1
|
Li X, Parker BM, Boughton RK, Beasley JC, Smyser TJ, Austin JD, Pepin KM, Miller RS, Vercauteren KC, Wisely SM. Torque Teno Sus Virus 1: A Potential Surrogate Pathogen to Study Pig-Transmitted Transboundary Animal Diseases. Viruses 2024; 16:1397. [PMID: 39339873 PMCID: PMC11436127 DOI: 10.3390/v16091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the epidemiology and transmission dynamics of transboundary animal diseases (TADs) among wild pigs (Sus scrofa) will aid in preventing the introduction or containment of TADs among wild populations. Given the challenges associated with studying TADs in free-ranging populations, a surrogate pathogen system may predict how pathogens may circulate and be maintained within wild free-ranging swine populations, how they may spill over into domestic populations, and how management actions may impact transmission. We assessed the suitability of Torque teno sus virus 1 (TTSuV1) to serve as a surrogate pathogen for molecular epidemiological studies in wild pigs by investigating the prevalence, persistence, correlation with host health status and genetic variability at two study areas: Archbold's Buck Island Ranch in Florida and Savannah River Site in South Carolina. We then conducted a molecular epidemiological case study within Archbold's Buck Island Ranch site to determine how analysis of this pathogen could inform transmission dynamics of a directly transmitted virus. Prevalence was high in both study areas (40%, n = 190), and phylogenetic analyses revealed high levels of genetic variability within and between study areas. Our case study showed that pairwise host relatedness and geographic distance were highly correlated to pairwise viral genetic similarity. Molecular epidemiological analyses revealed a distinct pattern of direct transmission from pig to pig occurring within and between family groups. Our results suggest that TTSuV1 is highly suitable for molecular epidemiological analyses and will be useful for future studies of transmission dynamics in wild free-ranging pigs.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Brandon M. Parker
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Raoul K. Boughton
- Buck Island Ranch, Archbold Biological Station, Lake Placid, FL 33960, USA;
| | - James C. Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA;
| | - Timothy J. Smyser
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - James D. Austin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| | - Kim M. Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - Ryan S. Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO 80525, USA
| | - Kurt C. Vercauteren
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO 80526, USA (K.M.P.)
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA; (X.L.); (B.M.P.)
| |
Collapse
|
2
|
Shrestha H, McCulloch K, Chisholm RH, Armoo SK, Veriegh F, Sirwani N, Crawford KE, Osei-Atweneboana MY, Grant WN, Hedtke SM. Synthesizing environmental, epidemiological and vector and parasite genetic data to assist decision making for disease elimination. Mol Ecol 2024; 33:e17357. [PMID: 38683054 DOI: 10.1111/mec.17357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
We present a framework for identifying when conditions are favourable for transmission of vector-borne diseases between communities by incorporating predicted disease prevalence mapping with landscape analysis of sociological, environmental and host/parasite genetic data. We explored the relationship between environmental features and gene flow of a filarial parasite of humans, Onchocerca volvulus, and its vector, blackflies in the genus Simulium. We generated a baseline microfilarial prevalence map from point estimates from 47 locations in the ecological transition separating the savannah and forest in Ghana, where transmission of O. volvulus persists despite onchocerciasis control efforts. We generated movement suitability maps based on environmental correlates with mitochondrial population structure of 164 parasites from 15 communities and 93 vectors from only four sampling sites, and compared these to the baseline prevalence map. Parasite genetic distance between sampling locations was significantly associated with elevation (r = .793, p = .005) and soil moisture (r = .507, p = .002), while vector genetic distance was associated with soil moisture (r = .788, p = .0417) and precipitation (r = .835, p = .0417). The correlation between baseline prevalence and parasite resistance surface maps was stronger than that between prevalence and vector resistance surface maps. The centre of the study area had high prevalence and suitability for parasite and vector gene flow, potentially contributing to persistent transmission and suggesting the importance of re-evaluating transmission zone boundaries. With suitably dense sampling, this framework can help delineate transmission zones for onchocerciasis and would be translatable to other vector-borne diseases.
Collapse
Affiliation(s)
- Himal Shrestha
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Karen McCulloch
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Rebecca H Chisholm
- Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Victoria, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel K Armoo
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Accra, Ghana
| | - Francis Veriegh
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Accra, Ghana
| | - Neha Sirwani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Katie E Crawford
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | | | - Warwick N Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Shannon M Hedtke
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Kattenberg JH, Monsieurs P, De Meyer J, De Meulenaere K, Sauve E, de Oliveira TC, Ferreira MU, Gamboa D, Rosanas‐Urgell A. Population genomic evidence of structured and connected Plasmodium vivax populations under host selection in Latin America. Ecol Evol 2024; 14:e11103. [PMID: 38529021 PMCID: PMC10961478 DOI: 10.1002/ece3.11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Pathogen genomic epidemiology has the potential to provide a deep understanding of population dynamics, facilitating strategic planning of interventions, monitoring their impact, and enabling timely responses, and thereby supporting control and elimination efforts of parasitic tropical diseases. Plasmodium vivax, responsible for most malaria cases outside Africa, shows high genetic diversity at the population level, driven by factors like sub-patent infections, a hidden reservoir of hypnozoites, and early transmission to mosquitoes. While Latin America has made significant progress in controlling Plasmodium falciparum, it faces challenges with residual P. vivax. To characterize genetic diversity and population structure and dynamics, we have analyzed the largest collection of P. vivax genomes to date, including 1474 high-quality genomes from 31 countries across Asia, Africa, Oceania, and America. While P. vivax shows high genetic diversity globally, Latin American isolates form a distinctive population, which is further divided into sub-populations and occasional clonal pockets. Genetic diversity within the continent was associated with the intensity of transmission. Population differentiation exists between Central America and the North Coast of South America, vs. the Amazon Basin, with significant gene flow within the Amazon Basin, but limited connectivity between the Northwest Coast and the Amazon Basin. Shared genomic regions in these parasite populations indicate adaptive evolution, particularly in genes related to DNA replication, RNA processing, invasion, and motility - crucial for the parasite's survival in diverse environments. Understanding these population-level adaptations is crucial for effective control efforts, offering insights into potential mechanisms behind drug resistance, immune evasion, and transmission dynamics.
Collapse
Affiliation(s)
| | - Pieter Monsieurs
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Julie De Meyer
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
- Present address:
Integrated Molecular Plant physiology Research (IMPRES) and Plants and Ecosystems (PLECO), Department of BiologyUniversity of AntwerpAntwerpBelgium
| | | | - Erin Sauve
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Thaís C. de Oliveira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical MedicineNova University of LisbonLisbonPortugal
| | - Dionicia Gamboa
- Instituto de Medicina Tropical “Alexander von Humboldt”Universidad Peruana Cayetano HerediaLimaPeru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | | |
Collapse
|
4
|
Crawford KE, Hedtke SM, Doyle SR, Kuesel AC, Armoo S, Osei-Atweneboana MY, Grant WN. Genome-based tools for onchocerciasis elimination: utility of the mitochondrial genome for delineating Onchocerca volvulus transmission zones. Int J Parasitol 2024; 54:171-183. [PMID: 37993016 DOI: 10.1016/j.ijpara.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
National programs in Africa have expanded their objectives from control of onchocerciasis (river blindness) as a public health problem to elimination of parasite transmission, motivated by the reduction of Onchocerca volvulus infection prevalence in many African meso- and hyperendemic areas due to mass drug administration of ivermectin (MDAi). Given the large, contiguous hypo-, meso-, and hyperendemic areas, sustainable elimination of onchocerciasis in sub-Saharan Africa requires delineation of geographic boundaries for parasite transmission zones, so that programs can consider the risk of parasite re-introduction through vector or human migration from areas with ongoing transmission when making decisions to stop MDAi. We propose that transmission zone boundaries can be delineated by characterising the parasite genetic population structure within and between potential zones. We analysed whole mitochondrial genome sequences of 189 O. volvulus adults to determine the pattern of genetic similarity across three West African countries: Ghana, Mali, and Côte d'Ivoire. Population genetic structure indicates that parasites from villages near the Pru, Daka, and Black Volta rivers in central Ghana belong to one parasite population, indicating that the assumption that river basins constitute individual transmission zones is not supported by the data. Parasites from Mali and Côte d'Ivoire are genetically distinct from those from Ghana. This research provides the basis for developing tools for elimination programs to delineate transmission zones, to estimate the risk of parasite re-introduction via vector or human movement when intervention is stopped in one area while transmission is ongoing in others, to identify the origin of infections detected post-treatment cessation, and to investigate whether persisting prevalence despite ongoing interventions in one area is due to parasites imported from others.
Collapse
Affiliation(s)
- Katie E Crawford
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Shannon M Hedtke
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia.
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Annette C Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Samuel Armoo
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Mike Y Osei-Atweneboana
- Biomedical and Public Health Research Unit, CSIR-Water Research Institute, Council for Scientific and Industrial Research, Council Close, Accra, Ghana
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
5
|
Mayor A, Ishengoma DS, Proctor JL, Verity R. Sampling for malaria molecular surveillance. Trends Parasitol 2023; 39:954-968. [PMID: 37730525 PMCID: PMC10580323 DOI: 10.1016/j.pt.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Strategic use of Plasmodium falciparum genetic variation has great potential to inform public health actions for malaria control and elimination. Malaria molecular surveillance (MMS) begins with a strategy to identify and collect parasite samples, guided by public-health priorities. In this review we discuss sampling design practices for MMS and point out epidemiological, biological, and statistical factors that need to be considered. We present examples for different use cases, including detecting emergence and spread of rare variants, establishing transmission sources and inferring changes in malaria transmission intensity. This review will potentially guide the collection of samples and data, serve as a starting point for further methodological innovation, and enhance utilization of MMS to support malaria elimination.
