1
|
Sun J, Wei N, Yu C, Li C, Li W, Sun X, Zhang Y, Li Y, Xie J. Natural polysaccharides: The potential biomacromolecules for treating diabetes and its complications via AGEs-RAGE-oxidative stress axis. Int Immunopharmacol 2024; 143:113426. [PMID: 39461240 DOI: 10.1016/j.intimp.2024.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Diabetes mellitus, a chronic metabolic disorder, poses a significantly public health challenge. Extensive research highlights that contemporary dietary patterns, characterized by excessive intake of sugar, fat, and protein, are major contributors to the onset and progression of diabetes. The central element to this process is the aberrant activation of the advanced glycation end products (AGEs) - receptor for AGEs (RAGE) - oxidative stress axis, which plays a pivotal role in disrupting normal carbohydrate metabolism. This pathway presents a critical target for developing interventions aimed at mitigating diabetes and its complications. In recent years, natural polysaccharides have emerged as promising agents in the prevention and treatment of diabetes, due to their ability to inhibit AGE formation, regulate RAGE expression, and modulate the AGEs-RAGE-oxidative stress axis. In this paper, we explore the pathogenic mechanism of this axis and review the therapeutic potential of natural polysaccharides in managing diabetes and its complications. Our goal is to provide new insights for the effective management of diabetes and its associated health challenges.
Collapse
Affiliation(s)
- Jie Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenxi Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiuyan Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
3
|
Chen R, Deng H, Zou L. Analysis of Bulk Transcriptome Sequencing Data and in vitro Experiments Reveal SIN3A as a Potential Target for Diabetic Foot Ulcer. Diabetes Metab Syndr Obes 2023; 16:4119-4132. [PMID: 38145255 PMCID: PMC10740743 DOI: 10.2147/dmso.s439924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
Background Diabetic foot ulcers (DFUs) represent a severe complication of diabetes associated with reduced quality of life, lower limb amputations, hospitalizations, increased incidence, and mortality. Importantly, a significant number of pathogenic genes remain unexplored in DFUs. Methods A series of bioinformatics analyses were performed on publicly available bulk transcriptome sequencing datasets GSE134431 and GSE80178 to explore the transcriptomic changes in DFUs and select core genes for in vitro functional validation. In a focused examination, the differential expression analysis unveiled distinctions in gene expression patterns between DFUs and non-ulcerated diabetic skin tissues. Enriched functional annotations of differentially expressed genes were explored using the DAVID online tool. Protein-protein interaction analysis was conducted to investigate interactions among differentially expressed genes and select core genes. Knockdown or overexpression of core genes in HaCaT keratinocytes was performed to assess their impact on cell proliferation and migration. Results Ten core genes were identified. Cell Counting Kit-8 (CCK-8) and scratch assays demonstrated that downregulation of the core gene SIN3A significantly inhibited the migration and proliferation of HaCaT keratinocytes, while overexpression of SIN3A reversed the high-glucose-induced suppression of HaCaT cell viability and migration. Conclusion SIN3A expression is downregulated in DFUs. In vitro, SIN3A promotes the proliferation and migration of HaCaT keratinocytes, suggesting it may be a potential therapeutic target for DFUs.
Collapse
Affiliation(s)
- Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Haibo Deng
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Lijun Zou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Manna S, Mishra J, Baral T, Kirtana R, Nandi P, Roy A, Chakraborty S, Niharika, Patra SK. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics 2023; 15:723-740. [PMID: 37661861 DOI: 10.2217/epi-2023-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Chromatin modifications - including DNA methylation, modification of histones and recruitment of noncoding RNAs - are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3. Many studies with new information on different epigenetic modifications and associated factors are available, but clear maps of interconnected pathways are also emerging. This review deals with the salient epigenetic crosstalk mechanisms that cells utilize for different cellular processes and how deregulation or aberrant gene expression leads to disease progression.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Jagdish Mishra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Piyasa Nandi
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhajit Chakraborty
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Niharika
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir K Patra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
5
|
Liu SW, Sun F, Rong SJ, Wang T, Wang CY. Lymphotoxins Serve as a Novel Orchestrator in T1D Pathogenesis. Front Immunol 2022; 13:917577. [PMID: 35757751 PMCID: PMC9219589 DOI: 10.3389/fimmu.2022.917577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Type 1 diabetes (T1D) stems from pancreatic β cell destruction by islet reactive immune cells. Similar as other autoimmune disorders, there is no curative remedy for T1D thus far. Chronic insulitis is the hallmark of T1D, which creates a local inflammatory microenvironment that impairs β cell function and ultimately leads to β cell death. Immune regulation shows promise in T1D treatment by providing a time window for β cell recovery. However, due to the complex nature of T1D pathogenesis, the therapeutic effect of immune regulation is often short-lasting and unsatisfying in monotherapies. Lymphotoxins (LTs) were first identified in 1960s as the lymphocyte-producing cytokine that can kill other cell types. As a biological cousin of tumor necrosis factor alpha (TNFα), LTs play unique roles in T1D development. Herein in this review, we summarized the advancements of LTs in T1D pathogenesis. We particularly highlighted their effect on the formation of peri-islet tertiary lymphoid organs (TLOs), and discussed their synergistic effect with other cytokines on β cell toxicity and autoimmune progression. Given the complex and dynamic crosstalk between immune cells and β cells in T1D setting, blockade of lymphotoxin signaling applied to the existing therapies could be an efficient approach to delay or even reverse the established T1D.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen P, Yao F, Lu Y, Peng Y, Zhu S, Deng J, Wu Z, Chen J, Deng K, Li Q, Pu Z, Mou L. Single-Cell Landscape of Mouse Islet Allograft and Syngeneic Graft. Front Immunol 2022; 13:853349. [PMID: 35757709 PMCID: PMC9226584 DOI: 10.3389/fimmu.2022.853349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Islet transplantation to treat the late stage of type 1 diabetic patient (T1DM) has recently made inspiring success in clinical trials. However, most patients experience a decline in islet graft function in one to three years due to immune rejection. Although the mechanisms of immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer cells (NKs), B cells, and T cells, that mediate immune rejection have been investigated, the overall characteristics of immune infiltrates in islet allografts and syngeneic grafts remain unclear. Single-cell RNA sequencing (scRNA-seq) has provided us with new opportunities to study the complexity of the immune microenvironment in islet transplants. In the present study, we used scRNA-seq to comprehensively analyze the immune heterogeneity in the mouse model of islet transplantation. Our data revealed T lymphocytes and myeloid cells as the main immune components of grafts 7 days post-islet transplantation, especially in allografts. Moreover, our results indicated that allogeneic islet cells were transformed into antigen-presenting cell-like cells with highly expressed MHC class I molecules and genes involved in MHC class I-mediated antigen presentation. This transformation may dramatically facilitate the interaction with cytotoxic CD8+ T cells and promote the destruction of islet allografts. Our study provides insight into the transcriptomics and diverse microenvironment of islet grafts and their impacts on immune rejection.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of traumatic orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Fuwen Yao
