1
|
Król N, Chitimia-Dobler L, Dobler G, Kiewra D, Czułowska A, Obiegala A, Zajkowska J, Juretzek T, Pfeffer M. Identification of New Microfoci and Genetic Characterization of Tick-Borne Encephalitis Virus Isolates from Eastern Germany and Western Poland. Viruses 2024; 16:637. [PMID: 38675977 PMCID: PMC11055073 DOI: 10.3390/v16040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia, although effective vaccines are available. Caused by the tick-borne encephalitis virus (TBEV, syn. Orthoflavivirus encephalitidis), in Europe, it is transmitted by ticks like Ixodes ricinus and Dermacentor reticulatus. TBEV circulates in natural foci, making it endemic to specific regions, such as southern Germany and northeastern Poland. Our study aimed to identify new TBEV natural foci and genetically characterize strains in ticks in previously nonendemic areas in Eastern Germany and Western Poland. (2) Methods: Ticks were collected from vegetation in areas reported by TBE patients. After identification, ticks were tested for TBEV in pools of a maximum of 10 specimens using real-time RT-PCR. From the positive TBEV samples, E genes were sequenced. (3) Results: Among 8400 ticks from 19 sites, I. ricinus (n = 4784; 56.9%) was predominant, followed by D. reticulatus (n = 3506; 41.7%), Haemaphysalis concinna (n = 108; 1.3%), and I. frontalis (n = 2; <0.1%). TBEV was detected in 19 pools originating in six sites. The phylogenetic analyses revealed that TBEV strains from Germany and Poland clustered with other German strains, as well as those from Finland and Estonia. (4) Conclusions: Although there are still only a few cases are reported from these areas, people spending much time outdoors should consider TBE vaccination.
Collapse
Affiliation(s)
- Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany (M.P.)
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Clinical Center for Emerging and Vector-Borne Infections, Odense University Hospital, 5000 Odense, Denmark
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Fraunhofer Institute of Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Department of Parasitology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
- Department of Infectious Diseases and Tropical Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland
| | - Aleksandra Czułowska
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany (M.P.)
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland;
| | - Thomas Juretzek
- Center for Laboratory Medicine, Microbiology and Hospital Hygiene, Carl-Thiem-Klinikum Cottbus gGmbH, 03048 Cottbus, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany (M.P.)
| |
Collapse
|
2
|
Sidorenko M, Radzijevskaja J, Mickevičius S, Bratchikov M, Mardosaitė-Busaitienė D, Sakalauskas P, Paulauskas A. Phylogenetic characterisation of tick-borne encephalitis virus from Lithuania. PLoS One 2024; 19:e0296472. [PMID: 38324618 PMCID: PMC10849421 DOI: 10.1371/journal.pone.0296472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
The Baltic states are the region in Europe where tick-borne encephalitis (TBE) is most endemic. The highest notification rate of TBE cases is reported in Lithuania, where the incidence of TBE has significantly increased since 1992. A recent study reported 0.4% prevalence of TBE virus (TBEV) in the two most common tick species distributed in Lithuania, Ixodes ricinus and Dermacentor reticulatus, with the existence of endemic foci confirmed in seven out of Lithuania's ten counties. However, until now, no comprehensive data on molecular characterisation and phylogenetic analysis have been available for the circulating TBEV strains. The aim of this study was to analyse TBEV strains derived from I. ricinus and D. reticulatus ticks collected from Lithuania and provide a genotypic characterisation of viruses based on sequence analysis of partial E protein and NS3 genes. The 54 nucleotide sequences obtained were compared with 81 TBEV strains selected from the NCBI database. Phylogenetic analysis of the partial E and NS3 gene sequences derived from 34 Lithuanian TBEV isolates revealed that these were specific to Lithuania, and all belonged to the European subtype, with a maximum identity to the Neudoerfl reference strain (GenBank accession no. U27495) of 98.7% and 97.4%, respectively. The TBEV strains showed significant regional genetic diversity. The detected TBEV genotypes were not specific to the tick species. However, genetic differences were observed between strains from different locations, while strains from the same location showed a high similarity.
