1
|
Vaccine-Induced, High-Magnitude HIV Env-Specific Antibodies with Fc-Mediated Effector Functions Are Insufficient to Protect Infant Rhesus Macaques against Oral SHIV Infection. mSphere 2022; 7:e0083921. [PMID: 35196125 PMCID: PMC8865927 DOI: 10.1128/msphere.00839-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improved access to antiretroviral therapy (ART) and antenatal care has significantly reduced in utero and peripartum mother-to-child human immunodeficiency virus (HIV) transmission. However, as breast milk transmission of HIV still occurs at an unacceptable rate, there remains a need to develop an effective vaccine for the pediatric population. Previously, we compared different HIV vaccine strategies, intervals, and adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-specific antibodies with Fc-mediated effector function. In this study, we tested the efficacy of an optimized vaccine regimen against oral simian-human immunodeficiency virus (SHIV) acquisition in infant macaques. Twelve animals were immunized with 1086.c gp120 protein adjuvanted with 3M-052 in stable emulsion and modified vaccinia Ankara (MVA) virus expressing 1086.c HIV Env. Twelve control animals were immunized with empty MVA. The vaccine prime was given within 10 days of birth, with booster doses being administered at weeks 6 and 12. The vaccine regimen induced Env-specific plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the induction of strong Fc-mediated antibody responses, the vaccine regimen did not reduce the risk of infection or time to acquisition compared to controls. However, among vaccinated animals, ADCC postvaccination and postinfection was associated with reduced peak viremia. Thus, nonneutralizing Env-specific antibodies with Fc effector function elicited by this vaccine regimen were insufficient for protection against heterologous oral SHIV infection shortly after the final immunization but may have contributed to control of viremia. IMPORTANCE Women of childbearing age are three times more likely to contract HIV infection than their male counterparts. Poor HIV testing rates coupled with low adherence to antiretroviral therapy (ART) result in a high risk of mother-to-infant HIV transmission, especially during the breastfeeding period. A preventative vaccine could curb pediatric HIV infections, reduce potential health sequalae, and prevent the need for lifelong ART in this population. The results of the current study imply that the HIV Env-specific IgG antibodies elicited by this candidate vaccine regimen, despite a high magnitude of Fc-mediated effector function but a lack of neutralizing antibodies and polyfunctional T cell responses, were insufficient to protect infant rhesus macaques against oral virus acquisition.
Collapse
|
2
|
Haddad A, Voth B, Brooks J, Swang M, Carryl H, Algarzae N, Taylor S, Parker C, Van Rompay KKA, De Paris K, Burke MW. Reduced neuronal population in the dorsolateral prefrontal cortex in infant macaques infected with simian immunodeficiency virus (SIV). J Neurovirol 2021; 27:923-935. [PMID: 34554407 PMCID: PMC8901521 DOI: 10.1007/s13365-021-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Pediatric HIV infection remains a global health crisis with an estimated 150,000 new mother-to-child (MTCT) infections each year. Antiretroviral therapy (ART) has improved childhood survival, but only an estimated 53% of children worldwide have access to treatment. Adding to the health crisis is the neurological impact of HIV on the developing brain, in particular cognitive and executive function, which persists even when ART is available. Imaging studies suggest structural, connectivity, and functional alterations in perinatally HIV-infected youth. However, the paucity of histological data limits our ability to identify specific cortical regions that may underlie the clinical manifestations. Utilizing the pediatric simian immunodeficiency virus (SIV) infection model in infant macaques, we have previously shown that early-life SIV infection depletes the neuronal population in the hippocampus. Here, we expand on these previous studies to investigate the dorsolateral prefrontal cortex (dlPFC). A total of 11 ART-naïve infant rhesus macaques (Macaca mulatta) from previous studies were retrospectively analyzed. Infant macaques were either intravenously (IV) inoculated with highly virulent SIVmac251 at ~1 week of age and monitored for 6-10 weeks or orally challenged with SIVmac251 from week 9 of age onwards with a monitoring period of 10-23 weeks post-infection (19-34 weeks of age), and SIV-uninfected controls were euthanized at 16-17 weeks of age. Both SIV-infected groups show a significant loss of neurons along with evidence of ongoing neuronal death. Oral- and IV-infected animals showed a similar neuronal loss which was negatively correlated to chronic viremia levels as assessed by an area under the curve (AUC) analysis. The loss of dlPFC neurons may contribute to the rapid neurocognitive decline associated with pediatric HIV infection.
