1
|
Bighi NMS, Fonseca ÉL, Freitas FS, Morgado SM, Vicente ACP. Pandemic ST131 Escherichia coli presenting the UPEC/EAEC and ExPEC/EAEC hybrid pathotypes recovered from extraintestinal infections in a clinical setting of the Brazilian Amazon region. Mem Inst Oswaldo Cruz 2025; 120:e240204. [PMID: 40243867 PMCID: PMC11984961 DOI: 10.1590/0074-02760240204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Escherichia coli is a commensal organism but may become pathogenic by the acquisition of virulence factors involved with intestinal (IPEC) or extraintestinal (ExPEC) infections. Some strains, known as hybrids, may harbour virulence determinants of both IPEC and ExPEC pathotypes, increasing their virulence potential. Reports of hybrid E. coli in Brazil are rare, and the associated lineages were poorly explored. OBJECTIVES This study characterised ExPEC E. coli strains focusing on the occurrence of hybrid pathotypes. METHODS Fifteen clinical ExPEC strains were submitted to multilocus sequence typing (MLST), susceptibility test, and polymerase chain reaction (PCR) targeting IEC/ExPEC virulence markers. FINDINGS All strains were multidrug-resistant, and 11 STs were determined among the 15 ExPEC strains, including local/new and pandemic lineages, such as ST69 and ST131. Twelve/15 isolates were classified as hybrids, due to the presence of virulence markers of both Enteroaggregative E. coli (EAEC) and ExPEC or UPEC pathotypes. These UPEC/EAEC (n = 10) and ExPEC/EAEC (n = 2) hybrid strains were found among distinct phylogroups and lineages, including new STs. Interestingly, most hybrids belonged to the pandemic ST131 lineage, and this genotype had never been previously reported in the ST131 circulating in Brazil. MAIN CONCLUSIONS Therefore, this study provides new information on the epidemiological scenario of hybrid E. coli, contributing to a better understanding of the occurrence and pathogenic potential of these organisms.
Collapse
Affiliation(s)
- Nathália MS Bighi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Érica Lourenço Fonseca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Fernanda S Freitas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Sergio Mascarenhas Morgado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Paulo Vicente
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Sheikh A, Ganguli D, Vickers TJ, Singer BB, Foulke-Abel J, Akhtar M, Khatoon N, Setu B, Basu S, Harro C, Maier N, Beatty WL, Chakraborty S, Bhuiyan TR, Qadri F, Donowitz M, Fleckenstein JM. Host-derived CEACAM-laden vesicles engage enterotoxigenic Escherichia coli for elimination and toxin neutralization. Proc Natl Acad Sci U S A 2024; 121:e2410679121. [PMID: 39264739 PMCID: PMC11420188 DOI: 10.1073/pnas.2410679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Debayan Ganguli
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Tim J. Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Bernhard B. Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, 45147Essen, Germany
| | - Jennifer Foulke-Abel
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Marjahan Akhtar
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Nazia Khatoon
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Bipul Setu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Supratim Basu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
| | - Clayton Harro
- Division of Global Disease Epidemiology and Control with the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Nicole Maier
- Center for Vaccine Innovation and Access, PATH, Seattle, WA98121
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Subhra Chakraborty
- Division of Global Disease Epidemiology and Control with the Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD21205
| | - Taufiqur R. Bhuiyan
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Firdausi Qadri
- Enteric and Respiratory. Infections, Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka1212, Bangladesh
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, MO63110
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, Saint Louis, MO63106
| |
Collapse
|
3
|
Sheikh A, Ganguli D, Vickers TJ, Singer B, Foulke-Abel J, Akhtar M, Khatoon N, Setu B, Basu S, Harro C, Maier N, Beatty WL, Chakraborty S, Bhuiyan TR, Qadri F, Donowitz M, Fleckenstein JM. Host-derived CEACAM-laden vesicles engage enterotoxigenic E. coli for elimination and toxin neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604983. [PMID: 39091797 PMCID: PMC11291149 DOI: 10.1101/2024.07.24.604983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Debayan Ganguli
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Tim J. Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Bernhard Singer
- Institute of Anatomy, Medical Faculty, University of Suisberg-Essen, 45147 Essen, Germany
| | - Jennifer Foulke-Abel
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marjahan Akhtar
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Nazia Khatoon
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Bipul Setu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Supratim Basu
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Clayton Harro
- Department of International Health, Division of Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health
| | | | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhra Chakraborty
- Department of International Health, Division of Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health
| | - Tafiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Mark Donowitz
- Division of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Kuhlmann FM, Grigura V, Vickers TJ, Prouty MG, Iannotti LL, Dulience SJL, Fleckenstein JM. Seroprevalence Study of Conserved Enterotoxigenic Escherichia coli Antigens in Globally Diverse Populations. Microorganisms 2023; 11:2221. [PMID: 37764065 PMCID: PMC10536235 DOI: 10.3390/microorganisms11092221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are common causes of infectious diarrhea among young children of low-and middle-income countries (LMICs) and travelers to these regions. Despite their significant contributions to the morbidity and mortality associated with childhood and traveler's diarrhea, no licensed vaccines are available. Current vaccine strategies may benefit from the inclusion of additional conserved antigens, which may contribute to broader coverage and enhanced efficacy, given their key roles in facilitating intestinal colonization and effective enterotoxin delivery. EatA and EtpA are widely conserved in diverse populations of ETEC, but their immunogenicity has only been studied in controlled human infection models and a population of children in Bangladesh. Here, we compared serologic responses to EatA, EtpA and heat-labile toxin in populations from endemic regions including Haitian children and subjects residing in Egypt, Cameroon, and Peru to US children and adults where ETEC infections are sporadic. We observed elevated IgG and IgA responses in individuals from endemic regions to each of the antigens studied. In a cohort of Haitian children, we observed increased immune responses following exposure to each of the profiled antigens. These findings reflect the wide distribution of ETEC infections across multiple endemic regions and support further evaluation of EatA and EtpA as candidate ETEC vaccine antigens.
