1
|
Hoffmann AA, Cooper BS. Describing endosymbiont-host interactions within the parasitism-mutualism continuum. Ecol Evol 2024; 14:e11705. [PMID: 38975267 PMCID: PMC11224498 DOI: 10.1002/ece3.11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
2
|
Li D, Wang L, Wang L, Gou Y, Luo B, Yan R, Liu H. The species and abundance of gut bacteria both positively impact Phortica okadai behavior. Parasit Vectors 2024; 17:217. [PMID: 38734668 PMCID: PMC11088764 DOI: 10.1186/s13071-024-06297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.
Collapse
Affiliation(s)
- Di Li
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Liang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Yanting Gou
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Bo Luo
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Espada‐Hinojosa S, Karthäuser C, Srivastava A, Schuster L, Winter T, de Oliveira AL, Schulz F, Horn M, Sievert S, Bright M. Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative. Mol Ecol Resour 2024; 24:e13889. [PMID: 38010882 PMCID: PMC10952691 DOI: 10.1111/1755-0998.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.
Collapse
Affiliation(s)
| | - Clarissa Karthäuser
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Lukas Schuster
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Deakin UniversityBurwoodAustralia
| | - Teresa Winter
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - André Luiz de Oliveira
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Frederik Schulz
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Present address:
DOE Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Matthias Horn
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Stefan Sievert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
5
|
Anderson SM, Sears CL. The Role of the Gut Microbiome in Cancer: A Review, With Special Focus on Colorectal Neoplasia and Clostridioides difficile. Clin Infect Dis 2023; 77:S471-S478. [PMID: 38051969 PMCID: PMC10697667 DOI: 10.1093/cid/ciad640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
The gut microbiome has coevolved with humans to aid in physiologic functions and prevent disease. An increasing prevalence of gut dysbiosis in modern society exists and has strong linkages to multiple disease processes common in the developed world. Mechanisms for microbiome-human interactions that impact host homeostasis include bacterial metabolite/toxin production, biofilm formation with mucous layer infiltration, and host immune system modulation. Most of this crosstalk occurs at the epithelial layer of the gut, and as such the role of these interactions in the induction of colorectal cancer-a highly prevalent disease globally and one undergoing significant epidemiologic shifts-is under increasing scrutiny. Although multiple individual gut bacteria have been hypothesized as possible driver organisms in the oncogenic process, no bacterium has been definitively identified as a causal agent of colorectal cancer, suggesting that host lifestyle factors, microbiome community interactions, and the mucosal and/or systemic immune response may play a critical role in the process. Recent evidence has emerged implicating the ubiquitous human pathogen Clostridioides difficile as a possible promoter of colorectal cancer through chronic toxin-mediated cellular changes. Although much remains to be defined regarding the natural history of infections caused by this pathogen and its potential for oncogenesis, it provides a strong model for the role of both individual bacteria and of the gut microbial community as a whole in the development of colorectal cancer.
Collapse
Affiliation(s)
- Sean M Anderson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Six DL, Biedermann PHW. Fidelity or love the one you're with? Biotic complexity and tradeoffs can drive strategy and specificity in beetle-fungus by-product mutualisms. Ecol Evol 2023; 13:e10345. [PMID: 37492462 PMCID: PMC10363798 DOI: 10.1002/ece3.10345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
By-product mutualisms are ubiquitous yet seldom considered in models of mutualism. Most models represent conditional mutualisms that shift between mutualism and antagonism in response to shifts in costs and benefits resulting from changes in environmental quality. However, in by-product mutualisms, benefits arise as a part of normal life processes that may be costly to produce but incur little-to-no additional costs in response to the interaction. Without costs associated with the interaction, they do not have antagonistic alternate states. Here, we present a conceptual model that differs from traditional conditional models in three ways: (1) partners exchange by-product benefits, (2) interactions do not have alternate antagonistic states, and (3) tradeoffs are allowed among factors that influence environmental quality (rather than all factors that contribute to environmental quality being combined into a single gradient ranging from high to low). We applied this model to bark and ambrosia beetles (Curculionidae: Scolytinae), a diverse group that associates with fungi and that has repeatedly developed two distinct pathways to by-product mutualism. We used independent axes for each major factor influencing environmental quality in these systems, including those that exhibit tradeoffs (tree defense and nutritional quality). For these symbioses, tradeoffs in these two factors are key to which mutualism pathway is taken.
Collapse
Affiliation(s)
- Diana L. Six
- Department of Ecosystem and Conservation ScienceUniversity of MontanaMissoulaMontanaUSA
| | | |
Collapse
|
7
|
De Oliveira AL, Srivastava A, Espada‐Hinojosa S, Bright M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol Ecol Resour 2022; 22:3106-3123. [PMID: 35699368 PMCID: PMC9796809 DOI: 10.1111/1755-0998.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
The mutualistic interactions between Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone (short Endoriftia) have been extensively researched. However, the closed Endoriftia genome is still lacking. Here, by employing single-molecule real-time sequencing we present the closed chromosomal sequence of Endoriftia. In contrast to theoretical predictions of enlarged and mobile genetic element-rich genomes related to facultative endosymbionts, the closed Endoriftia genome is streamlined with fewer than expected coding sequence regions, insertion-, prophage-sequences and transposase-coding sequences. Automated and manually curated functional analyses indicated that Endoriftia is more versatile regarding sulphur metabolism than previously reported. We identified the presence of two identical rRNA operons and two long CRISPR regions in the closed genome. Additionally, pangenome analyses revealed the presence of three types of secretion systems (II, IV and VI) in the different Endoriftia populations indicating lineage-specific adaptations. The in depth mobilome characterization identified the presence of shared genomic islands in the different Endoriftia drafts and in the closed genome, suggesting that the acquisition of foreign DNA predates the geographical dispersal of the different endosymbiont populations. Finally, we found no evidence of epigenetic regulation in Endoriftia, as revealed by gene screenings and absence of methylated modified base motifs in the genome. As a matter of fact, the restriction-modification system seems to be dysfunctional in Endoriftia, pointing to a higher importance of molecular memory-based immunity against phages via spacer incorporation into CRISPR system. The Endoriftia genome is the first closed tubeworm endosymbiont to date and will be valuable for future gene oriented and evolutionary comparative studies.
Collapse
Affiliation(s)
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | | | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
8
|
Epstein B, Burghardt LT, Heath KD, Grillo MA, Kostanecki A, Hämälä T, Young ND, Tiffin P. Combining GWAS and population genomic analyses to characterize coevolution in a legume-rhizobia symbiosis. Mol Ecol 2022. [PMID: 35793264 DOI: 10.1111/mec.16602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The mutualism between legumes and rhizobia is clearly the product of past coevolution. However, the nature of ongoing evolution between these partners is less clear. To characterize the nature of recent coevolution between legumes and rhizobia, we used population genomic analysis to characterize selection on functionally annotated symbiosis genes as well as on symbiosis gene candidates identified through a two-species association analysis. For the association analysis, we inoculated each of 202 accessions of the legume host Medicago truncatula with a community of 88 Sinorhizobia (Ensifer) meliloti strains. Multistrain inoculation, which better reflects the ecological reality of rhizobial selection in nature than single-strain inoculation, allows strains to compete for nodulation opportunities and host resources and for hosts to preferentially form nodules and provide resources to some strains. We found extensive host by symbiont, that is, genotype-by-genotype, effects on rhizobial fitness and some annotated rhizobial genes bear signatures of recent positive selection. However, neither genes responsible for this variation nor annotated host symbiosis genes are enriched for signatures of either positive or balancing selection. This result suggests that stabilizing selection dominates selection acting on symbiotic traits and that variation in these traits is under mutation-selection balance. Consistent with the lack of positive selection acting on host genes, we found that among-host variation in growth was similar whether plants were grown with rhizobia or N-fertilizer, suggesting that the symbiosis may not be a major driver of variation in plant growth in multistrain contexts.