Collapse
Affiliation(s)
- Alexandra Haddad
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Brittany Voth
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Janiya Brooks
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Melanie Swang
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Heather Carryl
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Norah Algarzae
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
- King Saudi University, Riyadh, Riyadh, Kingdom of Saudi Arabia
| | - Shane Taylor
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Camryn Parker
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
3
|
Ramos L, Lunney JK, Gonzalez-Juarrero M. Neonatal and infant immunity for tuberculosis vaccine development: importance of age-matched animal models. Dis Model Mech 2020; 13:dmm045740. [PMID: 32988990 PMCID: PMC7520460 DOI: 10.1242/dmm.045740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neonatal and infant immunity differs from that of adults in both the innate and adaptive arms, which are critical contributors to immune-mediated clearance of infection and memory responses elicited during vaccination. The tuberculosis (TB) research community has openly admitted to a vacuum of knowledge about neonatal and infant immune responses to Mycobacterium tuberculosis (Mtb) infection, especially in the functional and phenotypic attributes of memory T cell responses elicited by the only available vaccine for TB, the Bacillus Calmette-Guérin (BCG) vaccine. Although BCG vaccination has variable efficacy in preventing pulmonary TB during adolescence and adulthood, 80% of endemic TB countries still administer BCG at birth because it has a good safety profile and protects children from severe forms of TB. As such, new vaccines must work in conjunction with BCG at birth and, thus, it is essential to understand how BCG shapes the immune system during the first months of life. However, many aspects of the neonatal and infant immune response elicited by vaccination with BCG remain unknown, as only a handful of studies have followed BCG responses in infants. Furthermore, most animal models currently used to study TB vaccine candidates rely on adult-aged animals. This presents unique challenges when transitioning to human trials in neonates or infants. In this Review, we focus on vaccine development in the field of TB and compare the relative utility of animal models used thus far to study neonatal and infant immunity. We encourage the development of neonatal animal models for TB, especially the use of pigs.
Collapse
Affiliation(s)
- Laylaa Ramos
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA Building 1040, Room 103, Beltsville, MD 20705, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Schussek S, Bernasconi V, Mattsson J, Wenzel UA, Strömberg A, Gribonika I, Schön K, Lycke NY. The CTA1-DD adjuvant strongly potentiates follicular dendritic cell function and germinal center formation, which results in improved neonatal immunization. Mucosal Immunol 2020; 13:545-557. [PMID: 31959882 PMCID: PMC7223721 DOI: 10.1038/s41385-020-0253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023]
Abstract
Vaccination of neonates and young infants is hampered by the relative immaturity of their immune systems and the lack of safe and efficacious vaccine adjuvants. Immaturity of the follicular dendritic cells (FDCs), in particular, appears to play a critical role for the inability to stimulate immune responses. Using the CD21mT/mG mouse model we found that at 7 days of life, FDCs exhibited a mature phenotype only in the Peyer´s patches (PP), but our unique adjuvant, CTA1-DD, effectively matured FDCs also in peripheral lymph nodes following systemic, as well as mucosal immunizations. This was a direct effect of complement receptor 2-binding to the FDC and a CTA1-enzyme-dependent enhancing effect on gene transcription, among which CR2, IL-6, ICAM-1, IL-1β, and CXCL13 encoding genes were upregulated. This way we achieved FDC maturation, increased germinal center B-cell- and Tfh responses, and enhanced specific antibody levels close to adult magnitudes. Oral priming immunization of neonates against influenza infection with CTA1-3M2e-DD effectively promoted anti-M2e-immunity and significantly reduced morbidity against a live virus challenge infection. To the best of our knowledge, this is the first study to demonstrate direct effects of an adjuvant on FDC gene transcriptional functions and the subsequent enhancement of neonatal immune responses.
