1
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
2
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Chang D, Yang X, Fan S, Fan T, Zhang M, Ono M. Engineering of MSCs sheet for the prevention of myocardial ischemia and for left ventricle remodeling. Stem Cell Res Ther 2023; 14:102. [PMID: 37098611 PMCID: PMC10127056 DOI: 10.1186/s13287-023-03322-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/29/2023] [Indexed: 04/27/2023] Open
Abstract
Tissue engineering combines cell biology and material science to construct tissues or organs for disease modeling, drug testing, and regenerative medicine. The cell sheet is a newly developed tissue engineering technology that has brought about scaffold-free tissue and shows great application potential. In this review, we summarized recent progress and future possibilities in preclinical research into and clinical applications of cell sheets fabricated by differing cell types from various sources for cardiac tissue repair, and the manufacturing strategies and promising application potential of 3D cell-dense tissue constructed from cell sheets. Special attention was paid to the mechanisms of mesenchymal stem cell (MSC) sheets in the prevention of myocardial ischemia and left ventricle remodeling. Comparing MSCs sheets with other types of cell sheets and 3D cardiac tissues, engineering tissues' potential safety and effectiveness concerns were also discussed.
Collapse
Affiliation(s)
- Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Xiaotong Yang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Siyang Fan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Road, Zhengzhou, 450018, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
4
|
Abdolahzadeh H, Rad NK, Shpichka A, Golroo R, Rahi K, Timashev P, Hassan M, Vosough M. Progress and promise of cell sheet assisted cardiac tissue engineering in regenerative medicine. Biomed Mater 2023; 18. [PMID: 36758240 DOI: 10.1088/1748-605x/acbad4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Cardiovascular diseases (CVDs) are the most common leading causes of premature deaths in all countries. To control the harmful side effects of CVDs on public health, it is necessary to understand the current and prospective strategies in prevention, management, and monitoring CVDs.In vitro,recapitulating of cardiac complex structure with its various cell types is a challenging topic in tissue engineering. Cardiac tissue engineering (CTE) is a multi-disciplinary strategy that has been considered as a novel alternative approach for cardiac regenerative medicine and replacement therapies. In this review, we overview various cell types and approaches in cardiac regenerative medicine. Then, the applications of cell-sheet-assisted CTE in cardiac diseases were discussed. Finally, we described how this technology can improve cardiac regeneration and function in preclinical and clinical models.
Collapse
Affiliation(s)
- Hadis Abdolahzadeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kosar Rahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Sano T, Nakajima T, Senda KA, Nakano S, Yamato M, Ikeda Y, Zeng H, Kawabe JI, Matsunaga YT. Image-based crosstalk analysis of cell-cell interactions during sprouting angiogenesis using blood-vessel-on-a-chip. Stem Cell Res Ther 2022; 13:532. [PMID: 36575469 PMCID: PMC9795717 DOI: 10.1186/s13287-022-03223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sprouting angiogenesis is an important mechanism for morphogenetic phenomena, including organ development, wound healing, and tissue regeneration. In regenerative medicine, therapeutic angiogenesis is a clinical solution for recovery from ischemic diseases. Mesenchymal stem cells (MSCs) have been clinically used given their pro-angiogenic effects. MSCs are reported to promote angiogenesis by differentiating into pericytes or other vascular cells or through cell-cell communication using multiple protein-protein interactions. However, how MSCs physically contact and move around ECs to keep the sprouting angiogenesis active remains unknown. METHODS We proposed a novel framework of EC-MSC crosstalk analysis using human umbilical vein endothelial cells (HUVECs) and MSCs obtained from mice subcutaneous adipose tissue on a 3D in vitro model, microvessel-on-a-chip, which allows cell-to-tissue level study. The microvessels were fabricated and cultured for 10 days in a collagen matrix where MSCs were embedded. RESULTS Immunofluorescence imaging using a confocal laser microscope showed that MSCs smoothed the surface of the microvessel and elongated the angiogenic sprouts by binding to the microvessel's specific microstructures. Additionally, three-dimensional modeling of HUVEC-MSC intersections revealed that MSCs were selectively located around protrusions or roots of angiogenic sprouts, whose surface curvature was excessively low or high, respectively. CONCLUSIONS The combination of our microvessel-on-a-chip system for 3D co-culture and image-based crosstalk analysis demonstrated that MSCs are selectively localized to concave-convex surfaces on scaffold structures and that they are responsible for the activation and stabilization of capillary vessels.