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuanzheng Peng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shufang Zhu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zijing Wu
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Kai Deng
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Li
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
7
|
Dubey R, Prabhakar PK, Gupta J. Epigenetics: key to improve delayed wound healing in type 2 diabetes. Mol Cell Biochem 2022; 477:371-383. [PMID: 34739665 DOI: 10.1007/s11010-021-04285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Diabetes-related delayed wound healing is a multifactorial, nuanced, and intertwined complication that causes substantial clinical morbidity. The etiology of diabetes and its related microvascular complications is affected by genes, diet, and lifestyle factors. Epigenetic modifications such as DNA methylation, histone modifications, and post-transcriptional RNA regulation (microRNAs) are subsequently recognized as key facilitators of the complicated interaction between genes and the environment. Current research suggests that diabetes-persuaded dysfunction of epigenetic pathways, which results in changed expression of genes in target cells and cause diabetes-related complications including cardiomyopathy, nephropathy, retinopathy, delayed wound healing, etc., which are foremost drivers to diabetes-related adverse outcomes. In this paper, we discuss the role of epigenetic mechanisms in controlling tissue repair, angiogenesis, and expression of growth factors, as well as recent findings that show the alteration of epigenetic events during diabetic wound healing.
Collapse
Affiliation(s)
- Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Physiotherapy and Paramedical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India.
| |
Collapse
|
8
|
Ghosh S, Mahalanobish S, Sil PC. Diabetes: discovery of insulin, genetic, epigenetic and viral infection mediated regulation. THE NUCLEUS : AN INTERNATIONAL JOURNAL OF CYTOLOGY AND ALLIED TOPICS 2021; 65:283-297. [PMID: 34629548 PMCID: PMC8491600 DOI: 10.1007/s13237-021-00376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a combination of many metabolic diseases. Insulin deficiency in our body is the main cause of diabetes. Insulin is one of the most well studied proteins, yet the genesis of its discovery was not getting much attention so far. Nevertheless, the history of the discovery of insulin is an exemplary of solving observational and scientific riddles, drudgery, patience and even professional turmoil. It is an inspiration for all medical personnel and scientists who are practising in the field of molecular medicine. Additionally, the genetic and epigenetic regulation of different types of diabetes needs to be addressed because of the widespread nature of the disease. Diabetes not only involves genetic predisposition but environmental factors, lifestyle etc. can be the major contributor for its inception. Nonetheless, viral infections at an early age are also found to trigger the onset of type I diabetes. In this review article, the history of the discovery of insulin is detailed along with the justification for the genetic and epigenetic regulatory mechanisms of diabetes and explained how viral infections can also trigger the onset of diabetes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| |
Collapse
|
9
|
Moreira L, Costa C, Pires J, Teixeira JP, Fraga S. How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108385. [PMID: 34893164 DOI: 10.1016/j.mrrev.2021.108385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Evidence suggests that engineered nanomaterials (ENM) can induce epigenetic modifications. In this review, we provide an overview of the epigenetic modulation of gene expression induced by ENM used in a variety of applications: titanium dioxide (TiO2), silver (Ag), gold (Au), silica (SiO2) nanoparticles and carbon-based nanomaterials (CNM). Exposure to these ENM can trigger alterations in cell patterns of DNA methylation, post-transcriptional histone modifications and expression of non-coding RNA. Such effects are dependent on ENM dose and physicochemical properties including size, shape and surface chemistry, as well as on the cell/organism sensitivity. The genes affected are mostly involved in the regulation of the epigenetic machinery itself, as well as in apoptosis, cell cycle, DNA repair and inflammation related pathways, whose long-term alterations might lead to the onset or progression of certain pathologies. In addition, some DNA methylation patterns may be retained as a form of epigenetic memory. Prenatal exposure to ENM may impair the normal development of the offspring by transplacental effects and/or putative transmission of epimutations in imprinting genes. Thus, understanding the impact of ENM on the epigenome is of paramount importance and epigenetic evaluation must be considered when assessing the risk of ENM to human health.
Collapse
Affiliation(s)
- Luciana Moreira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Joana Pires
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
10
|
Yang ML, Sodré FMC, Mamula MJ, Overbergh L. Citrullination and PAD Enzyme Biology in Type 1 Diabetes - Regulators of Inflammation, Autoimmunity, and Pathology. Front Immunol 2021; 12:678953. [PMID: 34140951 PMCID: PMC8204103 DOI: 10.3389/fimmu.2021.678953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of 'neoepitopes' consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Fernanda M C Sodré
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Lut Overbergh
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that resulted from the severe destruction of the insulin-producing β cells in the pancreases of individuals with a genetic predisposition. Genome-wide studies have identified HLA and other risk genes associated with T1D susceptibility in humans. However, evidence obtained from the incomplete concordance of diabetes incidence among monozygotic twins suggests that environmental factors also play critical roles in T1D pathogenesis. Epigenetics is a rapidly growing field that serves as a bridge to link T1D risk genes and environmental exposures, thereby modulating the expression of critical genes relevant to T1D development beyond the changes of DNA sequences. Indeed, there is compelling evidence that epigenetic changes induced by environmental insults are implicated in T1D pathogenesis. Herein, we sought to summarize the recent progress in terms of epigenetic mechanisms in T1D initiation and progression, and discuss their potential as biomarkers and therapeutic targets in the T1D setting.
