1
|
Shah Y, Yang H, Mueller FB, Li C, Gul Rahim SE, Varma E, Salinas T, Dadhania DM, Salvatore SP, Seshan SV, Sharma VK, Elemento O, Suthanthiran M, Muthukumar T. Transcriptomic signatures of chronic active antibody-mediated rejection deciphered by RNA sequencing of human kidney allografts. Kidney Int 2024; 105:347-363. [PMID: 38040290 PMCID: PMC10841597 DOI: 10.1016/j.kint.2023.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023]
Abstract
Natural killer (NK) cells mediate spontaneous cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. This dual functionality could enable their participation in chronic active antibody-mediated rejection (CA-ABMR). Earlier microarray profiling studies have not subcategorized antibody-mediated rejection into CA-ABMR and active-ABMR, and the gene expression pattern of CA-ABMR has not been compared with that of T cell-mediated rejection (TCMR). To fill these gaps, we RNA sequenced human kidney allograft biopsies categorized as CA-ABMR, active-ABMR, TCMR, or No Rejection (NR). Among the 15,910 genes identified in the biopsies, 60, 114, and 231 genes were uniquely overexpressed in CA-ABMR, TCMR, and active-ABMR, respectively; compared to NR, 50 genes were shared between CA-ABMR and active-ABMR, and 164 genes between CA-ABMR and TCMR. The overexpressed genes were annotated to NK cells and T cells in CA-ABMR and TCMR, and to neutrophils and monocytes in active-ABMR. The NK cell cytotoxicity and allograft rejection pathways were enriched in CA-ABMR. Genes encoding perforin, granzymes, and death receptor were overexpressed in CA-ABMR versus active-ABMR but not compared to TCMR. NK cell cytotoxicity pathway gene set variation analysis score was higher in CA-ABMR compared to active-ABMR but not in TCMR. Principal component analysis of the deconvolved immune cellular transcriptomes separated CA-ABMR and TCMR from active-ABMR and NR. Immunohistochemistry of kidney allograft biopsies validated a higher proportion of CD56+ NK cells in CA-ABMR than in active-ABMR. Thus, CA-ABMR was exemplified by the overexpression of the NK cell cytotoxicity pathway gene set and, surprisingly, molecularly more like TCMR than active-ABMR.
Collapse
Affiliation(s)
- Yajas Shah
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA; Graduate Program in Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York, USA
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Franco B Mueller
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Shab E Gul Rahim
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Elly Varma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thalia Salinas
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; Department of Transplantation Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA
| | - Darshana M Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; Department of Transplantation Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA
| | - Steven P Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Surya V Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Vijay K Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA; Graduate Program in Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; Department of Transplantation Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, New York, USA; Department of Transplantation Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA.
| |
Collapse
|
2
|
Eyford BA, Lazarczyk MJ, Choi KB, Varghese M, Arora H, Kari S, Munro L, Pfeifer CG, Sowa A, Dickstein DR, Dickstein DL, Jefferies WA. Outside-in signaling through the major histocompatibility complex class-I cytoplasmic tail modulates glutamate receptor expression in neurons. Sci Rep 2023; 13:13079. [PMID: 37567897 PMCID: PMC10421907 DOI: 10.1038/s41598-023-38663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
The interplay between AMPA-type glutamate receptors (AMPARs) and major histocompatibility complex class I (MHC-I) proteins in regulating synaptic signaling is a crucial aspect of central nervous system (CNS) function. In this study, we investigate the significance of the cytoplasmic tail of MHC-I in synaptic signaling within the CNS and its impact on the modulation of synaptic glutamate receptor expression. Specifically, we focus on the Y321 to F substitution (Y321F) within the conserved cytoplasmic tyrosine YXXΦ motif, known for its dual role in endocytosis and cellular signaling of MHC-I. Our findings reveal that the Y321F substitution influences the expression of AMPAR subunits GluA2/3 and leads to alterations in the phosphorylation of key kinases, including Fyn, Lyn, p38, ERK1/2, JNK1/2/3, and p70 S6 kinase. These data illuminate the crucial role of MHC-I in AMPAR function and present a novel mechanism by which MHC-I integrates extracellular cues to modulate synaptic plasticity in neurons, which ultimately underpins learning and memory.
