptibility of CRC cells to ER stress. ERO1L contributed to the malignant phenotypes of CRC cells. Inhibition of ERO1L induced autophagy and caspase-dependent apoptosis by the induction of ER stress in CRC cells. Mechanically, the ERK1/2 pathway was involved in ERO1L knockdown-mediated apoptosis and autophagy. Combination treatment of ERO1L inhibition with ER stress-inducing agents, such as unfolded protein response (UPR)-targeting inhibitors and proteasome inhibitors, demonstrated enhanced anti-tumor capacity. In conclusion, ERO1L is overexpressed in CRC, and ERO1L deficiency induces apoptosis and autophagy via ER stress. ERO1L inhibition combined with ER stress-inducing therapies exhibits more effective anti-tumor activity against CRC. ERO1L may serve as a biomarker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
5
|
Zhu LR, Cui W, Liu HP. Research progress and advances in endoplasmic reticulum stress regulation of acute kidney injury. Ren Fail 2024; 46:2433160. [PMID: 39586579 PMCID: PMC11590187 DOI: 10.1080/0886022x.2024.2433160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Acute kidney injury (AKI) is a common and severe clinical disorder in which endoplasmic reticulum (ER) stress plays an important regulatory role. In this review, we summarize the research progress on the relationship between ER stress and AKI. It emphasizes the importance of maintaining a balance between promoting and protecting ER stress during AKI and highlights the potential of ER stress-targeted drugs as a new therapeutic approach for AKI. The article also discusses the need for developing drugs that target ER stress effectively while avoiding adverse effects on normal cells and tissues. The review concludes that with a more comprehensive understanding of ER stress mechanisms and advancements in research techniques, more effective treatment options for AKI can be developed in the future.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children’s Hospital (Children’s Hospital of Fudan University Anhui Hospital; Children’s Medical Center of Anhui Medical University), Hefei, Anhui, China
| |
Collapse
|
6
|
Urra H, Aravena R, González-Johnson L, Hetz C. The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer 2024; 10:1161-1173. [PMID: 39472237 DOI: 10.1016/j.trecan.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024]
Abstract
The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
Collapse
Affiliation(s)
- Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Aravena
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago 7510602, Chile
| | - Lucas González-Johnson
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Claudio Hetz
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato, CA, USA.
| |
Collapse
|
7
|
Xue XC, Zhou YY, Xu LY, Wei LY, Hu YJ, Yang J, Zhang XQ, Wang MY, Han YL, Chen JJ. Tongguanteng injection exerts anti-osteosarcoma effects through the ER stress-associated IRE1/CHOP pathway. BMC Complement Med Ther 2024; 24:400. [PMID: 39550552 PMCID: PMC11568601 DOI: 10.1186/s12906-024-04689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In China, Tongguanteng injection (TGT) is widely used in the treatment or adjuvant treatment of various types of cancer. However, the effect and mechanism of TGT in osteosarcoma is not clear. METHODS The 143B and MG-63 cells were treated with different concentrations of TGT. Cell proliferation, migration, invasion and apoptosis were detected using CCK8 assay, transwell assay and flow cytometry. Differentially expressed genes (DEGs) were screened using RNA sequencing (RNA-seq). The identified mRNA and protein expression associated with the IRE1/CHOP pathway was validated by RT-PCR and western blot assay. To explore the underlying mechanisms, 4-phenylbutyric acid (4-PBA) was selected as a specific endoplasmic reticulum (ER) stress inhibitor. Small interfering RNA (siRNA) or pEX-3-ERN1 plasmid was transfected into 143B cells to silence or overexpress IRE1, respectively. The potential downstream proteins, including CHOP, and apoptosis associated proteins, caspase-3 and PARP1 were determined. Furthermore, the effect of TGT was demonstrated in 143B cell tumor-bearing mice in vivo. H&E staining, TUNEL staining and immunohistochemistry were conducted in tumor tissues obtained from the xenograft mouse model. RESULTS TGT was shown to dramatically suppress the proliferation, migration and invasion, and induce apoptosis of osteosarcoma 143B and MG-63 cells in vitro. The identified DEGs included HSPA5 (encoding BiP) and ERN1 (encoding the IRE1 protein), as well as apoptosis-associated gene DDIT3 (encoding the CHOP protein). The term "IRE1-mediated unfolded protein response" was screened to be the most enriched biological process GO term. The expression of ER stress-associated proteins including ATF6, BiP, p-IRE1, XBP1s and CHOP, as well as apoptosis-associated cleaved caspase-3 and cleaved PARP1 proteins, was significantly upregulated by TGT treatment in osteosarcoma 143B cells, suggesting that TGT might promote the apoptosis of osteosarcoma 143B cells through the IRE1/CHOP pathway. Furthermore, knocking down IRE1 with si-IRE1 or inhibiting of ER stress with 4-PBA suppressed the expression of ATF6, BiP, XBP1s and CHOP induced by TGT, as well as the expression of cleaved caspase-3 and cleaved PARP1. On the contrary, overexpressing IRE1 promoted CHOP expression and induced osteosarcoma cell apoptosis. Consistent with in vitro results, TGT dramatically inhibited the tumor growth and promoted the expression of p-IRE1 and CHOP in tumor-bearing mice. CONCLUSION The findings suggest that TGT exerts an anti-osteosarcoma effect in vitro and in vivo. The underlying mechanism might be associated with the activation of IRE1/CHOP pathway in ER stress. Our findings suggest that targeting IRE1/CHOP pathway might be a potential novel approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiao-Chuan Xue
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ling-Yan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lan-Yi Wei
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiang-Qi Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Meng-Yue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
8
|
Tan H, Shen Z, Wang X, Shu S, Deng J, Lu L, Fan Z, Hu D, Cheng P, Cao X, Huang Q. Endoplasmic reticulum-targeted biomimetic nanoparticles induce apoptosis and ferroptosis by regulating endoplasmic reticulum function in colon cancer. J Control Release 2024; 375:422-437. [PMID: 39278355 DOI: 10.1016/j.jconrel.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Colorectal cancer (CRC) is a major threat to human health, as it is one of the most common malignancies with a high incidence and mortality rate. The cancer cell membrane (CCM) has significant potential in targeted tumor drug delivery due to its membrane antigen-mediated homologous targeting ability. The endoplasmic reticulum (ER) in cancer cells plays a crucial role in apoptosis and ferroptosis. In this study, we developed an ER-targeted peptide-modified CCM-biomimetic nanoparticle-delivered lovastatin (LOV) nanomedicine delivery system (EMPP-LOV) for cancer treatment. Both in vitro and in vivo experiments demonstrated that EMPP could effectively target cancer cells and localize within the ER. EMPP-LOV modulated ER function to promote apoptosis and ferroptosis in tumor cells. Furthermore, synergistic antitumor efficacy was observed in both in vitro and in vivo models. EMPP-LOV induced apoptosis in CRC cells by over-activating endoplasmic reticulum stress and promoted ferroptosis by inhibiting the mevalonate pathway, leading to synergistic tumor growth inhibition with minimal toxicity to major organs. Overall, the EMPP-LOV delivery system, with its subcellular targeting capability within tumor cells, presents a promising therapeutic platform for CRC treatment.