Collapse
Affiliation(s)
- Marina Sidorenko
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Jana Radzijevskaja
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Saulius Mickevičius
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Maksim Bratchikov
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Povilas Sakalauskas
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Algimantas Paulauskas
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| |
Collapse
|
3
|
Lamsal A, Tryland M, Paulsen KM, Romano JS, Nymo IH, Stiasny K, Soleng A, Vikse R, Andreassen ÅK. Serological screening for tick-borne encephalitis virus in eight Norwegian herds of semi-domesticated reindeer (Rangifer tarandus tarandus). Zoonoses Public Health 2023; 70:692-698. [PMID: 37259822 DOI: 10.1111/zph.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is found in Ixodes ricinus ticks throughout the area where viable tick populations exist. In Norway, TBEV is found in I. ricinus from the south coast until Brønnøy municipality in Nordland County and the range of the vector is expanding due to changes in climate, vegetation, host animals and environmental conditions. TBEV might thus have the potential to establish in new areas when I. ricinus expand its geographical distribution. At present, there is little knowledge on the status of the virus in high-altitude areas of inland regions in Norway. It has previously been indicated that reindeer may be an important sentinel species and indicator of the spread of ticks and TBEV in high-altitude regions. In this study, 408 semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus) from eight herds, from Tana in Troms and Finnmark County in northern Norway to Filefjell in Innlandet and Viken Counties in southern Norway, were screened for TBEV antibodies using a commercial enzyme-linked immunosorbent assay (ELISA). We found 16 TBEV reactive reindeer samples by ELISA; however, these results could not be confirmed by the serum neutralization test (SNT). This could indicate that a flavivirusand not necessarily TBEV, may be circulating among Norwegian semi-domesticated reindeer. The results also indicate that TBEV was not enzootic in Norwegian semi-domesticated reindeer in 2013-2015. This knowledge is important as an information base for future TBEV and flavivirus surveillance in Norway.
Collapse
Affiliation(s)
- Alaka Lamsal
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Campus Bø, Norway
| | - Morten Tryland
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Evenstad, Norway
| | - Katrine M Paulsen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Javier Sánchez Romano
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Medical Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Ingebjørg H Nymo
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
- Section for Food Safety and Animal Health, The Norwegian Veterinary Institute, Tromsø, Norway
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Rose Vikse
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Åshild K Andreassen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Campus Bø, Norway
| |
Collapse
|
4
|
Topp AK, Springer A, Mischke R, Rieder J, Feige K, Ganter M, Nagel-Kohl U, Nordhoff M, Boelke M, Becker S, Pachnicke S, Schunack B, Dobler G, Strube C. Seroprevalence of tick-borne encephalitis virus in wild and domestic animals in northern Germany. Ticks Tick Borne Dis 2023; 14:102220. [PMID: 37356181 DOI: 10.1016/j.ttbdis.2023.102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is a tick-transmitted flavivirus, which can infect humans and animals, sometimes even with a fatal outcome. Since many decades, TBEV is endemic in southern Germany, while only sporadic occurrence has been noted in northern parts of the country so far. Nevertheless, autochthonous human clinical cases are increasing in the federal state of Lower Saxony in north-western Germany, and several natural foci of TBEV transmission have recently been detected in this federal state. In order to shed more light on the current distribution of TBEV in Lower Saxony, the present study examined blood samples from wild and domestic animals for antibodies against TBEV. Overall, samples from 4,085 animals were tested by ELISA, including wild boar (N = 1,208), roe deer (N = 149), red deer (N = 61), fallow deer (N = 18), red foxes (N = 9), nutria (N = 9), raccoon dogs (N = 3), raccoons (N = 3), badgers (N = 1), European pine martens (N = 1), horses (N = 574), sheep (N = 266), goats (N = 67), dogs (N = 1,317) and cats (N = 399). Samples with an ELISA result of ≥60 Vienna units (VIEU)/ml were subjected to confirmatory serum neutralization tests (SNT). In total, 343 of 4,085 (8.4%) animals tested positive for anti-TBEV-IgG by ELISA, of which 60 samples were confirmed by SNT. Samples of 89 animals showed a cytotoxic effect in the SNT and were excluded from seroprevalence calculation, resulting in an overall seroprevalence of 1.5% (60/3,996). Seroprevalence was higher among wild animals (wild boar: 2.9% [34/1,190], roe deer: 2.7% [4/149], red deer: 1.7% [1/60], fallow deer: 5.6% [1/18]) than among domestic animals (dogs: 1.1% [15/1,317], horses: 0.8% [4/505], sheep: 0.4% [1/266]). No anti-TBEV-antibodies were detected in the other wild animal species as well as goats and cats. A notable clustering of positive samples was observed in districts where TBEV transmission foci have been described. Further clusters in other districts suggest the existence of so far undetected transmission foci, underlining the fact that both wild and domestic animals are useful sentinels for monitoring the spread of TBEV.
Collapse
Affiliation(s)
- Anna-Katharina Topp
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Reinhard Mischke
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Johanna Rieder
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Hannover 30173, Germany
| | - Uschi Nagel-Kohl
- Lower Saxony State Office for Consumer Protection and Food Safety, Veterinary Institute Hannover, Hannover 30173, Germany
| | - Marcel Nordhoff
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Oldenburg, Oldenburg 26133, Germany
| | - Matthias Boelke
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Stefanie Becker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | | | - Bettina Schunack
- Elanco Animal Health, Bayer Animal Health GmbH, Monheim 40789, Germany
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Munich 80937, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany.