Collapse
Affiliation(s)
- Frederick Matthew Kuhlmann
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA; (F.M.K.); (V.G.); (T.J.V.)
| | - Vadim Grigura
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA; (F.M.K.); (V.G.); (T.J.V.)
| | - Timothy J. Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA; (F.M.K.); (V.G.); (T.J.V.)
| | | | - Lora L. Iannotti
- Institute for Public Health, Brown School, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (L.L.I.); (S.J.L.D.)
| | - Sherlie Jean Louis Dulience
- Institute for Public Health, Brown School, Washington University in Saint Louis, Saint Louis, MO 63110, USA; (L.L.I.); (S.J.L.D.)
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA; (F.M.K.); (V.G.); (T.J.V.)
- Medicine Service, Infectious Diseases, Saint Louis VA Health Care System, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
6
|
Sheikh A, Wangdi T, Vickers TJ, Aaron B, Palmer M, Miller MJ, Kim S, Herring C, Simoes R, Crainic JA, Gildersleeve JC, van der Post S, Hansson GC, Fleckenstein JM. Enterotoxigenic Escherichia coli Degrades the Host MUC2 Mucin Barrier To Facilitate Critical Pathogen-Enterocyte Interactions in Human Small Intestine. Infect Immun 2022; 90:e0057221. [PMID: 34807735 PMCID: PMC8853678 DOI: 10.1128/iai.00572-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tamding Wangdi
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Bailey Aaron
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Margot Palmer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Mark J. Miller
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Seonyoung Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cassandra Herring
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rita Simoes
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jennifer A. Crainic
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Jeffrey C. Gildersleeve
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Sjoerd van der Post
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
- Medicine Service, Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| |
Collapse
|
7
|
Etiology of acute gastroenteritis among children less than 5 years of age in Bucaramanga, Colombia: A case-control study. PLoS Negl Trop Dis 2020; 14:e0008375. [PMID: 32603324 PMCID: PMC7357789 DOI: 10.1371/journal.pntd.0008375] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/13/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Acute gastroenteritis (AGE) is a major cause of morbidity and mortality in children aged less than 5 years in low- and middle-income countries where limited access to potable water, poor sanitation, deficient hygiene, and food product contamination are prevalent. Research on the changing etiology of AGE and associated risk factors in Latin America, including Colombia, is essential to understand the epidemiology of these infections. The primary objectives of this study were to describe etiology of moderate to severe AGE in children less than 5 years of age from Bucaramanga, Colombia, a middle-income country in Latin American, and to identify the presence of emerging E. coli pathotypes. Methodology/Principal findings This was a prospective, matched for age, case-control study to assess the etiology of moderate to severe AGE in children less than 5 years of age in Bucaramanga, Colombia, South America. We tested for 24 pathogens using locally available diagnostic testing, including stool culture, polymerase chain reaction, microscopy and enzyme-linked immunoassay. Adjusted attributable fractions were calculated to assess the association between AGE and each pathogen in this study population. The study included 861 participants, 431 cases and 430 controls. Enteric pathogens were detected in 71% of cases and in 54% of controls (p = <0.001). Co-infection was identified in 28% of cases and in 14% of controls (p = <0.001). The adjusted attributable fraction showed that Norovirus GII explained 14% (95% CI: 10–18%) of AGE, followed by rotavirus 9.3% (6.4–12%), adenovirus 3% (1–4%), astrovirus 2.9% (0.6–5%), enterotoxigenic Escherichia coli (ETEC) 2.4% (0.4–4%), Cryptosporidium sp. 2% (0.5–4%), Campylobacter sp. 2% (0.2–4%), and Salmonella sp.1.9% (0.3 to 3.5%). Except for Cryptosporidium, all parasite infections were not associated with AGE. Three emergent diarrheagenic E. coli pathotypes were identified in cases (0.7%), including an enteroaggregative/enterotoxigenic E.coli (EAEC/ETEC), an enteroaggregative/enteropathogenic E.coli (EAEC/EPEC), and an emergent enteroinvasive E. coli with a rare O96:H19. No deaths were reported among cases or controls. Conclusions/Significance Norovirus and rotavirus explained the major proportion of moderate to severe AGE in this study. Higher proportion of infection in cases, in the form of single infections or co-infections, showed association with AGE. Three novel E. coli pathotypes were identified among cases in this geographic region. Acute gastroenteritis (AGE) is a leading cause of mortality in children under 5 years of age in low- and middle-income countries (LMIC). The highest burden of AGE disease is concentrated in tropical areas where populations lack access to clean water, adequate sanitation and hygiene, making this condition a neglected disease. Limited information on etiology, associated malnutrition, and mortality among underserved communities makes difficult the development of strategies for AGE prevention and treatment. This case-control study among children less than 5 years of age in Bucaramanga, Colombia, revealed that viral followed by bacterial organisms explained the larger proportion of AGE, being norovirus the most common organism. The higher rate of infections and co-infections among cases compared to controls was associated with AGE. This study also reports the identification of three new E. coli pathotypes among cases designated as biofilm-forming enteroinvasive E. coli (BF-EIEC), enteroaggregative/enteropathogenic E. coli, and enteroaggregative/enterotoxigenic E. coli (EAEC/ETEC).