Collapse
Affiliation(s)
- Hongxin Tan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziqi Shen
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohua Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sicheng Shu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Deng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Lu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Ziyan Fan
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Danni Hu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Pu Cheng
- Department of Gynaecology, The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Cao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Li W, Ke D, Xu Y, Wang Y, Wang Q, Tan J, Wu H, Cheng X. The immunological and prognostic significance of the diabetes mellitus-related gene WFS1 in endometrial cancer. Front Immunol 2024; 15:1464421. [PMID: 39478865 PMCID: PMC11521820 DOI: 10.3389/fimmu.2024.1464421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background Diabetes is associated with the incidence and prognosis of various malignancies, most notably endometrial cancer (EC). This study investigated the connection between diabetes and EC, with a specific focus on elucidating the biological implications of the diabetes mellitus (DM)-related gene WFS1. Methods Using the CTD, GeneCards, and GSEA databases, we identified WFS1 as a diabetes-related gene and then conducted an extensive investigation focusing on WFS1 in the context of EC. First, we identified WFS1 as the target gene and obtained EC data from the TCGA database. Then, comprehensive analyses and verification experiments, including differential expression analysis, prognostic modeling, functional enrichment analysis, gene mutation profiling, assessment of immune cell infiltration, immunophenoscore (IPS), tumor stemness index scoring, drug sensitivity analysis, single-cell transcriptomic analysis, glycolytic pathway analysis, and clinical verification, were performed to comprehensively evaluate the clinical value of WFS1 in EC. Results The EC group had significantly lower WFS1 expression, with an AUC of 0.857 for the ROC diagnostic curve. Overall survival analysis revealed that WFS1 was an independent risk factor for EC; low WFS1 expression was correlated with a poor prognosis. Stemness index analysis revealed that decreased WFS1 expression was associated with increased tumor grade and enhanced tumor stemness, suggesting increased malignancy of EC. In addition, WFS1 expression was correlated with tumor microenvironment features such as immune cell infiltration. WFS1 was also associated with tumor drug resistance. Conclusion EC patients with low WFS1 expression have a worse prognosis. WFS1 can be used as diagnostic and prognostic marker for EC.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Da Ke
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Yi Xu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Ya Wang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Qian Wang
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Jie Tan
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Hongyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Xianglin Cheng
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Emmanuelli A, Salvagno C, Hwang SM, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. Oncoimmunology 2024; 13:2411070. [PMID: 39364290 PMCID: PMC11448341 DOI: 10.1080/2162402x.2024.2411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
Affiliation(s)
- Alexander Emmanuelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jin-Gyu Cheong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Juan R. Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Zhang T, Zheng B, Xia C, Wu P, Zheng B, Jiang L, Li J, Lv G, Zhou H, Huang W, Zou M. Hypoxic Upregulation of IER2 Increases Paracrine GMFG Signaling of Endoplasmic Reticulum Stress-CAF to Promote Chordoma Progression via Targeting ITGB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405421. [PMID: 39207055 PMCID: PMC11515918 DOI: 10.1002/advs.202405421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the oncogenic mechanism of endoplasmic reticulum stress-CAF (ERS-CAF) subpopulation in chordoma remains unknown. Here, single-cell RNA sequencing, spatial transcriptomics, GeoMx Digital Spatial Profiler, data-independent acquisition proteomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence are used to unveil the precise molecular mechanism of how ERS-CAF affected chordoma progression. Results show that hypoxic microenvironment reprograms CAFs into ERS-CAF subtype. Mechanistically, this occurrs via hypoxia-mediated transcriptional upregulation of IER2. Overexpression of IER2 in CAFs promotes chordoma progression, which can be impeded by IER2 knockdown or use of ERS inhibitors. IER2 also induces expression of ERS-CAF marker genes and results in production of a pro-tumorigenic paracrine GMFG signaling, which exert its biological function via directly binding to ITGB1 on tumor cells. ITGB1 inhibition attenuates tumor malignant progression, which can be partially reversed by exogenous GMFG intervention. Further analyses reveal a positive correlation between ITGB1high tumor cell counts and SPP1+ macrophage density, as well as the spatial proximity of these two cell types. Clinically, a significant correlation of high IER2/ITGB1 expression with tumor aggressive phenotype and poor patient survival is observed. Collectively, the findings suggest that ERS-CAF regulates SPP1+ macrophage to aggravate chordoma progression via the IER2/GMFG/ITGB1 axis, which may be targeted therapeutically in future.
Collapse
Affiliation(s)
- Tao‐Lan Zhang
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Bo‐Wen Zheng
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
- Musculoskeletal Tumor CenterPeking University People's HospitalPeking UniversityBeijing100044China
| | - Chao Xia
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Peng‐Fei Wu
- Department of Genetics and EndocrinologyNational Children's Medical Center for South Central RegionGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623China
| | - Bo‐Yv Zheng
- Department of Orthopedics SurgeryGeneral Hospital of the Central Theater CommandWuhan430061China
| | - Ling‐Xiang Jiang
- Department of Radiation OncologyMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Jing Li
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Guo‐Hua Lv
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Hong Zhou
- Department of RadiologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Wei Huang
- The First Affiliated HospitalHealth Management CenterHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ming‐Xiang Zou
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
12
|
Chen Q, Li C, Wei W, Li J, Liu F, Fu Y, Tang L, Han F. Endoplasmic reticulum stress response pathway-mediated cell death in ovarian cancer. Front Oncol 2024; 14:1446552. [PMID: 39319052 PMCID: PMC11420017 DOI: 10.3389/fonc.2024.1446552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is one of the largest organelles, and Endoplasmic Reticulum Stress Response Pathway is a series of responses triggered by the homeostatic imbalance of the ER and the state in which unfolded or misfolded proteins accumulate in the ER, which can trigger cell death. Cell death plays a crucial role in the development of diseases such as gynecological oncology. Herein, we review the current research on the response and ovarian cancer, discussing the key sensors (IRE1, PERK, ATF6), and the conditions under which it occurs (Ca2+ homeostasis disruption, hypoxia, others). Using the response as a starting point, provide a comprehensive overview of the relationship with the four types of cell death (apoptosis, autophagy, immunogenic cell death, paraptosis) in an attempt to provide new targeted therapeutic strategies for the organelle-Endoplasmic Reticulum Stress Response Pathway-cell death in ovarian cancer therapy.
Collapse
Affiliation(s)
- Qiaochu Chen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqian Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Tang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Liu C, Zhou X, Zeng H, Yu J, Li W, Zhang W, Liao Y, Wang H, Liu L. Endoplasmic Reticulum Stress Potentiates the Immunosuppressive Microenvironment in Hepatocellular Carcinoma by Promoting the Release of SNHG6-Enriched Small Extracellular Vesicles. Cancer Immunol Res 2024; 12:1184-1201. [PMID: 38900485 DOI: 10.1158/2326-6066.cir-23-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/14/2023] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Endoplasmic reticulum (ER) stress leads to hepatocellular carcinoma (HCC) progression. Small extracellular vesicles (sEV) play a crucial role in modulating the tumor microenvironment (TME) by influencing cellular communication and immune responses. However, it is unclear whether ER stress modulates the TME through sEVs. In the current study, we investigated the effects and underlying mechanisms of ER stress on the HCC TME. In vivo and in vitro experiments showed that overactivated ER stress was a salient attribute of the immunosuppressive HCC TME. This was caused by the ATF4-promoted release of small nucleolar RNA host gene 6 (SNHG6)-carrying sEVs, which attenuated T cell-mediated immune responses. Overall, SNHG6 modulated the immunosuppressive TME and aggravated ER stress. Meanwhile, targeting SNHG6 facilitated M1-like macrophage and CD8+ T-cell infiltration and decreased the proportion of M2-like macrophages. In addition, SNHG6 knockdown enhanced anti-PD1 immunotherapeutic efficacy. Moreover, in HCC patients, overexpression of SNHG6 was associated with a lack of response to anti-PD1 therapy and poor prognosis, whereas low SNHG6 expression was associated with improved therapeutic efficacy and prognoses. These data indicate that a correlation exists among ER stress, sEVs, immunosuppressive HCC TME, and immunotherapeutic efficacy. Hence, SNHG6-targeted therapy may represent an effective strategy for patients with HCC.