Collapse
Affiliation(s)
- Sophie Schussek
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Mattsson
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Alexander Wenzel
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Inta Gribonika
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Y Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Curtis AD, Walter KA, Nabi R, Jensen K, Dwivedi A, Pollara J, Ferrari G, Van Rompay KK, Amara RR, Kozlowski PA, De Paris K. Oral Coadministration of an Intramuscular DNA/Modified Vaccinia Ankara Vaccine for Simian Immunodeficiency Virus Is Associated with Better Control of Infection in Orally Exposed Infant Macaques. AIDS Res Hum Retroviruses 2019; 35:310-325. [PMID: 30303405 PMCID: PMC6434602 DOI: 10.1089/aid.2018.0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The majority of human immunodeficiency virus (HIV) type 1 infections in infants are acquired orally through breastfeeding. Toward development of a pediatric HIV vaccine to prevent breastmilk transmission, we tested the efficacy of a simultaneous oral and intramuscular (IM) vaccination regimen for preventing oral simian immunodeficiency virus (SIV) transmission in infant rhesus macaques. Two groups of neonatal macaques were immunized with DNA encoding SIV virus-like particles (DNA-SIV) on weeks 0 and 3, then boosted with modified vaccinia Ankara (MVA) virus expressing SIV antigens (MVA-SIV) on weeks 6 and 9. One group was prime/boosted by the IM route only. Another group was immunized with DNA by both the IM and topical oral (O) buccal routes, and boosted with MVA-SIV by both the IM and sublingual (SL) routes. A third group of control animals received saline by O + IM routes on weeks 0 and 3, and empty MVA by SL + IM routes on weeks 6 and 9. On week 12, infants were orally challenged once weekly with SIVmac251 until infected. The vaccine regimen that included oral routes resulted in reduced peak viremia. The rate of infection acquisition in vaccinated infants was found to be associated with prechallenge intestinal immunoglobulin G (IgG) responses to SIV gp120 and V1V2. Peak viremia was inversely correlated with postinfection intestinal IgG responses to gp120, gp41, and V1V2. These results suggest that codelivery of a pediatric HIV vaccine by an oral route may be superior to IM-only regimens for generating mucosal antibodies and preventing HIV breastmilk transmission in neonates.
Collapse
Affiliation(s)
- Alan D. Curtis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Korey A. Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University, New Orleans, Louisiana
| | - Rafiq Nabi
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University, New Orleans, Louisiana
| | - Kara Jensen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aanini Dwivedi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Justin Pollara
- Duke University Medical Center, Human Vaccine Institute, Durham, North Carolina
| | - Guido Ferrari
- Duke University Medical Center, Human Vaccine Institute, Durham, North Carolina
| | | | - Rama R. Amara
- Emory University and Yerkes National Primate Research Center, Atlanta, Georgia
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University, New Orleans, Louisiana
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
7
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
8
|
Curtis AD, Jensen K, Van Rompay KK, Amara RR, Kozlowski PA, De Paris K. A simultaneous oral and intramuscular prime/sublingual boost with a DNA/Modified Vaccinia Ankara viral vector-based vaccine induces simian immunodeficiency virus-specific systemic and mucosal immune responses in juvenile rhesus macaques. J Med Primatol 2018; 47:288-297. [PMID: 30204253 PMCID: PMC6158111 DOI: 10.1111/jmp.12372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND A pediatric vaccine to prevent breast milk transmission of human immunodeficiency virus (HIV) may generate greater immune responses at viral entry sites if given by an oral route. METHODS We compared immune responses induced in juvenile macaques by prime/boosting with simian immunodeficiency virus (SIV)-expressing DNA/modified vaccinia Ankara virus (MVA) by the intramuscular route (IM), the oral (O)/tonsillar routes (T), the O/sublingual (SL) routes, and O+IM/SL routes. RESULTS O/T or O/SL immunization generated SIV-specific T cells in mucosal tissues but failed to induce SIV-specific IgA in saliva or stool or IgG in plasma. IM/IM or O+IM/SL generated humoral and cellular responses to SIV. IM/IM generated greater frequencies of TFH in spleen, but O+IM/SL animals had higher avidity plasma IgG and more often demonstrated mucosal IgA responses. CONCLUSION These results suggest that codelivery of HIV DNA/MVA vaccines by the oral and IM routes might be optimal for generating both systemic and mucosal antibodies.