Collapse
Affiliation(s)
- Takanori Sano
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Tadaaki Nakajima
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan ,grid.268441.d0000 0001 1033 6139Department of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027 Japan
| | - Koharu Alicia Senda
- Hiroo Gakuen Junior and Senior High School, 5-1-14 Minami Azabu, Minato-ku, Tokyo, 106-0047 Japan
| | - Shizuka Nakano
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Mizuho Yamato
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Yukinori Ikeda
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Hedele Zeng
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Jun-ichi Kawabe
- grid.252427.40000 0000 8638 2724Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Yukiko T. Matsunaga
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| |
Collapse
|
6
|
Li J, Liu L, Zhang J, Qu X, Kawamura T, Miyagawa S, Sawa Y. Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives. Bioengineering (Basel) 2022; 9:605. [PMID: 36354516 PMCID: PMC9688015 DOI: 10.3390/bioengineering9110605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2023] Open
Abstract
Heart failure (HF) is the leading cause of death worldwide. The most effective HF treatment is heart transplantation, the use of which is restricted by the limited supply of donor hearts. The human pluripotent stem cell (hPSC), including human embryonic stem cell (hESC) and the induced pluripotent stem cells (hiPSC), could be produced in an infinite manner and differentiated into cardiomyocytes (CMs) with high efficiency. The hPSC-CMs have, thus, offered a promising alternative for heart transplant. In this review, we introduce the tissue-engineering technologies for hPSC-CM, including the materials for cell culture and tissue formation, and the delivery means into the heart. The most recent progress in clinical application of hPSC-CMs is also introduced. In addition, the bottleneck limitations and future perspectives for clinical translation are further discussed.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Cardiovascular Division, Osaka Police Hospital, Tennoji, Osaka 543-0035, Japan
| |
Collapse
|
7
|
Gao S, Jin Y, Ma J, Wang J, Wang J, Shao Z, Fan T, Zhang M, Chang D. Preclinical study of human umbilical cord mesenchymal stem cell sheets for the recovery of ischemic heart tissue. Stem Cell Res Ther 2022; 13:252. [PMID: 35690871 PMCID: PMC9188245 DOI: 10.1186/s13287-022-02919-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been widely used due to their multipotency, a broad range of sources, painless collection, and compliance with standard amplification. Cell sheet technology is a tissue engineering methodology requiring scaffolds free, and it provides an effective method for cell transplantation. To improve the therapeutic efficacy, we combined hUC-MSCs with cell sheet technology to evaluate the safety and efficacy of hUC-MSC sheets in preclinical studies using appropriate animal models. METHODS hUC-MSC sheets were fabricated by hUC-MSCs from a cell bank established by a standard operation process and quality control. Cytokine secretion, immunoregulation, and angiopoiesis were evaluated in vitro. Oncogenicity and cell diffusion assays of hUC-MSC sheets were conducted to verify the safety of hUC-MSCs sheet transplantation in mice. To provide more meaningful animal experimental data for clinical trials, porcine myocardial infarction (MI) models were established by constriction of the left circumflex, and hUC-MSC sheets were transplanted onto the ischemic area of the heart tissue. Cardiac function was evaluated and compared between the experimental and MI groups. RESULTS The in vitro results showed that hUC-MSC sheets could secrete multiple cellular factors, including VEGF, HGF, IL-6, and IL-8. Peripheral blood mononuclear cells had a lower proliferation rate and lower TNF-α secretion when co-cultured with hUC-MSC sheets. TH1 cells had a smaller proportion after activation. In vivo safety results showed that the hUC-MSCs sheet had no oncogenicity and was mainly distributed on the surface of the ischemic myocardial tissue. Echocardiography showed that hUC-MSC sheets effectively improved the left ventricular ejection fraction (LVEF), and the LVEF significantly changed (42.25 ± 1.23% vs. 66.9 ± 1.10%) in the hUC-MSC transplantation group compared with the MI group (42.52 ± 0.65% vs. 39.55 ± 1.97%) at 9 weeks. The infarct ratio of the hUC-MSCs sheet transplantation groups was also significantly reduced (14.2 ± 4.53% vs. 4.00 ± 2.00%) compared with that of the MI group. CONCLUSION Allogeneic source and cell bank established by the standard operation process and quality control make hUC-MSCs sheet possible to treat MI by off-the-shelf drug with universal quality instead of individualized medical technology.
Collapse
Affiliation(s)
- Shuang Gao
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Yongqiang Jin
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Jianlin Ma
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Juan Wang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Jing Wang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Zehua Shao
- Heart Center of Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Road, Zhengzhou, 450018, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
8
|
Chang D, Fan T, Gao S, Jin Y, Zhang M, Ono M. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease. Stem Cell Res Ther 2021; 12:384. [PMID: 34233729 PMCID: PMC8261909 DOI: 10.1186/s13287-021-02451-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
In recent years, mesenchymal stem cells (MSCs) have been used to improve cardiac function and attenuate adverse ventricular remodeling of the ischemic myocardium through paracrine effects and immunoregulation functions. In combination with cell sheet technology, MSCs could be more easily transplanted to the ischemic area. The long-term retention of MSCs in the affected area was realized and significantly improved the curative effect. In this review, we summarized the research and the applications of MSC sheets to the treatment of ischemic heart tissue. At present, many types of MSCs have been considered as multipotent cells in the treatment of heart failure, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose-derived mesenchymal stem cells (AD-MSCs), umbilical cord-derived mesenchymal stem cells (UC-MSCs), and skeletal myoblasts (SMs). Since UC-MSCs have few human leukocyte antigen-II and major histocompatibility complex class I molecules, and are easy to isolate and culture, UC-MSC sheets have been proposed as a candidate for clinical applications to ischemic heart disease.