Collapse
Affiliation(s)
- Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique.
| | - Deus S Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania; Faculty of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Joshua L Proctor
- Institute for Disease Modeling in Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, UK
| |
Collapse
|
6
|
Zhao M, Li Y, Wei W, Zhang Z, Zhou H. The distribution variation of pathogens and virulence factors in different geographical populations of giant pandas. Front Microbiol 2023; 14:1264786. [PMID: 37789855 PMCID: PMC10543425 DOI: 10.3389/fmicb.2023.1264786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Intestinal diseases caused by opportunistic pathogens seriously threaten the health and survival of giant pandas. However, our understanding of gut pathogens in different populations of giant pandas, especially in the wild populations, is still limited. Here, we conducted a study based on 52 giant panda metagenomes to investigate the composition and distribution of gut pathogens and virulence factors (VFs) in five geographic populations (captive: GPCD and GPYA; wild: GPQIN, GPQIO, and GPXXL). The results of the beta-diversity analyzes revealed a close relationship and high similarity in pathogen and VF compositions within the two captive groups. Among all groups, Proteobacteria, Firmicutes, and Bacteroidetes emerged as the top three abundant phyla. By using the linear discriminant analysis effect size method, we identified pathogenic bacteria unique to different populations, such as Klebsiella in GPCD, Salmonella in GPYA, Hafnia in GPQIO, Pedobacter in GPXXL, and Lactococcus in GPQIN. In addition, we identified 12 VFs that play a role in the intestinal diseases of giant pandas, including flagella, CsrA, enterobactin, type IV pili, alginate, AcrAB, capsule, T6SS, urease, type 1 fimbriae, polar flagella, allantoin utilization, and ClpP. These VFs influence pathogen motility, adhesion, iron uptake, acid resistance, and protein regulation, thereby contributing to pathogen infection and pathogenicity. Notably, we also found a difference in virulence of Pseudomonas aeruginosa between GPQIN and non-GPQIN wild populations, in which the relative abundance of VFs (0.42%) of P. aeruginosa was the lowest in GPQIN and the highest in non-GPQIN wild populations (GPXXL: 23.55% and GPQIO: 10.47%). In addition to enhancing our understanding of gut pathogens and VFs in different geographic populations of giant pandas, the results of this study provide a specific theoretical basis and data support for the development of effective conservation measures for giant pandas.
Collapse
Affiliation(s)
- Mengyu Zhao
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Yuxia Li
- Shimian Agricultural and Rural Bureau, Shimian, Sichuan, China
| | - Wei Wei
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Zejun Zhang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Hong Zhou
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| |
Collapse
|
7
|
Haynes E, Lorch J, Allender MC. Development and application of a qPCR-based genotyping assay for Ophidiomyces ophidiicola to investigate the epidemiology of ophidiomycosis. PLoS One 2023; 18:e0289159. [PMID: 37535588 PMCID: PMC10399865 DOI: 10.1371/journal.pone.0289159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Ophidiomycosis (snake fungal disease) is an infectious disease caused by the fungus Ophidiomyces ophidiicola to which all snake species appear to be susceptible. Significant variation has been observed in clinical presentation, progression of disease, and response to treatment, which may be due to genetic variation in the causative agent. Recent phylogenetic analysis based on whole-genome sequencing identified that O. ophidiicola strains from the United States formed a clade distinct from European strains, and that multiple clonal lineages of the clade are present in the United States. The purpose of this study was to design a qPCR-based genotyping assay for O. ophidiicola, then apply that assay to swab-extracted DNA samples to investigate whether the multiple O. ophidiicola clades and clonal lineages in the United States have specific geographic, taxonomic, or temporal predilections. To this end, six full genome sequences of O. ophidiicola representing different clades and clonal lineages were aligned to identify genomic areas shared between subsets of the isolates. Eleven hydrolysis-based Taqman primer-probe sets were designed to amplify selected gene segments and produce unique amplification patterns for each isolate, each with a limit of detection of 10 or fewer copies of the target sequence and an amplification efficiency of 90-110%. The qPCR-based approach was validated using samples from strains known to belong to specific clades and applied to swab-extracted O. ophidiicola DNA samples from multiple snake species, states, and years. When compared to full-genome sequencing, the qPCR-based genotyping assay assigned 75% of samples to the same major clade (Cohen's kappa = 0.360, 95% Confidence Interval = 0.154-0.567) with 67-77% sensitivity and 88-100% specificity, depending on clade/clonal lineage. Swab-extracted O. ophidiicola DNA samples from across the United States were assigned to six different clonal lineages, including four of the six established lineages and two newly defined groups, which likely represent recombinant strains of O. ophidiicola. Using multinomial logistic regression modeling to predict clade based on snake taxonomic group, state of origin, and year of collection, state was the most significant predictor of clonal lineage. Furthermore, clonal lineage was not associated with disease severity in the most intensely sampled species, the Lake Erie watersnake (Nerodia sipedon insularum). Overall, this assay represents a rapid, cost-effective genotyping method for O. ophidiicola that can be used to better understand the epidemiology of ophidiomycosis.
Collapse
Affiliation(s)
- Ellen Haynes
- Wildlife Epidemiology Laboratory, Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, United States of America
- Current affiliation: Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Jeffrey Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, United States of America
- Chicago Zoological Society, Brookfield Zoo, Brookfield, Illinois, United States of America
| |
Collapse
|
8
|
A century of parasitology in fisheries and aquaculture. J Helminthol 2023; 97:e4. [PMID: 36631485 DOI: 10.1017/s0022149x22000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fish parasitological research associated with fisheries and aquaculture has expanded remarkably over the past century. The application of parasites as biological tags has been one of the fields in which fish parasitology has generated new insight into fish migration and stock assessments worldwide. It is a well-established discipline whose methodological issues are regularly reviewed and updated. Therefore, no concepts or case-studies will be repeated here; instead, we summarize some of the main recent findings and achievements of this methodology. These include the extension of its use in hosts other than bony fishes; the improvements in the selection of parasite tags; the recognition of the host traits affecting the use of parasite tags; and the increasingly recognized need for integrative, multidisciplinary studies combining parasites with classical methods and modern techniques, such as otolith microchemistry and genetics. Archaeological evidence points to the existence of parasitic problems associated with aquaculture activities more than a thousand years ago. However, the main surge of research within aquaculture parasitology occurred with the impressive development of aquaculture over the past century. Protozoan and metazoan parasites, causing disease in domesticated fish in confined environments, have attracted the interest of parasitologists and, due to their economic importance, funding was made available for basic and applied research. This has resulted in a profusion of basic knowledge about parasite biology, physiology, parasite-host interactions, life cycles and biochemistry. Due to the need for effective control methods, various solutions targeting host-parasite interactions (immune responses and host finding), genetics and pharmacological aspects have been in focus.
Collapse
|
9
|
Kozakiewicz CP, Burridge CP, Lee JS, Kraberger SJ, Fountain-Jones NM, Fisher RN, Lyren LM, Jennings MK, Riley SPD, Serieys LEK, Craft ME, Funk WC, Crooks KR, VandeWoude S, Carver S. Habitat connectivity and host relatedness influence virus spread across an urbanising landscape in a fragmentation-sensitive carnivore. Virus Evol 2022; 9:veac122. [PMID: 36694819 PMCID: PMC9865512 DOI: 10.1093/ve/veac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/22/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially heterogeneous landscape factors such as urbanisation can have substantial effects on the severity and spread of wildlife diseases. However, research linking patterns of pathogen transmission to landscape features remains rare. Using a combination of phylogeographic and machine learning approaches, we tested the influence of landscape and host factors on feline immunodeficiency virus (FIVLru) genetic variation and spread among bobcats (Lynx rufus) sampled from coastal southern California. We found evidence for increased rates of FIVLru lineage spread through areas of higher vegetation density. Furthermore, single-nucleotide polymorphism (SNP) variation among FIVLru sequences was associated with host genetic distances and geographic location, with FIVLru genetic discontinuities precisely correlating with known urban barriers to host dispersal. An effect of forest land cover on FIVLru SNP variation was likely attributable to host population structure and differences in forest land cover between different populations. Taken together, these results suggest that the spread of FIVLru is constrained by large-scale urban barriers to host movement. Although urbanisation at fine spatial scales did not appear to directly influence virus transmission or spread, we found evidence that viruses transmit and spread more quickly through areas containing higher proportions of natural habitat. These multiple lines of evidence demonstrate how urbanisation can change patterns of contact-dependent pathogen transmission and provide insights into how continued urban development may influence the incidence and management of wildlife disease.
Collapse
Affiliation(s)
| | | | - Justin S Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | - Robert N Fisher
- Western Ecological Research Center, U.S. Geological Survey, San Diego, CA 92101, USA
| | - Lisa M Lyren
- Western Ecological Research Center, U.S. Geological Survey, San Diego, CA 92101, USA
| | - Megan K Jennings
- Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, CA 91360, USA
| | | | - Meggan E Craft
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kevin R Crooks
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA,Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
10
|
Gilbertson MLJ, Fountain-Jones NM, Malmberg JL, Gagne RB, Lee JS, Kraberger S, Kechejian S, Petch R, Chiu ES, Onorato D, Cunningham MW, Crooks KR, Funk WC, Carver S, VandeWoude S, VanderWaal K, Craft ME. Apathogenic proxies for transmission dynamics of a fatal virus. Front Vet Sci 2022; 9:940007. [PMID: 36157183 PMCID: PMC9493079 DOI: 10.3389/fvets.2022.940007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.