Collapse
|
12
|
Bangarusamy DK, Lakshmanan AP, Al-Zaidan S, Alabduljabbar S, Terranegra A. Nutri-epigenetics: the effect of maternal diet and early nutrition on the pathogenesis of autoimmune diseases. Minerva Pediatr (Torino) 2021; 73:98-110. [PMID: 33880901 DOI: 10.23736/s2724-5276.20.06166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autoimmune diseases comprise a wide group of diseases involving a self-response of the immune system against the host. The etiopathogenesis is very complex involving disease-specific factors but also environmental factors, among which the diet. Maternal diet during pregnancy as well as early nutrition recently attracted the interest of the scientists as contributing to the immune programming. In this paper, we reviewed the most recent literature on the effect of maternal diet and early nutrition in modulating the immune system in a selected subset of autoimmune diseases: type 1 diabetes, celiac disease, inflammatory bowel disease, juvenile idiopathic arthritis and rheumatoid arthritis. Particularly, we focused our narrative on the role of maternal and perinatal nutrition in the epigenetic mechanisms underlying the auto-immune response. Maternal diet during pregnancy as well as breastfeeding and early nutrition play a big role in many epigenetic mechanisms. Most of the nutrients consumed by the mother and the infant are known exerting epigenetic functions, such as folate, methionine, zinc, vitamins B12 and D, fibers, casein and gliadin, and they were linked to gene expression changes in the immune pathways. Despite the common role of maternal diet, breastfeeding and early nutrition in almost all the autoimmune diseases, each disease seems to have specific diet-driver epigenetic mechanisms that require further investigations. The research in this field is opening new routes to establishing a precision nutrition approach to the auto-immune diseases.
Collapse
Affiliation(s)
- Dhinoth K Bangarusamy
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Arun P Lakshmanan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Sara Al-Zaidan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Shaikha Alabduljabbar
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar -
| |
Collapse
|
13
|
Qu Z, Lou Q, Cooper DKC, Pu Z, Lu Y, Chen J, Ni Y, Zhan Y, Chen J, Li Z, Zhan N, Zeng Y, Tu Z, Cao H, Dai Y, Cai Z, Mou L. Potential roles of mesenchymal stromal cells in islet allo- and xenotransplantation for type 1 diabetes mellitus. Xenotransplantation 2021; 28:e12678. [PMID: 33569837 DOI: 10.1111/xen.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Islet transplantation is poised to play an important role in the treatment of type 1 diabetes mellitus (T1DM). However, there are several challenges limiting its widespread use, including the instant blood-mediated inflammatory reaction, hypoxic/ischemic injury, and the immune response. Mesenchymal stem/stromal cells (MSCs) are known to exert regenerative, immunoregulatory, angiogenic, and metabolic properties. Here, we review recent reports on the application of MSCs in islet allo- and xenotransplantation. We also document the clinical trials that have been undertaken or are currently underway, relating to the co-transplantation of islets and MSCs. Increasing evidence indicates that co-transplantation of MSCs prolongs islet graft survival by locally secreted protective factors that reduce immune reactivity and promote vascularization, cell survival, and regeneration. MSC therapy may be a promising option for islet transplantation in patients with T1DM.
Collapse
Affiliation(s)
- Zepeng Qu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Lou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zuhui Pu
- Department of Radiology, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhenjie Li
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Naiyang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Zeng
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwei Tu
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huayi Cao
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
14
|
Kohil A, Al-Asmakh M, Al-Shafai M, Terranegra A. The Interplay Between Diet and the Epigenome in the Pathogenesis of Type-1 Diabetes. Front Nutr 2021; 7:612115. [PMID: 33585535 PMCID: PMC7876257 DOI: 10.3389/fnut.2020.612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The autoimmune disease, Type 1 Diabetes Mellitus (T1DM), results in the destruction of pancreatic β-cells, and the International Diabetes Federation reports that its incidence is increasing worldwide. T1DM is a complex disease due to the interaction between genetic and environmental factors. Certain dietary patterns and nutrients are known to cause epigenetic modifications in physiological conditions and diseases. However, the interplay between diet and epigenetics is not yet well-understood in the context of T1DM. Several studies have described epigenetic mechanisms involved in the autoimmune reactions that destroy the β-cells, but few explored diet components as potential triggers for epigenetic modifications. Clarifying the link between diet and epigenome can provide new insights into the pathogenesis of T1DM, potentially leading to new diagnostic and therapeutic approaches. In this mini review, we shed light on the influence of the diet-epigenome axis on the pathophysiology of T1DM.
Collapse
Affiliation(s)
- Amira Kohil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | | |
Collapse
|
15
|
Sayed S, Nabi AHMN. Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:457-498. [PMID: 32314317 DOI: 10.1007/5584_2020_518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unveiling human genome through successful completion of Human Genome Project and International HapMap Projects with the advent of state of art technologies has shed light on diseases associated genetic determinants. Identification of mutational landscapes such as copy number variation, single nucleotide polymorphisms or variants in different genes and loci have revealed not only genetic risk factors responsible for diseases but also region(s) playing protective roles. Diabetes is a global health concern with two major types - type 1 diabetes (T1D) and type 2 diabetes (T2D). Great progress in understanding the underlying genetic predisposition to T1D and T2D have been made by candidate gene studies, genetic linkage studies, genome wide association studies with substantial number of samples. Genetic information has importance in predicting clinical outcomes. In this review, we focus on recent advancement regarding candidate gene(s) associated with these two traits along with their clinical parameters as well as therapeutic approaches perceived. Understanding genetic architecture of these disease traits relating clinical phenotypes would certainly facilitate population stratification in diagnosing and treating T1D/T2D considering the doses and toxicity of specific drugs.