Collapse
Affiliation(s)
- Brett A Eyford
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
| | - Maciej J Lazarczyk
- Division of Institutional Measures, Department of Medical Direction and Quality, University Hospitals of Geneva, Geneva, Switzerland
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Kyung Bok Choi
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Hitesh Arora
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Suresh Kari
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lonna Munro
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Allison Sowa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Daniel R Dickstein
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Dara L Dickstein
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
- Department of Pathology, Uniformed Services University of Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Wilfred A Jefferies
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- The Vancouver Prostate Centre, Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
- Department of Medical Genetics, University of British Columbia, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Wilcox EC, Edelman ER. Substratum interactions determine immune response to allogeneic transplants of endothelial cells. Front Immunol 2022; 13:946794. [PMID: 36003373 PMCID: PMC9393654 DOI: 10.3389/fimmu.2022.946794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/12/2022] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) are central to vascular health but also interact with and regulate the immune system. Changes in endothelial state enable immune cells to migrate into the tissue to facilitate repair and fight infection. ECs modulate the function of immune cells through the expression of adhesion molecules, chemokines, major histocompatibility complex (MHC), and an array of co-stimulatory and inhibitor molecules. These interactions allow ECs to act as antigen presenting cells (APCs) and influence the outcome of immune recognition. This study elucidates how EC microenvironment, vascular cell biology, and immune response are not only connected but interdependent. More specifically, we explored how cell-substratum interactions influence EC antigen presentation and co-stimulation, and how these differences affect allorecognition in animal models of cell transplantation. Investigation of EC state was carried out using RNA sequencing while assessment of the allogeneic response includes measurements of immune cell cytotoxic ability, T cell proliferation, cytokine release, serum antibodies, and histological staining. Differences in substratum led to divergent EC phenotypes which in turn influenced immune response to transplanted cells, both due to the physical barrier of matrix-adhesion and differences in expression of surface markers. ECs grown in 2D on tissue culture plastic or in 3D on collagen scaffolds had significantly different basal levels of MHC expression, co-stimulatory and adhesion molecules. When treated with cytokines to mimic an inflammatory state, ECs did not converge to a single phenotype but rather responded differently based on their substratum. Generally, 3D ECs were more responsive to inflammatory stimuli than 2D ECs. These unique expression patterns measured in vitro also influence immune recognition in vivo. ECs grown in 2D were more likely to provoke a cytotoxic response while 3D ECs induced T cell proliferation. ECs are uniquely configured to sense not only local flow and mechanical forces but a range of markers related to systemic state, including immune function. ECs interact with immune cells with differing results depending on the environment in which the EC-lymphocyte interaction occurs. Therefore, understanding this relationship is essential to predicting and modifying the outcome of EC-immune interacts. We specifically examined the relationship between EC substratum and allorecognition.
Collapse
Affiliation(s)
- Elise C. Wilcox
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Elise C. Wilcox,
| | - Elazer R. Edelman
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Farrington CA, Cutter G, Allon M. Arteriovenous Fistula Nonmaturation: What's the Immune System Got to Do with It? KIDNEY360 2021; 2:1743-1751. [PMID: 35373006 PMCID: PMC8785854 DOI: 10.34067/kid.0003112021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023]
Abstract
Background Arteriovenous fistula (AVF) nonmaturation is a persistent problem, particularly among female and Black patients. Increasingly, the immune system has been recognized as an important contributor to vascular disease, but few studies have examined immune factors relative to AVF maturation outcomes. This study evaluated the association of serum panel reactive antibodies (PRA), a measure of immune system reactivity assessed in patients undergoing kidney transplant evaluation, with AVF nonmaturation. Methods We identified 132 patients at our institution who underwent surgical AVF placement between 2010-2019 and had PRA testing within 1 year of AVF creation. Multivariable logistic regression was used to determine the association of patient demographic and clinical factors, class I and class II PRA levels, and preoperative arterial and venous diameters with AVF maturation outcomes. Results AVF nonmaturation was more likely in females than males (44% versus 20%, P=0.003) and in Black than white patients (40% versus 13%, P=0.001). Class II PRA was higher in females than males (12%±23% versus 4%±13%, P=0.02). In the multivariable model, AVF nonmaturation was associated with class II PRA (adjusted odds ratio [aOR], 1.34 per 10% increase; 95% confidence interval [95% CI], 1.04 to 1.82, P=0.02) and Black race (aOR, 3.34; 95% CI, 1.02 to 10.89, P=0.03), but not with patient sex or preoperative arterial or venous diameters. Conclusions The association of elevated class II PRA with AVF nonmaturation suggests the immune system may play a role in AVF maturation outcomes, especially among female patients.