Collapse
Affiliation(s)
- Chengdong Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hanyi Zeng
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiaping Yu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wenwen Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wanli Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yanxia Liao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Haijian Wang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Wen C, Jiang Y, Chen W, Xu Y, Chen G, Zhou Q, Liu Q, Jiang H, Liu Y, Cao X, Yao Y, Zhang R, Qiu Z, Liu S. Targeting translocator protein protects against myocardial ischemia/reperfusion injury by alleviating mitochondrial dysfunction. Exp Ther Med 2024; 28:349. [PMID: 39071907 PMCID: PMC11273255 DOI: 10.3892/etm.2024.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
Ischemic heart disease (IHD) remains a leading cause of mortalities worldwide, necessitating timely reperfusion to reduce acute mortality. Paradoxically, reperfusion can induce myocardial ischemia/reperfusion (I/R) injury, which is primarily characterized by mitochondrial dysfunction. Translocator protein (TSPO) participates in multiple cellular events; however, its role in IHD, especially in the process of myocardial I/R injury, has not been well determined. The aim of the present study was to investigate the functional role of TSPO in myocardial I/R injury and dissect the concomitant cellular events involved. This study utilized small interfering RNA (siRNA) technology to knock down TSPO expression. The I/R process was simulated using an anoxia/reoxygenation (A/R) model. The role of TSPO in H9c2 cardiomyocytes was assessed using various techniques, such as Western blotting, Flow cytometry, Reverse transcription-quantitative PCR (RT-qPCR), Immunofluorescence, Co-immunoprecipitation (co-IP) and similar methods. It was found that A/R markedly upregulated the expression of TSPO in cardiomyocytes. Inhibition of TSPO improved myocardial cell apoptosis and damage following A/R stimulation. Additionally, targeting TSPO alleviated mitochondrial damage, reduced mitochondrial ROS release and enhanced ATP synthesis following A/R stimulation. It was further confirmed that A/R stimulation induced a significant increase in the expression of pivotal markers [phosporylated-PKR-like ER kinase (PERK)/PERK, activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1] involved in the adaptive unfolded protein response, which is accompanied by downstream signaling during endoplasmic reticulum (ER) stress. Notably, TSPO knockdown increased the expression of the aforementioned markers and, subsequently, TSPO was confirmed to interact with ATF6, suggesting that TSPO might play a role in ER stress during myocardial I/R injury. Finally, inhibition of TSPO upregulated mitophagy, as indicated by further decreases in P62 and increases in Parkin and PINK1 levels following A/R stimulation. Together, the results suggest that TSPO plays a multifaceted role in myocardial I/R injury. Understanding TSPO-induced cellular responses could inform targeted therapeutic strategies for patients with IHD.
Collapse
Affiliation(s)
- Chenghao Wen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yunfei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Qiang Zhou
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Quan Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Southeast University, Nanjing, Jiangsu 210006, P.R. China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xu Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Ruoyu Zhang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shengchen Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
15
|
Park K, Shin KO, Kim YI, Nielsen-Scott AL, Mainzer C, Celli A, Bae Y, Chae S, Ann H, Choi Y, Park JH, Park SH, Hwang JT, Kang SG, Wakefield JS, Arron ST, Holleran WM, Mauro TM, Elias PM, Uchida Y. Sphingosine-1-phosphate-cathelicidin axis plays a pivotal role in the development of cutaneous squamous cell carcinoma. J Invest Dermatol 2024:S0022-202X(24)02069-4. [PMID: 39218144 DOI: 10.1016/j.jid.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer, caused by mutagenesis resulting from excess ultraviolet radiation or other types of oxidative stress. These stressors also upregulate production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), via endoplasmic reticulum (ER) stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. While CAMP has beneficial antimicrobial activities, it also can be pro-inflammatory and pro-carcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that: 1) CAMP expression is increased in cSCC cells and skin from cSCC patients; 2) S1P levels are elevated in cSCC cells, while inhibition of S1P production attenuates CAMP-stimulated cSCC growth; 3) exogenous CAMP stimulates cSCC, but not normal human keratinocyte growth; 4) blockade of formyl peptide receptor-like (FPRL) 1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; 5) Foxp3+ regulatory T cell (which decreases anti-tumor immunity) levels increase in cSCC skin; and 6) CAMP induces ER stress in cSCC cells. Together, the ER stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, i.e., cSCC growth and invasion impedes anti-cancer immunity.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA.
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; LaSS Inc., Chuncheon, Gangwon, Republic of Korea
| | - Young-Il Kim
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna L Nielsen-Scott
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Carine Mainzer
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Anna Celli
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoojin Bae
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Seungwoo Chae
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Hahyun Ann
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Yerim Choi
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; LaSS Inc., Chuncheon, Gangwon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Honam, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Honam, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Honam, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Hoseo, Republic of Korea
| | - Seung Goo Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Joan S Wakefield
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sarah T Arron
- Department of Dermatology, School of Medicine, University of California, San Francisco
| | - Walter M Holleran
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Theodora M Mauro
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Gangwon, Republic of Korea; Department of Dermatology, School of Medicine, University of California, San Francisco; Department of Veterans Affairs Medical Center, San Francisco, Northern California Institute for Research and Education, San Francisco, California, USA.
| |
Collapse
|
16
|
Xu Z, Shi Y, Zhu L, Luo J, Hu Q, Jiang S, Xiao M, Jiang X, Wang H, Xu Y, Jin W, Zhou Y, Wang P, Wang K. Novel SERCA2 inhibitor Diphyllin displays anti-tumor effect in non-small cell lung cancer by promoting endoplasmic reticulum stress and mitochondrial dysfunction. Cancer Lett 2024; 598:217075. [PMID: 38909775 DOI: 10.1016/j.canlet.2024.217075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Abnormal calcium signaling is associated with non-small cell lung cancer (NSCLC) malignant progression, poor survival and chemotherapy resistance. Targeting endoplasmic reticulum (ER) Ca2+ channels or pumps to block calcium uptake in the ER induces ER stress and concomitantly promotes mitochondrial calcium uptake, leading to mitochondrial dysfunction and ultimately inducing cell death. Here, we identified Diphyllin was a potential specific inhibitor of endoplasmic reticulum (ER) calcium-importing protein sarco/endoplasmic-reticulum Ca2+ ATPase 2 (SERCA2). In vitro and in vivo studies showed that Diphyllin increased NSCLC cell apoptosis, along with inhibition of cell proliferation and migration. Mechanistically, Diphyllin promoted ER stress by directly inhibiting SERCA2 activity and decreasing ER Ca2+ levels. At the same time, the accumulated Ca2+ in cytoplasm flowed into mitochondria to increase reactive oxygen species (ROS) and decrease mitochondrial membrane potential (MMP), leading to cytochrome C (Cyto C) release and mitochondrial dysfunction. In addition, we found that Diphyllin combined with cisplatin could have a synergistic anti-tumor effect in vitro and in vivo. Taken together, our results suggested that Diphyllin, as a potential novel inhibitor of SERCA2, exerts anti-tumor effects by blocking ER Ca2+ uptake and thereby promoting ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Liang Zhu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jianhua Luo
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China; Department of Respiratory Medicine, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| | - Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Sujing Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Xinyuan Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huan Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Wei Jin
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Pingli Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
17
|
Pandey S, Anang V, Schumacher MM. Tumor microenvironment induced switch to mitochondrial metabolism promotes suppressive functions in immune cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:67-103. [PMID: 39396850 DOI: 10.1016/bs.ircmb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
18
|
Emmanuelli A, Salvagno C, Min-Hwang S, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606646. [PMID: 39211073 PMCID: PMC11361179 DOI: 10.1101/2024.08.05.606646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ∼50% of treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
|
19
|