Collapse
Affiliation(s)
- Shomoita Sayed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
16
|
Jokkel Z, Piroska M, Szalontai L, Hernyes A, Tarnoki DL, Tarnoki AD. Twin and family studies on epigenetics of autoimmune diseases. TWIN AND FAMILY STUDIES OF EPIGENETICS 2021:169-191. [DOI: 10.1016/b978-0-12-820951-6.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Singh R, Chandel S, Dey D, Ghosh A, Roy S, Ravichandiran V, Ghosh D. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep 2020; 40:BSR20202160. [PMID: 32815547 PMCID: PMC7494983 DOI: 10.1042/bsr20202160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes and its related complications are increasing significantly globally. Collected evidence suggested that several genetic and environmental factors contribute to diabetes mellitus. Associated complications such as retinopathy, neuropathy, nephropathy and other cardiovascular complications are a direct result of diabetes. Epigenetic factors include deoxyribonucleic acid (DNA) methylation and histone post-translational modifications. These factors are directly related with pathological factors such as oxidative stress, generation of inflammatory mediators and hyperglycemia. These result in altered gene expression and targets cells in the pathology of diabetes mellitus without specific changes in a DNA sequence. Environmental factors and malnutrition are equally responsible for epigenetic states. Accumulated evidence suggested that environmental stimuli alter the gene expression that result in epigenetic changes in chromatin. Recent studies proposed that epigenetics may include the occurrence of 'metabolic memory' found in animal studies. Further study into epigenetic mechanism might give us new vision into the pathogenesis of diabetes mellitus and related complication thus leading to the discovery of new therapeutic targets. In this review, we discuss the possible epigenetic changes and mechanism that happen in diabetes mellitus type 1 and type 2 separately. We highlight the important epigenetic and non-epigenetic therapeutic targets involved in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| |
Collapse
|
18
|
Al Theyab A, Almutairi T, Al-Suwaidi AM, Bendriss G, McVeigh C, Chaari A. Epigenetic Effects of Gut Metabolites: Exploring the Path of Dietary Prevention of Type 1 Diabetes. Front Nutr 2020; 7:563605. [PMID: 33072796 PMCID: PMC7541812 DOI: 10.3389/fnut.2020.563605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) has increased over the past half century and has now become the second most frequent autoimmune disease in childhood and one of major public health concern worldwide. Evidence suggests that modern lifestyles and rapid environmental changes are driving factors that underlie this increase. The integration of these two factors brings about changes in food intake. This, in turn, alters epigenetic regulations of the genome and intestinal microbiota composition, which may ultimately play a role in pathogenesis of T1D. Recent evidence shows that dysbiosis of the gut microbiota is closely associated with T1D and that a dietary intervention can influence epigenetic changes associated with this disease and may modify gene expression patterns through epigenetic mechanisms. In this review focus on how a diet can shape the gut microbiome, its effect on the epigenome in T1D, and the future of T1D management by microbiome therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Doha, Qatar
| |
Collapse
|
19
|
Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long Noncoding RNAs and Circular RNAs in Autoimmune Diseases. Biomolecules 2020; 10:E1044. [PMID: 32674342 PMCID: PMC7407480 DOI: 10.3390/biom10071044] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Immune responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled, autoimmune diseases can occur. Autoimmune diseases (ADs) are a family of disorders characterized by the body's immune response being directed against its own tissues, with consequent chronic inflammation and tissue damage. Despite enormous efforts to identify new drug targets and develop new therapies to prevent and ameliorate AD symptoms, no definitive solutions are available today. Additionally, while substantial progress has been made in drug development for some ADs, most treatments only ameliorate symptoms and, in general, ADs are still incurable. Hundreds of genetic loci have been identified and associated with ADs by genome-wide association studies. However, the whole list of molecular factors that contribute to AD pathogenesis is still unknown. Noncoding (nc)RNAs, such as microRNAs, circular (circ)RNAs, and long noncoding (lnc)RNAs, regulate gene expression at different levels in various diseases, including ADs, and serve as potential drug targets as well as biomarkers for disease progression and response to therapy. In this review, we will focus on the potential roles and genetic regulation of ncRNA in four autoimmune diseases-systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Giampaolo Murgia
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Maria Laura Idda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, 07100 Sassari, Italy
| |
Collapse
|
20
|
Widén C, Holmer H, Sättlin S, Renvert S, Lernmark Å, Persson GR. Periodontal conditions, retinopathy, and serum markers in individuals with type 1 diabetes. J Periodontol 2020; 91:1436-1443. [PMID: 32484239 DOI: 10.1002/jper.19-0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/18/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The prevalence of diabetes is high and increasing. Periodontitis has been identified as a risk factor in both type 1 and 2 diabetes. The study purpose was to assess periodontal conditions, retinopathy, and serum glutamic acid decarboxylase antibody (GADA) titers in relation to retinopathy in individuals with type 1 diabetes (T1D). METHODS The study is a case series. Adult individuals with a diagnosis of T1D (n = 85) monitored ≥5 years were recruited from an endocrinology clinic. Peripheral venous blood samples were analyzed including assessments of serum HbA1c levels and GADA titers. Medical and periodontal conditions were examined, and the data assessed. Independent t tests, binary and multivariate analyses, χ2 and odds ratios were employed. RESULTS Gingivitis was found in 68.2%, periodontitis in 21.2%, and retinopathy in 64.7%, GADA (≥35 U/mL) in 54.1%, and serum HbA1c > 48 mmol/mol in 94.3% of the individuals. The unadjusted odds ratio for periodontitis to differentiate a diagnosis of retinopathy was 7.3 (95%CI 1.6, 4.4, P <0.01). Multivariate analyses identified the following dependent factors to differentiate retinopathy; age, T1D duration, gingivitis, periodontitis at P < 0.001, sex, and serum GADA at P < 0.01, and by the number of remaining teeth at P < 0.05. CONCLUSION Retinopathy as a complication to T1D is linked to the duration of diabetes, age of the individual and with increasing severity to periodontitis. Periodontal intervention studies are warranted.