Collapse
Affiliation(s)
| | - Gary Cutter
- School of Public Health, University of Alabama, Birmingham, Alabama
| | - Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:605958. [PMID: 33384693 PMCID: PMC7770133 DOI: 10.3389/fimmu.2020.605958] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells, for example dendritic cells (DCs) and T cells, or immune cells and their targets, such as T cells and virus-infected or tumor cells. However, much less appreciated is the fact that MHC molecules can also act as signaling receptors. In this process, here referred to as reverse MHC class I (MHC-I) signaling, ligation of MHC molecules can lead to signal-transduction and cell regulatory effects in the antigen presenting cell. In the case of MHC-I, reverse signaling can have several outcomes, including apoptosis, migration, induced or reduced proliferation and cytotoxicity towards target cells. Here, we provide an overview of studies showing the signaling pathways and cell outcomes upon MHC-I stimulation in various immune and non-immune cells. Signaling molecules like RAC-alpha serine/threonine-protein kinase (Akt1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB) were common signaling molecules activated upon MHC-I ligation in multiple cell types. For endothelial and smooth muscle cells, the in vivo relevance of reverse MHC-I signaling has been established, namely in the context of adverse effects after tissue transplantation. For other cell types, the role of reverse MHC-I signaling is less clear, since aspects like the in vivo relevance, natural MHC-I ligands and the extended downstream pathways are not fully known.The existing evidence, however, suggests that reverse MHC-I signaling is involved in the regulation of the defense against bacterial and viral infections and against malignancies. Thereby, reverse MHC-I signaling is a potential target for therapies against viral and bacterial infections, cancer immunotherapies and management of organ transplantation outcomes.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luca D Meesters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Microbiology and Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
6
|
Pashov A, Hernandez Puente CV, Ibrahim SM, Monzavi-Karbassi B, Makhoul I, Kieber-Emmons T. Thinking Cancer. Monoclon Antib Immunodiagn Immunother 2018; 37:117-125. [PMID: 29939836 DOI: 10.1089/mab.2018.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Evolutionary theories are necessarily invoked for understanding cancer development at the level of species, at the level of cells and tissues, and for developing effective therapies. It is crucial to view cancer in a Darwinian light, where the differential survival of individual cells is based on heritable variations. In the process of this somatic evolution, multicellularity controls are overridden by cancer cells, which become increasingly autonomous. Ecological epigenetics also helps understand how rogue cells that have basically the same DNA as their normal cell counterpart overcome the tissue homeostasis. As we struggle to wrap our minds around the complexity of these phenomena, we apply often times anthropomorphic terms, such as subversion, hijacking, or hacking, to describe especially the most complex among them-the interaction of tumors with the immune system. In this commentary we highlight examples of the anthropomorphic thinking of cancer and try to put into context the relative meaning of terms and the mechanisms that are oftentimes invoked to justify those terms.
Collapse
Affiliation(s)
- Anastas Pashov
- 1 Stephan Angelov Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Behjatolah Monzavi-Karbassi
- 3 Department of Pathology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Issam Makhoul
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 5 Department of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Thomas Kieber-Emmons
- 3 Department of Pathology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
7
|
Verghese PS, Reed RC, Lihong B, Matas AJ, Kim Y. The clinical implications of the unique glomerular complement deposition pattern in transplant glomerulopathy. J Nephrol 2016; 31:157-164. [PMID: 27848227 DOI: 10.1007/s40620-016-0365-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/05/2016] [Indexed: 11/25/2022]
Abstract
The etiology and treatment of transplant glomerulopathy (TG) is not clear. TG is associated with donor-specific antibodies but the lack of C4d deposition in the peritubular capillaries (ptc-C4d) in some cases has caused the role of complement in the pathogenesis of TG to be debated. There is however, little information on C4d deposition in the glomerulus itself. We retrieved random frozen sections from 25 cases with well-established TG by light microscopy (LM) and 25 cases without TG as controls and reviewed the LM and immunofluorescence (nine biopsies were excluded due to inadequate samples). Glomerular complement deposition was assessed in all included biopsies. Glomerular C3d and C4d deposition occurred in a distinct pattern in all TG biopsies: segmental or global double linear staining of the glomerular capillary wall in 23 (100%). This pattern was not present in any NON-TG biopsies. The distinct glomerular complement deposition patterns in all TG cases are suggestive that TG is a proximal complement-mediated process and therapies should focus on proximal complement inhibition.