Collapse
Affiliation(s)
- Alan D. Curtis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kara Jensen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Rama R. Amara
- Yerkes National Primate Research Center and Emory University, Atlanta, GA, 30322, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Adjuvant-Dependent Enhancement of HIV Env-Specific Antibody Responses in Infant Rhesus Macaques. J Virol 2018; 92:JVI.01051-18. [PMID: 30089691 DOI: 10.1128/jvi.01051-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Toward the goal of developing an effective HIV vaccine that can be administered in infancy to protect against postnatal and lifelong sexual HIV transmission risks, the current pilot study was designed to compare the effect of novel adjuvants on the induction of HIV Env-specific antibody responses in infant macaques. Aligning our studies with the adjuvanted proteins evaluated in a prime-boost schedule with ALVAC in the ongoing HVTN (HIV Vaccine Trials Network) 702 efficacy trial, we selected the bivalent clade C Env immunogens gp120 C.1086 and gp120 TV1 in combination with the MF59 adjuvant. However, we hypothesized that the adjuvant system AS01, that is included in the pediatric RTS,S malaria vaccine, would promote Env-specific antibody responses superior to those of the oil-in-water MF59 emulsion adjuvant. In a second study arm, we compared two emulsions, glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) and 3M-052-SE, containing Toll-like receptor 4 (TLR4) and TLR7/TLR8 (TLR7/8) ligand, respectively. The latter adjuvant had been previously demonstrated to be especially effective in activating neonatal antigen-presenting cells. Our results demonstrate that different adjuvants drive quantitatively or qualitatively distinct responses to the bivalent Env vaccine. AS01 induced higher Env-specific plasma IgG antibody levels than the antigen in MF59 and promoted improved antibody function in infants, and 3M-052-SE outperformed GLA-SE by inducing the highest breadth and functionality of antibody responses. Thus, distinct adjuvants are likely to be required for maximizing vaccine-elicited immune responses in infants, particularly when immunization in infancy aims to elicit both perinatal and lifelong immunity against challenging pathogens such as HIV.IMPORTANCE Alum remains the adjuvant of choice for pediatric vaccines. Yet the distinct nature of the developing immune system in infants likely requires novel adjuvants targeted specifically at the pediatric population to reach maximal vaccine efficacy with an acceptable safety profile. The current study supports the idea that additional adjuvants for pediatric vaccines should be, and need to be, tested in infants for their potential to enhance immune responses. Using an infant macaque model, our results suggest that both AS01 and 3M-052-SE can significantly improve and better sustain HIV Env-specific antibody responses than alum. Despite the limited number of animals, the results revealed interesting differences that warrant further testing of promising novel adjuvant candidates in larger preclinical and clinical studies to define the mechanisms leading to adjuvant-improved antibody responses and to identify targets for adjuvant and vaccine optimization.
Collapse
|
10
|
Maternal HIV-1 Env Vaccination for Systemic and Breast Milk Immunity To Prevent Oral SHIV Acquisition in Infant Macaques. mSphere 2018; 3:mSphere00505-17. [PMID: 29359183 PMCID: PMC5760748 DOI: 10.1128/msphere.00505-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Without novel strategies to prevent mother-to-child HIV-1 transmission, more than 5% of HIV-1-exposed infants will continue to acquire HIV-1, most through breastfeeding. This study of rhesus macaque dam-and-infant pairs is the first preclinical study to investigate the protective role of transplacentally transferred HIV-1 vaccine-elicited antibodies and HIV-1 vaccine-elicited breast milk antibody responses in infant oral virus acquisition. It revealed highly variable placental transfer of potentially protective antibodies and emphasized the importance of pregnancy immunization timing to reach peak antibody levels prior to delivery. While there was no discernible impact of maternal immunization on late infant oral virus acquisition, we observed a strong correlation between the percentage of activated CD4+ T cells in infant peripheral blood and a reduced number of challenges to infection. This finding highlights an important consideration for future studies evaluating alternative strategies to further reduce the vertical HIV-1 transmission risk. Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) contributes to an estimated 150,000 new infections annually. Maternal vaccination has proven safe and effective at mitigating the impact of other neonatal pathogens and is one avenue toward generating the potentially protective immune responses necessary to inhibit HIV-1 infection of infants through breastfeeding. In the present study, we tested the efficacy of a maternal vaccine regimen consisting of a modified vaccinia virus Ankara (MVA) 1086.C gp120 prime-combined intramuscular-intranasal gp120 boost administered during pregnancy and postpartum to confer passive protection on infant rhesus macaques against weekly oral exposure to subtype C simian-human immunodeficiency virus 1157ipd3N4 (SHIV1157ipd3N4) starting 6 weeks after birth. Despite eliciting a robust systemic envelope (Env)-specific IgG response, as well as durable milk IgA responses, the maternal vaccine did not have a discernible impact on infant oral SHIV acquisition. This study revealed considerable variation in vaccine-elicited IgG placental transfer and a swift decline of both Env-specific antibodies (Abs) and functional Ab responses in the infants prior to the first challenge, illustrating the importance of pregnancy immunization timing to elicit optimal systemic Ab levels at birth. Interestingly, the strongest correlation to the number of challenges required to infect the infants was the percentage of activated CD4+ T cells in the infant peripheral blood at the time of the first challenge. These findings suggest that, in addition to maternal immunization, interventions that limit the activation of target cells that contribute to susceptibility to oral HIV-1 acquisition independently of vaccination may be required to reduce infant HIV-1 acquisition via breastfeeding. IMPORTANCE Without novel strategies to prevent mother-to-child HIV-1 transmission, more than 5% of HIV-1-exposed infants will continue to acquire HIV-1, most through breastfeeding. This study of rhesus macaque dam-and-infant pairs is the first preclinical study to investigate the protective role of transplacentally transferred HIV-1 vaccine-elicited antibodies and HIV-1 vaccine-elicited breast milk antibody responses in infant oral virus acquisition. It revealed highly variable placental transfer of potentially protective antibodies and emphasized the importance of pregnancy immunization timing to reach peak antibody levels prior to delivery. While there was no discernible impact of maternal immunization on late infant oral virus acquisition, we observed a strong correlation between the percentage of activated CD4+ T cells in infant peripheral blood and a reduced number of challenges to infection. This finding highlights an important consideration for future studies evaluating alternative strategies to further reduce the vertical HIV-1 transmission risk.
Collapse
|
11
|
Impact of Poxvirus Vector Priming, Protein Coadministration, and Vaccine Intervals on HIV gp120 Vaccine-Elicited Antibody Magnitude and Function in Infant Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00231-17. [PMID: 28814388 DOI: 10.1128/cvi.00231-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Abstract
Despite success in reducing vertical HIV transmission by maternal antiretroviral therapy, several obstacles limit its efficacy during breastfeeding, and breast-milk transmission is now the dominant mode of mother-to-child transmission (MTCT) of HIV in infants. Thus, a pediatric vaccine is needed to eradicate oral HIV infections in newborns and infants. Utilizing the infant rhesus macaque model, we compared 3 different vaccine regimens: (i) HIV envelope (Env) protein only, (ii) poxvirus vector (modified vaccinia virus Ankara [MVA])-HIV Env prime and HIV Env boost, and (iii) coadministration of HIV Env and MVA-HIV Env at all time points. The vaccines were administered with an accelerated, 3-week-interval regimen starting at birth for early induction of highly functional HIV Env-specific antibodies. We also tested whether an extended, 6-week immunization interval using the same vaccine regimen as in the coadministration group would enhance the quality of antibody responses. We found that pediatric HIV vaccines administered at birth are effective in inducing HIV Env-specific plasma IgG. The vaccine regimen consisting of only HIV Env protein induced the highest levels of variable region 1 and 2 (V1V2)-specific antibodies and tier 1 neutralizing antibodies, whereas the extended-interval regimen induced both persistent Env-specific systemic IgG and mucosal IgA responses. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies in plasma were elicited by all vaccine regimens. These data suggest that infant immunizations beginning at birth are effective for the induction of functional HIV Env-specific antibodies that could potentially protect against breast milk transmission of HIV and set the stage for immunity prior to sexual debut.