Collapse
|
8
|
Chakraborty S, Randall A, Vickers TJ, Molina D, Harro CD, DeNearing B, Brubaker J, Sack DA, Bourgeois AL, Felgner PL, Liang X, Mani S, Wenzel H, Townsend RR, Gilmore PE, Darsley MJ, Rasko DA, Fleckenstein JM. Interrogation of a live-attenuated enterotoxigenic Escherichia coli vaccine highlights features unique to wild-type infection. NPJ Vaccines 2019; 4:37. [PMID: 31482013 PMCID: PMC6713706 DOI: 10.1038/s41541-019-0131-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections are a common cause of severe diarrheal illness in low- and middle-income countries. The live-attenuated ACE527 ETEC vaccine, adjuvanted with double mutant heat-labile toxin (dmLT), affords clear but partial protection against ETEC challenge in human volunteers. Comparatively, initial wild-type ETEC challenge completely protects against severe diarrhea on homologous re-challenge. To investigate determinants of protection, vaccine antigen content was compared to wild-type ETEC, and proteome microarrays were used to assess immune responses following vaccination and ETEC challenge. Although molecular interrogation of the vaccine confirmed expression of targeted canonical antigens, relative to wild-type ETEC, vaccine strains were deficient in production of flagellar antigens, immotile, and lacked production of the EtpA adhesin. Similarly, vaccination ± dmLT elicited responses to targeted canonical antigens, but relative to wild-type challenge, vaccine responses to some potentially protective non-canonical antigens including EtpA and the YghJ metalloprotease were diminished or absent. These studies highlight important differences in vaccine and wild-type ETEC antigen content and call attention to distinct immunologic signatures that could inform investigation of correlates of protection, and guide vaccine antigen selection for these pathogens of global importance.
Collapse
Affiliation(s)
| | | | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
| | - Doug Molina
- Antigen Discovery, Inc. (ADI), Irvine, CA USA
| | - Clayton D. Harro
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | | | - Jessica Brubaker
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - David A. Sack
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | | | - Philip L. Felgner
- Antigen Discovery, Inc. (ADI), Irvine, CA USA
- Vaccine R & D Center, University of California, Irvine, Irvine, CA USA
| | | | - Sachin Mani
- Enteric Vaccine Initiative, PATH, Washington DC, USA
| | | | - R. Reid Townsend
- Department of Medicine, Divsion of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, USA
| | - Petra E. Gilmore
- Department of Medicine, Divsion of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, USA
| | | | - David A. Rasko
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
- Medicine Service, John Cochran VA Medical Center, St. Louis, MO USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Review recent developments pertaining to the epidemiology, molecular pathogenesis, and sequelae of enterotoxigenic Escherichia coli (ETEC) infections in addition to discussion of challenges for vaccinology. RECENT FINDINGS ETEC are a major cause of diarrheal illness in resource poor areas of the world where they contribute to unacceptable morbidity and continued mortality particularly among young children; yet, precise epidemiologic estimates of their contribution to death and chronic disease have been difficult to obtain. Although most pathogenesis studies, and consequently vaccine development have focused intensively on canonical antigens, more recently identified molecules unique to the ETEC pathovar may inform our understanding of ETEC virulence, and the approach to broadly protective vaccines. ETEC undeniably continue to have a substantial impact on global health; however, further studies are needed to clarify the true impact of these infections, particularly in regions where access to care may be limited. Likewise, our present understanding of the relationship of ETEC infection to non-diarrheal sequelae is presently limited, and additional effort will be required to achieve a mechanistic understanding of these diseases and to fulfill Koch's postulates on a molecular level. Precise elucidation of the role played by novel virulence factors, the global burden of acute illness, and the contribution of these pathogens and/or their toxins to non-diarrheal morbidity remain important imperatives.
Collapse
Affiliation(s)
- James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, 63110, USA.