Collapse
Affiliation(s)
- Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Liana T Burghardt
- Department of Plant Sciences, The University of Pennsylvania, University Park, Pennsylvania, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Adam Kostanecki
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nevin D Young
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.,Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
9
|
Zilio G, Kaltz O, Koella JC. Resource availability for the mosquito Aedes aegypti affects the transmission mode evolution of a microsporidian parasite. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEcological conditions may greatly affect the relative importance of vertical and horizontal transmission, in particular for parasites with a mixed mode of transmission. Resource availability is one important environmental factor, affecting host growth and fecundity, but also the parasite’s own development. The consequences for the potential of vertical and horizontal transmission and for the evolution of transmission mode are largely unknown. We let the mixed-mode microsporidian parasite Edhazardia aedis evolve on its mosquito host Aedes aegypti under high-food or low-food conditions, representing permissive and restricted conditions. These alter the timing of development of infected larvae and thereby the probabilities for the parasites to enter the vertical or horizontal transmission pathways. After 10 generations, evolved parasites were assayed under the two food levels. There was an ecological trade-off between transmission modes, mediated by nutrient effects on host development, resulting in a higher vertical transmission (VT) potential under high-food and a higher horizontal transmission (HT) potential under low-food test conditions. Evolution under high food increased the VT potential of the parasite, particularly if it was tested at low food. This involved higher probability of carrying binucleate spores for the emerging females, greater fecundity and a longer life compared to parasites that were tested in the same conditions but had evolved under low food. The changes are related to the developmental regulation and switch in the production of two spore types, affecting investment in VT or HT. In contrast, the HT potential remained relatively unaffected by the parasite’s evolutionary history, suggesting that, within our experiential design, the VT mode evolved independently of the HT mode. Our work illustrates the possible links between resource availability, within-host developmental processes and the evolution of parasite transmission investment. Future work, theoretical and experimental, should scale up from within-host to between-host levels, including eco-evolutionary and epidemiological dynamics.
Collapse
|
10
|
Hoang KL, Choi H, Gerardo NM, Morran LT. Coevolution's conflicting role in the establishment of beneficial associations. Evolution 2022; 76:1073-1081. [PMID: 35304743 PMCID: PMC9310579 DOI: 10.1111/evo.14472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Reciprocal adaptation between hosts and symbionts can drive the maintenance of symbioses, resulting in coevolution and beneficial genotypic interactions. Consequently, hosts may experience decreased fitness when paired with nonsympatric partners compared to sympatric symbionts. However, coevolution does not preclude conflict-host and symbiont can act to advance their own fitness interests, which do not necessarily align with those of their partner. Despite coevolution's importance in extant symbioses, we know little about its role in shaping the origin of symbioses. Here, we tested the role of coevolution in establishing a novel association by experimentally (co)evolving a host with a protective bacterium under environmental stress. Although evolution in the presence of nonevolving bacteria facilitated host adaptation, co-passaged hosts did not exhibit greater adaptation rates than hosts paired with nonevolving bacteria. Furthermore, co-passaged hosts exhibited greater fecundity when paired with sympatric, co-passaged bacteria compared to co-passaged bacteria with which they did not share an evolutionary history. Thus, shared evolutionary history between the hosts and microbes actually reduced host fitness and has the potential to impede evolution of new beneficial associations.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322
| | - Heidi Choi
- Department of BiologyEmory UniversityAtlantaGeorgia30322
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322
| |
Collapse
|
11
|
Cao L, Jansen PA, Wang B, Yan C, Wang Z, Chen J. Mutual cheating strengthens a tropical seed dispersal mutualism. Ecology 2021; 103:e03574. [PMID: 34706058 DOI: 10.1002/ecy.3574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
While cheating can cause the degradation or collapse of mutualisms, mutualisms may theoretically stabilize or strengthen if the cheating is mutual. Here, we present an asymmetric two-player game model to explore the evolutionary dynamics of mutual cheating in a mutualistic interaction. We found that the interaction evolved towards mutual cheating if cheating can help both partners obtain higher benefits or if counter-cheating yields more benefits to victims than simply tolerating exploitation by partners. Then, we present empirical evidence for such mutual cheating strengthening a seed dispersal mutualism in which rodents disperse seeds by scatter hoarding, rodents sabotage seed germination by pruning radicles, and seeds escape rodents by resprouting. By tracking >8000 Pittosporopsis kerrii seeds throughout the dispersal process in a tropical forest in southwest China, we found that rodents provided better dispersal to seeds that they pruned, i.e., pruned seeds were dispersed farther and were more likely to establish seedlings than unpruned seeds. Compared to unpruned seeds, pruned seeds retained more of their nutrients, i.e., dry mass of pruned seeds was greater than that of unpruned seeds, and were stored for longer by rodents. These findings indicate that mutual cheating benefited both partners. Payoffs estimated from the field experiments indicated that mutual cheating was indeed favored in rodents and plants P. kerrii, and that neither partner was enslaved by the other under mutual cheating. Rather, the mutualism remained stable because the partners were able to exploit each other, and each partner attempted to gain the maximum benefits from the interaction. Our findings indicate that mutual cheating between two mutualists can enhance and stabilize mutualisms.
Collapse
Affiliation(s)
- Lin Cao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.,Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands.,Smithsonian Tropical Research Institute, Apartado, 0843-03092, Republic of Panama
| | - Bo Wang
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.,School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Chuan Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyu Wang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jin Chen
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
12
|
Drew GC, Budge GE, Frost CL, Neumann P, Siozios S, Yañez O, Hurst GDD. Transitions in symbiosis: evidence for environmental acquisition and social transmission within a clade of heritable symbionts. THE ISME JOURNAL 2021; 15:2956-2968. [PMID: 33941888 PMCID: PMC8443716 DOI: 10.1038/s41396-021-00977-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
A dynamic continuum exists from free-living environmental microbes to strict host-associated symbionts that are vertically inherited. However, knowledge of the forces that drive transitions in symbiotic lifestyle and transmission mode is lacking. Arsenophonus is a diverse clade of bacterial symbionts, comprising reproductive parasites to coevolving obligate mutualists, in which the predominant mode of transmission is vertical. We describe a symbiosis between a member of the genus Arsenophonus and the Western honey bee. The symbiont shares common genomic and predicted metabolic properties with the male-killing symbiont Arsenophonus nasoniae, however we present multiple lines of evidence that the bee Arsenophonus deviates from a heritable model of transmission. Field sampling uncovered spatial and seasonal dynamics in symbiont prevalence, and rapid infection loss events were observed in field colonies and laboratory individuals. Fluorescent in situ hybridisation showed Arsenophonus localised in the gut, and detection was rare in screens of early honey bee life stages. We directly show horizontal transmission of Arsenophonus between bees under varying social conditions. We conclude that honey bees acquire Arsenophonus through a combination of environmental exposure and social contacts. These findings uncover a key link in the Arsenophonus clades trajectory from free-living ancestral life to obligate mutualism, and provide a foundation for studying transitions in symbiotic lifestyle.
Collapse
Affiliation(s)
- Georgia C Drew
- Department of Zoology, University of Oxford, Oxford, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Giles E Budge
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Crystal L Frost
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
McCutcheon JP. The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annu Rev Cell Dev Biol 2021; 37:115-142. [PMID: 34242059 DOI: 10.1146/annurev-cellbio-120219-024122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- John P McCutcheon
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
14
|
Quides KW, Weisberg AJ, Trinh J, Salaheldine F, Cardenas P, Lee HH, Jariwala R, Chang JH, Sachs JL. Experimental evolution can enhance benefits of rhizobia to novel legume hosts. Proc Biol Sci 2021; 288:20210812. [PMID: 34034525 PMCID: PMC8150021 DOI: 10.1098/rspb.2021.0812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Legumes preferentially associate with and reward beneficial rhizobia in root nodules, but the processes by which rhizobia evolve to provide benefits to novel hosts remain poorly understood. Using cycles of in planta and in vitro evolution, we experimentally simulated lifestyles where rhizobia repeatedly interact with novel plant genotypes with which they initially provide negligible benefits. Using a full-factorial replicated design, we independently evolved two rhizobia strains in associations with each of two Lotus japonicus genotypes that vary in regulation of nodule formation. We evaluated phenotypic evolution of rhizobia by quantifying fitness, growth effects and histological features on hosts, and molecular evolution via genome resequencing. Rhizobia evolved enhanced host benefits and caused changes in nodule development in one of the four host–symbiont combinations, that appeared to be driven by reduced costs during symbiosis, rather than increased nitrogen fixation. Descendant populations included genetic changes that could alter rhizobial infection or proliferation in host tissues, but lack of evidence for fixation of these mutations weakens the results. Evolution of enhanced rhizobial benefits occurred only in a subset of experiments, suggesting a role for host–symbiont genotype interactions in mediating the evolution of enhanced benefits from symbionts.