Collapse
|
12
|
Carryl H, Van Rompay KKA, De Paris K, Burke MW. Hippocampal Neuronal Loss in Infant Macaques Orally Infected with Virulent Simian Immunodeficiency Virus (SIV). Brain Sci 2017; 7:E40. [PMID: 28394273 PMCID: PMC5406697 DOI: 10.3390/brainsci7040040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
The neurological impact of Human Immunodeficiency Virus (HIV) on children includes loss of brain growth, motor abnormalities and cognitive dysfunction. Despite early antiretroviral treatment (ART) intervention to suppress viral load, neurological consequences of perinatal HIV-1 infection persist. Utilizing the pediatric simian immunodeficiency virus (SIV) infection model, we tested the hypothesis that early-life SIV infection depletes neuronal population in the hippocampus. A total of 22 ART-naïve infant rhesus macaques (Macaca mulatta) from previous studies were retrospectively analyzed. Infant macaques were either intravenously (IV) inoculated with highly virulent SIVmac251 at ~1 week of age and monitored for 6-10 weeks, or orally challenged with SIVmac251 from week 9 of age onwards with a monitoring period of 10-23 weeks post-infection (19-34 weeks of age), and SIV-uninfected controls were euthanized at 16-17 weeks of age. We have previously reported that the IV SIVmac251-infected neonatal macaques (Group 1) displayed a 42% neuronal reduction throughout the hippocampal cornu ammonis (CA) fields. The orally-infected infant macaques displayed a 75% neuronal reduction in the CA1 region compared to controls and 54% fewer neurons than IV SIV infants. The CA2 region showed a similar pattern, with a 67% reduction between orally-infected SIV subjects and controls and a 40% difference between IV-and orally-infected SIV groups. In the CA3 region, there were no significant differences between these groups, however both SIV-infected groups had significantly fewer pyramidal neurons than control subjects. There was no correlation between plasma viral load and neuronal populations in any of the CA fields. The loss of hippocampal neurons may contribute to the rapid neurocognitive decline associated with pediatric HIV infection. While each subfield showed vulnerability to SIV infection, the CA1 and CA2 subregions demonstrated a potentially enhanced vulnerability to pediatric SIV infection. These data underscore the need for early diagnosis and treatment, including therapeutics targeting the central nervous system (CNS).
Collapse
Affiliation(s)
- Heather Carryl
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA.
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
13
|
dela Peña-Ponce MG, Rodriguez-Nieves J, Bernhardt J, Tuck R, Choudhary N, Mengual M, Mollan KR, Hudgens MG, Peter-Wohl S, De Paris K. Increasing JAK/STAT Signaling Function of Infant CD4 + T Cells during the First Year of Life. Front Pediatr 2017; 5:15. [PMID: 28271056 PMCID: PMC5318443 DOI: 10.3389/fped.2017.00015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Most infant deaths occur in the first year of life. Yet, our knowledge of immune development during this period is scarce and derived from cord blood (CB) only. To more effectively combat pediatric diseases, a deeper understanding of the kinetics and the factors that regulate the maturation of immune functions in early life is needed. Increased disease susceptibility of infants is generally attributed to T helper 2-biased immune responses. The differentiation of CD4+ T cells along a specific T helper cell lineage is dependent on the pathogen type, and on costimulatory and cytokine signals provided by antigen-presenting cells. Cytokines also regulate many other aspects of the host immune response. Therefore, toward the goal of increasing our knowledge of early immune development, we defined the temporal development of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling function of CD4+ T cells using cross-sectional blood samples from healthy infants ages 0 (birth) to 14 months. We specifically focused on cytokines important in T cell differentiation (IFN-γ, IL-12, and IL-4) or in T cell survival and expansion (IL-2 and IL-7) in infant CD4+ T cells. Independent of the cytokine tested, JAK/STAT signaling in infant compared to adult CD4+ T cells was impaired at birth, but increased during the first year, with the most pronounced changes occurring in the first 6 months. The relative change in JAK/STAT signaling of infant CD4+ T cells with age was distinct for each cytokine tested. Thus, while about 60% of CB CD4+ T cells could efficiently activate STAT6 in response to IL-4, less than 5% of CB CD4+ T cells were able to activate the JAK/STAT pathway in response to IFN-γ, IL-12 or IL-2. By 4-6 months of age, the activation of the cytokine-specific STAT molecules was comparable to adults in response to IL-4 and IFN-γ, while IL-2- and IL-12-induced STAT activation remained below adult levels even at 1 year. These results suggest that common developmental and cytokine-specific factors regulate the maturation of the JAK/STAT signaling function in CD4+ T cells during the first year of life.