Collapse
Affiliation(s)
- Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No.1 Fuwai Road, Zhengzhou, 450018, China
| | - Shuang Gao
- Research and Development Department, BOE Regenerative Medicine Technology Co., Ltd., NO.9 JiuXianQiao North Road, Beijing, 100015, China
| | - Yongqiang Jin
- Heart Center, First Hospital of Tsinghua University, NO.6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, NO.6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
9
|
Photosynthetic biomaterials: applications of photosynthesis in algae as oxygenerator in biomedical therapies. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00129-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Takagi T, Kabata T, Hayashi K, Fang X, Kajino Y, Inoue D, Ohmori T, Ueno T, Yoshitani J, Ueoka K, Yamamuro Y, Tsuchiya H. Periodic injections of adipose-derived stem cell sheets attenuate osteoarthritis progression in an experimental rabbit model. BMC Musculoskelet Disord 2020; 21:691. [PMID: 33076883 PMCID: PMC7574575 DOI: 10.1186/s12891-020-03718-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/05/2022] Open
Abstract
Background Subcutaneous adipose tissue represents an abundant source of multipotent adult stem cells named as Adipose-derived stem cells (ADSCs). With a cell sheet approach, ADSCs survive longer, and can be delivered in large quantities. We investigated whether intra-articular ADSC sheets attenuated osteoarthritis (OA) progression in a rabbit anterior cruciate ligament transection (ACLT) model. Methods Fabricating medium containing ascorbate-2-phosphate was used to enhance collagen protein secretion by the ADSCs to make ADSC sheets. At 4 weeks after ACLT, autologous ADSC sheets were injected intra-articularly into the right knee (ADSC sheets group), and autologous cell death sheets treated by liquid nitrogen were injected into the left knee (control group). Subsequent injections were administered once weekly. Femoral condyles were compared macroscopically and histologically. Results Macroscopically, OA progression was significantly milder in the ADSC sheets than in the control groups. Histologically, control knees showed obvious erosions in the medial and lateral condyles, while cartilage was retained predominantly in the ADSC sheets group. Immunohistochemically, MMP-1, MMP-13, ADAMTS-4 were less expressive in the ADSC sheets than in the control groups. Conclusions Periodic ADSC sheets injections inhibited articular cartilage degeneration without inducing any adverse effects. A large quantity of autologous ADSCs delivered by cell sheets homed to the synovium and protected chondrocytes.
Collapse
Affiliation(s)
- Tomoharu Takagi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Xiang Fang
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yoshitomo Kajino
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Daisuke Inoue
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Takaaki Ohmori
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Takuro Ueno
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Junya Yoshitani
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Ken Ueoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yuki Yamamuro
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa university, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
11
|
Zurina IM, Presniakova VS, Butnaru DV, Svistunov AA, Timashev PS, Rochev YA. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater 2020; 113:63-83. [PMID: 32561471 DOI: 10.1016/j.actbio.2020.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Cell sheet technology has remained quite popular among tissue engineering techniques over the last several years. Meanwhile, there is an apparent trend in modern scientific research towards combining different approaches and strategies. Accordingly, a large body of work has arisen where cell sheets are used not as separate structures, but in combination with scaffolds as supporting constructions. The aim of this review is to analyze the intersection of these two vast areas of tissue engineering described in the literature mainly within the last five years. Some practical and technical details are emphasized to provide information that can be useful in research design and planning. The first part of the paper describes the general issues concerning the use of combined technology, its advantages and limitations in comparison with those of other tissue engineering approaches. Next, the detailed literature analysis of in vivo studies aimed at the regeneration of different tissues is performed. A significant part of this section concerns bone regeneration. In addition to that, other connective tissue structures, including articular cartilage and fibrocartilage, ligaments and tendons, and some soft tissues are discussed. STATEMENT OF SIGNIFICANCE: This paper describes the intersection of two technologies used in designing of tissue-engineered constructions for regenerative medicine: cell sheets as extracellular matrix-rich structures and supporting scaffolds as essentials in tissue engineering. A large number of reviews are devoted to each of these scientific problems. However, the solution of complex problems of tissue engineering requires an integrated approach that includes both three-dimensional scaffolds and cell sheets. This manuscript serves as a description of advantages and limitations of this method, its use in regeneration of bones, connective tissues and soft tissues and some other details.
Collapse
Affiliation(s)
- Irina M Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St., Moscow, Russia; FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 125993, 2/1-1 Barrikadnaya St., Moscow, Russia
| | - Viktoria S Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia
| | - Denis V Butnaru
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, 108840, 2 Pionerskaya st., Troitsk, Moscow, Russia; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin st., Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1‑3, Moscow 119991, Russia.
| | - Yury A Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
12
|
Park TY, Oh JM, Cho JS, Sim SB, Lee J, Cha HJ. Stem cell-loaded adhesive immiscible liquid for regeneration of myocardial infarction. J Control Release 2020; 321:602-615. [DOI: 10.1016/j.jconrel.2020.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
|
13
|
Ishida M, Tatsumi K, Okumoto K, Kaji H. Adipose Tissue-Derived Stem Cell Sheet Improves Glucose Metabolism in Obese Mice. Stem Cells Dev 2020; 29:488-497. [PMID: 32075539 DOI: 10.1089/scd.2019.0250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies indicate that the administration of adipose tissue-derived stem cells (ADSCs) through the venous route improves insulin resistance partly through a reduction in the proinflammatory cytokines in diabetic animals. However, the effects of ADSC sheet transplantation for the treatment of diabetes and obesity still remained unknown. In this study, we investigated the effects of ADSC sheet transplantation into the subcutaneous sites on the diabetic state of mice fed high-fat and high-sucrose diet (HF/HSD). ADSCs were isolated and propagated from subcutaneous adipose tissues of non-diabetic intact mice. We used the thermoresponsive designated cell culture dishes to fabricate ADSC cell sheets. ADSC sheet transplantation into the subcutaneous sites significantly improved glucose intolerance induced by HF/HSD in mice. ADSC-conditioned medium (CM) augmented the phosphorylation of Akt with or without insulin in mouse C2C12 myotubes and mouse 3T3-L1 adipocytes. Plasma adiponectin and tumor necrosis factor-α (TNF-α) levels were significantly increased and decreased by ADSC sheet transplantation in mice with or without HF/HSD, respectively. Moreover, ADSC sheet enhanced adiponectin expression in the subcutaneous adipose tissues in HF/HSD-fed mice, whereas it reduced TNF-α expression in the visceral adipose tissues. ADSC-CM enhanced and reduced the protein levels of adiponectin and TNF-α in 3T3-L1 adipocytes, respectively. In conclusion, we first revealed that ADSC sheet transplantation into the subcutaneous sites improves glucose intolerance in mice fed with HF/HSD. Changes of adiponectin and TNF-α production from the host adipose tissues might be involved in the effects of ADSC sheet on glucose metabolism in mice. ADSC sheet transplantation therapy may be a novel clinical application for diabetes.