Collapse
Affiliation(s)
- Kenjiro W Quides
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Jerry Trinh
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Fathi Salaheldine
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Paola Cardenas
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Hsu-Han Lee
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Ruchi Jariwala
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Joel L Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.,Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
15
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
16
|
Epstein B, Tiffin P. Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes. Proc Biol Sci 2021; 288:20201804. [PMID: 33402066 DOI: 10.1098/rspb.2020.1804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horizontal transfer (HT) alters the repertoire of symbiosis genes in rhizobial genomes and may play an important role in the on-going evolution of the rhizobia-legume symbiosis. To gain insight into the extent of HT of symbiosis genes with different functional roles (nodulation, N-fixation, host benefit and rhizobial fitness), we conducted comparative genomic and selection analyses of the full-genome sequences from 27 rhizobial genomes. We find that symbiosis genes experience high rates of HT among rhizobial lineages but also bear signatures of purifying selection (low Ka : Ks). HT and purifying selection appear to be particularly strong in genes involved in initiating the symbiosis (e.g. nodulation) and in genome-wide association candidates for mediating benefits provided to the host. These patterns are consistent with rhizobia adapting to the host environment through the loss and gain of symbiosis genes, but not with host-imposed positive selection driving divergence of symbiosis genes through recurring bouts of positive selection.
Collapse
Affiliation(s)
- Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
17
|
Batstone RT, O’Brien AM, Harrison TL, Frederickson ME. Experimental evolution makes microbes more cooperative with their local host genotype. Science 2020; 370:476-478. [DOI: 10.1126/science.abb7222] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rebecca T. Batstone
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Anna M. O’Brien
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Tia L. Harrison
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Megan E. Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON M5S 3B2, Canada
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Ueno AC, Gundel PE, Ghersa CM, Demkura PV, Card SD, Mace WJ, Martínez-Ghersa MA. Ontogenetic and trans-generational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozone-polluted settings. PLANT, CELL & ENVIRONMENT 2020; 43:2540-2550. [PMID: 32705695 DOI: 10.1111/pce.13859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric ozone is an abiotic stress of increasing importance in the context of global climate change. This greenhouse gas is a potent phytotoxic molecule with demonstrated negative effects on crop yield and natural ecosystems. Recently, oxidative stress has been proposed as a mechanism that could regulate the interaction between cool-season grasses and Epichloë endophytes. We hypothesized that exposure of Lolium multiflorum plants, hosting endophytes to an ozone-polluted environment at different ontogenetic phases, would impact the trans-generational dynamics of the vertically transmitted fungal symbiont. Here, we found that the ozone-induced stress on the mother plants did not affect the endophyte vertical transmission but it impaired the persistence of the fungus in the seed exposed to artificial ageing. Endophyte longevity in seed was reduced by exposure of the mother plant to ozone. Although ozone exposure did not influence either the endophyte mycelial concentration or their compound defences (loline alkaloids), a positive correlation was observed between host fitness and the concentration of endophyte-derived defence compounds. This suggests that fungal defences in grass seeds were not all produced in situ but remobilized from the vegetative tissues. Our study reveals ozone trans-generational effects on the persistence of a beneficial symbiont in a host grass.
Collapse
Affiliation(s)
- Andrea C Ueno
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Pedro E Gundel
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Claudio M Ghersa
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Patricia V Demkura
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Private Bag 11008, New Zealand
| | - Wade J Mace
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, Private Bag 11008, New Zealand
| | - María Alejandra Martínez-Ghersa
- IFEVA, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, CONICET, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
19
|
Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77:3503-3523. [PMID: 32008087 PMCID: PMC7452879 DOI: 10.1007/s00018-020-03462-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
Collapse
Affiliation(s)
- István Zachar
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049, Munich, Germany.
| | - Gergely Boza
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
20
|
Deines P, Hammerschmidt K, Bosch TCG. Microbial Species Coexistence Depends on the Host Environment. mBio 2020; 11:e00807-20. [PMID: 32694139 PMCID: PMC7374058 DOI: 10.1128/mbio.00807-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms and their resident microbial communities form a complex and mostly stable ecosystem. It is known that the specific composition and abundance of certain bacterial species affect host health and fitness, but the processes that lead to these microbial patterns are unknown. We investigate this by deconstructing the simple microbiome of the freshwater polyp Hydra We contrast the performance of its two main bacterial associates, Curvibacter and Duganella, on germfree hosts with two in vitro environments over time. We show that interactions within the microbiome but also the host environment lead to the observed species frequencies and abundances. More specifically, we find that both microbial species can only stably coexist in the host environment, whereas Duganella outcompetes Curvibacter in both in vitro environments irrespective of initial starting frequencies. While Duganella seems to benefit through secretions of Curvibacter, its competitive effect on Curvibacter depends upon direct contact. The competition might potentially be mitigated through the spatial distribution of the two microbial species on the host, which would explain why both species stably coexist on the host. Interestingly, the relative abundances of both species on the host do not match the relative abundances reported previously nor the overall microbiome carrying capacity as reported in this study. Both observations indicate that rare microbial community members might be relevant for achieving the native community composition and carrying capacity. Our study highlights that for dissecting microbial interactions the specific environmental conditions need to be replicated, a goal difficult to achieve with in vitro systems.IMPORTANCE This work studies microbial interactions within the microbiome of the simple cnidarian Hydra and investigates whether microbial species coexistence and community stability depend on the host environment. We find that the outcome of the interaction between the two most dominant bacterial species in Hydra's microbiome differs depending on the environment and results in a stable coexistence only in the host context. The interactive ecology between the host and the two most dominant microbes, but also the less abundant members of the microbiome, is critically important for achieving the native community composition. This indicates that the metaorganism environment needs to be taken into account when studying microbial interactions.
Collapse
Affiliation(s)
- Peter Deines
- Zoological Institute, Christian Albrechts University Kiel, Kiel, Germany
| | - Katrin Hammerschmidt
- Institute of General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
21
|
Matthews AC, Mikonranta L, Raymond B. Shifts along the parasite-mutualist continuum are opposed by fundamental trade-offs. Proc Biol Sci 2020; 286:20190236. [PMID: 30940052 DOI: 10.1098/rspb.2019.0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Theory suggests that symbionts can readily evolve more parasitic or mutualistic strategies with respect to hosts. However, many symbionts have stable interactions with hosts that improve nutrient assimilation or confer protection from pathogens. We explored the potential for evolution of increased parasitism or decreased parasitism and mutualism in a natural gut symbiosis between larvae of Plutella xylostella and the microbe Enterobacter cloacae. We focused on interactions with the pathogen, Bacillus thuringiensis: selecting for parasitism in terms of facilitating pathogen infection, or increased mutualism in terms of host protection. Selection for parasitism led to symbionts increasing pathogen-induced mortality but reduced their competitive ability with pathogens and their in vitro growth rates. Symbionts did not evolve to confer protection from pathogens. However, several lineages evolved reduced parasitism, primarily in terms of moderating impacts on host growth, potentially because prudence pays dividends through increased host size. Overall, the evolution of increased parasitism was achievable but was opposed by trade-offs likely to reduce fitness. The evolution of protection may not have occurred because suppressing growth of B. thuringiensis in the gut might provide only weak protection or because evolution towards protective interactions was opposed by the loss of competitive fitness in symbionts.