Collapse
Affiliation(s)
- Marie L. J. Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | | | - Jennifer L. Malmberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Roderick B. Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Wildlife Futures Program, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Justin S. Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Raegan Petch
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elliott S. Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Dave Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL, United States
| | - Mark W. Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, United States
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, United States
| | - W. Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
11
|
Jiang B, Wang C, Guo C, Lv X, Gong W, Chang J, He H, Feng J, Chen X, Ma Z. Genetic Relationships of Puccinia striiformis f. sp. tritici in Southwestern and Northwestern China. Microbiol Spectr 2022; 10:e0153022. [PMID: 35894618 PMCID: PMC9430570 DOI: 10.1128/spectrum.01530-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a crucial disease for wheat worldwide and constantly threatens wheat production in southwestern and northwestern China, where the environment is a good fit for Pst oversummering and overwintering. However, the underlying genetic dynamics of spring epidemic Pst populations across large areas of continuous planting in the southwestern and northwestern regions are poorly understood. A total of 2,103 Pst isolates were sampled in the spring of 2019 from the two agroecosystems and grouped into three horizontal spatial scales (countywide, provincial, and regional subpopulations) and two vertical spatial scales that consisted of elevational and geomorphic subpopulations. A total of 776 multilocus genotypes were identified, with the highest genetic diversity found in the northern and Sichuan populations, particularly in the Ningxia and Sichuan Basins, while the lowest genetic diversity was found in the Yunnan and Guizhou populations. Multivariate discriminant analysis of principal components (DAPC) and STRUCTURE (STRUCTURE 2.3.4) analyses revealed variation in the genotypic compositions of the molecular groups on horizontal and vertical dimensions from north to south or vice versa and from low to high or vice versa, respectively. The regional neighbor-joining tree revealed three large spatial structures consisting of the southwestern, the northwestern, and the Xinjiang regions, while the Tibetan population connected the southwestern and northwestern regions. The isolates of the Sichuan Basin were scattered over the four quartiles by principal coordinate analysis, which indicated frequent genotype interchange with others. Greater genetic differentiation was observed between the southwestern and northwestern regions. Linkage equilibrium (P ≥ 0.05) was detected on different spatial scales, suggesting that Pst populations are using sexual reproduction or mixed reproduction (sexual and clonal reproduction) in southwestern and northwestern China. IMPORTANCE Understanding the epidemiology and population genetics of plant pathogens is crucial to formulate efficient predictions of disease outbreaks and achieve sustainable integrated disease management, especially for pathogens with migratory capability. Here, this study covers the genetic homogeneity and heterogeneity of different geographical Pst populations on broad to fine spatial scales from the key epidemic regions of the two agroecosystems in China, where wheat stripe rust occurs annually. We provide knowledge of the population genetics of Pst and reveal that, for instance, there is greater genetic diversity in northwestern China, there are close genetic relationships between Yunnan and Guizhou and between Gansu-Ningxia and Qinghai, and there are effects of altitude on genetic compositions, etc. All of these findings clarify the genetic relationships and expand the insights into the population dynamics and evolutionary mechanisms of Pst in southwestern and northwestern China, providing a theoretical basis for achieving sustainable control of wheat stripe rust in key epidemic regions.
Collapse
Affiliation(s)
- Bingbing Jiang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Cuicui Wang
- Shandong Provincial University Laboratory for Protected Horticulture, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Cunwu Guo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xuan Lv
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wenfeng Gong
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jie Chang
- Yingjiang County Bureau of Agriculture and Rural Animal Husbandry Station, Yingjiang, China
| | - Hongpan He
- Wenshan Prefecture Malipo County Dong Gan Town Agricultural Integrated Service Center, Wenshan, China
| | - Jing Feng
- Gejiu City Plant Protection Plant Inspection Station, Ge Jiu, China
| | - Xianming Chen
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Zhanhong Ma
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Eck JL, Barrès B, Soubeyrand S, Sirén J, Numminen E, Laine AL. Strain Diversity and Spatial Distribution Are Linked to Epidemic Dynamics in Host Populations. Am Nat 2022; 199:59-74. [DOI: 10.1086/717179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Shaw KS, Civitello DJ. Re-emphasizing mechanism in the community ecology of disease. Funct Ecol 2021; 35:2376-2386. [PMID: 37860273 PMCID: PMC10586721 DOI: 10.1111/1365-2435.13892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
1. Hosts and their parasites exist within complex ecological communities. However, the role that non-focal community members, species which cannot be infected by a focal pathogen, may play in altering parasite transmission is often only studied in the lens of the "diversity-disease" relationship by focusing on species richness. This approach largely ignores mechanistic species interactions and risks collapsing our understanding of the community ecology of disease down to defining the prominence of "amplification" vs. "dilution" effects. 2. However, non-focal species vary in their traits, densities, and types of interactions with focal hosts and parasites. Therefore, a community ecology approach based on the mechanisms underlying parasite transmission, host harm, and dynamic species interactions may better advance our understanding of parasite transmission in complex communities. 3. Using the concept of the parasite's basic reproductive ratio, R0, as a generalizable framework, we examine several critical mechanisms by which interactions among hosts, parasites, and non-focal species modulate transmission and provide examples from relevant literature. 4. By focusing on the mechanism by which non-focal species impact transmission, we can emphasize the similarities among classic paradigms in the community ecology of disease, gain new insights into parasite invasion and persistence, community traits correlated with disease dilution or amplification, and the feasibility of biocontrol for parasites of conservation, agricultural, or human health concern.
Collapse
Affiliation(s)
- KS Shaw
- Department of Biology, Emory University, Atlanta, GA USA 30322
| | | |
Collapse
|
14
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
15
|
Prunier JG, Saint‐Pé K, Blanchet S, Loot G, Rey O. Molecular approaches reveal weak sibship aggregation and a high dispersal propensity in a non-native fish parasite. Ecol Evol 2021; 11:6080-6090. [PMID: 34141204 PMCID: PMC8207417 DOI: 10.1002/ece3.7415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
Inferring parameters related to the aggregation pattern of parasites and to their dispersal propensity are important for predicting their ecological consequences and evolutionary potential. Nonetheless, it is notoriously difficult to infer these parameters from wildlife parasites given the difficulty in tracking these organisms. Molecular-based inferences constitute a promising approach that has yet rarely been applied in the wild. Here, we combined several population genetic analyses including sibship reconstruction to document the genetic structure, patterns of sibship aggregation, and the dispersal dynamics of a non-native parasite of fish, the freshwater copepod ectoparasite Tracheliastes polycolpus. We collected parasites according to a hierarchical sampling design, with the sampling of all parasites from all host individuals captured in eight sites spread along an upstream-downstream river gradient. Individual multilocus genotypes were obtained from 14 microsatellite markers, and used to assign parasites to full-sib families and to investigate the genetic structure of T. polycolpus among both hosts and sampling sites. The distribution of full-sibs obtained among the sampling sites was used to estimate individual dispersal distances within families. Our results showed that T. polycolpus sibs tend to be aggregated within sites but not within host individuals. We detected important upstream-to-downstream dispersal events of T. polycolpus between sites (modal distance: 25.4 km; 95% CI [22.9, 27.7]), becoming scarcer as the geographic distance from their family core location increases. Such a dispersal pattern likely contributes to the strong isolation-by-distance observed at the river scale. We also detected some downstream-to-upstream dispersal events (modal distance: 2.6 km; 95% CI [2.2-23.3]) that likely result from movements of infected hosts. Within each site, the dispersal of free-living infective larvae among hosts likely contributes to increasing genetic diversity on hosts, possibly fostering the evolutionary potential of T. polycolpus.
Collapse
Affiliation(s)
| | - Keoni Saint‐Pé
- Station d'Écologie Théorique et ExpérimentaleUPR 2021MoulisFrance
| | - Simon Blanchet
- Station d'Écologie Théorique et ExpérimentaleUPR 2021MoulisFrance
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, Université Toulouse 3 Paul Sabatier, CNRS, IRDToulouseFrance
| | - Géraldine Loot
- Laboratoire Evolution et Diversité Biologique (EDB), UMR 5174, Université Toulouse 3 Paul Sabatier, CNRS, IRDToulouseFrance
| | - Olivier Rey
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via DomitiaPerpignanFrance
| |
Collapse
|
16
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
17
|
Padmanabhan R, Meskin N, Khattab T, Shraim M, Al-Hitmi M. Reinforcement learning-based decision support system for COVID-19. Biomed Signal Process Control 2021; 68:102676. [PMID: 33936249 PMCID: PMC8079127 DOI: 10.1016/j.bspc.2021.102676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/25/2021] [Accepted: 04/24/2021] [Indexed: 01/24/2023]
Abstract
Globally, informed decision on the most effective set of restrictions for the containment of COVID-19 has been the subject of intense debates. There is a significant need for a structured dynamic framework to model and evaluate different intervention scenarios and how they perform under different national characteristics and constraints. This work proposes a novel optimal decision support framework capable of incorporating different interventions to minimize the impact of widely spread respiratory infectious pandemics, including the recent COVID-19, by taking into account the pandemic's characteristics, the healthcare system parameters, and the socio-economic aspects of the community. The theoretical framework underpinning this work involves the use of a reinforcement learning-based agent to derive constrained optimal policies for tuning a closed-loop control model of the disease transmission dynamics.
Collapse
Affiliation(s)
| | - Nader Meskin
- Department of Electrical Engineering, Qatar University, Qatar
| | - Tamer Khattab
- Department of Electrical Engineering, Qatar University, Qatar
| | - Mujahed Shraim
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Qatar
| | | |
Collapse
|
18
|
Karvonen A, Räihä V, Klemme I, Ashrafi R, Hyvärinen P, Sundberg LR. Quantity and Quality of Aquaculture Enrichments Influence Disease Epidemics and Provide Ecological Alternatives to Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030335. [PMID: 33810018 PMCID: PMC8004632 DOI: 10.3390/antibiotics10030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.