Collapse
Affiliation(s)
- Priya S Verghese
- Division of Pediatric Nephrology, University of Minnesota, Minneapolis, USA.
| | - Robin C Reed
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Bu Lihong
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Youngki Kim
- Division of Pediatric Nephrology, University of Minnesota, Minneapolis, USA
| |
Collapse
|
8
|
Trayssac M, Galvani S, Augé N, Sabbadini R, Calise D, Mucher E, Sallusto F, Thomsen M, Salvayre R, Nègre-Salvayre A. Role of Sphingosine-1-Phosphate in Transplant Vasculopathy Evoked by Anti-HLA Antibody. Am J Transplant 2015; 15:2050-61. [PMID: 25930666 DOI: 10.1111/ajt.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/04/2015] [Accepted: 02/11/2015] [Indexed: 01/25/2023]
Abstract
Transplant vasculopathy (TV) represents the main cause of late graft failure and limits the long-term success of organ transplantation. Cellular and humoral immune responses contribute to the pathogenesis of the concentric and diffuse intimal hyperplasia of arteries of the grafted organ. We recently reported that the mitogenic signaling, evoked in human vascular smooth muscle cells (hmSMC) by the anti-HLA class I monoclonal antibody W6/32, implicates neutral sphingomyelinase-2, suggesting a role for sphingolipids in intimal hyperplasia of TV. Here, we investigated whether the mitogenic sphingolipid, sphingosine-1-phosphate (S1P), is involved in intimal hyperplasia elicited by W6/32. Studies were done on cultured hmSMC and on an in vivo model of TV, consisting of human mesenteric arteries grafted into SCID/beige mice, injected weekly with W6/32. hmSMC migration and DNA synthesis elicited by W6/32 were inhibited by the sphingosine kinase-1 (SK1) inhibitor dimethylsphingosine, the anti-S1P antibody Sphingomab and the S1PR1/R3 inhibitor VPC23019. W6/32 stimulated SK1 activity, while siRNA silencing SK1, S1PR1 and S1PR3 inhibited hmSMC migration. In vivo, Sphingomab significantly reduced the intimal thickening induced by W6/32. These data emphasize the role of S1P in intimal hyperplasia elicited by the humoral immune response, and open perspectives for preventing TV with S1P inhibitors.
Collapse
Affiliation(s)
- M Trayssac
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - S Galvani
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - N Augé
- INSERM UMR-1048, Toulouse, France
| | - R Sabbadini
- Lpath, Inc., and Department of Biology, San Diego State University, San Diego, CA
| | - D Calise
- INSERM UMR-1048, Toulouse, France
| | - E Mucher
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | - F Sallusto
- CHU Rangueil, Department of Nephrology, Toulouse, France
| | - M Thomsen
- INSERM UMR-1048, Toulouse, France.,INSERM UMR-1027, Toulouse, France
| | - R Salvayre
- INSERM UMR-1048, Toulouse, France.,Biochemistry Department, University of Toulouse, Faculty of Medicine, Toulouse, France
| | | |
Collapse
|
9
|
Al-Daccak R, Charron D. Allogenic benefit in stem cell therapy: cardiac repair and regeneration. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/tan.12614] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R. Al-Daccak
- Laboratoire “Jean Dausset” Hôpital Saint Louis - AP-HP; INSERM U976, Université Paris Diderot; Paris France
| | - D. Charron
- Laboratoire “Jean Dausset” Hôpital Saint Louis - AP-HP; INSERM U976, Université Paris Diderot; Paris France
| |
Collapse
|
10
|
New insights regarding chronic antibody-mediated rejection and its progression to transplant glomerulopathy. Curr Opin Nephrol Hypertens 2015; 23:611-8. [PMID: 25295960 DOI: 10.1097/mnh.0000000000000070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF THIS REVIEW To discuss new insights regarding chronic antibody-mediated rejection (CAMR) and its progression to transplant glomerulopathy. We will describe the progression to transplant glomerulopathy from a histologic perspective and provide updates on what is known about its pathophysiology, prognosis, and potential therapy. RECENT FINDINGS Transplant glomerulopathy is a major contributor to long-term renal allograft loss and is most often associated with CAMR. On the basis of protocol biopsies, we have found that 3.5% of conventional transplants and 27.5% of positive crossmatch kidney transplants have transplant glomerulopathy at 1 year. The pathophysiology of the process is largely unknown, but complement activation was previously thought to be essential. However, CAMR appears to develop despite terminal complement blockade and many C4d negative cases of CAMR have been identified. Thus, complement independent mechanisms, such as direct endothelial cell activation and the infiltration of natural killer cells and monocytes, are likely key to the development of transplant glomerulopathy. SUMMARY Transplant glomerulopathy is often the result of CAMR and leads to allograft loss. It is characterized by distinctive histologic changes, and its pathophysiology is a multifaceted process involving both innate and adaptive immunity. Despite advances in the understanding of this condition, no effective therapy exists.
Collapse
|
11
|
Tsai EW, Reed EF. MHC class I signaling: new functional perspectives for an old molecule. ACTA ACUST UNITED AC 2015; 83:375-81. [PMID: 24828054 DOI: 10.1111/tan.12381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Donor-specific antibodies are associated with refractory rejection episodes and poor allograft outcomes in solid organ transplantation. Our understanding of antibody-mediated allograft injury is expanding beyond complement deposition. In fact, unique mechanisms of alloantibodies are advancing our knowledge about transplant vasculopathy and antibody-mediated rejection. These include direct effects on the endothelium, resulting in the recruitment of leukocytes, chemokine and cytokine production, and stimulation of innate and adaptive alloresponses. These effects will be the focus of the following review.