Collapse
Affiliation(s)
- Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan.,Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University School of Medicine, Nara, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
14
|
Fan Z, Liao X, Tian Y, xuzhuzi X, Nie Y. A prevascularized nerve conduit based on a stem cell sheet effectively promotes the repair of transected spinal cord injury. Acta Biomater 2020; 101:304-313. [PMID: 31678739 DOI: 10.1016/j.actbio.2019.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) can result in severe loss of motor and sensory function caused by ischemia and hypoxia, which are the key limiting factors of SCI rehabilitation. Vascularization is considered an effective way to resolve the issues of ischemia and hypoxia. In this regard, we first fabricated prevascularized nerve conduits (PNC) based on the prevascularized stem cell sheet and evaluated their repair effects by implanting them into transected SCI rats. A better healing effect was presented in the PNC group than in the control group and the nonprevascularized nerve conduit (NPNC) group as shown in H&E staining and the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale assessment. In addition, the expression of β-III tubulin (Tuj-1) in the PNC group was higher than that in the control group and the NPNC group because of the introduction of MSCs. Conversely, the expression of the glial fibrillary acidic protein (GFAP) in both experimental groups was lower than that in the control group because of the inhibitory effect of MSCs on glial scar formation. Taken together, the introduction of prevascularization into the neuron conduit was an effective solution for improving the condition of ischemia and hypoxia, inhibiting glial scar formation, and promoting the healing of SCI, which implied that the PNC may be a potential alternative material to biomaterials for SCI rehabilitation. STATEMENT OF SIGNIFICANCE: 1. Prevascularized stem cell sheet was first used to repair spinal cord injury (SCI). 2. Prevascularized stem cell sheet use can effectively resolve the challenges faced during SCI, including ischemia and hypoxia and the limited regenerative ability of the remained neurons. 3. Prevascularized stem cell sheet was found to accelerate the healing of SCI as compared to those in the control group and the pure stem cell sheet group. 4. The introduction of stem cells can effectively inhibit the formation of a glial scar.
Collapse
|
15
|
Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y. Adipose-derived stem cells contribute to cardiovascular remodeling. Aging (Albany NY) 2019; 11:11756-11769. [PMID: 31800397 PMCID: PMC6932876 DOI: 10.18632/aging.102491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023]
Abstract
Obesity is an independent risk factor for cardiovascular disease. Adipose tissue was initially thought to be involved in metabolism through paracrine. Recent researches discovered mesenchymal stem cells inside adipose tissue which could differentiate into vascular lineages in vitro and in vivo, participating vascular remodeling. However, there were few researches focusing on distinct characteristics and functions of adipose-derived stem cells (ADSCs) from different regions. This is the first comprehensive review demonstrating the variances of ADSCs from the perspective of their origins.
Collapse
Affiliation(s)
- Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Xue YN, Yan Y, Chen ZZ, Chen J, Tang FJ, Xie HQ, Tang SJ, Cao K, Zhou X, Wang AJ, Zhou JD. LncRNA TUG1 regulates FGF1 to enhance endothelial differentiation of adipose-derived stem cells by sponging miR-143. J Cell Biochem 2019; 120:19087-19097. [PMID: 31264280 DOI: 10.1002/jcb.29232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
Adipose-derived stem cells (ADSCs) have emerged as a cell source for regeneration medicine. ADSCs possess the capacity to differentiate into endothelial cells and serve an essential role in vascular development and function. LncRNA taurine upregulated gene 1 (TUG1) has recently been linked with angiogenesis in hepatoblastoma. However, the roles of TUG1 in endothelial differentiation of ADSCs remain unidentified. Human adipose-derived stem cells (hADSCs) were obtained and characterized by flow cytometry, Oil red O and Alizarin Red staining. HADSCs were maintained in the endothelial differentiation medium and the expressions of TUG1, miR-143, and FGF1 were examined by qRT-PCR. To assess endothelial differentiation, the expressions of CD31, von Willebrand factor (vWF), VE-cadherin were examined by Western blot analysis, qRT-PCR, and immunofluorescence. Tube formation in Matrigel was examined. The interactions between TUG1 and miR-143, miR-143 and FGF1 were validated by luciferase assays. During the endothelial differentiation process, TUG1 and FGF1 were upregulated, whereas miR-143 was downregulated. TUG1 overexpression downregulated miR-143, upregulated FGF1, CD31, vWF, and VE-cadherin, and enhanced capillary tube formation. Luciferase assays showed that TUG1 interacted with miR-143, and FGF1 was a direct target of miR-143. Furthermore, the enhancement of endothelial differentiation induced by TUG1 overexpression was abolished by miR-143 overexpression. Our findings implicated that lncRNA TUG1 promoted endothelial differentiation of ADSCs by regulating the miR-143/FGF1 axis.