Phull AR, Arain SQ, Majid A, Fatima H, Ahmed M, Kim SJ. Oxidative stress-mediated epigenetic remodeling, metastatic progression and cell signaling in cancer. ONCOLOGIE 2024; 26:493-507. [DOI: 10.1515/oncologie-2024-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Abstract
Cancer is a serious public health issue and cases are rising at a high rate around the world. Altered production of reactive oxygen species (ROS) causes oxidative stress (OS) which plays a vital role in cancer development by disrupting signaling pathways and genomic integrity in the cellular microenvironment. In this study, we reviewed the regulation of noncoding RNAs, histone modifications, and DNA methylation which OS is involved in. These mechanisms promote cancer growth, metastasis, and resistance to chemotherapeutic agents. There is significant potential to improve patient outcomes through the development of customized medications and interventions that precisely address the role of OS in the onset and progression of cancer. Redox-modulating drugs, antioxidant-based therapies, and measures to restore regular cellular activity and OS-modulated signaling pathways are some examples of these strategies. One other hypothesis rationalizes the cancer-suppressing effect of OS, which acts as a two-edged condition that warns against the use of antioxidants for cancer treatment and management. The present study was executed to review the impact of OS on epigenetic machinery, the evolution of metastatic cancer, and how OS mediates cellular signaling. Along with, insights into the potential of targeting OS-mediated mechanisms for cancer therapy.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Sadia Qamar Arain
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Abdul Majid
- Department of Biochemistry , 66858 Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Humaira Fatima
- Department of Pharmacy , Quaid-i-Azam University , Islamabad , Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences , Shifa Tameer-e-Millat University , Islamabad , Pakistan
| | - Song-Ja Kim
- Department of Biological Sciences, College of Natural Sciences , Kongju National University , Gongju , South Korea
| |
Collapse
|
20
|
Miao Y, Chen Q, Liu X, Bu J, Zhang Z, Liu T, Yue Z, Huang L, Sun S, Li H, Yang A, Yang Z, Chen C. Comprehensive analysis of endoplasmic reticulum stress related signature in head and neck squamous carcinoma. Sci Rep 2024; 14:16972. [PMID: 39043683 PMCID: PMC11266686 DOI: 10.1038/s41598-024-65090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Head and neck squamous carcinoma (HNSC) is a prevalent malignant disease, with the majority of patients being diagnosed at an advanced stage. Endoplasmic reticulum stress (ERS) is considered to be a process that promotes tumorigenesis and impacts the tumor microenvironment (TME) in various cancers. The study aims to investigate the predictive value of ERS in HNSC and explore the correlation between ERS-related genes and TME. A series of bioinformatics analyses were carried out based on mRNA and scRNA-seq data from the TCGA and GEO databases. We conducted RT-qPCR and western blot to validate the signature, and performed cell functional experiments to investigate the in vitro biological functions of the gene. We identified 63 ERS-related genes that were associated with outcome and stage in HNSC. A three-gene signature (ATF6, TRIB3, and UBXN6) was developed, which presents predictive value in the prognosis and immunotherapy response of HNSC patients. The high-risk group exhibited a worse prognosis but may benefit from immunotherapy. Furthermore, there was a significant correlation between the signature and immune infiltration. In the high-risk group, fibroblasts were more active in intercellular communication, and more T cells were observed at the end of the sequential phase. The genes in the ERS-related signature were overexpressed in HNSC cells, and the knockdown of TRIB3 significantly inhibited cell proliferation and migration. This study established a novel ERS-related signature that has potential implications for HNSC therapy and the understanding of TME.
Collapse
Affiliation(s)
- Yu Miao
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Qiaorong Chen
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Xinyu Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Jian Bu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Zhuoqi Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tongjing Liu
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Zhenjie Yue
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Lizhen Huang
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Shuaishuai Sun
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Hao Li
- The Second Clinical College of Hainan Medical University, Haikou, 570100, People's Republic of China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Cuifang Chen
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China.
| |
Collapse
|
21
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
22
|
Chattopadhyay M, Jenkins EC, Janssen W, Mashaka T, Germain D. Idiosyncratic nature of lactation reveals link to breast cancer risk. RESEARCH SQUARE 2024:rs.3.rs-4601714. [PMID: 38978600 PMCID: PMC11230499 DOI: 10.21203/rs.3.rs-4601714/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Breastfeeding protects against breast cancer in some women but not others, however the mechanism remains elusive. Lactation requires intense secretory activity of the endoplasmic reticulum (ER) for the production of milk proteins and ER-mitochondria contacts for lipid synthesis. We show that in female mice that share the same nuclear genome (BL/6) but differ in mitochondrial genomes (C57 or NZB), the biological processes engaged during lactation are entirely different at the sub-cellular organization and transcriptional levels resulting in anti-tumorigenic lactation in BL/6C57 females and pro-tumorigenic lactation in BL/6NZB females. Single cell sequencing identified a sub-population of cells, uniquely amplified during lactation in BL/6NZB females, which shares the genetic signature that characterizes post-partum breast cancer (PPBC) in humans relative to matched breast cancers in never pregnant women. Our data indicate that differences in ER and mitochondrial-stress responses during lactation between genotypes inadvertently leads to loss of p53 tumor suppressor function in BL/6NZB females allowing the expansion of the PPBC-like sub-population of cells. Overall, our data reveals the unexpected idiosyncratic nature of lactation and its impacts on the risk of the development of PPBC.
Collapse
Affiliation(s)
- Mrittika Chattopadhyay
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - Edmund Charles Jenkins
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - William Janssen
- Icahn School of Medicine at Mount Sinai, Microscopy and Advanced Bioimaging Core, New York, 10029, NY, USA
| | - Thelma Mashaka
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| | - Doris Germain
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/ Oncology, New York, 10029, NY, USA
| |
Collapse
|
23
|
Lior C, Barki D, Halperin C, Iacobuzio-Donahue CA, Kelsen D, Shouval RS. Mapping the tumor stress network reveals dynamic shifts in the stromal oxidative stress response. Cell Rep 2024; 43:114236. [PMID: 38758650 PMCID: PMC11156623 DOI: 10.1016/j.celrep.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
The tumor microenvironment (TME) presents cells with challenges such as variable pH, hypoxia, and free radicals, triggering stress responses that affect cancer progression. In this study, we examine the stress response landscape in four carcinomas-breast, pancreas, ovary, and prostate-across five pathways: heat shock, oxidative stress, hypoxia, DNA damage, and unfolded protein stress. Using a combination of experimental and computational methods, we create an atlas of stress responses across various types of carcinomas. We find that stress responses vary within the TME and are especially active near cancer cells. Focusing on the non-immune stroma we find, across tumor types, that NRF2 and the oxidative stress response are distinctly activated in immune-regulatory cancer-associated fibroblasts and in a unique subset of cancer-associated pericytes. Our study thus provides an interactome of stress responses in cancer, offering ways to intersect survival pathways within the tumor, and advance cancer therapy.
Collapse
Affiliation(s)
- Chen Lior
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Debra Barki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Coral Halperin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Christine A Iacobuzio-Donahue
- Rubenstein Center for Pancreatic Cancer Research and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Kelsen
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Ruth Scherz- Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Xiao MC, Jiang N, Chen LL, Liu F, Liu SQ, Ding CH, Wu SH, Wang KQ, Luo YY, Peng Y, Yan FZ, Zhang X, Qian H, Xie WF. TRIB3-TRIM8 complex drives NAFLD progression by regulating HNF4α stability. J Hepatol 2024; 80:778-791. [PMID: 38237865 DOI: 10.1016/j.jhep.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.
Collapse
Affiliation(s)
- Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Nan Jiang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li-Lin Chen
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke-Qi Wang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Peng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
25
|
Shen Y, Chen QC, Li CY, Han FJ. Independent organelle and organelle-organelle interactions: essential mechanisms for malignant gynecological cancer cell survival. Front Immunol 2024; 15:1393852. [PMID: 38711526 PMCID: PMC11070488 DOI: 10.3389/fimmu.2024.1393852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.