Collapse
Affiliation(s)
- Myra Grace dela Peña-Ponce
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer Rodriguez-Nieves
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Janice Bernhardt
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan Tuck
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Neelima Choudhary
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Mengual
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Katie R. Mollan
- Lineberger Cancer Center, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Gillings School of Global Public Health, Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
| | - Sigal Peter-Wohl
- Division of Neonatal Perinatal Medicine, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Jensen K, Dela Pena-Ponce MG, Piatak M, Shoemaker R, Oswald K, Jacobs WR, Fennelly G, Lucero C, Mollan KR, Hudgens MG, Amedee A, Kozlowski PA, Estes JD, Lifson JD, Van Rompay KKA, Larsen M, De Paris K. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00360-16. [PMID: 27655885 PMCID: PMC5216431 DOI: 10.1128/cvi.00360-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Myra Grace Dela Pena-Ponce
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Glenn Fennelly
- Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Katie R Mollan
- Lineberger Cancer Center and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Michelle Larsen
- Albert Einstein College of Medicine, New York, New York, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Jensen K, Nabi R, Van Rompay KKA, Robichaux S, Lifson JD, Piatak M, Jacobs WR, Fennelly G, Canfield D, Mollan KR, Hudgens MG, Larsen MH, Amedee AM, Kozlowski PA, De Paris K. Vaccine-Elicited Mucosal and Systemic Antibody Responses Are Associated with Reduced Simian Immunodeficiency Viremia in Infant Rhesus Macaques. J Virol 2016; 90:7285-7302. [PMID: 27252535 PMCID: PMC4984660 DOI: 10.1128/jvi.00481-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Despite significant progress in reducing peripartum mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) with antiretroviral therapy (ART), continued access to ART throughout the breastfeeding period is still a limiting factor, and breast milk exposure to HIV accounts for up to 44% of MTCT. As abstinence from breastfeeding is not recommended, alternative means are needed to prevent MTCT of HIV. We have previously shown that oral vaccination at birth with live attenuated Mycobacterium tuberculosis strains expressing simian immunodeficiency virus (SIV) genes safely induces persistent SIV-specific cellular and humoral immune responses both systemically and at the oral and intestinal mucosa. Here, we tested the ability of oral M. tuberculosis vaccine strains expressing SIV Env and Gag proteins, followed by systemic heterologous (MVA-SIV Env/Gag/Pol) boosting, to protect neonatal macaques against oral SIV challenge. While vaccination did not protect infant macaques against oral SIV acquisition, a subset of immunized animals had significantly lower peak viremia which inversely correlated with prechallenge SIV Env-specific salivary and intestinal IgA responses and higher-avidity SIV Env-specific IgG in plasma. These controller animals also maintained CD4(+) T cell populations better and showed reduced tissue pathology compared to noncontroller animals. We show that infants vaccinated at birth can develop vaccine-induced SIV-specific IgA and IgG antibodies and cellular immune responses within weeks of life. Our data further suggest that affinity maturation of vaccine-induced plasma antibodies and induction of mucosal IgA responses at potential SIV entry sites are associated with better control of viral replication, thereby likely reducing SIV morbidity. IMPORTANCE Despite significant progress in reducing peripartum MTCT of HIV with ART, continued access to ART throughout the breastfeeding period is still a limiting factor. Breast milk exposure to HIV accounts for up to 44% of MTCT. Alternative measures, in addition to ART, are needed to achieve the goal of an AIDS-free generation. Pediatric HIV vaccines constitute a core component of such efforts. The results of our pediatric vaccine study highlight the potential importance of vaccine-elicited mucosal Env-specific IgA responses in combination with high-avidity systemic Env-specific IgG in protection against oral SIV transmission and control of viral replication in infant macaques. The induction of potent mucosal IgA antibodies by our vaccine is remarkable considering the age-dependent development of mucosal IgA responses postbirth. A deeper understanding of postnatal immune development may inform the design of improved vaccine strategies to enhance systemic and mucosal SIV/HIV antibody responses.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rafiq Nabi
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California at Davis, Davis, California, USA