Collapse
Affiliation(s)
- Ya-Nan Xue
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Yu Yan
- Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Zi-Zi Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jia Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Feng-Jie Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Hui-Qing Xie
- Department of Rehabilitation, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Shi-Jie Tang
- Department of Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Xiao Zhou
- Department of Oncoplastic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Ai-Jun Wang
- Department of Surgery, UC Davis Medical Center, California
| | - Jian-Da Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
17
|
Effects of transplantation of hypoxia-inducible factor-1α genemodified cardiac stem cells on cardiac function of heart failure rats after myocardial infarction. Anatol J Cardiol 2019; 20:318-329. [PMID: 30504732 PMCID: PMC6287433 DOI: 10.14744/anatoljcardiol.2018.91979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To evaluate the effects of transplantation of hypoxia-inducible factor-1α (HIF-1α) gene-modified cardiac stem cells (CSCs) on the cardiac function of heart failure rats after myocardial infarction (MI). METHODS Twenty-four Sprague-Dawley rats were randomly divided into three groups: HIF-1α-modified CSCs group, single CSCs group, and model group. The model of heart failure after MI was established by thoracotomy-left anterior descending coronary artery ligation, followed by injection of modified CSCs, single CSCs, and PBS, respectively, 2 weeks later. The results were observed 4 weeks later. RESULTS CSCs were infected with recombinant adenovirus. HIF-1α mRNA level of HIF-1α-enhanced green fluorescent protein (EGFP)+CSCs group significantly surpassed those of EGFP+CSCs and CSCs groups (p<0.001). Left ventricular ejection fractions (LVEFs) of HIF-1α+CSCs+MI and CSCs+MI groups significantly increased compared with the model group (p<0.001). The difference between LVEFs before and after transplantation was positively correlated with the survival rate of CSCs in infarction border zone (r=0.867, p<0.001). The apoptosis rate of HIF1α+CSCs+MI group was significantly lower than that of CSCs+MI group (p=0.008). The expression of vascular endothelial growth factor protein in HIF-1α+CSCs+MI group significantly increased, compared with that of MI group (p<0.001). The capillary density of HIF-1α+CSCs+MI group significantly exceeded that of CSCs+MI group (p<0.001). CONCLUSION Transplantation of either HIF-1α-modified CSCs or single CSCs reduced cardiomyocyte apoptosis in rats with heart failure after MI, promoted vascular regeneration in infarct area, and improved cardiac function. Particularly, HIF-1α-modified CSCs had more significant effects.
Collapse
|
18
|
Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? Int J Mol Sci 2018; 19:ijms19103236. [PMID: 30347686 PMCID: PMC6213975 DOI: 10.3390/ijms19103236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Coronary heart disease is the leading cause of death worldwide with huge socio-economic consequences. Cell therapy, and particularly mesenchymal stem cells (MSC), are considered a promising option to treat this disorder, due to their robust trophic and immunomodulatory properties. However, limitations such as their low rate of engraftment and poor survival after administration into the heart have precluded their large-scale clinical use. Nevertheless, the combination of MSC with polymer-made scaffolds or hydrogels has proven to enhance their retention and, therefore, their efficacy. Additionally, their allogeneic use could permit the creation of ready-to-use cell patches able to improve their feasibility and promote their application in clinical settings. In this review, the experimental and clinical results derived from the use of MSC in cardiac pathology, as well as advances in the bioengineering field to improve the potential of therapeutic cells, are extensively discussed. Additionally, the current understanding of the heart response to the allogeneic MSC transplants is addressed.
Collapse
|
19
|
Endoscopic Transplantation of Mesenchymal Stem Cell Sheets in Experimental Colitis in Rats. Sci Rep 2018; 8:11314. [PMID: 30054522 PMCID: PMC6063883 DOI: 10.1038/s41598-018-29617-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Owing to the recent progress in regenerative medicine technology, clinical trials that harnessed the regeneration and immune modulation potentiality of stem cells for treating IBD have shown promising results. We investigated the feasibility and utility of intraluminal endoscopic transplantation of rat MSC sheets in murine models of experimental colitis for targeted delivery of stem cells to lesions. We isolated adipose-derived mesenchymal stem cells (AD-MSC) and bone marrow-derived mesenchymal stem cells (BM-MSC) from EGFP-transgenic rats and fabricated the cells in sheet forms using temperature-responsive culture dishes. The MSC sheets were endoscopically transplanted to the inflamed area in electrocoagulation and DNBS colitis model. The effect of the transplantation was verified using endoscopic scoring and histological analysis. In the electrocoagulation model, the AD-MSC group showed significantly decreased ulcer size in the transplanted regions. In the DNBS colitis model, the AD-MSC group showed decreased inflammation and colitis in the transplanted regions. Histologic analysis showed that the MSC sheets had successfully attached to the inflamed mucosa in both the electrocoagulation and DNBS colitis model. Our results show that endoscopic transplantation of MSC sheets could be a new effective mode of stem cell therapy for IBD treatment.