Collapse
Affiliation(s)
- Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
- Correspondence: ; Tel.: +358-40-8053882; Fax: +358-14-2601021
| | - Ville Räihä
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
| | - Ines Klemme
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
| | - Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
| | - Pekka Hyvärinen
- Natural Resources and Bioproduction, Natural Resources Institute Finland (Luke), Manamansalontie 90, 88300 Paltamo, Finland;
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; (V.R.); (I.K.); (R.A.); (L.-R.S.)
- Nanoscience Center, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| |
Collapse
|
19
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
20
|
Kozakiewicz CP, Ricci L, Patton AH, Stahlke AR, Hendricks SA, Margres MJ, Ruiz-Aravena M, Hamilton DG, Hamede R, McCallum H, Jones ME, Hohenlohe PA, Storfer A. Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (Sarcophilus harrisii) and their transmissible tumour. Mol Ecol 2020; 29:3217-3233. [PMID: 32682353 PMCID: PMC9805799 DOI: 10.1111/mec.15558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad-scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.
Collapse
Affiliation(s)
| | - Lauren Ricci
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Austin H. Patton
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Amanda R. Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Sarah A. Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia,Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,corresponding author: Andrew Storfer, School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
21
|
"Weight of evidence" as a tool for evaluating disease in wildlife: An example assessing parasitic infection in Northern bobwhite ( Colinus virginianus). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:27-37. [PMID: 32793414 PMCID: PMC7415643 DOI: 10.1016/j.ijppaw.2020.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
The potential of parasites to affect host abundance has been a topic of heated contention within the scientific community for some time, with many maintaining that issues such as habitat loss are more important in regulating wildlife populations than diseases. This is in part due to the difficulty in detecting and quantifying the consequences of disease, such as parasitic infection, within wild systems. An example of this is found in the Northern bobwhite quail (Colinus virginanus), an iconic game bird that is one of the most extensively studied vertebrates on the planet. Yet, despite countless volumes dedicated to the study and management of this bird, bobwhite continue to disappear from fields, forest margins, and grasslands across the United States in what some have referred to as “our greatest wildlife tragedy”. Here, we will discuss the history of disease and wildlife conservation, some of the challenges wildlife disease studies face in the ever-changing world, and how a “weight of evidence” approach has been invaluable to evaluating the impact of parasites on bobwhite in the Rolling Plains of Texas. Through this, we highlight the potential of using “weight of the evidence” to better understand the complex effects of diseases on wildlife and urge a greater consideration of the importance of disease in wildlife conservation. Wildlife disease has gained increased recognition as a potentially significant mechanism affecting animal populations. Global change associated with anthropogenic factors may increase the intensity and proliferation of wildlife diseases. Disease effects may be discreet and contextually dependent, confounding efforts to quantify their impacts. A weight of the evidence (WOE) approach evaluates and integrates multiple lines of evidence to identify causal factors. WOE may provide an effective means to discern significant disease impacts, setting foundations for further empirical study.
Collapse
|
22
|
Thompson RN, Brooks-Pollock E. Preface to theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. Philos Trans R Soc Lond B Biol Sci 2020; 374:20190375. [PMID: 31104610 DOI: 10.1098/rstb.2019.0375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This preface forms part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.
Collapse
Affiliation(s)
- R N Thompson
- 1 Mathematical Institute, University of Oxford , Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG , UK.,2 Department of Zoology, University of Oxford , Peter Medawar Building, South Parks Road, Oxford OX1 3SY , UK.,3 Christ Church, University of Oxford , St Aldates, Oxford OX1 1DP , UK
| | - Ellen Brooks-Pollock
- 4 Bristol Veterinary School, University of Bristol , Langford BS40 5DU , UK.,5 National Institute for Health Research, Health Protection Research Unit in Evaluation of Interventions, Bristol Medical School , Bristol BS8 2BN , UK
| |
Collapse
|
23
|
Lombal AJ, O'dwyer JE, Friesen V, Woehler EJ, Burridge CP. Identifying mechanisms of genetic differentiation among populations in vagile species: historical factors dominate genetic differentiation in seabirds. Biol Rev Camb Philos Soc 2020; 95:625-651. [PMID: 32022401 DOI: 10.1111/brv.12580] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Elucidating the factors underlying the origin and maintenance of genetic variation among populations is crucial for our understanding of their ecology and evolution, and also to help identify conservation priorities. While intrinsic movement has been hypothesized as the major determinant of population genetic structuring in abundant vagile species, growing evidence indicates that vagility does not always predict genetic differentiation. However, identifying the determinants of genetic structuring can be challenging, and these are largely unknown for most vagile species. Although, in principle, levels of gene flow can be inferred from neutral allele frequency divergence among populations, underlying assumptions may be unrealistic. Moreover, molecular studies have suggested that contemporary gene flow has often not overridden historical influences on population genetic structure, which indicates potential inadequacies of any interpretations that fail to consider the influence of history in shaping that structure. This exhaustive review of the theoretical and empirical literature investigates the determinants of population genetic differentiation using seabirds as a model system for vagile taxa. Seabirds provide a tractable group within which to identify the determinants of genetic differentiation, given their widespread distribution in marine habitats and an abundance of ecological and genetic studies conducted on this group. Herein we evaluate mitochondrial DNA (mtDNA) variation in 73 seabird species. Lack of mutation-drift equilibrium observed in 19% of species coincided with lower estimates of genetic differentiation, suggesting that dynamic demographic histories can often lead to erroneous interpretations of contemporary gene flow, even in vagile species. Presence of land across the species sampling range, or sampling of breeding colonies representing ice-free Pleistocene refuge zones, appear to be associated with genetic differentiation in Tropical and Southern Temperate species, respectively, indicating that long-term barriers and persistence of populations are important for their genetic structuring. Conversely, biotic factors commonly considered to influence population genetic structure, such as spatial segregation during foraging, were inconsistently associated with population genetic differentiation. In light of these results, we recommend that genetic studies should consider potential historical events when identifying determinants of genetic differentiation among populations to avoid overestimating the role of contemporary factors, even for highly vagile taxa.
Collapse
Affiliation(s)
- Anicee J Lombal
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James E O'dwyer
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Vicki Friesen
- Department of Biology, Queen's University, 99 University Avenue, Kingston, OL, K7L 3N6, Canada
| | - Eric J Woehler
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS, 7004, Australia
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
24
|
Miura S, Tamura K, Tao Q, Huuki LA, Kosakovsky Pond SL, Priest J, Deng J, Kumar S. A new method for inferring timetrees from temporally sampled molecular sequences. PLoS Comput Biol 2020; 16:e1007046. [PMID: 31951607 PMCID: PMC7018096 DOI: 10.1371/journal.pcbi.1007046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/13/2020] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times. That is, temporally sampled sequences enable the inference of sequence divergence times. Here, we present a new approach (RelTime with Dated Tips [RTDT]) to estimating pathogen timetrees based on a relative rate framework underlying the RelTime approach that is algebraic in nature and distinct from all other current methods. RTDT does not require many of the priors demanded by Bayesian approaches, and it has light computing requirements. In analyses of an extensive collection of computer-simulated datasets, we found the accuracy of RTDT time estimates and the coverage probabilities of their confidence intervals (CIs) to be excellent. In analyses of empirical datasets, RTDT produced dates that were similar to those reported in the literature. In comparative benchmarking with Bayesian and non-Bayesian methods (LSD, TreeTime, and treedater), we found that no method performed the best in every scenario. So, we provide a brief guideline for users to select the most appropriate method in empirical data analysis. RTDT is implemented for use via a graphical user interface and in high-throughput settings in the newest release of cross-platform MEGA X software, freely available from http://www.megasoftware.net. Pathogen timetrees trace the origins and evolutionary histories of strains in populations, hosts, and outbreaks. The tips of these molecular phylogenies often contain sampling time information because the sequences were generally obtained at different times during the disease outbreaks and propagation. We have developed a new method for inferring divergence times and confidence intervals for phylogenies with tip dates. The new Relative Times with Dated Tips (RTDT) methods showed excellent performance in the analysis of computer-simulated datasets, producing similar or better results in several evolutionary scenarios as compared to other fast, non-Bayesian methods. The new method is available in the cross-platform MEGA software package (version 10.1 and higher) that provides a graphical user interface and allows usage via a command line in scripting and high throughput analysis (www.megasoftware.net).
Collapse
Affiliation(s)
- Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Tokyo, Japan
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Louise A. Huuki
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jessica Priest
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jiamin Deng
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
25
|
Teffer AK, Carr J, Tabata A, Schulze A, Bradbury I, Deschamps D, Gillis CA, Brunsdon EB, Mordecai G, Miller KM. A molecular assessment of infectious agents carried by Atlantic salmon at sea and in three eastern Canadian rivers, including aquaculture escapees and North American and European origin wild stocks. Facets (Ott) 2020. [DOI: 10.1139/facets-2019-0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infectious agents are key components of animal ecology and drivers of host population dynamics. Knowledge of their diversity and transmission in the wild is necessary for the management and conservation of host species like Atlantic salmon ( Salmo salar). Although pathogen exchange can occur throughout the salmon life cycle, evidence is lacking to support transmission during population mixing at sea or between farmed and wild salmon due to aquaculture exposure. We tested these hypotheses using a molecular approach that identified infectious agents and transmission potential among sub-adult Atlantic salmon at marine feeding areas and adults in three eastern Canadian rivers with varying aquaculture influence. We used high-throughput qPCR to quantify infection profiles and next generation sequencing to measure genomic variation among viral isolates. We identified 14 agents, including five not yet described as occurring in Eastern Canada. Phylogenetic analysis of piscine orthoreovirus showed homology between isolates from European and North American origin fish at sea, supporting the hypothesis of intercontinental transmission. We found no evidence to support aquaculture influence on wild adult infections, which varied relative to environmental conditions, life stage, and host origin. Our findings identify research opportunities regarding pathogen transmission and biological significance for wild Atlantic salmon populations.