Collapse
Affiliation(s)
- Ying Shen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiao-Chu Chen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen-Yu Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
26
|
Chen P, Sharma A, Weiher H, Schmidt-Wolf IGH. Biological mechanisms and clinical significance of endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) in human cancer. J Exp Clin Cancer Res 2024; 43:71. [PMID: 38454454 PMCID: PMC10921667 DOI: 10.1186/s13046-024-02990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
A firm link between endoplasmic reticulum (ER) stress and tumors has been wildly reported. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α), an ER-resident thiol oxidoreductase, is confirmed to be highly upregulated in various cancer types and associated with a significantly worse prognosis. Of importance, under ER stress, the functional interplay of ERO1α/PDI axis plays a pivotal role to orchestrate proper protein folding and other key processes. Multiple lines of evidence propose ERO1α as an attractive potential target for cancer treatment. However, the unavailability of specific inhibitor for ERO1α, its molecular inter-relatedness with closely related paralog ERO1β and the tightly regulated processes with other members of flavoenzyme family of enzymes, raises several concerns about its clinical translation. Herein, we have provided a detailed description of ERO1α in human cancers and its vulnerability towards the aforementioned concerns. Besides, we have discussed a few key considerations that may improve our understanding about ERO1α in tumors.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359, Rheinbach, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany.
| |
Collapse
|
27
|
Li Y, Yuan Z, Wang L, Yang J, Pu P, Le Y, Chen X, Wang C, Gao Y, Liu Y, Wang J, Gao X, Li Y, Wang H, Zou C. Prolyl isomerase Pin1 sculpts the immune microenvironment of colorectal cancer. Cell Signal 2024; 115:111041. [PMID: 38199598 DOI: 10.1016/j.cellsig.2024.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Pin1, a peptide prolyl cis-trans isomerase, is overexpressed and/or overactivated in many human malignancies. However, whether Pin1 regulates the immunosuppressive TME has not been well defined. In this study, we detected the effect of Pin1 on immune cells and immune checkpoint PD-L1 in the TME of CRC and explored the anti-tumor efficacy of Pin1 inhibitor ATRA combined with PD-1 antibody. We found that Pin1 facilitated the immunosuppressive TME by raising the proportion of myeloid-derived suppressor cells (MDSCs) and declining the percentage of CD8+ T cells and CD4+ T cells. Pin1 restrained PD-L1 protein expression in CRC cells and the effect was tempered by endoplasmic reticulum (ER) stress inducers. Mechanically, Pin1 overexpression decreased the stability of PD-L1 and promoted its degradation by mitigating ER stress. Silencing or inhibiting Pin1 promoted PD-L1 protein expression by inducing ER stress. Hence, Pin1 inhibitor ATRA enhanced the anti-tumor efficacy of PD-1 antibody in the CRC allograft by upregulating PD-L1. Our results reveal the critical and pleiotropic effects of Pin1 on managing the immune cells and immune checkpoint PD-L1 in the TME of CRC, providing a new promising candidate for combination with immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Zhongnan Yuan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Linlin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Pei Pu
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yunting Le
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - XianWei Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Chongyang Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yating Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jialin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China; Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin 150081, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin 150081, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| | - Hefei Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China.
| |
Collapse
|
28
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Jing M, Xiong X, Mao X, Song Q, Zhang L, Ouyang Y, Pang Y, Fu Y, Yan W. HMGB1 promotes mitochondrial transfer between hepatocellular carcinoma cells through RHOT1 and RAC1 under hypoxia. Cell Death Dis 2024; 15:155. [PMID: 38378644 PMCID: PMC10879213 DOI: 10.1038/s41419-024-06536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Mitochondrial transfer plays an important role in various diseases, and many mitochondrial biological functions can be regulated by HMGB1. To explore the role of mitochondrial transfer in hepatocellular carcinoma (HCC) and its relationship with HMGB1, field emission scanning electron microscopy, immunofluorescence, and flow cytometry were used to detect the mitochondrial transfer between HCC cells. We found that mitochondrial transfer between HCC cells was confirmed using tunnel nanotubes (TNTs). The transfer of mitochondria from the highly invasive HCC cells to the less invasive HCC cells could enhance the migration and invasion ability of the latter. The hypoxic conditions increased the mitochondrial transfer between HCC cells. Then the mechanism was identified using co-immunoprecipitation, luciferase reporter assay, and chromatin immunoprecipitation. We found that RHOT1, a mitochondrial transport protein, promoted mitochondrial transfer and the migration and metastasis of HCC cells during this process. Under hypoxia, HMGB1 further regulated RHOT1 expression by increasing the expression of NFYA and NFYC subunits of the NF-Y complex. RAC1, a protein associated with TNTs formation, promoted mitochondrial transfer and HCC development. Besides, HMGB1 regulated RAC1 aggregation to the cell membrane under hypoxia. Finally, the changes and significance of related molecules in clinical samples of HCC were analyzed using bioinformatics and tissue microarray analyses. We found that HCC patients with high HMGB1, RHOT1, or RAC1 expression exhibited a relatively shorter overall survival period. In conclusion, under hypoxic conditions, HMGB1 promoted mitochondrial transfer and migration and invasion of HCC cells by increasing the expression of mitochondrial transport protein RHOT1 and TNTs formation-related protein RAC1.
Collapse
Affiliation(s)
- Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaofeng Xiong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Mao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Wu WQ, Zou CD, Wu D, Fu HX, Wang XD, Yao F. Construction of molecular subtype model of osteosarcoma based on endoplasmic reticulum stress and tumor metastasis-related genes. Heliyon 2024; 10:e25691. [PMID: 38371978 PMCID: PMC10873750 DOI: 10.1016/j.heliyon.2024.e25691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Osteosarcoma, the prevailing primary bone malignancy among children and adolescents, is frequently associated with treatment failure primarily due to its pronounced metastatic nature. Methods This study aimed to establish potential associations between hub genes and subtypes for the treatment of metastatic osteosarcoma. Differentially expressed genes were extracted from patients diagnosed with metastatic osteosarcoma and a control group of non-metastatic patients, using the publicly available gene expression profile (GSE21257). The intersection of these gene sets was determined by focusing on endoplasmic reticulum (ER) stress-related genes sourced from the GeneCards database. We conducted various analytical techniques, including functional and pathway enrichment analysis, WGCNA analysis, protein-protein interaction (PPI) network construction, and assessment of immune cell infiltration, using the intersecting genes. Through this analysis, we identified potential hub genes. Results Osteosarcoma subtype models were developed using molecular consensus clustering analysis, followed by an examination of the associations between each subtype and hub genes. A total of 138 potential differentially expressed genes related to endoplasmic reticulum (ER) stress were identified. These genes were further investigated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) pathways. Additionally, the PPI interaction network revealed 38 interaction relationships among the top ten hub genes. The findings of the analysis revealed a strong correlation between the extent of immune cell infiltration and both osteosarcoma metastasis and the expression of hub genes. Notably, the differential expression of the top ten hub genes was observed in osteosarcoma clusters 1 and 4, signifying their significant association with the disease. Conclusion The identification of ten key genes linked to osteosarcoma metastasis and endoplasmic reticulum stress bears potential clinical significance. Additionally, exploring the molecular subtype of osteosarcoma has the capacity to guide clinical treatment decisions, necessitating further investigations and subsequent clinical validations.
Collapse
Affiliation(s)
- Wang-Qiang Wu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Cheng-Da Zou
- Children's Hospital of Soochow University, Children's Hospital of Wujiang District, China
| | - Di Wu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Hou-Xin Fu
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Xiao-Dong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| | - Feng Yao
- Department of Orthopaedics, Children's Hospital of Soochow University, 92# Zhongnan Street, Suzhou, Jiangsu 215025, China
| |
Collapse
|
31
|
Yang Z, Hou Y, Li J, Xu D, Yang Z, Wang X. Activating transcription factor 3 is a new biomarker correlation with renal clear cell carcinoma progression. Int J Immunopathol Pharmacol 2024; 38:3946320241227320. [PMID: 38248871 PMCID: PMC10804930 DOI: 10.1177/03946320241227320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most invasive type of cancer, with a high risk of metastasis and recurrence. Therefore, there is an urgent need to identify novel prognostic predictors and therapeutic targets of ccRCC. Activating transcription factor 3 (ATF3), a tumor oncogene or repressor, has rarely been examined in ccRCC. In the present study, we comprehensively elucidate the prognostic value and potential functions of ATF3 in ccRCC.Methods: Several TCGA-based online databases were used to analyze ATF3 expression in ccRCC and determine ccRCC prognosis. The upstream-binding micro (mi) RNAs of ATF3 and long non-coding (lnc)RNAs were predicted using the StarBase database.Results: Analysis of several TCGA-based online databases showed that ATF3 expression is decreased in ccRCC, suggesting a significant association with the prognosis of patients with ccRCC. Furthermore, we found hsa-miR-221-3p to be potential regulatory miRNA of ATF3 in ccRCC. Prediction and analysis of the upstream lncRNAs indicated that PAXIP1-AS2 and OIP5-AS1 were the most potent upstream lncRNAs of the hsa-miR-221-3p/ATF3 axis in ccRCC. The results of the GO and KEGG analyses implied that ATF3 is likely involved in the regulation of apoptotic signaling in response to endoplasmic reticulum (ER) stress in ccRCC. Correlation analysis revealed a positive relationship between ATF3 expression and ER stress.Conclusions: Our in silico findings highlighted that ATF3 expression was low in ccRCC and negatively correlated with poor prognosis. Furthermore, PAXIP1-AS2 and the OIP5-AS1/hsa-miR-221-3p/ATF3 axis were identified as significant potential regulators of ER stress-mediated apoptosis in ccRCC.