- Medicine Service, Veterans Affairs Medical Center, Saint Louis, MO, USA.
| | - F Matthew Kuhlmann
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, 63110, USA
| |
Collapse
|
10
|
Zhu Y, Luo Q, Davis SM, Westra C, Vickers TJ, Fleckenstein JM. Molecular Determinants of Enterotoxigenic Escherichia coli Heat-Stable Toxin Secretion and Delivery. Infect Immun 2018; 86:e00526-18. [PMID: 30126899 PMCID: PMC6204697 DOI: 10.1128/iai.00526-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), a heterogeneous diarrheal pathovar defined by production of heat-labile (LT) and/or heat-stable (ST) toxins, causes substantial morbidity among young children in the developing world. Studies demonstrating a major burden of ST-producing ETEC have focused interest on ST toxoids for ETEC vaccines. We examined fundamental aspects of ST biology using ETEC strain H10407, which carries estH and estP genes encoding STh and STp, respectively, in addition to eltAB genes responsible for LT. Here, we found that deletion of estH significantly diminished cyclic GMP (cGMP) activation in target epithelia, while deletion of estP had a surprisingly modest impact, and a dual estH estP mutant was not appreciably different from the estH mutant. However, we noted that either STh or STp recombinant peptides stimulated cGMP production and that the loss of estP was compensated by enhanced estH transcription. We also found that the TolC efflux protein was essential for toxin secretion and delivery, providing a potential avenue for efflux inhibitors in treatment of acute diarrheal illness. In addition, we demonstrated that the EtpA adhesin is required for optimal delivery of ST and that antibodies against either the adhesin or STh significantly impaired toxin delivery and cGMP activation in target T84 cells. Finally, we used FLAG epitope fusions to demonstrate that the STh propeptide sequence is secreted by ETEC, potentially providing additional epitopes for antibody neutralization. These studies collectively extend our understanding of ETEC pathogenesis and potentially inform additional avenues to mitigate disease by these common diarrheal pathogens.
Collapse
Affiliation(s)
- Yuehui Zhu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qingwei Luo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sierra M Davis
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chase Westra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tim J Vickers
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Medicine Service, Department of Veterans Affairs Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance. Epidemiol Infect 2018; 147:e10. [PMID: 30229714 PMCID: PMC6518528 DOI: 10.1017/s0950268818002595] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diarrhoeagenic Escherichia coli (DEC) is a leading cause of infectious diarrhoea worldwide. In recent years, Escherichia albertii has also been implicated as a cause of human enteric diseases. This study describes the occurrence of E. coli pathotypes and serotypes associated with enteric illness and haemolytic uremic syndrome (HUS) isolated in Brazil from 2011 to 2016. Pathotypes isolated included enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and Shiga toxin-producing E. coli (STEC). PCR of stool enrichments for DEC pathotypes was employed, and E. albertii was also sought. O:H serotyping was performed on all DEC isolates. A total of 683 DEC and 10 E. albertii strains were isolated from 5047 clinical samples. The frequencies of DEC pathotypes were 52.6% (359/683) for EPEC, 32.5% for EAEC, 6.3% for ETEC, 4.4% for EIEC and 4.2% for STEC. DEC strains occurred in patients from 3 months to 96 years old, but EPEC, EAEC and STEC were most prevalent among children. Both typical and atypical isolates of EPEC and EAEC were recovered and presented great serotype heterogeneity. HUS cases were only associated with STEC serotype O157:H7. Two E. albertii isolates belonged to serogroup O113 and one had the stx2f gene. The higher prevalence of atypical EPEC in relation to EAEC in community-acquired diarrhoea in Brazil suggests a shift in the trend of DEC pathotypes circulation as previously EAEC predominated. This is the first report of E. albertii isolation from active surveillance. These results highlight the need of continuing DEC and E. albertii surveillance, as a mean to detect changes in the pattern of pathotypes and serotypes circulation and provide useful information for intervention and control strategies.