Collapse
Affiliation(s)
- Andrew C Matthews
- 1 School of Biological Science, Royal Holloway University of London , Egham, Surrey TW20 0EX , UK.,2 University of Exeter , Penryn Campus, Penryn, Cornwall TR10 9FE , UK
| | - Lauri Mikonranta
- 2 University of Exeter , Penryn Campus, Penryn, Cornwall TR10 9FE , UK.,3 Department of Biology, University of York , Wentworth Way, York YO10 5DD , UK
| | - Ben Raymond
- 1 School of Biological Science, Royal Holloway University of London , Egham, Surrey TW20 0EX , UK.,2 University of Exeter , Penryn Campus, Penryn, Cornwall TR10 9FE , UK
| |
Collapse
|
22
|
Nalepa CA. Origin of Mutualism Between Termites and Flagellated Gut Protists: Transition From Horizontal to Vertical Transmission. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Thairu MW, Hansen AK. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and endosymbiont genomes. FEMS Microbiol Lett 2019; 366:5371121. [PMID: 30844054 DOI: 10.1093/femsle/fnz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Organelles and host-restricted bacterial symbionts are characterized by having highly reduced genomes that lack many key regulatory genes and elements. Thus, it has been hypothesized that the eukaryotic nuclear genome is primarily responsible for regulating these symbioses. However, with the discovery of organelle- and symbiont-expressed small RNAs (sRNAs) there is emerging evidence that these sRNAs may play a role in gene regulation as well. Here, we compare the diversity of organelle and bacterial symbiont sRNAs recently identified using genome-enabled '-omic' technologies and discuss their potential role in gene regulation. We also discuss how the genome architecture of small genomes may influence the evolution of these sRNAs and their potential function. Additionally, these new studies suggest that some sRNAs are conserved within organelle and symbiont taxa and respond to changes in the environment and/or their hosts. In summary, these results suggest that organelle and symbiont sRNAs may play a role in gene regulation in addition to nuclear-encoded host mechanisms.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
24
|
Dellagnola FA, Rodriguez C, Castro-Vazquez A, Vega IA. A multiple comparative study of putative endosymbionts in three coexisting apple snail species. PeerJ 2019; 7:e8125. [PMID: 31824764 PMCID: PMC6901009 DOI: 10.7717/peerj.8125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022] Open
Abstract
We here compare morphological and molecular characters of some putative endosymbiotic elements of the digestive gland of three ampullariid species (Pomacea canaliculata, Pomacea scalaris and Asolene platae) which coexist in Lake Regatas (Palermo, Buenos Aires). The putative endosymbionts were reported in these species and were identified as C and K corpuscles. The three species show tubuloacinar glands, each adenomere was constituted mainly by two distinct cell types (columnar and pyramidal). C and K corpuscles together occupied from one-fourth to one-fifth of the tissue area in the three host species, where C corpuscles were round and greenish-brown, were delimited by a distinct wall, stained positively with Alcian Blue and were associated with columnar cells. K corpuscles were oval, dark-brown multilamellar bodies and were associated with pyramidal cells. Under TEM, C corpuscles occurred within vacuoles of columnar cells and contained many electron-dense clumps and irregular membrane stacks and vesicles spread in an electron-lucent matrix. Sometimes a membrane appeared detached from the inner surface of the wall, suggesting the existence of a plasma membrane. In turn, K corpuscles were contained within vacuoles of pyramidal cells and were made of concentric lamellae, which were in turn made of an electron-dense fibrogranular material. No membranes were seen in them. Interspecifically, C corpuscles vary significantly in width and inner contents. K corpuscles were also variable in length and width. However, both C and K corpuscles in the three studied species hybridised with generalised cyanobacterial/chloroplast probes for 16S rRNA. Also, both corpuscle types (isolated from gland homogenates) were sensitive to lysozyme digestion, which indicates that bacterial peptidoglycans are an integral part of their covers. The reported data confirm and extend previous studies on P. canaliculata in which the endosymbiotic nature of C and K corpuscles were first proposed. We further propose that the endosymbiotic corpuscles are related to the Cyanobacteria/chloroplasts clade. Based on the known distribution of these corpuscles in the major clades of Ampullariidae, we hypothesise they may be universally distributed in this family, and that may constitute an interesting model for studying the co-evolution of endosymbionts and their gastropod hosts.
Collapse
Affiliation(s)
- Federico A Dellagnola
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas Instituto de Fisiología, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Mendoza, Argentina
| | - Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas Instituto de Fisiología, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Mendoza, Argentina
| | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas Instituto de Fisiología, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Mendoza, Argentina
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas Instituto de Fisiología, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Mendoza, Argentina
| |
Collapse
|
25
|
Hartmann AC, Marhaver KL, Klueter A, Lovci MT, Closek CJ, Diaz E, Chamberland VF, Archer FI, Deheyn DD, Vermeij MJA, Medina M. Acquisition of obligate mutualist symbionts during the larval stage is not beneficial for a coral host. Mol Ecol 2019; 28:141-155. [PMID: 30506836 DOI: 10.1111/mec.14967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 09/13/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Theory suggests that the direct transmission of beneficial endosymbionts (mutualists) from parents to offspring (vertical transmission) in animal hosts is advantageous and evolutionarily stable, yet many host species instead acquire their symbionts from the environment (horizontal acquisition). An outstanding question in marine biology is why some scleractinian corals do not provision their eggs and larvae with the endosymbiotic dinoflagellates that are necessary for a juvenile's ultimate survival. We tested whether the acquisition of photosynthetic endosymbionts (family Symbiodiniaceae) during the planktonic larval stage was advantageous, as is widely assumed, in the ecologically important and threatened Caribbean reef-building coral Orbicella faveolata. Following larval acquisition, similar changes occurred in host energetic lipid use and gene expression regardless of whether their symbionts were photosynthesizing, suggesting the symbionts did not provide the energetic benefit characteristic of the mutualism in adults. Larvae that acquired photosymbionts isolated from conspecific adults on their natal reef exhibited a reduction in swimming, which may interfere with their ability to find suitable settlement substrate, and also a decrease in survival. Larvae exposed to two cultured algal species did not exhibit differences in survival, but decreased their swimming activity in response to one species. We conclude that acquiring photosymbionts during the larval stage confers no advantages and can in fact be disadvantageous to this coral host. The timing of symbiont acquisition appears to be a critical component of a host's life history strategy and overall reproductive fitness, and this timing itself appears to be under selective pressure.
Collapse
Affiliation(s)
- Aaron C Hartmann
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| | | | | | - Michael T Lovci
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - Collin J Closek
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Erika Diaz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Valérie F Chamberland
- CARMABI Foundation, Willemstad, Curaçao.,Aquatic Microbiology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,SECORE International, Hilliard, Ohio
| | | | - Dimitri D Deheyn
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| | - Mark J A Vermeij
- CARMABI Foundation, Willemstad, Curaçao.,Aquatic Microbiology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
26
|
Igolkina AA, Bazykin GA, Chizhevskaya EP, Provorov NA, Andronov EE. Matching population diversity of rhizobial nodA and legume NFR5 genes in plant-microbe symbiosis. Ecol Evol 2019; 9:10377-10386. [PMID: 31624556 PMCID: PMC6787799 DOI: 10.1002/ece3.5556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that population diversities of partners in nitrogen-fixing rhizobium-legume symbiosis can be matched for "interplaying" genes. We tested this hypothesis using data on nucleotide polymorphism of symbiotic genes encoding two components of the plant-bacteria signaling system: (a) the rhizobial nodA acyltransferase involved in the fatty acid tail decoration of the Nod factor (signaling molecule); (b) the plant NFR5 receptor required for Nod factor binding. We collected three wild-growing legume species together with soil samples adjacent to the roots from one large 25-year fallow: Vicia sativa, Lathyrus pratensis, and Trifolium hybridum nodulated by one of the two Rhizobium leguminosarum biovars (viciae and trifolii). For each plant species, we prepared three pools for DNA extraction and further sequencing: the plant pool (30 plant indiv.), the nodule pool (90 nodules), and the soil pool (30 samples). We observed the following statistically significant conclusions: (a) a monotonic relationship between the diversity in the plant NFR5 gene pools and the nodule rhizobial nodA gene pools; (b) higher topological similarity of the NFR5 gene tree with the nodA gene tree of the nodule pool, than with the nodA gene tree of the soil pool. Both nonsynonymous diversity and Tajima's D were increased in the nodule pools compared with the soil pools, consistent with relaxation of negative selection and/or admixture of balancing selection. We propose that the observed genetic concordance between NFR5 gene pools and nodule nodA gene pools arises from the selection of particular genotypes of the nodA gene by the host plant.
Collapse
Affiliation(s)
- Anna A. Igolkina
- ARRIAM, All‐Russia Research Institute for Agricultural MicrobiologyPushkinRussia
- Peter the Great St. Petersburg Polytechnic UniversitySaint‐PetersburgRussia
| | - Georgii A. Bazykin
- Center for Life SciencesSkolkovo Institute of Science and TechnologyMoscowRussia
- Laboratory for Molecular EvolutionKharkevich Institute of Information Transmission Problems of the Russian Academy of SciencesMoscowRussia
| | | | - Nikolai A. Provorov
- ARRIAM, All‐Russia Research Institute for Agricultural MicrobiologyPushkinRussia
| | - Evgeny E. Andronov
- ARRIAM, All‐Russia Research Institute for Agricultural MicrobiologyPushkinRussia
- Saint‐Petersburg State UniversitySaint‐PetersburgRussia
- Dokuchaev Soil Science InstituteMoscowRussia
| |
Collapse
|
27
|
Archetti M. Maintenance of variation in mutualism by screening. Evolution 2019; 73:2036-2043. [DOI: 10.1111/evo.13816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Archetti
- Department of BiologyPennsylvania State University University Park Pennsylvania 18602
- Huck Institutes of the Life SciencesPennsylvania State University University Park Pennsylvania 18602
| |
Collapse
|
28
|
Gehman AM, Harley CDG. Symbiotic endolithic microbes alter host morphology and reduce host vulnerability to high environmental temperatures. Ecosphere 2019. [DOI: 10.1002/ecs2.2683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Alyssa‐Lois M. Gehman
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Hakai Institute, End of Kwakshua Channel Calvert Island British Columbia Canada
| | - Christopher D. G. Harley
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Institute for the Oceans and Fisheries University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
29
|
Wendlandt CE, Regus JU, Gano-Cohen KA, Hollowell AC, Quides KW, Lyu JY, Adinata ES, Sachs JL. Host investment into symbiosis varies among genotypes of the legume Acmispon strigosus, but host sanctions are uniform. THE NEW PHYTOLOGIST 2019; 221:446-458. [PMID: 30084172 DOI: 10.1111/nph.15378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/05/2018] [Indexed: 05/26/2023]
Abstract
Efficient host control predicts the extirpation of ineffective symbionts, but they are nonetheless widespread in nature. We tested three hypotheses for the maintenance of symbiotic variation in rhizobia that associate with a native legume: partner mismatch between host and symbiont, such that symbiont effectiveness varies with host genotype; resource satiation, whereby extrinsic sources of nutrients relax host control; and variation in host control among host genotypes. We inoculated Acmispon strigosus from six populations with three Bradyrhizobium strains that vary in symbiotic effectiveness on sympatric hosts. We measured proxies of host and symbiont fitness in single- and co-inoculations under fertilization treatments of zero added nitrogen (N) and near-growth-saturating N. We examined two components of host control: 'host investment' into nodule size during single- and co-inoculations, and 'host sanctions' against less effective strains during co-inoculations. The Bradyrhizobium strains displayed conserved growth effects on hosts, and host control did not decline under experimental fertilization. Host sanctions were robust in all hosts, but host lines from different populations varied significantly in measures of host investment in both single- and co-inoculation experiments. Variation in host investment could promote variation in symbiotic effectiveness and prevent the extinction of ineffective Bradyrhizobium from natural populations.