Collapse
Affiliation(s)
- Amy K. Teffer
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan Carr
- Atlantic Salmon Federation, Chamcook, NB E5B 3A9, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Ian Bradbury
- Salmonids Section, Fisheries and Oceans Canada, St. John’s, NF A1C 5X1, Canada
| | - Denise Deschamps
- Ministère des Forêts, de la Faune et des Parcs du Québec, Direction de l’expertise sur la faune aquatique, Quebec, QC G1S 4X4, Canada
| | | | | | - Gideon Mordecai
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
26
|
Pérez SD, Grummer JA, Fernandes-Santos RC, José CT, Medici EP, Marcili A. Phylogenetics, patterns of genetic variation and population dynamics of Trypanosoma terrestris support both coevolution and ecological host-fitting as processes driving trypanosome evolution. Parasit Vectors 2019; 12:473. [PMID: 31604471 PMCID: PMC6790053 DOI: 10.1186/s13071-019-3726-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence. Nevertheless, beyond the study of human pathogenic trypanosomes, the genetic basis of host specificity among trypanosomes isolated from forest-inhabiting hosts remains largely unknown. METHODS To test possible scenarios on ecological host-fitting and coevolution, we combined a host capture recapture strategy with parasite genetic data and studied the genetic variation, population dynamics and phylogenetic relationships of Trypanosoma terrestris, a recently described trypanosome species isolated from lowland tapirs in the Brazilian Pantanal and Atlantic Forest biomes. RESULTS We made inferences of T. terrestris population structure at three possible sources of genetic variation: geography, tapir hosts and 'putative' vectors. We found evidence of a bottleneck affecting the contemporary patterns of parasite genetic structure, resulting in little genetic diversity and no evidence of genetic structure among hosts or biomes. Despite this, a strongly divergent haplotype was recorded at a microgeographical scale in the landscape of Nhecolândia in the Pantanal. However, although tapirs are promoting the dispersion of the parasites through the landscape, neither geographical barriers nor tapir hosts were involved in the isolation of this haplotype. Taken together, these findings suggest that either host-switching promoted by putative vectors or declining tapir population densities are influencing the current parasite population dynamics and genetic structure. Similarly, phylogenetic analyses revealed that T. terrestris is strongly linked to the evolutionary history of its perissodactyl hosts, suggesting a coevolving scenario between Perissodactyla and their trypanosomes. Additionally, T. terrestris and T. grayi are closely related, further indicating that host-switching is a common feature promoting trypanosome evolution. CONCLUSIONS This study provides two lines of evidence, both micro- and macroevolutionary, suggesting that both host-switching by ecological fitting and coevolution are two important and non-mutually-exclusive processes driving the evolution of trypanosomes. In line with other parasite systems, our results support that even in the face of host specialization and coevolution, host-switching may be common and is an important determinant of parasite diversification.
Collapse
Affiliation(s)
- Sergio D Pérez
- Department of Preventive Veterinary Medicine and Animal Science, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.,Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Jared A Grummer
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| | - Renata C Fernandes-Santos
- Lowland Tapir Conservation Initiative (LTCI), Institute for Ecological Research (IPÊ), Campo Grande, Brazil.,Tapir Specialist Group (TSG), Species Survival Commission (SSC), International Union for Conservation of Nature (IUCN), Houston, USA.,Brazilian Institute for Conservation Medicine (TRÍADE), Campo Grande, Brazil
| | - Caroline Testa José
- Lowland Tapir Conservation Initiative (LTCI), Institute for Ecological Research (IPÊ), Campo Grande, Brazil
| | - Emília Patrícia Medici
- Lowland Tapir Conservation Initiative (LTCI), Institute for Ecological Research (IPÊ), Campo Grande, Brazil.,Tapir Specialist Group (TSG), Species Survival Commission (SSC), International Union for Conservation of Nature (IUCN), Houston, USA.,Escola Superior de Conservação Ambiental e Sustentabilidade (ESCAS/IPÊ), Nazaré Paulista, Brazil
| | - Arlei Marcili
- Department of Preventive Veterinary Medicine and Animal Science, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil. .,Masters program in Medicine and Animal Welfare, Santo Amaro University, São Paulo, Brazil.
| |
Collapse
|
27
|
Tessema SK, Raman J, Duffy CW, Ishengoma DS, Amambua-Ngwa A, Greenhouse B. Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa. Malar J 2019; 18:268. [PMID: 31477139 PMCID: PMC6720407 DOI: 10.1186/s12936-019-2880-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023] Open
Abstract
Next-generation sequencing (NGS) technologies are increasingly being used to address a diverse range of biological and epidemiological questions. The current understanding of malaria transmission dynamics and parasite movement mainly relies on the analyses of epidemiologic data, e.g. case counts and self-reported travel history data. However, travel history data are often not routinely collected or are incomplete, lacking the necessary level of accuracy. Although genetic data from routinely collected field samples provides an unprecedented opportunity to track the spread of malaria parasites, it remains an underutilized resource for surveillance due to lack of local awareness and capacity, limited access to sensitive laboratory methods and associated computational tools and difficulty in interpreting genetic epidemiology data. In this review, the potential roles of NGS in better understanding of transmission patterns, accurately tracking parasite movement and addressing the emerging challenges of imported malaria in low transmission settings of sub-Saharan Africa are discussed. Furthermore, this review highlights the insights gained from malaria genomic research and challenges associated with integrating malaria genomics into existing surveillance tools to inform control and elimination strategies.
Collapse
Affiliation(s)
- Sofonias K Tessema
- EPPIcenter Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease, Sandringham, Gauteng, South Africa
| | - Craig W Duffy
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Deus S Ishengoma
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Bryan Greenhouse
- EPPIcenter Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
28
|
Proboste T, Corvalan P, Clark N, Beyer HL, Goldizen AW, Seddon JM. Commensal bacterial sharing does not predict host social associations in kangaroos. J Anim Ecol 2019; 88:1696-1707. [PMID: 31297802 DOI: 10.1111/1365-2656.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/11/2019] [Indexed: 11/28/2022]
Abstract
Social network analysis has been postulated as a tool to study potential pathogen transmission in wildlife but is resource-intensive to quantify. Networks based on bacterial genotypes have been proposed as a cost-effective method for estimating social or transmission network based on the assumption that individuals in close contact will share commensal bacteria. However, the use of network analysis to study wild populations requires critical evaluation of the assumptions and parameters these models are founded on. We test (a) whether networks of commensal bacterial sharing are related to hosts' social associations and hence could act as a proxy for estimating transmission networks, (b) how the parameters chosen to define host associations and delineate bacterial genotypes impact inference and (c) whether these relationships change across time. We use stochastic simulations to evaluate how uncertainty in parameter choice affects network structure. We focused on a well-studied population of eastern grey kangaroos (Macropus giganteus), from Sundown National Park, Australia. Using natural markings, each individual was identified and its associations with other kangaroos recorded through direct field observations over 2 years to construct social networks. Faecal samples were collected, Escherichia coli was cultured and genotyped using BOX-PCR, and bacterial networks were constructed. Two individuals were connected in the bacterial network if they shared at least one E. coli genotype. We determined the capacity of bacterial networks to predict the observed social network structure in each year. We found little support for a relationship between social association and dyadic commensal bacterial similarity. Thresholds to determine host associations and similarity cut-off values used to define E. coli genotypes had important ramifications for inferring links between individuals. In fact, we found that inferences can show opposite patterns based on the chosen thresholds. Moreover, no similarity in overall bacterial network structure was detected between years. Although empirical disease transmission data are often unavailable in wildlife populations, both bacterial networks and social networks have limitations in representing the mode of transmission of a pathogen. Our results suggest that caution is needed when designing such studies and interpreting results.
Collapse
Affiliation(s)
- Tatiana Proboste
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia.,School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Paloma Corvalan
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Nicholas Clark
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Hawthorne L Beyer
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia.,Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Anne W Goldizen
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Jennifer M Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
29
|
Horizontal gene transfer allowed the emergence of broad host range entomopathogens. Proc Natl Acad Sci U S A 2019; 116:7982-7989. [PMID: 30948646 DOI: 10.1073/pnas.1816430116] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of new pathogenic fungi has profoundly impacted global biota, but the underlying mechanisms behind host shifts remain largely unknown. The endophytic insect pathogen Metarhizium robertsii evolved from fungi that were plant associates, and entomopathogenicity is a more recently acquired adaptation. Here we report that the broad host-range entomopathogen M. robertsii has 18 genes that are derived via horizontal gene transfer (HGT). The necessity of degrading insect cuticle served as a major selective pressure to retain these genes, as 12 are up-regulated during penetration; 6 were confirmed to have a role in penetration, and their collective actions are indispensable for infection. Two lipid-carrier genes are involved in utilizing epicuticular lipids, and a third (MrNPC2a) facilitates hemocoel colonization. Three proteases degraded the procuticular protein matrix, which facilitated up-regulation of other cuticle-degrading enzymes. The three lipid carriers and one of the proteases are present in all analyzed Metarhizium species and are essential for entomopathogenicity. Acquisition of another protease (MAA_01413) in an ancestor of broad host-range lineages contributed to their host-range expansion, as heterologous expression in the locust specialist Metarhizium acridum enabled it to kill caterpillars. Our work reveals that HGT was a key mechanism in the emergence of entomopathogenicity in Metarhizium from a plant-associated ancestor and in subsequent host-range expansion by some Metarhizium lineages.