Collapse
Affiliation(s)
- Cecilia Widén
- Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | | | - Susanna Sättlin
- Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | - Stefan Renvert
- Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden.,Blekinge Institute of Technology, Karlskrona, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, University Hospital, Malmö, Sweden
| | - G Rutger Persson
- Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden.,Department of Oral Medicine, University of Washington, Seattle, WA, USA.,Department of Periodontics, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 2020; 16:1575-1585. [PMID: 32226303 PMCID: PMC7097918 DOI: 10.7150/ijbs.41852] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family and localizes to the cytoplasm. STAT4 is phosphorylated after a variety of cytokines bind to the membrane, and then dimerized STAT4 translocates to the nucleus to regulate gene expression. We reviewed the essential role played by STAT4 in a wide variety of cells and the pathogenesis of diverse human diseases, especially many kinds of autoimmune and inflammatory diseases, via activation by different cytokines through the Janus kinase (JAK)-STAT signaling pathway.
Collapse
Affiliation(s)
- Chou Yang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Jinxin Peng
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
22
|
Xie Z, Chang C, Huang G, Zhou Z. The Role of Epigenetics in Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:223-257. [PMID: 32445098 DOI: 10.1007/978-981-15-3449-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain poorly understood. The major epigenetic modifications include DNA methylation, histone modification, and non-coding RNA. There has been extensive research on the role of epigenetic mechanisms including aberrant DNA methylation, histone modification, and microRNA in the pathogenesis of T1D. DNA methylation and microRNA have been proposed as biomarkers to predict islet β cell death, which needs further confirmation before any clinical application can be developed. Small molecule inhibitors of histone deacetylases, histone methylation, and DNA methylation are potentially important for preventing T1D or in the reprogramming of insulin-producing cells. This chapter mainly focuses on T1D-related DNA methylation, histone modification, and non-coding RNA, as well as their possible translational potential in the early diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China.
| |
Collapse
|
23
|
Berkowitz A. Playing the genome card. J Neurogenet 2019; 34:189-197. [PMID: 31872788 DOI: 10.1080/01677063.2019.1706093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the 1990s, prominent biologists and journalists predicted that by 2020 each of us would carry a genome card, which would allow physicians to access our entire genome sequence and routinely use this information to diagnose and treat common and debilitating conditions. This is not yet the case. Why not? Common and debilitating diseases are rarely caused by single-gene mutations, and this was recognized before these genome card predictions had been made. Debilitating conditions, including common psychiatric disorders, are typically caused either by rare mutations or by complex interactions of many genes, each having a small effect, and epigenetic, environmental, and microbial factors. In such cases, having a complete genome sequence may have limited utility in diagnosis and treatment. Genome sequencing technologies have transformed biological research in many ways, but had a much smaller effect than expected on treatments of common diseases. Thus, early proponents of genome sequencing effectively "mis-promised" its benefits. One reason may be that there are incentives for both biologists and journalists to tell simple stories, including the idea of relatively simple genetic causation of common, debilitating diseases. These incentives may have led to misleading predictions, which to some extent continue today. Although the Human Genome Project has facilitated biological research generally, the mis-promising of medical benefits, at least for treating common and debilitating disorders, could undermine support for scientific research over the long term.
Collapse
Affiliation(s)
- Ari Berkowitz
- Department of Biology and Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
24
|
Cerna M. Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus. Int J Mol Sci 2019; 21:ijms21010036. [PMID: 31861649 PMCID: PMC6981658 DOI: 10.3390/ijms21010036] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by an autoimmune destruction of the pancreatic β-cells, a process in which autoreactive T cells play a pivotal role, and it is characterized by islet autoantibodies. Consequent hyperglycemia is requiring lifelong insulin replacement therapy. T1DM is caused by the interaction of multiple environmental and genetic factors. The integrations of environments and genes occur via epigenetic regulations of the genome, which allow adaptation of organism to changing life conditions by alternation of gene expression. T1DM has increased several-fold over the past half century. Such a short time indicates involvement of environment factors and excludes genetic changes. This review summarizes the most current knowledge of epigenetic changes in that process leading to autoimmune diabetes mellitus.
Collapse
Affiliation(s)
- Marie Cerna
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10, Czech Republic
| |
Collapse
|
25
|
Costa D, Scognamiglio M, Fiorito C, Benincasa G, Napoli C. Genetic background, epigenetic factors and dietary interventions which influence human longevity. Biogerontology 2019; 20:605-626. [PMID: 31309340 DOI: 10.1007/s10522-019-09824-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Longevity is mainly conditioned by genetic, epigenetic and environmental factors. Different genetic modifications seem to be positively associated to longevity, including SNPs in SIRT1, APOE, FOXO3A, ACE, ATM, NOS1 and NOS2 gene. Epigenetic changes as DNA hyper- and hypo-methylation influence significantly human longevity by activating/deactivating different genes involved in physiological mechanisms. Several studies have confirmed that centenarians have a lower DNA methylation content compared to young subjects, which showed more homogeneously methylated DNA region. Also the up-regulation of miR-21 seems to be more associated with longevity in different populations of long-lived subjects, suggesting its role as potential epigenetic biomarkers. A non-pharmacological treatment that seems to contrast age-related diseases and promote longevity is represented by dietary intervention. It has been evaluated the effects of dietary restriction of both single nutrients or total calories to extend lifespan. However, in daily practice it is very difficult to guarantee adherence/compliance of the subjects to dietary restriction and at the same time avoid dangerous nutritional deficiencies. As consequence, the attention has focused on a variety of substances both drugs and natural compounds able to mime the beneficial effects of caloric restriction, including resveratrol, quercetin, rapamycin, metformin and 2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Dario Costa
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.