Collapse
Affiliation(s)
- E W Tsai
- Mattel Children's Hospital UCLA, Division of Pediatric Nephrology, Los Angeles, CA, USA
| | | |
Collapse
|
12
|
Kim JJ, Balasubramanian R, Michaelides G, Wittenhagen P, Sebire NJ, Mamode N, Shaw O, Vaughan R, Marks SD. The clinical spectrum of de novo donor-specific antibodies in pediatric renal transplant recipients. Am J Transplant 2014; 14:2350-8. [PMID: 25167892 DOI: 10.1111/ajt.12859] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/13/2014] [Accepted: 06/03/2014] [Indexed: 01/25/2023]
Abstract
The development of donor-specific HLA antibodies (DSA) is associated with worse renal allograft survival in adult patients. This study assessed the natural history of de novo DSA, and its impact on renal function in pediatric renal transplant recipients (RTR). HLA antibodies were measured prospectively using single-antigen-bead assays at 1, 3, 6 and 12 months posttransplant followed by 12-monthly intervals and during episodes of allograft dysfunction. Of 215 patients with HLA antibody monitoring, 75 (35%) developed DSA at median of 0.25 years posttransplant with a high prevalence of Class II (70%) and HLA-DQ (45%) DSA. DSA resolved in 35 (47%) patients and was associated with earlier detection (median, inter-quartile range 0.14, 0.09-0.33 vs. 0.84, 0.15-2.37 years) and lower mean fluorescence intensity (MFI) (2658, 1573-3819 vs. 7820, 5166-11 990). Overall, DSA positive patients had more rapid GFR decline with a 50% reduction in GFR at mean 5.3 (CI: 4.7-5.8) years versus 6.1 (5.7-6.4) years in DSA negative patients (p = 0.02). GFR decreased by a magnitude of 1 mL/min/1.73 m(2) per log10 increase in Class II DSA MFI (p < 0.01). Using Cox regression, independent factors predicting poorer renal allograft outcome were older age at transplant (hazard ratio 1.1, CI: 1.0-1.2 per year), tubulitis (1.5, 1.3-1.8) and microvasculature injury (2.9, 1.4-5.7). In conclusion, pediatric RTR with de novo DSA and microvasculature injury were at risk of allograft failure.
Collapse
Affiliation(s)
- J J Kim
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; MRC Centre for Transplantation, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lipshultz SE, Chandar JJ, Rusconi PG, Fornoni A, Abitbol CL, Burke GW, Zilleruelo GE, Pham SM, Perez EE, Karnik R, Hunter JA, Dauphin DD, Wilkinson JD. Issues in solid-organ transplantation in children: translational research from bench to bedside. Clinics (Sao Paulo) 2014; 69 Suppl 1:55-72. [PMID: 24860861 PMCID: PMC3884162 DOI: 10.6061/clinics/2014(sup01)11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we identify important challenges facing physicians responsible for renal and cardiac transplantation in children based on a review of the contemporary medical literature. Regarding pediatric renal transplantation, we discuss the challenge of antibody-mediated rejection, focusing on both acute and chronic antibody-mediated rejection. We review new diagnostic approaches to antibody-mediated rejection, such as panel-reactive antibodies, donor-specific cross-matching, antibody assays, risk assessment and diagnosis of antibody-mediated rejection, the pathology of antibody-mediated rejection, the issue of ABO incompatibility in renal transplantation, new therapies for antibody-mediated rejection, inhibiting of residual antibodies, the suppression or depletion of B-cells, genetic approaches to treating acute antibody-mediated rejection, and identifying future translational research directions in kidney transplantation in children. Regarding pediatric cardiac transplantation, we discuss the mechanisms of cardiac transplant rejection, including the role of endomyocardial biopsy in detecting graft rejection and the role of biomarkers in detecting cardiac graft rejection, including biomarkers of inflammation, cardiomyocyte injury, or stress. We review cardiac allograft vasculopathy. We also address the role of genetic analyses, including genome-wide association studies, gene expression profiling using entities such as AlloMap®, and adenosine triphosphate release as a measure of immune function using the Cylex® ImmuKnow™ cell function assay. Finally, we identify future translational research directions in heart transplantation in children.