Collapse
Affiliation(s)
- Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jingqi Li
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhichao Yang
- Clinical Department, North China University of Science and Technology, Tangshan, China
| | - Xinsheng Wang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
32
|
Smolgovsky S, Bayer AL, Kaur K, Sanders E, Aronovitz M, Filipp ME, Thorp EB, Schiattarella GG, Hill JA, Blanton RM, Cubillos-Ruiz JR, Alcaide P. Impaired T cell IRE1α/XBP1 signaling directs inflammation in experimental heart failure with preserved ejection fraction. J Clin Invest 2023; 133:e171874. [PMID: 37874641 PMCID: PMC10721145 DOI: 10.1172/jci171874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a widespread syndrome with limited therapeutic options and poorly understood immune pathophysiology. Using a 2-hit preclinical model of cardiometabolic HFpEF that induces obesity and hypertension, we found that cardiac T cell infiltration and lymphoid expansion occurred concomitantly with cardiac pathology and that diastolic dysfunction, cardiomyocyte hypertrophy, and cardiac phospholamban phosphorylation were T cell dependent. Heart-infiltrating T cells were not restricted to cardiac antigens and were uniquely characterized by impaired activation of the inositol-requiring enzyme 1α/X-box-binding protein 1 (IRE1α/XBP1) arm of the unfolded protein response. Notably, selective ablation of XBP1 in T cells enhanced their persistence in the heart and lymphoid organs of mice with preclinical HFpEF. Furthermore, T cell IRE1α/XBP1 activation was restored after withdrawal of the 2 comorbidities inducing HFpEF, resulting in partial improvement of cardiac pathology. Our results demonstrated that diastolic dysfunction and cardiomyocyte hypertrophy in preclinical HFpEF were T cell dependent and that reversible dysregulation of the T cell IRE1α/XBP1 axis was a T cell signature of HFpEF.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
| | - Abraham L. Bayer
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
| | - Kuljeet Kaur
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
| | - Erin Sanders
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
| | - Mark Aronovitz
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
| | - Mallory E. Filipp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B. Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gabriele G. Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology) and
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology and
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Xie F, Qu J, Lin D, Feng K, Tan M, Liao H, Zeng L, Xiong Q, Huang J, Chen W. Reduced Proteolipid Protein 2 promotes endoplasmic reticulum stress-related apoptosis and increases drug sensitivity in acute myeloid leukemia. Mol Biol Rep 2023; 51:10. [PMID: 38085372 DOI: 10.1007/s11033-023-08994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The Proteolipid Protein 2 (PLP2), a protein in the Endoplasmic Reticulum (ER) membrane, has been reported to be highly expressed in various tumors. Previous studies have demonstrated that the reduced PLP2 can induce apoptosis and autophagy through ER stress-related pathways, leading to a decreased proliferation and aggressiveness. However, there is no research literature on the role of PLP2 in Acute Myeloid Leukemia (AML). METHODS PLP2 expression, clinical data, genetic mutations, and karyotype changes from GEO, TCGA, and timer2.0 databases were analyzed through the R packages. The possible functions and pathways of cells were explored through GO, KEGG, and GSEA enrichment analysis using the clusterProfiler R package. Immuno-infiltration analysis was conducted using the Cibersort algorithm and the Xcell R package. RT-PCR and western blot techniques were employed to identify the PLP2 expression, examine the knockdown effects in THP-1 cells, and assess the expression of genes associated with endoplasmic reticulum stress and apoptosis. Flow cytometry was utilized to determine the apoptosis and survival rates of different groups. RESULTS PLP2 expression was observed in different subsets of AML and other cancers. Enrichment analyses revealed that PLP2 was involved in various tumor-related biological processes, primarily apoptosis and lysosomal functions. Additionally, PLP2 expression showed a strong association with immune cell infiltration, particularly monocytes. In vitro, the knockdown of PLP2 enhanced endoplasmic reticulum stress-related apoptosis and increased drug sensitivity in THP-1 cells. CONCLUSIONS PLP2 could be a novel therapeutic target in AML, in addition, PLP2 is a potential endoplasmic reticulum stress regulatory gene in AML.
Collapse
Affiliation(s)
- Fahui Xie
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia Qu
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dainan Lin
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kexin Feng
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Tan
- Department of Hematology, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haixiu Liao
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Longhui Zeng
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingquan Xiong
- Department of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Weiwen Chen
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
34
|
A Heieis G, Everts B. O-GlcNAcylation at the center of antitumor immunity. Curr Opin Biotechnol 2023; 84:103009. [PMID: 37863017 DOI: 10.1016/j.copbio.2023.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
The post-translational modification known as O-GlcNAcylation is a highly dysregulated process in tumors, and a key contributor to malignant transformation. In contrast, after three decades since its discovery, very little has been revealed about this process in the immune system. With the prospect of targeting O-GlcNAcylation as tumor therapy, greater understanding of how it regulates immune responses in the context of the tumor microenvironment will be needed. Here, we discuss recent discoveries from which a picture is emerging that O-GlcNAcylation, in either tumors or in immune cells, could negatively impact overall antitumor immune responses. We propose that interference with O-GlcNAcylation thus holds promise for cancer treatment from both perspectives.
Collapse
Affiliation(s)
- Graham A Heieis
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
35
|
Zheng J, Guo Y, Shi C, Yang S, Xu W, Ma X. Differential Ire1 determines loser cell fate in tumor-suppressive cell competition. Cell Rep 2023; 42:113303. [PMID: 37924514 DOI: 10.1016/j.celrep.2023.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023] Open
Abstract
Tumor-suppressive cell competition (TSCC) is a conserved surveillance mechanism in which neighboring cells actively eliminate oncogenic cells. Despite overwhelming studies showing that the unfolded protein response (UPR) is dysregulated in various tumors, it remains debatable whether the UPR restrains or promotes tumorigenesis. Here, using Drosophila eye epithelium as a model, we uncover a surprising decisive role of the Ire1 branch of the UPR in regulating cell polarity gene scribble (scrib) loss-induced TSCC. Both mutation and hyperactivation of Ire1 accelerate elimination of scrib clones via inducing apoptosis and autophagy, respectively. Unexpectedly, relative Ire1 activity is also crucial for determining loser cell fate, as dysregulating Ire1 signaling in the surrounding healthy cells reversed the "loser" status of scrib clones by decreasing their apoptosis. Furthermore, we show that Ire1 is required for cell competition in mammalian cells. Together, these findings provide molecular insights into scrib-mediated TSCC and highlight Ire1 as a key determinant of loser cell fate.