Collapse
Affiliation(s)
- Camille E Wendlandt
- Department of Botany & Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - John U Regus
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Kelsey A Gano-Cohen
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Amanda C Hollowell
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Kenjiro W Quides
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Jonathan Y Lyu
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Eunice S Adinata
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Joel L Sachs
- Department of Botany & Plant Sciences, University of California, Riverside, CA, 92521, USA
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, 92521, USA
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
30
|
Kenkel CD, Bay LK. Exploring mechanisms that affect coral cooperation: symbiont transmission mode, cell density and community composition. PeerJ 2018; 6:e6047. [PMID: 30533318 PMCID: PMC6282938 DOI: 10.7717/peerj.6047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023] Open
Abstract
The coral symbiosis is the linchpin of the reef ecosystem, yet the mechanisms that promote and maintain cooperation between hosts and symbionts have not been fully resolved. We used a phylogenetically controlled design to investigate the role of vertical symbiont transmission, an evolutionary mechanism in which symbionts are inherited directly from parents, predicted to enhance cooperation and holobiont fitness. Six species of coral, three vertical transmitters and their closest horizontally transmitting relatives, which exhibit environmental acquisition of symbionts, were fragmented and subjected to a 2-week thermal stress experiment. Symbiont cell density, photosynthetic function and translocation of photosynthetically fixed carbon between symbionts and hosts were quantified to assess changes in physiological performance and cooperation. All species exhibited similar decreases in symbiont cell density and net photosynthesis in response to elevated temperature, consistent with the onset of bleaching. Yet baseline cooperation, or translocation of photosynthate, in ambient conditions and the reduction in cooperation in response to elevated temperature differed among species. Although Porites lobata and Galaxea acrhelia did exhibit the highest levels of baseline cooperation, we did not observe universally higher levels of cooperation in vertically transmitting species. Post hoc sequencing of the Symbiodinium ITS-2 locus was used to investigate the potential role of differences in symbiont community composition. Interestingly, reductions in cooperation at the onset of bleaching tended to be associated with increased symbiont community diversity among coral species. The theoretical benefits of evolving vertical transmission are based on the underlying assumption that the host-symbiont relationship becomes genetically uniform, thereby reducing competition among symbionts. Taken together, our results suggest that it may not be vertical transmission per se that influences host-symbiont cooperation, but genetic uniformity of the symbiont community, although additional work is needed to test this hypothesis.
Collapse
Affiliation(s)
- Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
31
|
Miyokawa R, Tsuda T, Kanaya HJ, Kusumi J, Tachida H, Kobayakawa Y. Horizontal Transmission of Symbiotic Green Algae Between Hydra Strains. THE BIOLOGICAL BULLETIN 2018; 235:113-122. [PMID: 30358444 DOI: 10.1086/699705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Some hydra strains belonging to the vulgaris group show a symbiotic relationship with green algae Chlorococcum sp. The symbiotic green algae can escape from the host polyps and can form swimming zoospores (which have two flagella) in culture solution. We observed that co-culture with the symbiotic polyps caused horizontal transmission of the symbionts into some non-symbiotic hydra strains that have no symbionts in nature and that belong not only to the vulgaris group but also to other hydra species groups. Although most of the horizontal transmission has ended in transient symbioses, a newly formed symbiosis between the symbiotic Chlorococcum sp. and strain 105 of Hydra vulgaris (Hydra magnipapillata) has been sustained for more than five years and has caused morphological and behavioral changes in the host polyps. We named this strain 105G. The asexual proliferation rate by budding increased under light conditions, although the feeding activity decreased and the polyp size was reduced in strain 105G. This new symbiosis between Chlorococcum sp. and strain 105G of H. vulgaris provides us with an intriguing research system for investigating the origin of symbiosis.
Collapse
|
32
|
Pawlowska TE, Gaspar ML, Lastovetsky OA, Mondo SJ, Real-Ramirez I, Shakya E, Bonfante P. Biology of Fungi and Their Bacterial Endosymbionts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:289-309. [PMID: 30149793 DOI: 10.1146/annurev-phyto-080417-045914] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heritable symbioses, in which endosymbiotic bacteria (EB) are transmitted vertically between host generations, are an important source of evolutionary novelties. A primary example of such symbioses is the eukaryotic cell with its EB-derived organelles. Recent discoveries suggest that endosymbiosis-related innovations can be also found in associations formed by early divergent fungi in the phylum Mucoromycota with heritable EB from two classes, Betaproteobacteria and Mollicutes. These symbioses exemplify novel types of host-symbiont interactions. Studies of these partnerships fuel theoretical models describing mechanisms that stabilize heritable symbioses, control the rate of molecular evolution, and enable the establishment of mutualisms. Lastly, by altering host phenotypes and metabolism, these associations represent an important instrument for probing the basic biology of the Mucoromycota hosts, which remain one of the least explored filamentous fungi.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olga A Lastovetsky
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Evaniya Shakya
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Paola Bonfante
- Department of Life Sciences & Systems Biology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
33
|
Ongoing Transposon-Mediated Genome Reduction in the Luminous Bacterial Symbionts of Deep-Sea Ceratioid Anglerfishes. mBio 2018; 9:mBio.01033-18. [PMID: 29946051 PMCID: PMC6020299 DOI: 10.1128/mbio.01033-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse marine fish and squid form symbiotic associations with extracellular bioluminescent bacteria. These symbionts are typically free-living bacteria with large genomes, but one known lineage of symbionts has undergone genomic reduction and evolution of host dependence. It is not known why distinct evolutionary trajectories have occurred among different luminous symbionts, and not all known lineages previously had genome sequences available. In order to better understand patterns of evolution across diverse bioluminescent symbionts, we de novo sequenced the genomes of bacteria from a poorly studied interaction, the extracellular symbionts from the "lures" of deep-sea ceratioid anglerfishes. Deep-sea anglerfish symbiont genomes are reduced in size by about 50% compared to free-living relatives. They show a striking convergence of genome reduction and loss of metabolic capabilities with a distinct lineage of obligately host-dependent luminous symbionts. These losses include reductions in amino acid synthesis pathways and abilities to utilize diverse sugars. However, the symbiont genomes have retained a number of categories of genes predicted to be useful only outside the host, such as those involved in chemotaxis and motility, suggesting that they may persist in the environment. These genomes contain very high numbers of pseudogenes and show massive expansions of transposable elements, with transposases accounting for 28 and 31% of coding sequences in the symbiont genomes. Transposon expansions appear to have occurred at different times in each symbiont lineage, indicating either independent evolutions of reduction or symbiont replacement. These results suggest ongoing genomic reduction in extracellular luminous symbionts that is facilitated by transposon proliferations.IMPORTANCE Many female deep-sea anglerfishes possess a "lure" containing luminous bacterial symbionts. Here we show that unlike most luminous symbionts, these bacteria are undergoing an evolutionary transition toward small genomes with limited metabolic capabilities. Comparative analyses of the symbiont genomes indicate that this transition is ongoing and facilitated by transposon expansions. This transition may have occurred independently in different symbiont lineages, although it is unclear why. Genomic reduction is common in bacteria that only live within host cells but less common in bacteria that, like anglerfish symbionts, live outside host cells. Since multiple evolutions of genomic reduction have occurred convergently in luminous bacteria, they make a useful system with which to understand patterns of genome evolution in extracellular symbionts. This work demonstrates that ecological factors other than an intracellular lifestyle can lead to dramatic gene loss and evolutionary changes and that transposon expansions may play important roles in this process.