Collapse
|
20
|
Cardiac support device (ASD) delivers bone marrow stem cells repetitively to epicardium has promising curative effects in advanced heart failure. Biomed Microdevices 2018; 20:40. [DOI: 10.1007/s10544-018-0282-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Hwang Y, Goh M, Kim M, Tae G. Injectable and detachable heparin-based hydrogel micropatches for hepatic differentiation of hADSCs and their liver targeted delivery. Biomaterials 2018. [DOI: 10.1016/j.biomaterials.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Melly L, Cerino G, Frobert A, Cook S, Giraud MN, Carrel T, Tevaearai Stahel HT, Eckstein F, Rondelet B, Marsano A, Banfi A. Myocardial infarction stabilization by cell-based expression of controlled Vascular Endothelial Growth Factor levels. J Cell Mol Med 2018; 22:2580-2591. [PMID: 29478261 PMCID: PMC5908097 DOI: 10.1111/jcmm.13511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/23/2017] [Indexed: 01/24/2023] Open
Abstract
Vascular Endothelial Growth Factor (VEGF) can induce normal or aberrant angiogenesis depending on the amount secreted in the microenvironment around each cell. Towards a possible clinical translation, we developed a Fluorescence Activated Cell Sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a desired specific VEGF level from heterogeneous primary populations. Here, we sought to induce safe and functional angiogenesis in ischaemic myocardium by cell-based expression of controlled VEGF levels. Human adipose stromal cells (ASC) were transduced with retroviral vectors and FACS purified to generate two populations producing similar total VEGF doses, but with different distributions: one with cells homogeneously producing a specific VEGF level (SPEC), and one with cells heterogeneously producing widespread VEGF levels (ALL), but with an average similar to that of the SPEC population. A total of 70 nude rats underwent myocardial infarction by coronary artery ligation and 2 weeks later VEGF-expressing or control cells, or saline were injected at the infarction border. Four weeks later, ventricular ejection fraction was significantly worsened with all treatments except for SPEC cells. Further, only SPEC cells significantly increased the density of homogeneously normal and mature microvascular networks. This was accompanied by a positive remodelling effect, with significantly reduced fibrosis in the infarcted area. We conclude that controlled homogeneous VEGF delivery by FACS-purified transduced ASC is a promising strategy to achieve safe and functional angiogenesis in myocardial ischaemia.
Collapse
Affiliation(s)
- Ludovic Melly
- Cell and Gene Therapy, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland.,Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland.,Department of Cardiac Vascular and Thoracic Surgery, CHU UCL Namur, Yvoir, Belgium
| | - Giulia Cerino
- Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| | - Aurélien Frobert
- Department of Cardiology, University of Fribourg, Fribourg, Switzerland
| | - Stéphane Cook
- Department of Cardiology, University of Fribourg, Fribourg, Switzerland
| | | | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Friedrich Eckstein
- Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| | - Benoît Rondelet
- Department of Cardiac Vascular and Thoracic Surgery, CHU UCL Namur, Yvoir, Belgium
| | - Anna Marsano
- Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
23
|
Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study. Stem Cell Rev Rep 2017; 13:267-277. [PMID: 28120159 PMCID: PMC5380713 DOI: 10.1007/s12015-017-9719-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000 cells/cm2, 20,000 cells/cm2, 50,000 cells/cm2, and 400,000 cells/cm2 with and without 10 or 20 ng/ml tumor necrosis factor alpha (TNFα) and 25 or 50 ng/ml interferon gamma (IFNγ). ASC-sheets formed at 400,000 cells/cm2 after 48 h of culture. With increasing concentrations of TNFα and IFNγ, ASC-sheets with 400,000 cells/cm2 had increased production of angiogenic factors Vascular Endothelial Growth Factor and Fibroblast Growth Factor and decreased expression of pro-inflammatory genes TNFA and Prostaglandin Synthase 2 (PTGS2) compared to lower density ASCs. Moreover, the conditioned medium of ASC-sheets with 400,000 cells/cm2 stimulated with the low concentration of TNFα and IFNγ enhanced endothelial cell proliferation and fibroblast migration. These results suggest that a high cell density enhances ASC paracrine function might beneficial for wound repair, especially in pro-inflammatory conditions.
Collapse
|
24
|
Abstract
INTRODUCTION In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.
Collapse
Affiliation(s)
- Ming-Sing Si
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Richard G Ohye
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
25
|
Sukho P, Cohen A, Hesselink JW, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Adipose Tissue-Derived Stem Cell Sheet Application for Tissue Healing In Vivo: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:37-52. [PMID: 28665192 DOI: 10.1089/ten.teb.2017.0142] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived stem cells (ASCs) are known to be tissue-healing promoters due to their cellular plasticity and secretion of paracrine factors. Cultured ASC sheets provide a novel method of ASC application and can retain ASCs at the targeted tissue. The purpose of this systematic review is to evaluate preclinical studies using ASC sheet transplantation therapy for promoting tissue healing. First, we searched databases to identify studies of ASC sheet therapy in different experimental animal models, and then determined the quality score of studies using SYRCLE's risk bias tool. A total of 18 included studies examined the role of ASC sheets on tissue healing and function in models for myocardial infarction, dilated cardiomyopathy, full-thickness skin wounds, hind limb ischemia, esophageal strictures, and oral ulcers. ASC sheet application after myocardial infarction improved survival rate, cardiac function, and capillary density and reduced the extent of fibrosis. Application of ASC sheets to a full-thickness skin wound decreased the wound size and stimulated wound maturation. In the hind limb ischemia model, ASC sheet application improved limb perfusion and capillary density, and decreased the amount of ischemic tissue and inflammation. ASC sheet application to mucosal wounds of the digestive tract accelerated wound healing and decreased the degree of stricture and fibrosis. Taken together, transplanted ASC sheets had a positive effect on tissue healing and reconstruction in these preclinical studies. The reported favorable effects of ASC sheet therapy in various tissue healing applications may be implemented in future translational studies. It is suggested that future preclinical animal model studies of ASC sheet therapy should concern standardization of culture techniques and investigate the mechanisms of action. In addition, clearly indicated experimental setups according to the SYRCLE's guidelines should improve study quality and validity.