Collapse
Affiliation(s)
- Jiadong Zheng
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yifan Guo
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Changyi Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shuai Yang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Wenyan Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Xianjue Ma
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
36
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 2023; 12:2284486. [PMID: 38126031 PMCID: PMC10732641 DOI: 10.1080/2162402x.2023.2284486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Compelling evidence supports the hypothesis that stress negatively impacts cancer development and prognosis. Irrespective of its physical, biological or psychological source, stress triggers a physiological response that is mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic adrenal medullary axis. The resulting release of glucocorticoids and catecholamines into the systemic circulation leads to neuroendocrine and metabolic adaptations that can affect immune homeostasis and immunosurveillance, thus impairing the detection and eradication of malignant cells. Moreover, catecholamines directly act on β-adrenoreceptors present on tumor cells, thereby stimulating survival, proliferation, and migration of nascent neoplasms. Numerous preclinical studies have shown that blocking adrenergic receptors slows tumor growth, suggesting potential clinical benefits of using β-blockers in cancer therapy. Much of these positive effects of β-blockade are mediated by improved immunosurveillance. The present trial watch summarizes current knowledge from preclinical and clinical studies investigating the anticancer effects of β-blockers either as standalone agents or in combination with conventional antineoplastic treatments or immunotherapy.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département d’anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
37
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
38
|
Talukdar G, Orr HT, Lei Z. The PERK pathway: beneficial or detrimental for neurodegenerative diseases and tumor growth and cancer. Hum Mol Genet 2023; 32:2545-2557. [PMID: 37384418 PMCID: PMC10407711 DOI: 10.1093/hmg/ddad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) is one of the three major sensors in the unfolded protein response (UPR). The UPR is involved in the modulation of protein synthesis as an adaptive response. Prolonged PERK activity correlates with the development of diseases and the attenuation of disease severity. Thus, the current debate focuses on the role of the PERK signaling pathway either in accelerating or preventing diseases such as neurodegenerative diseases, myelin disorders, and tumor growth and cancer. In this review, we examine the current findings on the PERK signaling pathway and whether it is beneficial or detrimental for the above-mentioned disorders.
Collapse
Affiliation(s)
- Gourango Talukdar
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harry T Orr
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhixin Lei
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
39
|
Endoplasmic Reticulum Stress in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054914. [PMID: 36902344 PMCID: PMC10003093 DOI: 10.3390/ijms24054914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The endoplasmic reticulum is an organelle exerting crucial functions in protein production, metabolism homeostasis and cell signaling. Endoplasmic reticulum stress occurs when cells are damaged and the capacity of this organelle to perform its normal functions is reduced. Subsequently, specific signaling cascades, together forming the so-called unfolded protein response, are activated and deeply impact cell fate. In normal renal cells, these molecular pathways strive to either resolve cell injury or activate cell death, depending on the extent of cell damage. Therefore, the activation of the endoplasmic reticulum stress pathway was suggested as an interesting therapeutic strategy for pathologies such as cancer. However, renal cancer cells are known to hijack these stress mechanisms and exploit them to their advantage in order to promote their survival through rewiring of their metabolism, activation of oxidative stress responses, autophagy, inhibition of apoptosis and senescence. Recent data strongly suggest that a certain threshold of endoplasmic reticulum stress activation needs to be attained in cancer cells in order to shift endoplasmic reticulum stress responses from a pro-survival to a pro-apoptotic outcome. Several endoplasmic reticulum stress pharmacological modulators of interest for therapeutic purposes are already available, but only a handful were tested in the case of renal carcinoma, and their effects in an in vivo setting remain poorly known. This review discusses the relevance of endoplasmic reticulum stress activation or suppression in renal cancer cell progression and the therapeutic potential of targeting this cellular process for this cancer.
Collapse
|
40
|
Yao S, Yu Y, Xu L, Pan X. Genomic and clinical features of endoplasmic reticulum stress factor in digestive system pan-cancer studies. Front Oncol 2023; 12:1072576. [PMID: 36698399 PMCID: PMC9868864 DOI: 10.3389/fonc.2022.1072576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Digestive system pan-cancer is one of the lethal malignant tumors, which have the propensity for poor prognosis and difficult treatment. Endoplasmic reticulum (ER) stress has served as a pivotal role in the progression of the tumor, while the implication of ER stress on digestive system pan-cancers still needs elucidation, especially from the perspective of clinical outcome and that of genomic features. Methods First, Among the ER STRESS factors from the REACTOME_UNFOLDED_PROTEIN_RESPONSE_UPR (113 genes) and HALLMARK_UNFOLDED_PROTEIN_RESPONSE (92 genes) terms, 153 ER STRESS regulators were identified after removing replicates. The somatic mutation data and copy number variation data of gastrointestinal pan-cancer were downloaded from The Cancer Genome Atlas (TCGA) database. Then, we explored the clinical outcome and genetic mutation of ER stress-related differentially expressed genes (DEGs) by multiple bioinformatics analysis. Subsequently, we analyzed the Spearman correlation between the drug sensitivity of 179 gastrointestinal anticancer drugs and the transcriptional expression of 153 ER stress factors in 769 cancer cell lines of the GDSC2 cohort. Next, ssGSEA method was used to quantify the immune cell infiltration scores in the tumor microenvironment, and Spearman correlation was used to calculate the correlation between ER stress scores and immune cell infiltration. Finally, we analyzed the cellular origin of ER stress factor dysregulation. Results We analyzed the genomic changes and clinical outcomes of ER stress factors in different tumors of gastrointestinal pan-cancer. Endoplasmic reticulum stress factor (ER) in digestive tract tumors showed high SNV mutation frequency, less methylation dysregulation and was associated with multiple oncogenic pathways. Endoplasmic reticulum stress factor (ER) is a risk factor for many cancers, but the effect on overall survival in rectal adenocarcinoma is opposite to that in other gastrointestinal tumors. And ER stress factors are highly correlated with drugs that target important pathways. Discussion Based on the clinical prognosis and genomic analysis of ER stress-related factors in patients with gastrointestinal pan-cancer, this study provides a new direction for further research on gastrointestinal pan-cancer.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanquan Yu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liyi Xu
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Liyi Xu, ; Xiang Pan,
| | - Xiang Pan
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Liyi Xu, ; Xiang Pan,
| |
Collapse
|
41
|
Lin Y, Li T, Li Z, Shen C, Wu Z, Zhang Z, Li Z, Yang S, Wang Z, Li P, Fu C, Guo J, Hu H. Comprehensive characterization of endoplasmic reticulum stress in bladder cancer revealing the association with tumor immune microenvironment and prognosis. Front Genet 2023; 14:1097179. [PMID: 37091788 PMCID: PMC10119429 DOI: 10.3389/fgene.2023.1097179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Background: This study constructs a molecular subtype and prognostic model of bladder cancer (BLCA) through endoplasmic reticulum stress (ERS) related genes, thus helping to clinically guide accurate treatment and prognostic assessment. Methods: The Bladder Cancer (BLCA) gene expression data was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We clustered by ERS-related genes which obtained through GeneCards database, results in the establishment of a new molecular typing of bladder cancer. Further, we explored the characteristics of each typology in terms of immune microenvironment, mutations, and drug screening. By analyzing the ERS-related genes with univariate Cox, LASSO and multivariate Cox analyses, we also developed the four-gene signature, while validating the prognostic effect of the model in GSE32894 and GSE13507 cohorts. Finally, we evaluated the prognostic value of the clinical data in the high and low ERS score groups and constructed a prognostic score line graph by Nomogram. Results: We constructed four molecular subtypes (C1- C4) of bladder cancer, in which patients with C2 had a poor prognosis and those with C3 had a better prognosis. The C2 had a high degree of TP53 mutation, significant immune cell infiltration and high immune score. In contrast, C3 had a high degree of FGFR3 mutation, insignificant immune cell infiltration, and reduced immune checkpoint expression. After that, we built ERS-related risk signature to calculate ERS score, including ATP2A3, STIM2, VWF and P4HB. In the GSE32894 and GSE13507, the signature also had good predictive value for prognosis. In addition, ERS scores were shown to correlate well with various clinical features. Finally, we correlated the ERS clusters and ERS score. Patients with high ERS score were more likely to have the C2 phenotype, while patients with low ERS score were C3. Conclusion: In summary, we identified four novel molecular subtypes of BLCA by ERS-related genes which could provide some new insights into precision medicine. Prognostic models constructed from ERS-related genes can be used to predict clinical outcomes. Our study contributes to the study of personalized treatment and mechanisms of BLCA.