Collapse
|
12
|
Kumar P, Kuhlmann FM, Chakraborty S, Bourgeois AL, Foulke-Abel J, Tumala B, Vickers TJ, Sack DA, DeNearing B, Harro CD, Wright WS, Gildersleeve JC, Ciorba MA, Santhanam S, Porter CK, Gutierrez RL, Prouty MG, Riddle MS, Polino A, Sheikh A, Donowitz M, Fleckenstein JM. Enterotoxigenic Escherichia coli-blood group A interactions intensify diarrheal severity. J Clin Invest 2018; 128:3298-3311. [PMID: 29771685 DOI: 10.1172/jci97659] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/03/2018] [Indexed: 12/27/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections are highly prevalent in developing countries, where clinical presentations range from asymptomatic colonization to severe cholera-like illness. The molecular basis for these varied presentations, which may involve strain-specific virulence features as well as host factors, has not been elucidated. We demonstrate that, when challenged with ETEC strain H10407, originally isolated from a case of cholera-like illness, blood group A human volunteers developed severe diarrhea more frequently than individuals from other blood groups. Interestingly, a diverse population of ETEC strains, including H10407, secrete the EtpA adhesin molecule. As many bacterial adhesins also agglutinate red blood cells, we combined the use of glycan arrays, biolayer inferometry, and noncanonical amino acid labeling with hemagglutination studies to demonstrate that EtpA is a dominant ETEC blood group A-specific lectin/hemagglutinin. Importantly, we have also shown that EtpA interacts specifically with glycans expressed on intestinal epithelial cells from blood group A individuals and that EtpA-mediated bacterial-host interactions accelerate bacterial adhesion and effective delivery of both the heat-labile and heat-stable toxins of ETEC. Collectively, these data provide additional insight into the complex molecular basis of severe ETEC diarrheal illness that may inform rational design of vaccines to protect those at highest risk.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - F Matthew Kuhlmann
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - A Louis Bourgeois
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brunda Tumala
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tim J Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clayton D Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - W Shea Wright
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Jeffrey C Gildersleeve
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Matthew A Ciorba
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Srikanth Santhanam
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chad K Porter
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Ramiro L Gutierrez
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Michael G Prouty
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Mark S Riddle
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Alexander Polino
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.,Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Begum YA, Rydberg HA, Thorell K, Kwak YK, Sun L, Joffré E, Qadri F, Sjöling Å. In Situ Analyses Directly in Diarrheal Stool Reveal Large Variations in Bacterial Load and Active Toxin Expression of Enterotoxigenic Escherichiacoli and Vibrio cholerae. mSphere 2018; 3:e00517-17. [PMID: 29404412 PMCID: PMC5784243 DOI: 10.1128/msphere.00517-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogens enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae are major causes of diarrhea. ETEC causes diarrhea by production of the heat-labile toxin (LT) and heat-stable toxins (STh and STp), while V. cholerae produces cholera toxin (CT). In this study, we determined the occurrence and bacterial doses of the two pathogens and their respective toxin expression levels directly in liquid diarrheal stools of patients in Dhaka, Bangladesh. By quantitative culture and real-time quantitative PCR (qPCR) detection of the toxin genes, the two pathogens were found to coexist in several of the patients, at concentrations between 102 and 108 bacterial gene copies per ml. Even in culture-negative samples, gene copy numbers of 102 to 104 of either ETEC or V. cholerae toxin genes were detected by qPCR. RNA was extracted directly from stool, and gene expression levels, quantified by reverse transcriptase qPCR (RT-qPCR), of the genes encoding CT, LT, STh, and STp showed expression of toxin genes. Toxin enzyme-linked immunosorbent assay (ELISA) confirmed active toxin secretion directly in the liquid diarrhea. Analysis of ETEC isolates by multiplex PCR, dot blot analysis, and genome sequencing suggested that there are genetic ETEC profiles that are more commonly found as dominating single pathogens and others that are coinfectants with lower bacterial loads. The ETEC genomes, including assembled genomes of dominating ETEC isolates expressing LT/STh/CS5/CS6 and LT/CS7, are provided. In addition, this study highlights an emerging important ETEC strain expressing LT/STp and the novel colonization factor CS27b. These findings have implications for investigations of pathogenesis as well as for vaccine development. IMPORTANCE The cause of diarrheal disease is usually determined by screening for several microorganisms by various methods, and sole detection is used to assign the agent as the cause of disease. However, it has become increasingly clear that many infections are caused by coinfections with several pathogens and that the dose of the infecting pathogen is important. We quantified the absolute numbers of enterotoxigenic E. coli (ETEC) and Vibrio cholerae directly in diarrheal fluid. We noted several events where both pathogens were found but also a large dose dependency. In three samples, we found ETEC as the only pathogen sought for. These isolates belonged to globally distributed ETEC clones and were the dominating species in stool with active toxin expression. This suggests that certain superior virulent ETEC lineages are able to outcompete the gut microbiota and be the sole cause of disease and hence need to be specifically monitored.
Collapse
Affiliation(s)
- Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Hanna A. Rydberg
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Young-Keun Kwak
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Lei Sun
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Enrique Joffré
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Sahl JW, Sistrunk JR, Baby NI, Begum Y, Luo Q, Sheikh A, Qadri F, Fleckenstein JM, Rasko DA. Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology. Sci Rep 2017; 7:3402. [PMID: 28611468 PMCID: PMC5469772 DOI: 10.1038/s41598-017-03631-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 11/08/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause more than 500,000 deaths each year in the developing world and are characterized on a molecular level by the presence of genes that encode the heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as surface structures, known as colonization factors (CFs). Genome sequencing and comparative genomic analyses of 94 previously uncharacterized ETEC isolates demonstrated remarkable genomic diversity, with 28 distinct sequence types identified in three phylogenomic groups. Interestingly, there is a correlation between the genomic sequence type and virulence factor profiles based on prevalence of the isolate, suggesting that there is an optimal combination of genetic factors required for survival, virulence and transmission in the most successful clones. A large-scale BLAST score ratio (LS-BSR) analysis was further applied to identify ETEC-specific genomic regions when compared to non-ETEC genomes, as well as genes that are more associated with clinical presentations or other genotypic markers. Of the strains examined, 21 of 94 ETEC isolates lacked any previously identified CF. Homology searches with the structural subunits of known CFs identified 6 new putative CF variants. These studies provide a roadmap to exploit genomic analyses by directing investigations of pathogenesis, virulence regulation and vaccine development.