Collapse
Affiliation(s)
- Panithi Sukho
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands .,3 Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University , Nakhon Pathom, Thailand
| | - Abigael Cohen
- 2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | - Jan Willem Hesselink
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Jolle Kirpensteijn
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,4 Hill's Pet Nutrition, Inc. , Topeka, Kansas
| | - Femke Verseijden
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,5 Department of Orthopaedics, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | | |
Collapse
|
26
|
Arrizabalaga JH, Nollert MU. Properties of porcine adipose-derived stem cells and their applications in preclinical models. Adipocyte 2017; 6:217-223. [PMID: 28410000 DOI: 10.1080/21623945.2017.1312040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells represent a reliable adult stem cell source thanks to their abundance, straightforward isolation, and broad differentiation abilities. Consequently, human adipose-derived stem cells (hASCs) have been used in vitro for several innovative cellular therapy and regenerative medicine applications. However, the translation of a novel technology from the laboratory to the clinic requires first to evaluate its safety, feasibility, and potential efficacy through preclinical studies in animals. The anatomy and physiology of pigs and humans are very similar, establishing pigs as an attractive and popular large animal model for preclinical studies. Knowledge of the properties of porcine adipose-derived stem cells (pASCs) used in preclinical studies is critical for their success. While hASCs have been extensively studied this past decade, only a handful of reports relate to pASCs. The aim of this concise review is to summarize the current findings about the isolation of pASCs, their culture, proliferation, and immunophenotype. The differentiation abilities of pASCs and their applications in porcine preclinical models will also be reported.
Collapse
Affiliation(s)
| | - Matthias U. Nollert
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- School of Chemical, Biological & Materials Engineering, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
27
|
Cohen JE, Goldstone AB, Paulsen MJ, Shudo Y, Steele AN, Edwards BB, Patel JB, MacArthur JW, Hopkins MS, Burnett CE, Jaatinen KJ, Thakore AD, Farry JM, Truong VN, Bourdillon AT, Stapleton LM, Eskandari A, Fairman AS, Hiesinger W, Esipova TV, Patrick WL, Ji K, Shizuru JA, Woo YJ. An innovative biologic system for photon-powered myocardium in the ischemic heart. SCIENCE ADVANCES 2017; 3:e1603078. [PMID: 28630913 PMCID: PMC5470824 DOI: 10.1126/sciadv.1603078] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Coronary artery disease is one of the most common causes of death and disability, afflicting more than 15 million Americans. Although pharmacological advances and revascularization techniques have decreased mortality, many survivors will eventually succumb to heart failure secondary to the residual microvascular perfusion deficit that remains after revascularization. We present a novel system that rescues the myocardium from acute ischemia, using photosynthesis through intramyocardial delivery of the cyanobacterium Synechococcus elongatus. By using light rather than blood flow as a source of energy, photosynthetic therapy increases tissue oxygenation, maintains myocardial metabolism, and yields durable improvements in cardiac function during and after induction of ischemia. By circumventing blood flow entirely to provide tissue with oxygen and nutrients, this system has the potential to create a paradigm shift in the way ischemic heart disease is treated.
Collapse
Affiliation(s)
- Jeffrey E. Cohen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew B. Goldstone
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J. Paulsen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda N. Steele
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan B. Edwards
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jay B. Patel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John W. MacArthur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael S. Hopkins
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Casey E. Burnett
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin J. Jaatinen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akshara D. Thakore
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin M. Farry
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vi N. Truong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra T. Bourdillon
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lyndsay M. Stapleton
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander S. Fairman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tatiana V. Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William L. Patrick
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Keven Ji
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Judith A. Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author.