| | - Michele Scognamiglio
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Carmela Fiorito
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Sommese L, Benincasa G, Schiano C, Marfella R, Grimaldi V, Sorriento A, Lucchese R, Fiorito C, Sardu C, Nicoletti GF, Napoli C. Genetic and epigenetic-sensitive regulatory network in immune response: a putative link between HLA-G and diabetes. Expert Rev Endocrinol Metab 2019; 14:233-241. [PMID: 31131681 DOI: 10.1080/17446651.2019.1620103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Human leukocyte antigen-G (HLA-G) gene encodes for a tolerogenic molecule constitutively expressed in human pancreas and upregulated upon inflammatory signals. The 14 bp INS/DEL polymorphism in the 3'UTR of HLA-G may influence the susceptibility for diabetes and coronary heart diseases (CHD), thus suggesting a novel candidate gene. DNA hypomethylation at HLA-G promoter may be a putative useful clinical biomarker for CHD onset. Upregulation of soluble HLA-G isoform (sHLA-G) was detected in prediabetic and diabetic subjects, suggesting a putative role in metabolic dysfunctions. AREAS COVERED We conducted a scoping literature review of genetic and epigenetic-sensitive mechanisms regulating HLA-G in diabetes. English-language manuscripts published between 1997 and 2019, were identified through PubMed, Google Scholar, and Web of Science database searches. After selecting 14 original articles representing case-control studies, we summarized and critically evaluated their main findings. EXPERT COMMENTARY Although epigenetic modifications are involved in the onset of hyperglycemic conditions evolving into diabetes and CHD, it is still difficult to obtain simple and useful clinical biomarkers. Inflammatory-induced KDM6A/INF-β/HLA-G axis might be a part of the epigenetic network leading to overexpression of HLA-G at pancreatic level. Network medicine may show whether HLA-G is involved in diabetes and CHD.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Giuditta Benincasa
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | | | - Raffaele Marfella
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Vincenzo Grimaldi
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Antonio Sorriento
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Roberta Lucchese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Carmela Fiorito
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Celestino Sardu
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Giovanni Francesco Nicoletti
- d Multidisciplinary Department of Medical-Surgical and Dental Specialties , Università degli Studi della Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
- c IRCCS SDN , Naples , Italy
| |
Collapse
|
27
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
28
|
Esposito S, Toni G, Tascini G, Santi E, Berioli MG, Principi N. Environmental Factors Associated With Type 1 Diabetes. Front Endocrinol (Lausanne) 2019; 10:592. [PMID: 31555211 PMCID: PMC6722188 DOI: 10.3389/fendo.2019.00592] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that leads to progressive pancreatic ß-cell destruction and culminates in absolute insulin deficiency and stable hyperglycaemia. It is very likely that environmental factors play a role in triggering islet autoimmunity. Knowing whether they have true relevance in favoring T1D development is essential for the effective prevention of the disease. Moreover, prevention could be obtained directly interfering with the development of autoimmunity through autoantigen-based immunotherapy. In this narrative review, the present possibilities for the prevention of T1D are discussed. Presently, interventions to prevent T1D are generally made in subjects in whom autoimmunity is already activated and autoantibodies against pancreatic cell components have been detected. Practically, the goal is to slow down the immune process by preserving the normal structure of the pancreatic islets for as long as possible. Unfortunately, presently methods able to avoid the risk of autoimmune activation are not available. Elimination of environmental factors associated with T1D development, reverse of epigenetic modifications that favor initiation of autoimmunity in subjects exposed to environmental factors and use of autoantigen-based immunotherapy are possible approaches, although for all these measures definitive conclusions cannot be drawn. However, the road is traced and it is possible that in a not so distant future an effective prevention of the disease to all the subjects at risk can be offered.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Susanna Esposito
| | - Giada Toni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giorgia Tascini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Elisa Santi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Maria Giulia Berioli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
29
|
Yang ML, Doyle HA, Clarke SG, Herold KC, Mamula MJ. Oxidative Modifications in Tissue Pathology and Autoimmune Disease. Antioxid Redox Signal 2018; 29:1415-1431. [PMID: 29088923 PMCID: PMC6166690 DOI: 10.1089/ars.2017.7382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Various autoimmune syndromes are characterized by abnormalities found at the level of tissues and cells, as well as by microenvironmental influences, such as reactive oxygen species (ROS), that alter intracellular metabolism and protein expression. Moreover, the convergence of genetic, epigenetic, and even environmental influences can result in B and T lymphocyte autoimmunity and tissue pathology. Recent Advances: This review describes how oxidative stress to cells and tissues may alter post-translational protein modifications, both directly and indirectly, as well as potentially lead to aberrant gene expression. For example, it has been clearly observed in many systems how oxidative stress directly amplifies carbonyl protein modifications. However, ROS also lead to a number of nonenzymatic spontaneous modifications including deamidation and isoaspartate modification as well as to enzyme-mediated citrullination of self-proteins. ROS have direct effects on DNA methylation, leading to influences in gene expression, chromosome inactivation, and the silencing of genetic elements. Finally, ROS can alter many other cellular pathways, including the initiation of apoptosis and NETosis, triggering the release of modified intracellular autoantigens. CRITICAL ISSUES This review will detail specific post-translational protein modifications, the pathways that control autoimmunity to modified self-proteins, and how products of ROS may be important biomarkers of tissue pathogenesis. FUTURE DIRECTIONS A clear understanding of the many pathways affected by ROS will lead to potential therapeutic manipulations to alter the onset and/or progression of autoimmune disease.