Collapse
|
34
|
Spiroplasma dominates the microbiome of khapra beetle: comparison with a congener, effects of life stage and temperature. Symbiosis 2018. [DOI: 10.1007/s13199-018-0560-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
D'Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep 2018; 35:455-488. [PMID: 29799048 DOI: 10.1039/c8np00009c] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Literature covered: early 2000s to late 2017Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has shown that bacterial genotypes can significantly benefit from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight general principles that underlie the adaptive evolution of interconnected microbial metabolic networks as well as the evolutionary consequences that result for cells living in such communities.
Collapse
Affiliation(s)
- Glen D'Souza
- Department of Environmental Systems Sciences, ETH-Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Wood CW, Pilkington BL, Vaidya P, Biel C, Stinchcombe JR. Genetic conflict with a parasitic nematode disrupts the legume-rhizobia mutualism. Evol Lett 2018; 2:233-245. [PMID: 30283679 PMCID: PMC6121810 DOI: 10.1002/evl3.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic variation for partner quality in mutualisms is an evolutionary paradox. One possible resolution to this puzzle is that there is a tradeoff between partner quality and other fitness‐related traits. Here, we tested whether susceptibility to parasitism is one such tradeoff in the mutualism between legumes and nitrogen‐fixing bacteria (rhizobia). We performed two greenhouse experiments with the legume Medicago truncatula. In the first, we inoculated each plant with the rhizobia Ensifer meliloti and with one of 40 genotypes of the parasitic root‐knot nematode Meloidogyne hapla. In the second experiment, we inoculated all plants with rhizobia and half of the plants with a genetically variable population of nematodes. Using the number of nematode galls as a proxy for infection severity, we found that plant genotypes differed in susceptibility to nematode infection, and nematode genotypes differed in infectivity. Second, we showed that there was a genetic correlation between the number of mutualistic structures formed by rhizobia (nodules) and the number of parasitic structures formed by nematodes (galls). Finally, we found that nematodes disrupt the rhizobia mutualism: nematode‐infected plants formed fewer nodules and had less nodule biomass than uninfected plants. Our results demonstrate that there is genetic conflict between attracting rhizobia and repelling nematodes in Medicago. If genetic conflict with parasitism is a general feature of mutualism, it could account for the maintenance of genetic variation in partner quality and influence the evolutionary dynamics of positive species interactions.
Collapse
Affiliation(s)
- Corlett W Wood
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Bonnie L Pilkington
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Priya Vaidya
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - Caroline Biel
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario M5S3B2 Canada.,Koffler Scientific Reserve University of Toronto Toronto Ontario M5S3B2 Canada
| |
Collapse
|
37
|
Magain N, Miadlikowska J, Goffinet B, Sérusiaux E, Lutzoni F. Macroevolution of Specificity in Cyanolichens of the Genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Syst Biol 2018; 66:74-99. [PMID: 28173598 DOI: 10.1093/sysbio/syw065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/06/2015] [Accepted: 07/17/2016] [Indexed: 01/21/2023] Open
Abstract
Patterns of specificity among symbiotic partners are key to a comprehensive understanding of the evolution of symbiotic systems. Specificity of mutualistic partners, within a widespread monophyletic group for which all species are sampled has rarely been explored. Here, we assess the level of specificity between the cosmopolitan lichen-forming fungus (mycobiont) from the genus Peltigera, section Polydactylon, and its cyanobacterial partner Nostoc (cyanobiont). The mycobiont and cyanobiont phylogenies are inferred from five nuclear loci and the rbcLX region, respectively. These sequences were obtained from 206 lichen thalli, representing ca. 40 closely related Peltigera species sampled worldwide, doubling the number of known species in this group. We found a broad spectrum of specificity for both partners ranging from strict specialists to generalists. Overall, mycobionts are more specialized than cyanobionts by associating mostly with one or a few Nostoc phylogroups, whereas most cyanobionts associate frequently with several Peltigera species. Specialist mycobionts are older than generalists, supporting the hypothesis that specialization of mycobionts to one or few cyanobionts, is favored through time in geographic areas where species have been established for long periods of time. The relatively recent colonization of a new geographic area (Central and South America) by members of section Polydactylon is associated with a switch to a generalist pattern of association and an increased diversification rate by the fungal partner, suggesting that switches to generalism are rare events that are advantageous in new environments. We detected higher genetic diversity in generalist mycobionts. We also found that Peltigera species specialized on a single Nostoc phylogroup have narrower geographical distributions compared with generalist species.
Collapse
Affiliation(s)
- N Magain
- Evolution and Conservation Biology, University of Liège, Liège, Belgium.,Department of Biology, Duke University, Durham, NC, USA
| | - J Miadlikowska
- Evolution and Conservation Biology, University of Liège, Liège, Belgium
| | - B Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - E Sérusiaux
- Evolution and Conservation Biology, University of Liège, Liège, Belgium
| | - F Lutzoni
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
38
|
Gabay Y, Weis VM, Davy SK. Symbiont Identity Influences Patterns of Symbiosis Establishment, Host Growth, and Asexual Reproduction in a Model Cnidarian-Dinoflagellate Symbiosis. THE BIOLOGICAL BULLETIN 2018; 234:1-10. [PMID: 29694802 DOI: 10.1086/696365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genus Symbiodinium is physiologically diverse and so may differentially influence symbiosis establishment and function. To explore this, we inoculated aposymbiotic individuals of the sea anemone Exaiptasia pallida (commonly referred to as "Aiptasia"), a model for coral symbiosis, with one of five Symbiodinium species or types (S. microadriaticum, S. minutum, phylotype C3, S. trenchii, or S. voratum). The spatial pattern of colonization was monitored over time via confocal microscopy, and various physiological parameters were measured to assess symbiosis functionality. Anemones rapidly formed a symbiosis with the homologous symbiont, S. minutum, but struggled or failed to form a long-lasting symbiosis with Symbiodinium C3 or S. voratum, respectively. Symbiodinium microadriaticum and S. trenchii were successful but reached their peak density two weeks after S. minutum. The spatial pattern of colonization was identical for all Symbiodinium taxa that were ultimately successful, starting in the oral disk and progressing to the tentacles, before invading the column and, finally, the pedal disk. In all cases, proliferation through the anemone's tentacles was patchy, suggesting that symbionts were being expelled into the gastrovascular cavity and re-phagocytosed by the host. However, the timing of these various spatial events differed between the different Symbiodinium taxa. Furthermore, S. microadriaticum and S. trenchii were less beneficial to the host, as indicated by lower rates of photosynthesis, anemone growth, and pedal laceration. This study enhances our understanding of the link between symbiont identity and the performance of the overall symbiosis, which is important for understanding the potential establishment and persistence of novel host-symbiont pairings. Importantly, we also provide a baseline for further studies on this topic with the globally adopted "Aiptasia" model system.
Collapse
|
39
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
40
|
Life and death in facultative chemosymbioses: control of bacterial population dynamics in the Thyasiridae. Symbiosis 2017. [DOI: 10.1007/s13199-017-0525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Gomez-Polo P, Ballinger MJ, Lalzar M, Malik A, Ben-Dov Y, Mozes-Daube N, Perlman SJ, Iasur-Kruh L, Chiel E. An exceptional family: Ophiocordyceps-allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae). Mol Ecol 2017; 26:5855-5868. [PMID: 28833928 DOI: 10.1111/mec.14332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022]
Abstract
Hemipteran insects of the suborder Sternorrhyncha are plant sap feeders, where each family is obligately associated with a specific bacterial endosymbiont that produces essential nutrients lacking in the sap. Coccidae (soft scale insects) is the only major sternorrhynchan family in which obligate symbiont(s) have not been identified. We studied the microbiota in seven species from this family from Israel, Spain and Cyprus, by high-throughput sequencing of ribosomal genes, and found that no specific bacterium was prevalent and abundant in all the tested species. In contrast, an Ophiocordyceps-allied fungus sp.-a lineage widely known as entomopathogenic-was highly prevalent. All individuals of all the tested species carried this fungus. Phylogenetic analyses showed that the Ophiocordyceps-allied fungus from the coccids is closely related to fungi described from other hemipterans, and they appear to be monophyletic, although the phylogenies of the Ophiocordyceps-allied fungi and their hosts do not appear to be congruent. Microscopic observations show that the fungal cells are lemon-shaped, are distributed throughout the host's body and are present in the eggs, suggesting vertical transmission. Taken together, the results suggest that the Ophiocordyceps-allied fungus may be a primary symbiont of Coccidae-a major evolutionary shift from bacteria to fungi in the Sternorrhyncha, and an important example of fungal evolutionary lifestyle switch.