Collapse
Affiliation(s)
- Steven E Lipshultz
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jayanthi J Chandar
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Paolo G Rusconi
- Division of Pediatric Cardiology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - George W Burke
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaston E Zilleruelo
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Si M Pham
- Artificial Heart Programs, Transplant Institute, Jackson Memorial Division of Heart/Lung Transplant, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elena E Perez
- Division of Pediatric Immunology and Allergy, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ruchika Karnik
- Division of Pediatric Cardiology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanita A Hunter
- Division of Pediatric Cardiology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Danielle D Dauphin
- Division of Pediatric Clinical Research, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D Wilkinson
- Division of Pediatric Clinical Research, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
14
|
Charron D. Allogenicity & immunogenicity in regenerative stem cell therapy. Indian J Med Res 2013; 138:749-54. [PMID: 24434327 PMCID: PMC3928705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The development of regenerative medicine relies in part on the capacity of stem cells to differentiate into specialized cell types and reconstitute tissues and organs. The origin of the stem cells matters. While autologous cells were initially the preferred ones the need for "off the shelf" cells is becoming prevalent. These cells will be immediately available and they originate from young non diseased individuals. However their allogenicity can be viewed as a limitation to their use. Recent works including our own show that allogenicity of stem cell can be viewed as on one hand detrimental leading to their elimination and on the other hand beneficial through a paracrine effect that can induce a local tissue regenerative effect from endogenous stem cells. Also their immune modulatory capacity can be harnessed to favor regeneration. Therefore the immune phenotype of stem cells is an important criteria to be considered before their clinical use. Immuno monitoring of the consequences of their in vivo injection needs to be taken into account. Transplantation immunology knowledge will be instrumental to enable the development of safe personalized regenerative stem cell therapy.
Collapse
Affiliation(s)
- Dominique Charron
- Laboratoire “Jean Dausset” - Laboratoire d’Immunologie et d’Histocompatibilité, Hôpital Saint Louis, CIB-HOG, AP-HP & INSERM UMRS 940, Institut Universitaire d’Hématologie, Université Paris-Diderot, 1, Avenue Claude Vellefaux, 75010, Paris, France,Reprint requests: Dr Dominique Charron, Laboratoire “Jean Dausset” - Laboratoire d’Immunologie et d’Histocompatibilité, Hôpital Saint Louis, CIB-HOG, AP-HP & INSERM UMRS 940, Institut Universitaire d’Hématologie, Université Paris-Diderot, 1, Avenue Claude Vellefaux, 75010, Paris, France e-mail:
| |
Collapse
|
15
|
Arnold ML, Ntokou IS, Doxiadis II, Spriewald BM, Boletis JN, Iniotaki AG. Donor-specific HLA antibodies: evaluating the risk for graft loss in renal transplant recipients with isotype switch from complement fixing IgG1/IgG3 to noncomplement fixing IgG2/IgG4 anti-HLA alloantibodies. Transpl Int 2013; 27:253-61. [DOI: 10.1111/tri.12206] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Luise Arnold
- Department of Internal Medicine 3; Institute for Clinical Immunology; University of Erlangen-Nürnberg; Erlangen Germany
| | - Irma-Sofia Ntokou
- National Tissue Typing Center; General State Hospital of Athens ″G.Gennimatas˝; Athens Greece
| | - Ilias I.N. Doxiadis
- Eurotransplant Reference Laboratory; Leiden University Medical Center; Leiden The Netherlands
| | - Bernd M. Spriewald
- Department of Internal Medicine 5, Hematology and Oncology; University Erlangen-Nürnberg; Erlangen Germany
| | - John N. Boletis
- Nephrology Department and Transplantation Unit; Laikon Hospital; Athens Greece
| | - Aliki G. Iniotaki
- National Tissue Typing Center; General State Hospital of Athens ″G.Gennimatas˝; Athens Greece
| |
Collapse
|
16
|
|
17
|
Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation 2013; 95:19-47. [PMID: 23238534 DOI: 10.1097/tp.0b013e31827a19cc] [Citation(s) in RCA: 602] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The introduction of solid-phase immunoassay (SPI) technology for the detection and characterization of human leukocyte antigen (HLA) antibodies in transplantation while providing greater sensitivity than was obtainable by complement-dependent lymphocytotoxicity (CDC) assays has resulted in a new paradigm with respect to the interpretation of donor-specific antibodies (DSA). Although the SPI assay performed on the Luminex instrument (hereafter referred to as the Luminex assay), in particular, has permitted the detection of antibodies not detectable by CDC, the clinical significance of these antibodies is incompletely understood. Nevertheless, the detection of these antibodies has led to changes in the clinical management of sensitized patients. In addition, SPI testing raises technical issues that require resolution and careful consideration when interpreting antibody results. METHODS With this background, The Transplantation Society convened a group of laboratory and clinical experts in the field of transplantation to prepare a consensus report and make recommendations on the use of this new technology based on both published evidence and expert opinion. Three working groups were formed to address (a) the technical issues with respect to the use of this technology, (b) the interpretation of pretransplantation antibody testing in the context of various clinical settings and organ transplant types (kidney, heart, lung, liver, pancreas, intestinal, and islet cells), and (c) the application of antibody testing in the posttransplantation setting. The three groups were established in November 2011 and convened for a "Consensus Conference on Antibodies in Transplantation" in Rome, Italy, in May 