Collapse
Affiliation(s)
- Yuda Lin
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tengfei Li
- Tianjin Children’s Hospital, Tianjin, China
| | - Zhuolun Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zejin Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Fu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Guo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Hu,
| |
Collapse
|
42
|
Zhou P, Wu C, Ma C, Luo T, Yuan J, Zhou P, Wei Z. Identification of an endoplasmic reticulum stress-related gene signature to predict prognosis and potential drugs of uterine corpus endometrial cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4018-4039. [PMID: 36899615 DOI: 10.3934/mbe.2023188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uterine corpus endometrial cancer (UCEC) is the sixth most common female cancer worldwide, with an increasing incidence. Improving the prognosis of patients living with UCEC is a top priority. Endoplasmic reticulum (ER) stress has been reported to be involved in tumor malignant behaviors and therapy resistance, but its prognostic value in UCEC has been rarely investigated. The present study aimed to construct an ER stress-related gene signature for risk stratification and prognosis prediction in UCEC. The clinical and RNA sequencing data of 523 UCEC patients were extracted from TCGA database and were randomly assigned into a test group (n = 260) and training group (n = 263). An ER stress-related gene signature was established by LASSO and multivariate Cox regression in the training group and validated by Kaplan-Meier survival analysis, Receiver Operating Characteristic (ROC) curves and nomograms in the test group. Tumor immune microenvironment was analyzed by CIBERSORT algorithm and single-sample gene set enrichment analysis. R packages and the Connectivity Map database were used to screen the sensitive drugs. Four ERGs (ATP2C2, CIRBP, CRELD2 and DRD2) were selected to build the risk model. The high-risk group had significantly reduced overall survival (OS) (P < 0.05). The risk model had better prognostic accuracy than clinical factors. Tumor-infiltrating immune cells analysis depicted that CD8+ T cells and regulatory T cells were more abundant in the low-risk group, which may be related to better OS, while activated dendritic cells were active in the high-risk group and associated with unfavorable OS. Several kinds of drugs sensitive to the high-risk group were screened out. The present study constructed an ER stress-related gene signature, which has the potential to predict the prognosis of UCEC patients and have implications for UCEC treatment.
Collapse
Affiliation(s)
- Pei Zhou
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ting Luo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jing Yuan
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
43
|
Tang Q, Liu Q, Li Y, Mo L, He J. CRELD2, endoplasmic reticulum stress, and human diseases. Front Endocrinol (Lausanne) 2023; 14:1117414. [PMID: 36936176 PMCID: PMC10018036 DOI: 10.3389/fendo.2023.1117414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
CRELD2, a member of the cysteine-rich epidermal growth factor-like domain (CRELD) protein family, is both an endoplasmic reticulum (ER)-resident protein and a secretory factor. The expression and secretion of CRELD2 are dramatically induced by ER stress. CRELD2 is ubiquitously expressed in multiple tissues at different levels, suggesting its crucial and diverse roles in different tissues. Recent studies suggest that CRELD2 is associated with cartilage/bone metabolism homeostasis and pathological conditions involving ER stress such as chronic liver diseases, cardiovascular diseases, kidney diseases, and cancer. Herein, we first summarize ER stress and then critically review recent advances in the knowledge of the characteristics and functions of CRELD2 in various human diseases. Furthermore, we highlight challenges and present future directions to elucidate the roles of CRELD2 in human health and disease.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Mo
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jinhan He,
| |
Collapse
|
44
|
Wei H, Du X, Zhao H, Sun P, Yang J. Propofol Regulates ER Stress to Inhibit Tumour Growth and Sensitize Osteosarcoma to Doxorubicin. Int J Clin Pract 2023; 2023:3093945. [PMID: 36756222 PMCID: PMC9897936 DOI: 10.1155/2023/3093945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumour affecting children and young adults. The antitumour role of propofol, a widely used intravenous sedative-hypnotic agent, has been recently reported in different cancer types. In this study, we aimed to assess the role of propofol on osteosarcoma and explore the possible mechanisms. Propofol of increasing concentrations (2.5, 5, 10, and 20 μg/ml) was used to treat the MG63 and 143B cells for 72 hours, and the CCK8 assay was applied to evaluate the tumour cell proliferation. Tumour cell migration and invasion were assessed with the transwell assay. The tumour cells were also treated with doxorubicin single agent or in combination with propofol to explore their synergic role. Differential expressed genes after propofol treatment were obtained and functionally assessed with bioinformatic tools. Expression of ER stress markers CHOP, p-eIF2α, and XBP1s was evaluated to validate the activation of ER stress response with western blot and qRT-PCR. The statistical analyses were performed with R v4.2.1. Propofol treatment led to significant growth inhibition in MG63 and 143B cells in a dose-dependent manner (p < 0.05). Osteosarcoma migration (MG63 91.4 (82-102) vs. 56.8 (49-65), p < 0.05; 143B 96.6 (77-104) vs. 45.4 (28-54), p < 0.05) and invasion (MG63 68.6 (61-80) vs. 32 (25-39), p < 0.05; 143B 90.6 (72-100) vs. 39.2 (26-55), p < 0.05) were reduced after propofol treatment. Doxorubicin sensitivity was increased after propofol treatment compared with the control group (p < 0.05). Bioinformatic analysis showed significant functional enrichment in ER stress response after propofol treatment. Upregulation of CHOP, p-eIF2α, and XBP1s was detected in MG63 and 143B secondary to propofol treatment. In conclusion, we found that propofol treatment suppressed osteosarcoma proliferation and invasion and had a synergic role with doxorubicin by inducing ER stress. Our findings provided a novel option in osteosarcoma therapy.
Collapse
Affiliation(s)
- Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Xinhui Du
- Bone and Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Huaping Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Peipei Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| |
Collapse
|
45
|
Chen L, Bi M, Zhang Z, Du X, Chen X, Jiao Q, Jiang H. The functions of IRE1α in neurodegenerative diseases: Beyond ER stress. Ageing Res Rev 2022; 82:101774. [PMID: 36332756 DOI: 10.1016/j.arr.2022.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Inositol-requiring enzyme 1 α (IRE1α) is a type I transmembrane protein that resides in the endoplasmic reticulum (ER). IRE1α, which is the primary sensor of ER stress, has been proven to maintain intracellular protein homeostasis by activating X-box binding protein 1 (XBP1). Further studies have revealed novel physiological functions of the IRE1α, such as its roles in mRNA and protein degradation, inflammation, immunity, cell proliferation and cell death. Therefore, the function of IRE1α is not limited to its role in ER stress; IRE1α is also important for regulating other processes related to cellular physiology. Furthermore, IRE1α plays a key role in neurodegenerative diseases that are caused by the phosphorylation of Tau protein, the accumulation of α-synuclein (α-syn) and the toxic effects of mutant Huntingtin (mHtt). Therefore, targeting IRE1α is a valuable approach for treating neurodegenerative diseases and regulating cell functions. This review discusses the role of IRE1α in different cellular processes, and emphasizes the importance of IRE1α in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
46
|
Xu D, Liu Z, Liang MX, Fei YJ, Zhang W, Wu Y, Tang JH. Endoplasmic reticulum stress targeted therapy for breast cancer. Cell Commun Signal 2022; 20:174. [PMCID: PMC9639265 DOI: 10.1186/s12964-022-00964-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecurrence, metastasis, and drug resistance are still big challenges in breast cancer therapy. Internal and external stresses have been proven to substantially facilitate breast cancer progression through molecular and systemic mechanisms. For example, endoplasmic reticulum stress (ERS) results in activation of the unfolded protein response (UPR), which are considered an important cellular stress response. More and more reports indicate its key role in protein homeostasis and other diverse functions involved in the process of breast cancer progression. Therefore, therapies targeting the activation of ERS and its downstream signaling pathways are potentially helpful and novel tools to counteract and fight breast cancer. However, recent advances in our understanding of ERS are focused on characterizing and modulating ERS between healthy and disease states, and so little attention has been paid to studying the role and clinical application of targeting ERS in a certain cancer. In this review, we summarize the function and main mechanisms of ERS in different molecular types of breast cancer, and focus on the development of agents targeting ERS to provide new treatment strategies for breast cancer.
Collapse
|