Collapse
Affiliation(s)
- Priscila Gomez-Polo
- Department of Biology and Environment, University of Haifa - Oranim, Tivon, Israel
| | | | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Yair Ben-Dov
- Department of Entomology, The Volcani Center, Agricultural Research Organization (ARO), Bet-Dagan, Israel
| | - Neta Mozes-Daube
- Newe-Ya'ar Research Center, Agricultural Research Organization (ARO), Ramat-Yishai, Israel
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, Canada
| | - Lilach Iasur-Kruh
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
42
|
Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, Rodrigues A, Hertweck C, Kaltenpoth M. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun 2017; 8:15172. [PMID: 28452358 PMCID: PMC5414355 DOI: 10.1038/ncomms15172] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/06/2017] [Indexed: 11/17/2022] Open
Abstract
Pathogenic and mutualistic bacteria associated with eukaryotic hosts often lack distinctive genomic features, suggesting regular transitions between these lifestyles. Here we present evidence supporting a dynamic transition from plant pathogenicity to insect-defensive mutualism in symbiotic Burkholderia gladioli bacteria. In a group of herbivorous beetles, these symbionts protect the vulnerable egg stage against detrimental microbes. The production of a blend of antibiotics by B. gladioli, including toxoflavin, caryoynencin and two new antimicrobial compounds, the macrolide lagriene and the isothiocyanate sinapigladioside, likely mediate this defensive role. In addition to vertical transmission, these insect symbionts can be exchanged via the host plant and retain the ability to initiate systemic plant infection at the expense of the plant's fitness. Our findings provide a paradigm for the transition between pathogenic and mutualistic lifestyles and shed light on the evolution and chemical ecology of this defensive mutualism.
Collapse
Affiliation(s)
- Laura V. Flórez
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Paul Gaube
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
| | - Claudia Ross
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Elisabeth Sitte
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Cornelia Hermes
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP-São Paulo State University, Av. 24A, n. 1515-Bela Vista, Rio Claro, São Paulo 13506-900, Brazil
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstraβe 11a, 07745 Jena, Germany
- Chair for Natural Product Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745 Jena, Germany
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| |
Collapse
|
43
|
Drosophila Genotype Influences Commensal Bacterial Levels. PLoS One 2017; 12:e0170332. [PMID: 28095502 PMCID: PMC5240971 DOI: 10.1371/journal.pone.0170332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/03/2017] [Indexed: 02/04/2023] Open
Abstract
Host genotype can influence the composition of the commensal bacterial community in some organisms. Composition, however, is only one parameter describing a microbial community. Here, we test whether a second parameter—abundance of bacteria—is a heritable trait by quantifying the presence of four commensal bacterial strains within 36 gnotobiotic inbred lines of Drosophila melanogaster. We find that D. melanogaster genotype exerts a significant effect on microbial levels within the fly. When introduced as monocultures into axenic flies, three of the four bacterial strains were reliably detected within the fly. The amounts of these different strains are strongly correlated, suggesting that the host regulates commensal bacteria through general, not bacteria-specific, means. While the correlation does not appear to be driven by simple variation in overall gut dimensions, a genetic association study suggests that variation in commensal bacterial load may largely be attributed to physical aspects of host cell growth and development.
Collapse
|
44
|
Klinger CR, Lau JA, Heath KD. Ecological genomics of mutualism decline in nitrogen-fixing bacteria. Proc Biol Sci 2016; 283:20152563. [PMID: 26962142 DOI: 10.1098/rspb.2015.2563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic changes can influence mutualism evolution; however, the genomic regions underpinning mutualism that are most affected by environmental change are generally unknown, even in well-studied model mutualisms like the interaction between legumes and their nitrogen (N)-fixing rhizobia. Such genomic information can shed light on the agents and targets of selection maintaining cooperation in nature. We recently demonstrated that N-fertilization has caused an evolutionary decline in mutualistic partner quality in the rhizobia that form symbiosis with clover. Here, population genomic analyses of N-fertilized versus control rhizobium populations indicate that evolutionary differentiation at a key symbiosis gene region on the symbiotic plasmid (pSym) contributes to partner quality decline. Moreover, patterns of genetic variation at selected loci were consistent with recent positive selection within N-fertilized environments, suggesting that N-rich environments might select for less beneficial rhizobia. By studying the molecular population genomics of a natural bacterial population within a long-term ecological field experiment, we find that: (i) the N environment is indeed a potent selective force mediating mutualism evolution in this symbiosis, (ii) natural variation in rhizobium partner quality is mediated in part by key symbiosis genes on the symbiotic plasmid, and (iii) differentiation at selected genes occurred in the context of otherwise recombining genomes, resembling eukaryotic models of adaptation.
Collapse
Affiliation(s)
- Christie R Klinger
- Department of Plant Biology, University of Illinois Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Jennifer A Lau
- W.K. Kellogg Biological Station and Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Morris AL, Guégan JF, Andreou D, Marsollier L, Carolan K, Le Croller M, Sanhueza D, Gozlan RE. Deforestation-driven food-web collapse linked to emerging tropical infectious disease, Mycobacterium ulcerans. SCIENCE ADVANCES 2016; 2:e1600387. [PMID: 27957534 PMCID: PMC5142798 DOI: 10.1126/sciadv.1600387] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Generalist microorganisms are the agents of many emerging infectious diseases (EIDs), but their natural life cycles are difficult to predict due to the multiplicity of potential hosts and environmental reservoirs. Among 250 known human EIDs, many have been traced to tropical rain forests and specifically freshwater aquatic systems, which act as an interface between microbe-rich sediments or substrates and terrestrial habitats. Along with the rapid urbanization of developing countries, population encroachment, deforestation, and land-use modifications are expected to increase the risk of EID outbreaks. We show that the freshwater food-web collapse driven by land-use change has a nonlinear effect on the abundance of preferential hosts of a generalist bacterial pathogen, Mycobacterium ulcerans. This leads to an increase of the pathogen within systems at certain levels of environmental disturbance. The complex link between aquatic, terrestrial, and EID processes highlights the potential importance of species community composition and structure and species life history traits in disease risk estimation and mapping. Mechanisms such as the one shown here are also central in predicting how human-induced environmental change, for example, deforestation and changes in land use, may drive emergence.
Collapse
Affiliation(s)
- Aaron L. Morris
- Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth University, Dorset BH12 5BB, UK
- Institut de Recherche pour le Développement, UMR MIVEGEC IRD-CNRS-Université de Montpellier, Centre IRD de Montpellier, BP 64501, Montpellier, France
| | - Jean-François Guégan
- Institut de Recherche pour le Développement, UMR MIVEGEC IRD-CNRS-Université de Montpellier, Centre IRD de Montpellier, BP 64501, Montpellier, France
- International research programme Future Earth, ecoHEALTH initiative, Ottawa, Ontario, Canada
| | - Demetra Andreou
- Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth University, Dorset BH12 5BB, UK
| | - Laurent Marsollier
- Equipe Inserm Avenir ATOMycA, CRCNA INSERM U892 and CNRS U6299, Université et CHU d’Angers, 49933 Angers, France
| | - Kevin Carolan
- Institut de Recherche pour le Développement, UMR MIVEGEC IRD-CNRS-Université de Montpellier, Centre IRD de Montpellier, BP 64501, Montpellier, France
| | - Marie Le Croller
- Institut de Recherche pour le Développement, UMR MIVEGEC IRD-CNRS-Université de Montpellier, Centre IRD de Montpellier, BP 64501, Montpellier, France
| | - Daniel Sanhueza
- Institut de Recherche pour le Développement, UMR MIVEGEC IRD-CNRS-Université de Montpellier, Centre IRD de Montpellier, BP 64501, Montpellier, France
- Equipe Inserm Avenir ATOMycA, CRCNA INSERM U892 and CNRS U6299, Université et CHU d’Angers, 49933 Angers, France
| | - Rodolphe E. Gozlan
- Faculty of Science and Technology, Department of Life and Environmental Sciences, Bournemouth University, Dorset BH12 5BB, UK
- Institut de Recherche pour le Développement, UMR MIVEGEC IRD-CNRS-Université de Montpellier, Centre IRD de Montpellier, BP 64501, Montpellier, France
- Institut de Recherche pour le Développement, UMR BOREA IRD-MNHN-Université Pierre et Marie Curie, Muséum National d’Histoire Naturelle, 47 rue Cuvier, 75231 Paris cedex 5, France
| |
Collapse
|
46
|
Grillo MA, De Mita S, Burke PV, Solórzano-Lowell KLS, Heath KD. Intrapopulation genomics in a model mutualist: Population structure and candidate symbiosis genes under selection in Medicago truncatula. Evolution 2016; 70:2704-2717. [PMID: 27757965 DOI: 10.1111/evo.13095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/15/2023]
Abstract
Bottom-up evolutionary approaches, including geographically explicit population genomic analyses, have the power to reveal the mechanistic basis of adaptation. Here, we conduct a population genomic analysis in the model legume, Medicago truncatula, to characterize population genetic structure and identify symbiosis-related genes showing evidence of spatially variable selection. Using RAD-seq, we generated over 26,000 SNPs from 191 accessions from within three regions of the native range in Europe. Results from STRUCTURE analysis identify five distinct genetic clusters with divisions that separate east and west regions in the Mediterranean basin. Much of the genetic variation is maintained within sampling sites, and there is evidence for isolation by distance. Extensive linkage disequilibrium was identified, particularly within populations. We conducted genetic outlier analysis with FST -based genome scans and a Bayesian modeling approach (PCAdapt). There were 70 core outlier loci shared between these distinct methods with one clear candidate symbiosis related gene, DMI1. This work sets that stage for functional experiments to determine the important phenotypes that selection has acted upon and complementary efforts in rhizobium populations.