Collapse
Affiliation(s)
- Jason W Sahl
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, USA
| | - Jeticia R Sistrunk
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
| | - Nabilah Ibnat Baby
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Begum
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Qingwei Luo
- Department of Medicine, Division of Infectious Diseases, Washington, USA
| | - Alaullah Sheikh
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
| | - Firdausi Qadri
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington, USA
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
- Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, USA
| | - David A Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Abstract
Enterotoxigenic E. coli (ETEC) can cause severe diarrhea and death in children in developing countries; however, bacterial diversity in natural infection is uncharacterized. In this study, we explored the natural population variation of ETEC from individuals with cholera-like diarrhea. Genomic sequencing and comparative analysis of multiple ETEC isolates from twelve cases of severe diarrhea demonstrated clonal populations in the majority of subjects (10/12). In contrast, a minority of individuals (2/12) yielded phylogenomically divergent ETEC isolates. Detailed examination revealed that isolates also differed in virulence factor content. These genomic data suggest that severe, cholera-like ETEC infections are largely caused by a clonal population of organisms within individual patients. Additionally, the isolation of similar clones from geographically and temporally dispersed cases with similar clinical presentations suggests that some isolates are particularly suited for virulence. The identification of multiple genomically diverse isolates with variable virulence factor profiles from a single subject highlights the dynamic nature of ETEC, as well as a potential weakness in the examination of cultures obtained from a single colony in clinical settings. These findings have implications for vaccine design and provide a framework for the study of population variation in other human pathogens. Enterotoxigenic Escherichia coli (ETEC) has been identified as one of the major causes of diarrheal diseases in children as well as travelers. It has been previously appreciated that this pathogenic variant of E. coli is diverse, both at the genomic level, as defined with multilocus sequence typing, and with regard to the presence or absence of virulence factors within clonal groups. Using whole-genome sequencing and comparative analysis, we identified and characterized diverse enterotoxigenic E. coli isolates from individual patients. In 17% of patients, we identified multiple distinct ETEC isolates, each with unique genomic features and in some cases diverse virulence factor profiles. These studies ascertained that any one person may be colonized by multiple pathogenic ETEC isolates, which may impact how we think about the development of vaccines and therapeutics against these organisms.
Collapse
|
16
|
Luo Q, Qadri F, Kansal R, Rasko DA, Sheikh A, Fleckenstein JM. Conservation and immunogenicity of novel antigens in diverse isolates of enterotoxigenic Escherichia coli. PLoS Negl Trop Dis 2015; 9:e0003446. [PMID: 25629897 PMCID: PMC4309559 DOI: 10.1371/journal.pntd.0003446] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) are common causes of diarrheal morbidity and mortality in developing countries for which there is currently no vaccine. Heterogeneity in classical ETEC antigens known as colonization factors (CFs) and poor efficacy of toxoid-based approaches to date have impeded development of a broadly protective ETEC vaccine, prompting searches for novel molecular targets. Methodology Using a variety of molecular methods, we examined a large collection of ETEC isolates for production of two secreted plasmid-encoded pathotype-specific antigens, the EtpA extracellular adhesin, and EatA, a mucin-degrading serine protease; and two chromosomally-encoded molecules, the YghJ metalloprotease and the EaeH adhesin, that are not specific to the ETEC pathovar, but which have been implicated in ETEC pathogenesis. ELISA assays were also performed on control and convalescent sera to characterize the immune response to these antigens. Finally, mice were immunized with recombinant EtpA (rEtpA), and a protease deficient version of the secreted EatA passenger domain (rEatApH134R) to examine the feasibility of combining these molecules in a subunit vaccine approach. Principal Findings EtpA and EatA were secreted by more than half of all ETEC, distributed over diverse phylogenetic lineages belonging to multiple CF groups, and exhibited surprisingly little sequence variation. Both chromosomally-encoded molecules were also identified in a wide variety of ETEC strains and YghJ was secreted by 89% of isolates. Antibodies against both the ETEC pathovar-specific and conserved E. coli antigens were present in significantly higher titers in convalescent samples from subjects with ETEC infection than controls suggesting that each of these antigens is produced and recognized during infection. Finally, co-immunization of mice with rEtpA and rEatApH134R offered significant protection against ETEC infection. Conclusions Collectively, these data suggest that novel antigens could significantly complement current approaches and foster improved strategies for development of broadly protective ETEC vaccines. Infectious diarrhea is one of the leading causes of death among young children in developing countries, and a major cause of morbidity in all age groups. The enterotoxigenic Escherichia coli contribute substantially to this burden of diarrheal illness, and have been a focus of vaccine development efforts for more than forty years following their discovery as a cause of severe diarrheal illness. The heat-labile, and/or heat stable enterotoxins that define ETEC are produced by a diverse population of Escherichia coli. This inherent genetic plasticity of E. coli has made it difficult to identify antigens specific to ETEC that are highly conserved. Therefore, identification of protective antigens shared by many ETEC strains will likely play an essential role in development of the next iteration of vaccines.