| | - Spencer Robichaux
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | | | - Glenn Fennelly
- Albert Einstein College of Medicine, New York, New York, USA
| | - Don Canfield
- California National Primate Research Center, University of California at Davis, Davis, California, USA
| | - Katie R Mollan
- Lineberger Cancer Center and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Gillings School of Public Health and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Angela M Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Korioth-Schmitz B, Perley CC, Sixsmith JD, Click EM, Lee S, Letvin NL, Frothingham R. Rhesus immune responses to SIV Gag expressed by recombinant BCG vectors are independent from pre-existing mycobacterial immunity. Vaccine 2015; 33:5715-5722. [PMID: 26192357 DOI: 10.1016/j.vaccine.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/02/2015] [Accepted: 07/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND A recombinant Mycobacterium bovis BCG (rBCG) vector expressing HIV transgenes is an attractive candidate as a dual vaccine against HIV and TB. However, pre-existing immune responses to mycobacteria may influence immune responses to rBCG. We analyzed data from a rhesus rBCG trial to determine the effect of pre-existing mycobacterial immune responses on the vaccine-induced responses to the vector and expressed transgene. METHODS Indian-origin rhesus macaques were primed with rBCG expressing simian immunodeficiency virus (SIV) Gag and boosted with attenuated vaccinia NYVAC gag-pol. Mycobacteria responses were measured by Mycobacterium tuberculosis (Mtb) purified protein derivative (PPD) interferon-γ ELISpot and Mtb whole cell lysate (WCL) ELISA. SIV Gag responses were measured by SIV Gag ELISpot and by p11C tetramer binding. RESULTS Baseline Mtb PPD ELISpot responses and Mtb WCL antibody responses in rhesus macaques overlapped those in human populations. Cellular and antibody responses boosted sharply 4 weeks after rBCG vaccination. Mtb WCL antibody titers at 4 weeks correlated with baseline titers. Primates vaccinated with rBCG developed strong SIV Gag ELISpot and p11C tetramer responses after rBCG prime and NYVAC boost. There were no correlations between the pre-existing mycobacterial immune responses and the SIV Gag T cell responses after vaccination. CONCLUSIONS Rhesus immune responses to SIV Gag expressed by rBCG vectors were independent from pre-existing anti-mycobacterial immunity. Rhesus macaques may serve as a surrogate for investigations of pre-existing anti-mycobacterial immunity in humans.
Collapse
Affiliation(s)
- Birgit Korioth-Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Casey C Perley
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Jaimie D Sixsmith
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Eva M Click
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Sunhee Lee
- Duke University School of Medicine, Durham, NC 27710, United States
| | - Norman L Letvin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
17
|
Poles J, Alvarez Y, Hioe CE. Induction of intestinal immunity by mucosal vaccines as a means of controlling HIV infection. AIDS Res Hum Retroviruses 2014; 30:1027-40. [PMID: 25354023 DOI: 10.1089/aid.2014.0233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD4(+) T cells in the mucosa of the gastrointestinal (GI) tract are preferentially targeted and depleted by HIV. As such, the induction of an effective anti-HIV immune response in the mucosa of the GI tract-through vaccination-could protect this vulnerable population of cells. Mucosal vaccination provides a promising means of inducing robust humoral and cellular responses in the GI tract. Here we review data from the literature about the effectiveness of various mucosal vaccination routes--oral (intraintestinal/tonsilar/sublingual), intranasal, and intrarectal--with regard to the induction of immune responses mediated by cytotoxic T cells and antibodies in the GI mucosa, as well as protective efficacy in challenge models. We present data from the literature indicating that mucosal routes have the potential to effectively elicit GI mucosal immunity and protect against challenge. Given their capacity for the induction of anti-HIV immune responses in the GI mucosa, we propose that mucosal routes, including the nonconventional sublingual, tonsilar, and intrarectal routes, be considered for the delivery of the next generation HIV vaccines. However, further studies are necessary to determine the ideal vectors and vaccination regimens for these routes of immunization and to validate their efficacy in controlling HIV infection.
Collapse
Affiliation(s)
- Jordan Poles
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Yelina Alvarez
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| | - Catarina E. Hioe
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| |
Collapse
|