Collapse
|
30
|
Gilbertson MLJ, Fountain-Jones NM, Craft ME. Incorporating genomic methods into contact networks to reveal new insights into animal behavior and infectious disease dynamics. BEHAVIOUR 2019; 155:759-791. [PMID: 31680698 DOI: 10.1163/1568539x-00003471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Utilization of contact networks has provided opportunities for assessing the dynamic interplay between pathogen transmission and host behavior. Genomic techniques have, in their own right, provided new insight into complex questions in disease ecology, and the increasing accessibility of genomic approaches means more researchers may seek out these tools. The integration of network and genomic approaches provides opportunities to examine the interaction between behavior and pathogen transmission in new ways and with greater resolution. While a number of studies have begun to incorporate both contact network and genomic approaches, a great deal of work has yet to be done to better integrate these techniques. In this review, we give a broad overview of how network and genomic approaches have each been used to address questions regarding the interaction of social behavior and infectious disease, and then discuss current work and future horizons for the merging of these techniques.
Collapse
Affiliation(s)
- Marie L J Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
31
|
Hydatidosis in slaughtered sheep and goats in India: prevalence, genotypic characterization and pathological studies. J Helminthol 2019; 94:e27. [DOI: 10.1017/s0022149x18001219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The present study determined the prevalence of hydatid cysts in different organs of slaughtered hilly ‘Gaddi’ breed small ruminants—sheep (n = 230) and goats (n = 197)—in Kangra Valley of the north-western Himalayas, India. Hydatid cysts were found in 12.2% (n = 28) of sheep and 10.7% (n = 21) of goats. Pulmonary echinococcosis was more prevalent in slaughtered sheep and goats (sheep 56.36%; goats 62.90%) than hepatic echinococcosis (sheep 43.64%; goats 37.10%). Fertility rates were higher in hepatic (81.25%) and pulmonary cysts of sheep (83.87%) compared to goats. Molecular identification and genotypic characterization of Echinococcus granulosus isolates were based on mitochondrial cytochrome oxidase 1 gene (mtCO1). The genotypic characterization identified the isolated strain to be closely related to the G7 genotype. Histopathological examination revealed a thick coat of granulation tissue, causing fibrosis and inflammatory reaction composed of fibroblasts and mononuclear cells around the cysts. In the liver, hepato-cellular degeneration was prominent at the periphery of the cysts. The present study highlights the molecular confirmation and phylogenetic analysis of E. granulosus isolates with the prevalence of hydatidosis in a naïve host species and in an unexplored region. The findings are of significant medical and veterinary importance regarding development of control measures to check dissemination of hydatidosis.
Collapse
|
32
|
Kozakiewicz CP, Burridge CP, Funk WC, VandeWoude S, Craft ME, Crooks KR, Ernest HB, Fountain‐Jones NM, Carver S. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl 2018; 11:1763-1778. [PMID: 30459828 PMCID: PMC6231466 DOI: 10.1111/eva.12678] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Landscape genetics has provided many insights into how heterogeneous landscape features drive processes influencing spatial genetic variation in free-living organisms. This rapidly developing field has focused heavily on vertebrates, and expansion of this scope to the study of infectious diseases holds great potential for landscape geneticists and disease ecologists alike. The potential application of landscape genetics to infectious agents has garnered attention at formative stages in the development of landscape genetics, but systematic examination is lacking. We comprehensively review how landscape genetics is being used to better understand pathogen dynamics. We characterize the field and evaluate the types of questions addressed, approaches used and systems studied. We also review the now established landscape genetic methods and their realized and potential applications to disease ecology. Lastly, we identify emerging frontiers in the landscape genetic study of infectious agents, including recent phylogeographic approaches and frameworks for studying complex multihost and host-vector systems. Our review emphasizes the expanding utility of landscape genetic methods available for elucidating key pathogen dynamics (particularly transmission and spread) and also how landscape genetic studies of pathogens can provide insight into host population dynamics. Through this review, we convey how increasing awareness of the complementarity of landscape genetics and disease ecology among practitioners of each field promises to drive important cross-disciplinary advances.
Collapse
Affiliation(s)
| | | | - W. Chris Funk
- Department of BiologyGraduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColorado
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt. PaulMinnesota
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| | | | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
33
|
Huyvaert KP, Russell RE, Patyk KA, Craft ME, Cross PC, Garner MG, Martin MK, Nol P, Walsh DP. Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Vet Sci 2018; 5:E92. [PMID: 30380736 PMCID: PMC6313884 DOI: 10.3390/vetsci5040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023] Open
Abstract
Diseases that affect both wild and domestic animals can be particularly difficult to prevent, predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on domestic animal producers and can present significant challenges to wildlife populations, particularly for populations of conservation concern. Few mathematical models exist that capture the complexities of these multi-host pathogens, yet the development of such models would allow us to estimate and compare the potential effectiveness of management actions for mitigating or suppressing disease in wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the challenges associated with developing models of pathogen transmission across the wildlife-livestock interface. The development of mathematical models of pathogen transmission at this interface is hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant mitigation efforts on wild and domestic animal populations; and (4) barriers to communication between sectors. To promote the development of mathematical models of transmission at this interface, we recommend further integration of modern quantitative techniques and improvement of communication among wildlife biologists, mathematical modelers, veterinary medicine professionals, producers, and other stakeholders concerned with the consequences of pathogen transmission at this important, yet poorly understood, interface.
Collapse
Affiliation(s)
- Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Robin E Russell
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| | - Kelly A Patyk
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA.
| | - M Graeme Garner
- European Commission for the Control of Foot-and-Mouth Disease-Food and Agriculture Organization of the United Nations, 00153 Roma RM, Italy.
| | - Michael K Martin
- Livestock Poultry Health Division, Clemson University, Columbia, SC 29224, USA.
| | - Pauline Nol
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Daniel P Walsh
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| |
Collapse
|
34
|
Petkova I, Abbey-Lee RN, Løvlie H. Parasite infection and host personality: Glugea-infected three-spined sticklebacks are more social. Behav Ecol Sociobiol 2018; 72:173. [PMID: 30369708 PMCID: PMC6182751 DOI: 10.1007/s00265-018-2586-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023]
Abstract
Abstract The existence of animal personality is now well-documented, although the causes and consequences of this phenomenon are still largely unclear. Parasite infection can have pervasive effects on hosts, including altering host behaviour, and may thus contribute to differences in host personality. We investigated the relationship between the three-spined stickleback and its common parasite Glugea anomala, with focus on differences in host personality. Naturally infected and uninfected individuals were assayed for the five personality traits activity, exploration, boldness, sociability, and aggression. If infected fish behaved differently from uninfected, to benefit this parasite with horizontal transmission, we predicted behaviour increasing interactions with other sticklebacks to increase. Infection status explained differences in host personality. Specifically, Glugea-infected individuals were more social than uninfected fish. This confirms a link between parasite infection and host behaviour, and a relationship which may improve the horizontal transmission of Glugea. However, future studies need to establish the consequences of this for the parasite, and the causality of the parasite-host personality relationship. Significance statement Parasite infection that alters host behaviour could be a possible avenue of research into the causes of animal personality. We studied the link between infection and personality using the three-spined stickleback and its parasite Glugea anomala. We predicted that infected individuals would be more prone to interact with other sticklebacks, since this would improve transmission of this parasite. The personality of uninfected and naturally infected fish was measured and we observed that Glugea-infected sticklebacks were more social. Our results confirm a link between parasitism and variation in host personality. Electronic supplementary material The online version of this article (10.1007/s00265-018-2586-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina Petkova
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, TW20 0EX UK
| | - Robin N. Abbey-Lee
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
35
|
Ferguson PF, Breyta R, Brito I, Kurath G, LaDeau SL. An epidemiological model of virus transmission in salmonid fishes of the Columbia River Basin. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Spatial and genetic structure of directly-transmitted parasites reflects the distribution of their specific amphibian hosts. POPUL ECOL 2018. [DOI: 10.1007/s10144-018-0605-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Balasubramaniam K, Beisner B, Guan J, Vandeleest J, Fushing H, Atwill E, McCowan B. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques ( Macaca mulatta). PeerJ 2018; 6:e4271. [PMID: 29372120 PMCID: PMC5775753 DOI: 10.7717/peerj.4271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
In group-living animals, heterogeneity in individuals' social connections may mediate the sharing of microbial infectious agents. In this regard, the genetic relatedness of individuals' commensal gut bacterium Escherichia coli may be ideal to assess the potential for pathogen transmission through animal social networks. Here we use microbial phylogenetics and population genetics approaches, as well as host social network reconstruction, to assess evidence for the contact-mediated sharing of E. coli among three groups of captively housed rhesus macaques (Macaca mulatta), at multiple organizational scales. For each group, behavioral data on grooming, huddling, and aggressive interactions collected for a six-week period were used to reconstruct social network communities via the Data Cloud Geometry (DCG) clustering algorithm. Further, an E. coli isolate was biochemically confirmed and genotypically fingerprinted from fecal swabs collected from each macaque. Population genetics approaches revealed that Group Membership, in comparison to intrinsic attributes like age, sex, and/or matriline membership of individuals, accounted for the highest proportion of variance in E. coli genotypic similarity. Social network approaches revealed that such sharing was evident at the community-level rather than the dyadic level. Specifically, although we found no links between dyadic E. coli similarity and social contact frequencies, similarity was significantly greater among macaques within the same social network communities compared to those across different communities. Moreover, tests for one of our study-groups confirmed that E. coli isolated from macaque rectal swabs were more genotypically similar to each other than they were to isolates from environmentally deposited feces. In summary, our results suggest that among frequently interacting, spatially constrained macaques with complex social relationships, microbial sharing via fecal-oral, social contact-mediated routes may depend on both individuals' direct connections and on secondary network pathways that define community structure. They lend support to the hypothesis that social network communities may act as bottlenecks to contain the spread of infectious agents, thereby encouraging disease control strategies to focus on multiple organizational scales. Future directions includeincreasing microbial sampling effort per individual to better-detect dyadic transmission events, and assessments of the co-evolutionary links between sociality, infectious agent risk, and host immune function.