2012. The deliberations of the three groups meeting independently and then together are the bases for this report. RESULTS A comprehensive list of recommendations was prepared by each group. A summary of the key recommendations follows. Technical Group: (a) SPI must be used for the detection of pretransplantation HLA antibodies in solid organ transplant recipients and, in particular, the use of the single-antigen bead assay to detect antibodies to HLA loci, such as Cw, DQA, DPA, and DPB, which are not readily detected by other methods. (b) The use of SPI for antibody detection should be supplemented with cell-based assays to examine the correlations between the two types of assays and to establish the likelihood of a positive crossmatch (XM). (c) There must be an awareness of the technical factors that can influence the results and their clinical interpretation when using the Luminex bead technology, such as variation in antigen density and the presence of denatured antigen on the beads. Pretransplantation Group: (a) Risk categories should be established based on the antibody and the XM results obtained. (b) DSA detected by CDC and a positive XM should be avoided due to their strong association with antibody-mediated rejection and graft loss. (c) A renal transplantation can be performed in the absence of a prospective XM if single-antigen bead screening for antibodies to all class I and II HLA loci is negative. This decision, however, needs to be taken in agreement with local clinical programs and the relevant regulatory bodies. (d) The presence of DSA HLA antibodies should be avoided in heart and lung transplantation and considered a risk factor for liver, intestinal, and islet cell transplantation. Posttransplantation Group: (a) High-risk patients (i.e., desensitized or DSA positive/XM negative) should be monitored by measurement of DSA and protocol biopsies in the first 3 months after transplantation. (b) Intermediate-risk patients (history of DSA but currently negative) should be monitored for DSA within the first month. If DSA is present, a biopsy should be performed. (c) Low-risk patients (nonsensitized first transplantation) should be screened for DSA at least once 3 to 12 months after transplantation. If DSA is detected, a biopsy should be performed. In all three categories, the recommendations for subsequent treatment are based on the biopsy results. CONCLUSIONS A comprehensive list of recommendations is provided covering the technical and pretransplantation and posttransplantation monitoring of HLA antibodies in solid organ transplantation. The recommendations are intended to provide state-of-the-art guidance in the use and clinical application of recently developed methods for HLA antibody detection when used in conjunction with traditional methods.
Collapse
|
18
|
Immenschuh S, Rahayu P, Bayat B, Saragih H, Rachman A, Santoso S. Antibodies against dengue virus nonstructural protein-1 induce heme oxygenase-1 via a redox-dependent pathway in human endothelial cells. Free Radic Biol Med 2013; 54:85-92. [PMID: 23103292 DOI: 10.1016/j.freeradbiomed.2012.10.551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 11/24/2022]
Abstract
Heme oxygenase (HO)-1, the inducible isoform of the first and rate-limiting enzyme of heme degradation, affords anti-inflammatory protection via its cell-type-specific effects in endothelial cells (ECs). In dengue hemorrhagic fever (DHF), which is the life-threatening form of dengue virus (DV) infection, endothelial interactions of cross-reactive antibodies against the DV nonstructural glycoprotein-1 (NS1) are associated with endothelial dysfunction. In this study, we investigated whether anti-NS1 antibodies might regulate HO-1 gene expression in human ECs. Serum from DHF patients with high anti-NS1 titers and a monoclonal anti-NS1 antibody upregulated HO-1 gene expression in human umbilical vein ECs, which was blocked by purified NS1 antigen. Immunoprecipitation studies showed that anti-NS1 antibodies specifically bound to the oxidoreductase protein disulfide isomerase (PDI) on ECs. Moreover, anti-NS1-mediated HO-1 induction was reduced by inhibition of PDI enzyme activity. Reactive oxygen species, which were generated by NADPH oxidase and in turn activated the phosphatidylinositol 3-kinase (PI3K)/Akt cascade, were involved in this upregulation of HO-1 gene expression. Finally, apoptosis of ECs caused by anti-NS1 antibodies was increased by pharmacological inhibition of HO-1 enzyme activity. In conclusion, HO-1 gene expression is upregulated by anti-NS1 antibodies via activation of a redox-dependent PDI/PI3K/Akt-mediated pathway in human ECs.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Akiyoshi T, Hirohashi T, Alessandrini A, Chase CM, Farkash EA, Neal Smith R, Madsen JC, Russell PS, Colvin RB. Role of complement and NK cells in antibody mediated rejection. Hum Immunol 2012; 73:1226-32. [PMID: 22850181 DOI: 10.1016/j.humimm.2012.07.330] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/07/2012] [Accepted: 07/19/2012] [Indexed: 01/26/2023]
Abstract
Despite extensive research on T cells and potent immunosuppressive regimens that target cellular mediated rejection, few regimens have been proved to be effective on antibody-mediated rejection (AMR), particularly in the chronic setting. C4d deposition in the graft has been proved to be a useful marker for AMR; however, there is an imperfect association between C4d and AMR. While complement has been considered as the main player in acute AMR, the effector mechanisms in chronic AMR are still debated. Recent studies support the role of NK cells and direct effects of antibody on endothelium cells in a mechanism suggesting the presence of a complement-independent pathway. Here, we review the history, currently available systems and progress in experimental animal research. Although there are consistent findings from human and animal research, transposing the experimental results from rodent to human has been hampered by the differences in endothelial functions between species. We briefly describe the findings from patients and compare them with results from animals, to propose a combined perspective.