Collapse
Affiliation(s)
- Mei-Ling Yang
- 1 Section of Rheumatology, Yale University School of Medicine , New Haven, Connecticut.,2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Hester A Doyle
- 1 Section of Rheumatology, Yale University School of Medicine , New Haven, Connecticut.,2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Steven G Clarke
- 3 Department of Chemistry and Biochemistry, University of California , Los Angeles, Los Angeles, California
| | - Kevan C Herold
- 2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,4 Department of Immunobiology, Yale University School of Medicine , New Haven, Connecticut
| | - Mark J Mamula
- 1 Section of Rheumatology, Yale University School of Medicine , New Haven, Connecticut.,2 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
30
|
Sommese L, Benincasa G, Lanza M, Sorriento A, Schiano C, Lucchese R, Alfano R, Nicoletti GF, Napoli C. Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes. J Diabetes Complications 2018; 32:1076-1084. [PMID: 30190170 DOI: 10.1016/j.jdiacomp.2018.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epigenetics modulated tissue-specific gene expression during the onset of type 1 and type 2 diabetes and their complications. METHODS We searched the PubMed recent studies about the main epigenetic tags involved in type 1 and type 2 diabetes onset and their clinical complications. PubMed studies about the epigenetic tags involved in type 1 and 2 diabetes onset was searched. RESULTS The epigenetic methylation maps of cord blood samples highlighted differences in the methylation status of CpG sites within the MHC genes between carriers of diabetes type 1 DR3-DQ2 and DR4-DQ8 risk haplotypes. β cell-derived unmethylated INS DNA showed the decline of β-cell mass preserving insulin secretion. Differentially methylated regions in pancreatic islets from type 2 diabetes covered PDX1, TCF7L2, and ADCY5 promoters during islet dysfunction. The recruitment of SET7 and SUV39H1 histone methyltransferases and LSD-1 lysine-specific demethylase-1 at NF-kβ-p65 promoter in vascular cells was involved in coronary heart disease. Neutrophil extracellular trap, activated by protein arginine deiminase-4, impaired wound healing from diabetic foot ulcers. MiR-199a-3p over-expression induced coagulative cascade, swelling and pain by a down-regulation of SERPIN-E2 in diabetic peripheral neuropathy. A DNA hypo-methylation and histone hyper-acetylation at MIOX promoter led an overexpression of ROS, fibronectin, HIF-1α, and NOX-4 associated with diabetic tubulopathy. A hypo-methylation of H3K4 at SOD2 promoter by LSD-1 increased ROS causing diabetic retinopathy. CONCLUSIONS Epigenetics played a relevant role in prevention, diagnosis, and treatment of diabetes.
Collapse
MESH Headings
- Biomarkers/analysis
- DNA Methylation/physiology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/therapy
- Diabetic Foot/genetics
- Epigenesis, Genetic/physiology
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Precision Medicine/methods
- Precision Medicine/trends
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Linda Sommese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Giuditta Benincasa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michele Lanza
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Antonio Sorriento
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Roberta Lucchese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Roberto Alfano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università della Campania Luigi Vanvitelli, Napoli, Italy
| | - Claudio Napoli
- IRCCS SDN, Naples, Italy; Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
31
|
Astro V, Adamo A. Epigenetic Control of Endocrine Pancreas Differentiation in vitro: Current Knowledge and Future Perspectives. Front Cell Dev Biol 2018; 6:141. [PMID: 30410880 PMCID: PMC6209628 DOI: 10.3389/fcell.2018.00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
The raising worldwide prevalence of Type 1 and Type 2 diabetes mellitus (T1DM and T2DM) solicits the derivation of in vitro methods yielding mature and fully functional β-cells to be used in regenerative medicine. Several protocols to differentiate human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into human pancreatic β-like cells have recently been developed. These methods, coupled with a bioengineering approach using biocompatible encapsulating devices, have recently led to experimental clinical trials showing great promises to ultimately end the battle of diabetic patients for managing hyperglycemia. However, in vitro differentiation protocols face the challenge of achieving homogenous population of mono-hormonal insulin-secreting mature β-cells. Major epigenetic events such as DNA methylation, post-translational modification of histones and non-coding RNAs expression, orchestrate physiological endocrine pancreas specification into α-, β-, γ-, and δ-cells, both in vivo and in vitro. The dysregulation of such epigenetic processes is associated to multiple pancreatic disorders including diabetes. Understanding the epigenomic and transcriptomic landscape underlying endocrine pancreas development could, therefore, improve in vitro differentiation methods. In this review, we summarize the most effective protocols for in vitro differentiation of hESCs/hiPSCs toward pancreatic β-cells and we discuss the current limitations in the derivation of functional glucose-responsive, insulin-releasing β-cells. Moreover, we focus on the main transcriptional and epigenetic events leading to pancreatic specification and on the applicative potential of novel epigenetic drugs for the establishment of innovative pharmacological therapeutic approaches.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
32
|
Sommese L, Paolillo R, Cacciatore F, Grimaldi V, Sabia C, Esposito A, Sorriento A, Iannone C, Rupealta N, Sarno G, Santangelo M, De Rosa P, Nicoletti G, Napoli C. HLA-G and anti-HCV in patients on the waiting list for kidney transplantation. Adv Med Sci 2018; 63:317-322. [PMID: 30015095 DOI: 10.1016/j.advms.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Human leukocyte antigen (HLA)-G is a non-classic major histocompatibility complex HLA class I molecule. HLA-G may have tolerogenic properties which are linked to epigenetic-sensitive pathways. There is a correlation of sHLA-G levels and graft acceptance in transplantation studies. There are previous data on correlation of sHLA-G with graft rejection as well as with viral infections such as hepatitis C virus (HCV) in kidney transplanted patients. Here, we report the sHLA-G expression in patients on the waiting list for kidney transplantation, with and without anti-HCV compared to a control group. METHODS Serum of 67 patients on the waiting list for kidney transplantation (n = 43 with anti-HCV and n = 24 without anti-HCV) was analyzed. Among these patients, n = 39 were on the waiting list for the first transplantation, while n = 28 were patients who returned in the list. The control group included n = 23 blood donors with anti-HCV (n = 13) and without anti-HCV (n = 10). RESULTS The expression of sHLA-G was significantly lower in the control group (39.6 ± 34.1 U/ml) compared to both - patients on the waiting list for the first transplantation (62.5 ± 42.4 U/ml, p=0.031) and patients who returned in the list (76.7 ± 53.9 U/ml, p=0.006). No significant differences were observed in all anti-HCV positive groups. A positive linear correlation between sHLA-G and TNF-α, and patient age was observed. CONCLUSIONS Serum sHLA-G values were significantly increased in both - patients on the waiting list for the first transplantation and patients who returned in the list, as compared to control group. Our findings confirm the key tolerogenic role of sHLA-G levels as epigenetic-related marker for measuring the state of kidney allograft acceptance.