Collapse
Affiliation(s)
- Qingwei Luo
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Rita Kansal
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
17
|
Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia coli pathogenesis. Infect Immun 2014; 82:3657-66. [PMID: 24935979 DOI: 10.1128/iai.01890-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are among the most common causes of diarrheal illness worldwide. These pathogens disproportionately afflict children in developing countries, where they cause substantial morbidity and are responsible for hundreds of thousands of deaths each year. Although these organisms are important targets for enteric vaccines, most development efforts to date have centered on a subset of plasmid-encoded fimbrial adhesins known as colonization factors and heat-labile toxin (LT). Emerging data suggest that ETEC undergoes considerable changes in its surface architecture, sequentially deploying a number of putative adhesins during its interactions with the host. We demonstrate here that one putative highly conserved, chromosomally encoded adhesin, EaeH, engages the surfaces of intestinal epithelial cells and contributes to bacterial adhesion, LT delivery, and colonization of the small intestine.
Collapse
|
18
|
Rawlinson T, Siqueira AM, Fontes G, Beltrão RPL, Monteiro WM, Martins M, Silva-Júnior EF, Mourão MPG, Albuquerque B, Alecrim MDGC, Lacerda MVG. From Haiti to the Amazon: public health issues related to the recent immigration of Haitians to Brazil. PLoS Negl Trop Dis 2014; 8:e2685. [PMID: 24809971 PMCID: PMC4014393 DOI: 10.1371/journal.pntd.0002685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - André Machado Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, Amazonas, Brazil
| | - Gilberto Fontes
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil
| | | | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, Amazonas, Brazil
| | - Marilaine Martins
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, Amazonas, Brazil
| | - Edson Fidelis Silva-Júnior
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, Amazonas, Brazil
| | - Maria Paula Gomes Mourão
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, Amazonas, Brazil
| | | | - Maria das Graças Costa Alecrim
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, Amazonas, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, Amazonas, Brazil
| |
Collapse
|
19
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens causing diarrhea in developing countries where they lead to hundreds of thousands of deaths, mostly in children. These organisms are a leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making them simpler and possibly broadly protective because of their conserved nature.
Collapse
Affiliation(s)
- James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, USA
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, USA
- Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, USA
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
20
|
Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli clinical isolates from northern Colombia, South America. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236260. [PMID: 24877071 PMCID: PMC4022111 DOI: 10.1155/2014/236260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are major causes of childhood diarrhea in low and middle income countries including Colombia, South America. To understand the diversity of ETEC strains in the region, clinical isolates obtained from northern Colombia children were evaluated for multiple locus sequencing typing, serotyping, classical and nonclassical virulence genes, and antibiotic susceptibility. Among 40 ETEC clinical isolates evaluated, 21 (52.5%) were positive for LT gene, 13 (32.5%) for ST gene, and 6 (15%) for both ST and LT. The most prevalent colonization surface antigens (CS) were CS21 and CFA/I identified in 21 (50%) and 13 (32.5%) isolates, respectively. The eatA, irp2, and fyuA were the most common nonclassical virulence genes present in more than 60% of the isolates. Ampicillin resistance (80% of the strains) was the most frequent phenotype among ETEC strains followed by trimethoprim-sulfamethoxazole resistance (52.5%). Based on multiple locus sequencing typing (MLST), we recognize that 6 clonal groups of ETEC clinical isolates circulate in Colombia. ETEC clinical isolates from children in northern Colombia are highly diverse, yet some isolates circulating in the community belong to well-defined clonal groups that share a unique set of virulence factors, serotypes, and MLST sequence types.