Collapse
Affiliation(s)
- Takurin Akiyoshi
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Charron D, Suberbielle-Boissel C, Tamouza R, Al-Daccak R. Anti-HLA antibodies in regenerative medicine stem cell therapy. Hum Immunol 2012; 73:1287-94. [PMID: 22789622 DOI: 10.1016/j.humimm.2012.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/14/2012] [Accepted: 06/29/2012] [Indexed: 01/14/2023]
Abstract
Research on stem cell therapies for regenerative medicine is progressing rapidly. Although the use of autologous stem cells is a tempting choice, there are several instances in which they are either defective or not available in due time. Allogenic stem cells derived from healthy donors presents a promising alternative. Whether autologous or allogenic, recent advances have proven that stem cells are not as immune privileged as they were thought. Therefore understanding the interactions of these cells with the recipient immune system is paramount to their clinical application. Transplantation of stem cells induces humoral as well as cellular immune response. This review focuses on the humoral response elicited by stem cells upon their administration and consequences on the survival and maintenance of the graft. Current transplantation identifies pre- and post-transplantation anti-HLA antibodies as immune rejection and cell signaling effectors. These two mechanisms are likely to operate similarly in the context of SC therapeutics. Ultimately this knowledge will help to propose novel strategies to mitigate the allogenic barriers. Immunogenetics selection of the donor cell and immunomonitoring are key factors to allow the implementation of regenerative stem cell in the clinics.
Collapse
Affiliation(s)
- Dominique Charron
- INSERM UMRS 940, Institut Universitaire d'Hématologie, Université Paris-Diderot and Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint Louis, CIB-HOG, AP-HP 1, Avenue Claude Vellefaux, 75010 Paris, France.
| | | | | | | |
Collapse
|
21
|
Lundvig DMS, Immenschuh S, Wagener FADTG. Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? Front Pharmacol 2012; 3:81. [PMID: 22586396 PMCID: PMC3345581 DOI: 10.3389/fphar.2012.00081] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022] Open
Abstract
Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remain unclear, and are considered to be multifactorial, but so far, no efficient anti-fibrotic therapies exist. Extra- and intracellular levels of free heme may be increased in a variety of pathological conditions due to release from hemoproteins. Free heme possesses pro-inflammatory and oxidative properties, and may act as a danger signal. Effects of free heme may be counteracted by heme-binding proteins or by heme degradation. Heme is degraded by heme oxygenase (HO) that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. HO generates the effector molecules biliverdin/bilirubin, carbon monoxide, and free iron/ferritin. HO deficiency in mouse and man leads to exaggerated inflammation following mild insults, and accumulating epidemiological and preclinical studies support the widely recognized notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of the HO system and its effector molecules. In this review, we address the potential effects of targeted HO-1 induction or administration of HO-effector molecules as therapeutic targets in fibrotic conditions to counteract inflammatory and oxidative insults. This is exemplified by various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory liver disease, chronic pancreatitis, and chronic graft rejection in transplantation.
Collapse
Affiliation(s)
- Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | |
Collapse
|
22
|
Domínguez-Bendala J, Inverardi L, Ricordi C. Regeneration of pancreatic beta-cell mass for the treatment of diabetes. Expert Opin Biol Ther 2012; 12:731-41. [DOI: 10.1517/14712598.2012.679654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|