Collapse
Affiliation(s)
- Linda Sommese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria (AOU), Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Rossella Paolillo
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Francesco Cacciatore
- IRCCS Salvatore Maugeri Foundation, Scientific Institute of Telese, Benevento, Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Chiara Sabia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonella Esposito
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Sorriento
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria (AOU), Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Carmela Iannone
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Gerardo Sarno
- San Giovanni di Dio e Ruggi D'Aragona, Università Ospedaliera, Salerno, Italy
| | | | - Paride De Rosa
- San Giovanni di Dio e Ruggi D'Aragona, Università Ospedaliera, Salerno, Italy
| | - Gianfranco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
33
|
Vasco M, Paolillo R, Schiano C, Sommese L, Cuomo O, Napoli C. Compromised nutritional status in patients with end-stage liver disease: Role of gut microbiota. Hepatobiliary Pancreat Dis Int 2018; 17:290-300. [PMID: 30173786 DOI: 10.1016/j.hbpd.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with end-stage liver disease (ESLD) have a compromised nutritional status because of the liver crucial role in regulating metabolic homeostasis and energy balance. DATA SOURCES A systematic review of literature based on extensive relevant articles published from 2001 to 2017 in English in PubMed database was performed by searching keywords such as liver disease, non-alcoholic liver disease, alcoholic liver disease, malnutrition, epigenetics, gut microbiota, and probiotics. RESULTS Liver transplantation would be one eligible therapy for ESLD patients, even if, the clinical outcome is negatively influenced by malnutrition and/or infections. The malnutrition is a condition of nutrient imbalance with a high incidence in ESLD patients. An accurate evaluation of nutritional status could be fundamental for reducing complications and prolonging the survival of ESLD patients including those undergoing liver transplantation. In addition, the interaction among nutrients, diet and genes via epigenetics has emerged as a potential target to reduce the morbidity and mortality in ESLD patients. The malnutrition induces changes in gut microbiota causing dysbiosis with a probable translocation of bacteria and/or pathogen-derived factors from the intestine to the liver. Gut microbiota contribute to the progression of chronic liver diseases as well as hepatocellular carcinoma. The administration of probiotics modulating gut microbiota could improve all chronic liver diseases. CONCLUSIONS This review provides an update on malnutrition status linked to epigenetics and the potential benefit of some probiotics on the management of ESLD patients. In support of this view and to reveal the constant and growing interest in this field, some clinical trials are reported.
Collapse
Affiliation(s)
- Maria Vasco
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Rossella Paolillo
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy
| | | | - Linda Sommese
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy; Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy.
| | - Oreste Cuomo
- Department of Liver Transplant, AORN A. Cardarelli, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy; IRCCS SDN, Naples, Italy; Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
34
|
Zullo A, Simone E, Grimaldi M, Gagliardi M, Zullo L, Matarazzo MR, Mancini FP. Effect of nutrient deprivation on the expression and the epigenetic signature of sirtuin genes. Nutr Metab Cardiovasc Dis 2018; 28:418-424. [PMID: 29499851 DOI: 10.1016/j.numecd.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Over the last decades advances in understanding the molecular bases of the close relationship between nutrition, metabolism, and diseases have been impressive. However, there are always novel frontiers coming up and epigenetics is one of these. Sirtuins, are pivotal factors in the control of metabolic pathways according to nutrient availability. In the present study we evaluated the effect of nutrient deprivation on expression, DNA methylation and chromatin status of the sirtuin genes. METHODS AND RESULTS We performed these studies in mouse hepatoma cells, that were grown in standard medium, or in media containing low glucose concentration, or no glucose, or no amino acids. We applied quantitative real-time PCR to cDNA, methylation-enriched DNA and nuclease-treated DNA in order to evaluate gene expression, DNA methylation, and chromatin condensation, respectively. This study shows that the expression of sirtuin genes varies following nutrient deprivation. Moreover, we observed that changes of DNA methylation and chromatin condensation occur at the transcription start site of sirtuin genes following nutrient deprivation. CONCLUSIONS Epigenetic mechanisms may have a role in the sirtuin response to nutrient deprivations in cultured hepatoma cells. Replicating these results in vivo to achieve a comprehensive understanding of the epigenetic control of sirtuin expression following nutrient deprivations might open up novel therapeutic possibilities to cure metabolic diseases and promote human health.
Collapse
Affiliation(s)
- A Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy; CEINGE Advanced Biotechnologies, Naples, Italy.
| | - E Simone
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - M Grimaldi
- Department of Pediatric Oncology and Hematology, Charité University Hospital, Berlin, Germany
| | - M Gagliardi
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Naples, Italy
| | - L Zullo
- Center for Synaptic Neuroscience and Technology (NSYN), IIT-Istituto Italiano di Tecnologia, Genova, Italy
| | - M R Matarazzo
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Naples, Italy
| | - F P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.
| |
Collapse
|