Collapse
|
21
|
Characterization of Heat-Labile toxin-subunit B from Escherichia coli by liquid chromatography–electrospray ionization-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Food Chem Toxicol 2012; 50:3886-91. [DOI: 10.1016/j.fct.2012.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/30/2012] [Accepted: 08/07/2012] [Indexed: 11/21/2022]
|
22
|
Improved laboratory capacity is required to respond better to future cholera outbreaks in Papua New Guinea. Western Pac Surveill Response J 2012; 3:30-2. [PMID: 23908909 DOI: 10.5365/wpsar.2011.2.4.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
23
|
Isidean SD, Riddle MS, Savarino SJ, Porter CK. A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 2011; 29:6167-78. [PMID: 21723899 DOI: 10.1016/j.vaccine.2011.06.084] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022]
Affiliation(s)
- S D Isidean
- Enteric Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | |
Collapse
|
24
|
ARSLAN SEZA, EYI AYLA. ANTIMICROBIAL RESISTANCE AND ESBL PREVALENCE IN ESCHERICHIA COLI FROM RETAIL MEATS. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2010.00295.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Rodas C, Mamani R, Blanco J, Blanco JE, Wiklund G, Svennerholm AM, Sjöling Å, Iniguez V. Enterotoxins, colonization factors, serotypes and antimicrobial resistance of enterotoxigenic Escherichia coli (ETEC) strains isolated from hospitalized children with diarrhea in Bolivia. Braz J Infect Dis 2011; 15:132-7. [DOI: 10.1016/s1413-8670(11)70158-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/27/2010] [Indexed: 11/16/2022] Open
|
26
|
Steinsland H, Lacher DW, Sommerfelt H, Whittam TS. Ancestral lineages of human enterotoxigenic Escherichia coli. J Clin Microbiol 2010; 48:2916-24. [PMID: 20534806 PMCID: PMC2916599 DOI: 10.1128/jcm.02432-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 05/29/2010] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea among children living in and among travelers visiting developing countries. Human ETEC strains represent an epidemiologically and phenotypically diverse group of pathogens, and there is a need to identify natural groupings of these organisms that may help to explain this diversity. Here, we sought to identify most of the important human ETEC lineages that exist in the E. coli population, because strains that originate from the same lineage may also have inherited many of the same epidemiological and phenotypic traits. We performed multilocus sequence typing (MLST) on 1,019 ETEC isolates obtained from humans in different countries and analyzed the data against a backdrop of MLST data from 1,250 non-ETEC E. coli and eight ETEC isolates from pigs. A total of 42 different lineages were identified, 15 of which, representing 792 (78%) of the strains, were estimated to have emerged >900 years ago. Twenty of the lineages were represented in more than one country. There was evidence of extensive exchange of enterotoxin and colonization factor genes between different lineages. Human and porcine ETEC have probably emerged from the same ancestral ETEC lineage on at least three occasions. Our findings suggest that most ETEC strains circulating in the human population today originate from well-established, globally widespread ETEC lineages. Some of the more important lineages identified here may represent a smaller and more manageable target for the ongoing efforts to develop effective ETEC vaccines.
Collapse
Affiliation(s)
- Hans Steinsland
- University of Bergen, Centre for International Health, P.O. Box 7804, N-5020 Bergen, Norway.
| | | | | | | |
Collapse
|
27
|
Mudrak B, Kuehn MJ. Heat-labile enterotoxin: beyond G(m1) binding. Toxins (Basel) 2010; 2:1445-70. [PMID: 22069646 PMCID: PMC3153253 DOI: 10.3390/toxins2061445] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/22/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside GM1, the toxin’s host receptor, but interactions with A-type blood sugars and E. coli lipopolysaccharide have also been identified within the past decade. Here, we review the regulation, assembly, and binding properties of the LT B-subunit pentamer and discuss the possible roles of its numerous molecular interactions.
Collapse
Affiliation(s)
- Benjamin Mudrak
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Meta J. Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-919-684-2545; Fax: +1-919-684-8885
| |
Collapse
|
28
|
Residues of heat-labile enterotoxin involved in bacterial cell surface binding. J Bacteriol 2009; 191:2917-25. [PMID: 19270095 DOI: 10.1128/jb.01622-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of traveler's diarrhea worldwide. One major virulence factor released by this pathogen is the heat-labile enterotoxin LT, which upsets the balance of electrolytes in the intestine. After export, LT binds to lipopolysaccharide (LPS) on the bacterial surface. Although the residues responsible for LT's binding to its host receptor are known, the portion of the toxin which mediates LPS binding has not been defined previously. Here, we describe mutations in LT that impair the binding of the toxin to the external surface of E. coli without altering holotoxin assembly. One mutation in particular, T47A, nearly abrogates surface binding without adversely affecting expression or secretion in ETEC. Interestingly, T47A is able to bind mutant E. coli expressing highly truncated forms of LPS, indicating that LT binding to wild-type LPS may be due primarily to association with an outer core sugar. Consequently, we have identified a region of LT distinct from the pocket involved in eukaryotic receptor binding that is responsible for binding to the surface of E. coli.
Collapse
|
29
|
Hill DR, Ford L, Lalloo DG. Oral cholera vaccines: use in clinical practice. THE LANCET. INFECTIOUS DISEASES 2006; 6:361-73. [PMID: 16728322 DOI: 10.1016/s1473-3099(06)70494-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cholera continues to occur globally, particularly in sub-Saharan Africa and Asia. Oral cholera vaccines have been developed and have now been used for several years, primarily in traveller populations. The licensure in the European Union of a killed whole cell cholera vaccine combined with the recombinant B subunit of cholera toxin (rCTB-WC) has stimulated interest in protection against cholera. Because of the similarity between cholera toxin and the heat-labile toxin of Escherichia coli, a cause of travellers' diarrhoea, it has been proposed that the rCTB-WC vaccine may be used against travellers' diarrhoea. An analysis of trials of this vaccine against cholera (serotype O1) shows that for 4-6 months it will protect 61-86% of people living in cholera-endemic regions; lower levels of protection continue for 3 years. Protection wanes rapidly in young children. Because the risk of cholera for most travellers is extremely low, vaccination should be considered only for those working in relief or refugee settings or for those who will be travelling in cholera-epidemic areas and who will be unable to obtain prompt medical care. The vaccine can be expected to prevent 7% or less of cases of travellers' diarrhoea and should not be used for this purpose.
Collapse
Affiliation(s)
- David R Hill
- National Travel Health Network and Centre, London, UK.
| | | | | |
Collapse
|