Collapse
Affiliation(s)
- Krishna Balasubramaniam
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Brianne Beisner
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Brain, Mind & Behavior, California National Primate Research Center, University of California, Davis, CA, United States of America
| | - Jiahui Guan
- Department of Statistics, University of California, Davis, CA, United States of America
| | - Jessica Vandeleest
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Brain, Mind & Behavior, California National Primate Research Center, University of California, Davis, CA, United States of America
| | - Hsieh Fushing
- Department of Statistics, University of California, Davis, CA, United States of America
| | - Edward Atwill
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Brenda McCowan
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Brain, Mind & Behavior, California National Primate Research Center, University of California, Davis, CA, United States of America
| |
Collapse
|
38
|
Evolutionary epidemiology of schistosomiasis: linking parasite genetics with disease phenotype in humans. Int J Parasitol 2017; 48:107-115. [PMID: 29154994 DOI: 10.1016/j.ijpara.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Here we assess the role of parasite genetic variation in host disease phenotype in human schistosomiasis by implementing concepts and techniques from environmental association analysis in evolutionary epidemiology. Schistosomiasis is a tropical disease that affects more than 200 million people worldwide and is caused by parasitic flatworms belonging to the genus Schistosoma. While the role of host genetics has been extensively studied and demonstrated, nothing is yet known on the contribution of parasite genetic variation to host disease phenotype in human schistosomiasis. In this study microsatellite genotypes of 1561 Schistosoma mansoni larvae collected from 44 human hosts in Senegal were linked to host characteristics such as age, gender, infection intensity, liver and bladder morbidity by means of multivariate regression methods (on each parasite locus separately). This revealed a highly significant association between allelic variation at the parasite locus L46951 and host infection intensity and bladder morbidity. Locus L46951 is located in the 3' untranslated region of the cGMP-dependent protein kinase gene that is expressed in reproductive organs of adult schistosome worms and appears to be linked to egg production. This putative link between parasite genetic variation and schistosomiasis disease phenotype sets the stage for further functional research.
Collapse
|
39
|
Rodríguez-Nevado C, Montes N, Pagán I. Ecological Factors Affecting Infection Risk and Population Genetic Diversity of a Novel Potyvirus in Its Native Wild Ecosystem. FRONTIERS IN PLANT SCIENCE 2017; 8:1958. [PMID: 29184567 PMCID: PMC5694492 DOI: 10.3389/fpls.2017.01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence indicates that there is ample diversity of plant virus species in wild ecosystems. The vast majority of this diversity, however, remains uncharacterized. Moreover, in these ecosystems the factors affecting plant virus infection risk and population genetic diversity, two traits intrinsically linked to virus emergence, are largely unknown. Along 3 years, we have analyzed the prevalence and diversity of plant virus species from the genus Potyvirus in evergreen oak forests of the Iberian Peninsula, the main wild ecosystem in this geographic region and in the entire Mediterranean basin. During this period, we have also measured plant species diversity, host density, plant biomass, temperature, relative humidity, and rainfall. Results indicated that potyviruses were always present in evergreen oak forests, with a novel virus species explaining the largest fraction of potyvirus-infected plants. We determined the genomic sequence of this novel virus and we explored its host range in natural and greenhouse conditions. Natural host range was limited to the perennial plant mountain rue (Ruta montana), commonly found in evergreen oak forests of the Iberian Peninsula. In this host, the virus was highly prevalent and was therefore provisionally named mediterranean ruda virus (MeRV). Focusing in this natural host-virus interaction, we analyzed the ecological factors affecting MeRV infection risk and population genetic diversity in its native wild ecosystem. The main predictor of virus infection risk was the host density. MeRV prevalence was the major factor determining genetic diversity and selection pressures in the virus populations. This observation supports theoretical predictions assigning these two traits a key role in parasite epidemiology and evolution. Thus, our analyses contribute both to characterize viral diversity and to understand the ecological determinants of virus population dynamics in wild ecosystems.
Collapse
Affiliation(s)
- Cristina Rodríguez-Nevado
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Nuria Montes
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
- Rheumatology Service, Hospital Universitario La Princesa, IIS-IP, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas – Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
40
|
Fountain-Jones NM, Pearse WD, Escobar LE, Alba-Casals A, Carver S, Davies TJ, Kraberger S, Papeş M, Vandegrift K, Worsley-Tonks K, Craft ME. Towards an eco-phylogenetic framework for infectious disease ecology. Biol Rev Camb Philos Soc 2017; 93:950-970. [PMID: 29114986 DOI: 10.1111/brv.12380] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Abstract
Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats.
Collapse
Affiliation(s)
| | - William D Pearse
- Ecology Center and Department of Biology, Utah State University, Logan, UT, 84321, U.S.A
| | - Luis E Escobar
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A.,Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Ana Alba-Casals
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, 7001, Australia
| | | | - Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, U.S.A
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, U.S.A
| | - Kurt Vandegrift
- Department of Biology, The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Katherine Worsley-Tonks
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| |
Collapse
|
41
|
White LA, Forester JD, Craft ME. Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges. J Anim Ecol 2017; 87:559-580. [PMID: 28944450 DOI: 10.1111/1365-2656.12761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 09/07/2017] [Indexed: 01/26/2023]
Abstract
Individual differences in contact rate can arise from host, group and landscape heterogeneity and can result in different patterns of spatial spread for diseases in wildlife populations with concomitant implications for disease control in wildlife of conservation concern, livestock and humans. While dynamic disease models can provide a better understanding of the drivers of spatial spread, the effects of landscape heterogeneity have only been modelled in a few well-studied wildlife systems such as rabies and bovine tuberculosis. Such spatial models tend to be either purely theoretical with intrinsic limiting assumptions or individual-based models that are often highly species- and system-specific, limiting the breadth of their utility. Our goal was to review studies that have utilized dynamic, spatial models to answer questions about pathogen transmission in wildlife and identify key gaps in the literature. We begin by providing an overview of the main types of dynamic, spatial models (e.g., metapopulation, network, lattice, cellular automata, individual-based and continuous-space) and their relation to each other. We investigate different types of ecological questions that these models have been used to explore: pathogen invasion dynamics and range expansion, spatial heterogeneity and pathogen persistence, the implications of management and intervention strategies and the role of evolution in host-pathogen dynamics. We reviewed 168 studies that consider pathogen transmission in free-ranging wildlife and classify them by the model type employed, the focal host-pathogen system, and their overall research themes and motivation. We observed a significant focus on mammalian hosts, a few well-studied or purely theoretical pathogen systems, and a lack of studies occurring at the wildlife-public health or wildlife-livestock interfaces. Finally, we discuss challenges and future directions in the context of unprecedented human-mediated environmental change. Spatial models may provide new insights into understanding, for example, how global warming and habitat disturbance contribute to disease maintenance and emergence. Moving forward, better integration of dynamic, spatial disease models with approaches from movement ecology, landscape genetics/genomics and ecoimmunology may provide new avenues for investigation and aid in the control of zoonotic and emerging infectious diseases.
Collapse
Affiliation(s)
- Lauren A White
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | - James D Forester
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
42
|
Grange ZL, Biggs PJ, Rose SP, Gartrell BD, Nelson NJ, French NP. Genomic Epidemiology and Management of Salmonella in Island Ecosystems Used for Takahe Conservation. MICROBIAL ECOLOGY 2017; 74:735-744. [PMID: 28361266 DOI: 10.1007/s00248-017-0959-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Translocation and isolation of threatened wildlife in new environments may have unforeseen consequences on pathogen transmission and evolution in host populations. Disease threats associated with intensive conservation management of wildlife remain speculative without gaining an understanding of pathogen dynamics in meta-populations and how location attributes may determine pathogen prevalence. We determined the prevalence and population structure of an opportunistic pathogen, Salmonella, in geographically isolated translocated sub-populations of an endangered New Zealand flightless bird, the takahe (Porphyrio hochstetteri). Out of the nine sub-populations tested, Salmonella was only isolated from takahe living on one private island. The apparent prevalence of Salmonella in takahe on the private island was 32% (95% CI 13-57%), with two serotypes, Salmonella Mississippi and Salmonella houtenae 40:gt-, identified. Epidemiological investigation of reservoirs on the private island and another island occupied by takahe identified environmental and reptile sources of S. Mississippi and S. houtenae 40:gt- on the private island. Single nucleotide polymorphism analysis of core genomes revealed low-level diversity among isolates belonging to the same serotype and little differentiation according to host and environmental source. The pattern observed may be representative of transmission between sympatric hosts and environmental sources, the presence of a common unsampled source, and/or evidence of a recent introduction into the ecosystem. This study highlights how genomic epidemiology can be used to ascertain and understand disease dynamics to inform the management of disease threats in endangered wildlife populations.