| |
Collapse
|
28
|
Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model. J Control Release 2017; 249:23-31. [DOI: 10.1016/j.jconrel.2017.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
|
29
|
Labeling adipose derived stem cell sheet by ultrasmall super-paramagnetic Fe 3O 4 nanoparticles and magnetic resonance tracking in vivo. Sci Rep 2017; 7:42793. [PMID: 28220818 PMCID: PMC5318892 DOI: 10.1038/srep42793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Cell sheet therapy has emerged as a potential therapeutic option for reparation and reconstruction of damaged tissues and organs. However, an effective means to assess the fate and distribution of transplanted cell sheets in a serial and noninvasive manner is still lacking. To investigate the feasibility of tracking Adipose derived stem cells (ADSCs) sheet in vivo using ultrasmall super-paramagnetic Fe3O4 nanoparticles (USPIO), canine ADSCs were cultured and incubated with USPIO and 0.75 μg/ml Poly-L-Lysine (PLL) for 12 h. Labeling efficiency, cell viability, apoptotic cell rate were assessed to screen the optimum concentrations of USPIO for best labeling ADSCs. The results showed ADSCs were labeled by USPIO at an iron dose of 50 μg/ml for a 12 h incubation time, which can most efficiently mark cells and did not impair the cell survival, self-renewal, and proliferation capacity. USPIO-labeled ADSCs sheets can be easily and clearly detected in vivo and have persisted for at least 12 weeks. Our experiment confirmed USPIO was feasible for in vivo labeling of the ADSCs sheets with the optimal concentration of 50 μg Fe/ml and the tracing time is no less than 12 weeks.
Collapse
|
30
|
Joo HJ, Kim JH, Hong SJ. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration. Korean Circ J 2017; 47:151-159. [PMID: 28382066 PMCID: PMC5378017 DOI: 10.4070/kcj.2016.0207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.
Collapse
Affiliation(s)
- Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
31
|
Galbraith T, Clafshenkel WP, Kawecki F, Blanckaert C, Labbé B, Fortin M, Auger FA, Fradette J. A Cell-Based Self-Assembly Approach for the Production of Human Osseous Tissues from Adipose-Derived Stromal/Stem Cells. Adv Healthc Mater 2017; 6. [PMID: 28004524 DOI: 10.1002/adhm.201600889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/14/2016] [Indexed: 01/22/2023]
Abstract
Achieving optimal bone defect repair is a clinical challenge driving intensive research in the field of bone tissue engineering. Many strategies focus on seeding graft materials with progenitor cells prior to in vivo implantation. Given the benefits of closely mimicking tissue structure and function with natural materials, the authors hypothesize that under specific culture conditions, human adipose-derived stem/stromal cells (hASCs) can solely be used to engineer human reconstructed osseous tissues (hROTs) by undergoing osteoblastic differentiation with concomitant extracellular matrix production and mineralization. Therefore, the authors are developing a self-assembly methodology allowing the production of such osseous tissues. Three-dimensional (3D) tissues reconstructed from osteogenically-induced cell sheets contain abundant collagen type I and are 2.7-fold less contractile compared to non-osteogenically induced tissues. In particular, hROT differentiation and mineralization is reflected by a greater amount of homogenously distributed alkaline phosphatase, as well as higher calcium-containing hydroxyapatite (P < 0.0001) and osteocalcin (P < 0.0001) levels compared to non-induced tissues. Taken together, these findings show that hASC-driven tissue engineering leads to hROTs that demonstrate structural and functional characteristics similar to native osseous tissue. These highly biomimetic human osseous tissues will advantageously serve as a platform for molecular studies as well as for future therapeutic in vivo translation.
Collapse
Affiliation(s)
- Todd Galbraith
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - William P Clafshenkel
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Fabien Kawecki
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Camille Blanckaert
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Benoit Labbé
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Michel Fortin
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University Laval, Québec, QC G1V 0A6, Canada
| | - François A Auger
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, University Laval, Québec, QC G1V 0A6, Canada
| | - Julie Fradette
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, University Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
32
|
Neo PY, Teh TKH, Tay ASR, Asuncion MCT, Png SN, Toh SL, Goh JCH. Stem cell-derived cell-sheets for connective tissue engineering. Connect Tissue Res 2016; 57:428-442. [PMID: 27050427 DOI: 10.3109/03008207.2016.1173035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-sheet technology involves the recovery of cells with its secreted ECM and cell-cell junctions intact, and thereby harvesting them in a single contiguous layer. Temperature changes coupled with a thermoresponsive polymer grafted culture plate surface are typically used to induce detachment of this cell-matrix layer by controlling the hydrophobicity and hydrophilicity properties of the culture surface. This review article details the genesis and development of this technique as a critical tissue-engineering tool, with a comprehensive discussion on connective tissue applications. This includes applications in the myocardial, vascular, cartilage, bone, tendon/ligament, and periodontal areas among others discussed. In particular, further focus will be given to the use of stem cells-derived cell-sheets, such as those involving bone marrow-derived and adipose tissue-derived mesenchymal stem cells. In addition, some of the associated challenges faced by approaches using stem cells-derived cell-sheets will also be discussed. Finally, recent advances pertaining to technologies forming, detaching, and manipulating cell-sheets will be covered in view of the potential impact they will have on shaping the way cell-sheet technology will be utilized in the future as a tissue-engineering technique.
Collapse
Affiliation(s)
- Puay Yong Neo
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore
| | - Thomas Kok Hiong Teh
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore
| | - Alex Sheng Ru Tay
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore
| | | | - Si Ning Png
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore
| | - Siew Lok Toh
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,c Department of Mechanical Engineering, Faculty of Engineering , National University of Singapore , Singapore
| | - James Cho-Hong Goh
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore.,d Department of Orthopaedic Surgery , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
33
|
Hasan A, Waters R, Roula B, Dana R, Yara S, Alexandre T, Paul A. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 2016; 16:958-77. [PMID: 26953627 PMCID: PMC4931991 DOI: 10.1002/mabi.201500396] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Renae Waters
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Boustany Roula
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rahbani Dana
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Seif Yara
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Toubia Alexandre
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|