Collapse
Affiliation(s)
- Michael A Grillo
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Stephane De Mita
- INRA Nancy-Lorraine, UMR 1136 Interactions Arbres Microorganismes, Route d'Amance, 54280, Champenoux, France
| | - Patricia V Burke
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | | | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
47
|
Grillo MA, Stinchcombe JR, Heath KD. Nitrogen addition does not influence pre-infection partner choice in the legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2016; 103:1763-1770. [PMID: 27671532 DOI: 10.3732/ajb.1600090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/09/2016] [Indexed: 05/26/2023]
Abstract
PREMISE OF THE STUDY Resource mutualisms such as the symbiosis between legumes and nitrogen-fixing rhizobia are context dependent and are sensitive to various aspects of the environment, including nitrogen (N) addition. Mutualist hosts such as legumes are also thought to use mechanisms such as partner choice to discriminate among potential symbionts that vary in partner quality (fitness benefits conferred to hosts) and thus impose selection on rhizobium populations. Together, context dependency and partner choice might help explain why the legume-rhizobium mutualism responds evolutionarily to N addition, since plant-mediated selection that shifts in response to N might be expected to favor different rhizobium strains in different N environments. METHODS We test for the influence of context dependency on partner choice in the model legume, Medicago truncatula, using a factorial experiments with three plant families across three N levels with a mixed inoculation of three rhizobia strains. KEY RESULTS Neither the relative frequencies of rhizobium strains occupying host nodules, nor the size of those nodules, differed in response to N level. CONCLUSIONS Despite the lack of context dependence, plant genotypes respond very differently to mixed populations of rhizobia, suggesting that these traits are genetically variable and thus could evolve in response to longer-term increases in N.
Collapse
Affiliation(s)
- Michael A Grillo
- University of Illinois, Department of Plant Biology, Urbana, Illinois 61801, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Katy D Heath
- University of Illinois, Department of Plant Biology, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Hoang KL, Morran LT, Gerardo NM. Experimental Evolution as an Underutilized Tool for Studying Beneficial Animal-Microbe Interactions. Front Microbiol 2016; 7:1444. [PMID: 27679620 PMCID: PMC5020044 DOI: 10.3389/fmicb.2016.01444] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
Microorganisms play a significant role in the evolution and functioning of the eukaryotes with which they interact. Much of our understanding of beneficial host–microbe interactions stems from studying already established associations; we often infer the genotypic and environmental conditions that led to the existing host–microbe relationships. However, several outstanding questions remain, including understanding how host and microbial (internal) traits, and ecological and evolutionary (external) processes, influence the origin of beneficial host–microbe associations. Experimental evolution has helped address a range of evolutionary and ecological questions across different model systems; however, it has been greatly underutilized as a tool to study beneficial host–microbe associations. In this review, we suggest ways in which experimental evolution can further our understanding of the proximate and ultimate mechanisms shaping mutualistic interactions between eukaryotic hosts and microbes. By tracking beneficial interactions under defined conditions or evolving novel associations among hosts and microbes with little prior evolutionary interaction, we can link specific genotypes to phenotypes that can be directly measured. Moreover, this approach will help address existing puzzles in beneficial symbiosis research: how symbioses evolve, how symbioses are maintained, and how both host and microbe influence their partner’s evolutionary trajectories. By bridging theoretical predictions and empirical tests, experimental evolution provides us with another approach to test hypotheses regarding the evolution of beneficial host–microbe associations.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Levi T Morran
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| |
Collapse
|
49
|
Li H, Li T, Yao M, Li J, Zhang S, Wirth S, Cao W, Lin Q, Li X. Pika Gut May Select for Rare but Diverse Environmental Bacteria. Front Microbiol 2016; 7:1269. [PMID: 27582734 PMCID: PMC4987353 DOI: 10.3389/fmicb.2016.01269] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 02/01/2023] Open
Abstract
The composition of the mammalian gut bacterial communities can be influenced by the introduction of environmental bacteria in their respective habitats. However, there are no extensive studies examining the interactions between environmental bacteriome and gut bacteriome in wild mammals. Here, we explored the relationship between the gut bacterial communities of pika (Ochotona spp.) and the related environmental bacteria across host species and altitudinal sites using 16S rRNA gene sequencing. Plateau pikas (O. curzoniae) and Daurian pikas (O. daurica) were sampled at five different sites, and plant and soil samples were collected at each site as well. Our data indicated that Plateau pikas and Daurian pikas had distinct bacterial communities. The pika, plant and soil bacterial communities were also distinct. Very little overlap occurred in the pika core bacteria and the most abundant environmental bacteria. The shared OTUs between pikas and environments were present in the environment at relatively low abundance, whereas they were affiliated with diverse bacterial taxa. These results suggested that the pika gut may mainly select for low-abundance but diverse environmental bacteria in a host species-specific manner.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesSichuan, China; University of Chinese Academy of SciencesBeijing, China
| | - Tongtong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Minjie Yao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Shiheng Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Stephan Wirth
- Leibniz-Center for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry Müncheberg, Germany
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing, China; Soil and Fertilizer Institute, Qinghai Academy of Agriculture and Forestry Sciences, Qinghai UniversityXining, China
| | - Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| |
Collapse
|
50
|
Hendry TA, de Wet JR, Dougan KE, Dunlap PV. Genome Evolution in the Obligate but Environmentally Active Luminous Symbionts of Flashlight Fish. Genome Biol Evol 2016; 8:2203-13. [PMID: 27389687 PMCID: PMC4987116 DOI: 10.1093/gbe/evw161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 12/17/2022] Open
Abstract
The luminous bacterial symbionts of anomalopid flashlight fish are thought to be obligately dependent on their hosts for growth and share several aspects of genome evolution with unrelated obligate symbionts, including genome reduction. However, in contrast to most obligate bacteria, anomalopid symbionts have an active environmental phase that may be important for symbiont transmission. Here we investigated patterns of evolution between anomalopid symbionts compared with patterns in free-living relatives and unrelated obligate symbionts to determine if trends common to obligate symbionts are also found in anomalopid symbionts. Two symbionts, "Candidatus Photodesmus katoptron" and "Candidatus Photodesmus blepharus," have genomes that are highly similar in gene content and order, suggesting genome stasis similar to ancient obligate symbionts present in insect lineages. This genome stasis exists in spite of the symbiont's inferred ability to recombine, which is frequently lacking in obligate symbionts with stable genomes. Additionally, we used genome comparisons and tests of selection to infer which genes may be particularly important for the symbiont's ecology compared with relatives. In keeping with obligate dependence, substitution patterns suggest that most symbiont genes are experiencing relaxed purifying selection compared with relatives. However, genes involved in motility and carbon storage, which are likely to be used outside the host, appear to be under increased purifying selection. Two chemoreceptor chemotaxis genes are retained by both species and show high conservation with amino acid sensing genes, suggesting that the bacteria may actively seek out hosts using chemotaxis toward amino acids, which the symbionts are not able to synthesize.
Collapse
Affiliation(s)
- Tory A Hendry
- Department of Ecology and Evolutionary Biology, University of Michigan Department of Microbiology, Cornell University
| | - Jeffrey R de Wet
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
| | - Katherine E Dougan
- Department of Ecology and Evolutionary Biology, University of Michigan Present address: Department of Biological Sciences, Florida International University, Miami, FL
| | - Paul V Dunlap
- Department of Ecology and Evolutionary Biology, University of Michigan
| |
Collapse
|