Collapse
Affiliation(s)
- Zoë L Grange
- Allan Wilson Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
- mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
- Wildbase, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
- One Health Institute, University of California Davis, Davis, CA, USA.
| | - Patrick J Biggs
- Allan Wilson Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
- mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Shanna P Rose
- Allan Wilson Centre, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Brett D Gartrell
- Allan Wilson Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
- Wildbase, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Nicola J Nelson
- Allan Wilson Centre, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Nigel P French
- Allan Wilson Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
- mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
43
|
Hedrick SM. Understanding Immunity through the Lens of Disease Ecology. Trends Immunol 2017; 38:888-903. [PMID: 28882454 DOI: 10.1016/j.it.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 10/25/2022]
Abstract
As we describe the immune system in ever more exquisite detail, we might find that no matter how successful, this approach will not be sufficient to understand the spread of infectious agents, their susceptibility to vaccine therapy, and human disease resistance. Compared with the strict reductionism practiced as a means of characterizing most biological processes, I propose that the progression and outcome of disease-causing host-parasite interactions will be more clearly understood through a focus on disease ecology.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Departments of Molecular Biology and Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Kada S, McCoy KD, Boulinier T. Impact of life stage-dependent dispersal on the colonization dynamics of host patches by ticks and tick-borne infectious agents. Parasit Vectors 2017; 10:375. [PMID: 28778181 PMCID: PMC5544987 DOI: 10.1186/s13071-017-2261-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/22/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND When colonization and gene flow depend on host-mediated dispersal, a key factor affecting vector dispersal potential is the time spent on the host for the blood meal, a characteristic that can vary strongly among life history stages. Using a 2-patch vector-pathogen population model and seabird ticks as biological examples, we explore how vector colonization rates and the spread of infectious agents may be shaped by life stage-dependent dispersal. We contrast hard (Ixodidae) and soft (Argasidae) tick systems, which differ strongly in blood- feeding traits. RESULTS We find that vector life history characteristics (i.e. length of blood meal) and demographic constraints (Allee effects) condition the colonization potential of ticks; hard ticks, which take a single, long blood meal per life stage, should have much higher colonization rates than soft ticks, which take repeated short meals. Moreover, this dispersal potential has direct consequences for the spread of vector-borne infectious agents, in particular when transmission is transovarial. CONCLUSIONS These results have clear implications for predicting the dynamics of vector and disease spread in the context of large-scale environmental change. The findings highlight the need to include life-stage dispersal in models that aim to predict species and disease distributions, and provide testable predictions related to the population genetic structure of vectors and pathogens along expansion fronts.
Collapse
Affiliation(s)
- Sarah Kada
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) - CNRS Université Montpellier UMR 5175, 1919 route de Mende, 34293 Montpellier, France
| | - Karen D. McCoy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR CNRS 5290 - UR IRD 224 - Université Montpellier, Centre IRD, 34394 Montpellier, France
| | - Thierry Boulinier
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) - CNRS Université Montpellier UMR 5175, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
45
|
Fraile A, McLeish MJ, Pagán I, González-Jara P, Piñero D, García-Arenal F. Environmental heterogeneity and the evolution of plant-virus interactions: Viruses in wild pepper populations. Virus Res 2017; 241:68-76. [PMID: 28554561 DOI: 10.1016/j.virusres.2017.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Understanding host-pathogen interactions requires analyses to address the multiplicity of scales in heterogeneous landscapes. Anthropogenic influence on plant communities, especially cultivation, is a major cause of environmental heterogeneity. We have approached the analysis of how environmental heterogeneity determines plant-virus interactions by studying virus infection in a wild plant currently undergoing incipient domestication, the wild pepper or chiltepin, across its geographical range in Mexico. We have shown previously that anthropogenic disturbance is associated with higher infection and disease risk, and with disrupted patterns of host and virus genetic spatial structure. We now show that anthropogenic factors, species richness, host genetic diversity and density in communities supporting chiltepin differentially affect infection risk according to the virus analysed. We also show that in addition to these factors, a broad range of abiotic and biotic variables meaningful to continental scales, have an important role on the risk of infection depending on the virus. Last, we show that natural virus infection of chiltepin plants in wild communities results in decreased survival and fecundity, hence negatively affecting fitness. This important finding paves the way for future studies on plant-virus co-evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo González-Jara
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
46
|
Byrne AQ, Rothstein AP, Poorten TJ, Erens J, Settles ML, Rosenblum EB. Unlocking the story in the swab: A new genotyping assay for the amphibian chytrid fungus
Batrachochytrium dendrobatidis. Mol Ecol Resour 2017; 17:1283-1292. [DOI: 10.1111/1755-0998.12675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/26/2016] [Accepted: 03/15/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Allison Q. Byrne
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| | - Andrew P. Rothstein
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| | - Thomas J. Poorten
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| | - Jesse Erens
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
- Wageningen University Wageningen The Netherlands
| | | | - Erica Bree Rosenblum
- Department of Environmental Science Policy and Management University of California, Berkeley Berkeley CA USA
| |
Collapse
|
47
|
McKnight DT, Schwarzkopf L, Alford RA, Bower DS, Zenger KR. Effects of emerging infectious diseases on host population genetics: a review. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0974-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Hassell JM, Begon M, Ward MJ, Fèvre EM. Urbanization and Disease Emergence: Dynamics at the Wildlife-Livestock-Human Interface. Trends Ecol Evol 2017; 32:55-67. [PMID: 28029378 PMCID: PMC5214842 DOI: 10.1016/j.tree.2016.09.012] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022]
Abstract
Urbanization is characterized by rapid intensification of agriculture, socioeconomic change, and ecological fragmentation, which can have profound impacts on the epidemiology of infectious disease. Here, we review current scientific evidence for the drivers and epidemiology of emerging wildlife-borne zoonoses in urban landscapes, where anthropogenic pressures can create diverse wildlife-livestock-human interfaces. We argue that these interfaces represent a critical point for cross-species transmission and emergence of pathogens into new host populations, and thus understanding their form and function is necessary to identify suitable interventions to mitigate the risk of disease emergence. To achieve this, interfaces must be studied as complex, multihost communities whose structure and form are dictated by both ecological and anthropological factors.
Collapse
Affiliation(s)
- James M Hassell
- Institute of Infection and Global Health, The University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK; International Livestock Research Institute, Nairobi, Kenya
| | - Michael Begon
- Institute of Integrative Biology, The University of Liverpool, Liverpool L69 7ZB, UK
| | - Melissa J Ward
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Eric M Fèvre
- Institute of Infection and Global Health, The University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK; International Livestock Research Institute, Nairobi, Kenya.
| |
Collapse
|
49
|
Dubois A, Galan M, Cosson JF, Gauffre B, Henttonen H, Niemimaa J, Razzauti M, Voutilainen L, Vitalis R, Guivier E, Charbonnel N. Microevolution of bank voles (Myodes glareolus) at neutral and immune-related genes during multiannual dynamic cycles: Consequences for Puumala hantavirus epidemiology. INFECTION GENETICS AND EVOLUTION 2016; 49:318-329. [PMID: 27956196 DOI: 10.1016/j.meegid.2016.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/02/2023]
Abstract
Understanding how host dynamics, including variations of population size and dispersal, may affect the epidemiology of infectious diseases through ecological and evolutionary processes is an active research area. Here we focus on a bank vole (Myodes glareolus) metapopulation surveyed in Finland between 2005 and 2009. Bank vole is the reservoir of Puumala hantavirus (PUUV), the agent of nephropathia epidemica (NE, a mild form of hemorrhagic fever with renal symptom) in humans. M. glareolus populations experience multiannual density fluctuations that may influence the level of genetic diversity maintained in bank voles, PUUV prevalence and NE occurrence. We examine bank vole metapopulation genetics at presumably neutral markers and immune-related genes involved in susceptibility to PUUV (Tnf-promoter, Tlr4, Tlr7 and Mx2 gene) to investigate the links between population dynamics, microevolutionary processes and PUUV epidemiology. We show that genetic drift slightly and transiently affects neutral and adaptive genetic variability within the metapopulation. Gene flow seems to counterbalance its effects during the multiannual density fluctuations. The low abundance phase may therefore be too short to impact genetic variation in the host, and consequently viral genetic diversity. Environmental heterogeneity does not seem to affect vole gene flow, which might explain the absence of spatial structure previously detected in PUUV in this area. Besides, our results suggest the role of vole dispersal on PUUV circulation through sex-specific and density-dependent movements. We find little evidence of selection acting on immune-related genes within this metapopulation. Footprint of positive selection is detected at Tlr-4 gene in 2008 only. We observe marginally significant associations between Mx2 genotype and PUUV genogroups. These results show that neutral processes seem to be the main factors affecting the evolution of these immune-related genes at a contemporary scale, although the relative effects of neutral and adaptive forces could vary temporally with density fluctuations. Immune related gene polymorphism may in turn partly influence PUUV epidemiology in this metapopulation.
Collapse
Affiliation(s)
- Adelaïde Dubois
- INRA, UMR CBGP, F-34988 Montferrier-sur-Lez, France; Anses, Unité de Virologie, 31 avenue Tony Garnier, 69364 Lyon, France.
| | - Maxime Galan
- INRA, UMR CBGP, F-34988 Montferrier-sur-Lez, France
| | - Jean-François Cosson
- INRA, UMR CBGP, F-34988 Montferrier-sur-Lez, France; INRA-ANSES-ENVA, UMR 0956 BIPAR, Maisons-Alfort, France
| | | | | | - Jukka Niemimaa
- Natural Resources Institute Finland, FI-013012 Vantaa, Finland
| | | | - Liina Voutilainen
- Natural Resources Institute Finland, FI-013012 Vantaa, Finland; Department of Virology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Emmanuel Guivier
- Biogeosciences, CNRS UMR 6282, Université de Bourgogne, Franche-Comté, 21000, Dijon, France
| | | |
Collapse
|
50
|
Parratt SR, Numminen E, Laine AL. Infectious Disease Dynamics in Heterogeneous Landscapes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032321] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases dynamics are affected by both spatial and temporal heterogeneity in their environments. Our ability to quantify and predict how this heterogeneity impacts risks of infection and disease emergence is the key to successful disease prevention efforts. Here, we review the literature on infectious diseases from human, agricultural, and wildlife ecosystems to describe the rapid ecological and evolutionary responses in pathogens to environmental heterogeneity, with expected impacts on their epidemiology. To date, the underlying network structures through which disease transmission proceeds have been notoriously difficult to quantify because of this variation. We show that with recent advances in statistical methods and genomic approaches, it is now more feasible than ever to trace disease transmission networks, the molecular underpinning of infection, and the environmental variation relevant to disease dynamics. We end by identifying major new opportunities and challenges in understanding disease dynamics in an ever-changing world.
Collapse
Affiliation(s)
- Steven R. Parratt
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Elina Numminen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| |
Collapse
|