| |
Collapse
|
5
|
Grassi L, Drigo M, Zelená H, Pasotto D, Cassini R, Mondin A, Franzo G, Tucciarone CM, Ossola M, Vidorin E, Menandro ML. Wild ungulates as sentinels of flaviviruses and tick-borne zoonotic pathogen circulation: an Italian perspective. BMC Vet Res 2023; 19:155. [PMID: 37710273 PMCID: PMC10500747 DOI: 10.1186/s12917-023-03717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Hana Zelená
- Department of Virology, Institute of Public Health, Ostrava, Czech Republic
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Martina Ossola
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Elena Vidorin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| |
Collapse
|
6
|
Trozzi G, Adjadj NR, Vervaeke M, Matthijs S, Sohier C, De Regge N. Comparison of Serological Methods for Tick-Borne Encephalitis Virus-Specific Antibody Detection in Wild Boar and Sheep: Impact of the Screening Approach on the Estimated Seroprevalence. Viruses 2023; 15:v15020459. [PMID: 36851673 PMCID: PMC9958861 DOI: 10.3390/v15020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus transmitted by ticks. Serological screenings in animals are performed to estimate the prevalence and distribution of TBEV. Most screenings consist of a primary screening by ELISA, followed by confirmation of positive samples by plaque reduction neutralization tests (PRNTs). In this study, 406 wild boar sera were tested with 2 regularly used commercial ELISAs for flavivirus screening in animals (Immunozym FSME (TBEV) IgG All Species (Progen) and ID Screen West Nile Competition (Innovative Diagnostics)) and PRNTs for TBEV and USUTU virus. The results showed that the Immunozym and IDScreen ELISAs had low relative sensitivities of 23% and 20%, respectively, compared to the PRNT results. The relative specificities were 88% and 84% due to cross reactions with USUTU virus-specific antibodies. The minimal TBEV prevalence in our sample set was 8.6% when determined by PRNT. When the screening approach of ELISA testing followed by PRNT confirmation was applied, a TBEV seroprevalence of only 2.0% and 1.7% was found. The suboptimal performance of the ELISAs was confirmed by testing sera collected from experimentally TBEV-infected sheep. While the PRNT detected TBEV specific antibodies in 94% of samples collected between 7 and 18 days post-infection, the ELISAs classified only 50% and 31% of the samples as positive. Both routinely used ELISAs for TBEV antibody screening in animal sera were shown to have a low sensitivity, potentially leading to an underestimation of the true prevalence, and furthermore cross-react with other flavivirus antibodies.
Collapse
Affiliation(s)
- Gabrielle Trozzi
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
- Correspondence:
| | - Nadjah Radia Adjadj
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | | | - Severine Matthijs
- Viral Reemerging, Enzootic and Bee Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | - Charlotte Sohier
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| | - Nick De Regge
- Unit of Exotic and Vector-Borne Diseases, Sciensano, Groeselenberg 99, 1180 Brussels, Belgium
| |
Collapse
|
7
|
Ganzenberg S, Sieg M, Ziegler U, Pfeffer M, Vahlenkamp TW, Hörügel U, Groschup MH, Lohmann KL. Seroprevalence and Risk Factors for Equine West Nile Virus Infections in Eastern Germany, 2020. Viruses 2022; 14:v14061191. [PMID: 35746662 PMCID: PMC9229339 DOI: 10.3390/v14061191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) infections were first detected in Germany in 2018, but information about WNV seroprevalence in horses is limited. The study’s overall goal was to gather information that would help veterinarians, horse owners, and veterinary-, and public health- authorities understand the spread of WNV in Germany and direct protective measures. For this purpose, WNV seroprevalence was determined in counties with and without previously registered WNV infections in horses, and risk factors for seropositivity were estimated. The cohort consisted of privately owned horses from nine counties in Eastern Germany. A total of 940 serum samples was tested by competitive panflavivirus ELISA (cELISA), and reactive samples were further tested by WNV IgM capture ELISA and confirmed by virus neutralization test (VNT). Information about potential risk factors was recorded by questionnaire and analyzed by logistic regression. A total of 106 serum samples showed antibodies against flaviviruses by cELISA, of which six tested positive for WNV IgM. The VNT verified a WNV infection for 54 samples (50.9%), while 35 sera neutralized tick-borne encephalitis virus (33.0%), and eight sera neutralized Usutu virus (7.5%). Hence, seroprevalence for WNV infection was 5.8% on average and was significantly higher in counties with previously registered infections (p = 0.005). The risk factor analysis showed breed type (pony), housing in counties with previously registered infections, housing type (24 h turn-out), and presence of outdoor shelter as the main significant risk factors for seropositivity. In conclusion, we estimated the extent of WNV infection in the resident horse population in Eastern Germany and showed that seroprevalence was higher in counties with previously registered equine WNV infections.
Collapse
Affiliation(s)
- Stefanie Ganzenberg
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Ute Ziegler
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Uwe Hörügel
- Animal Diseases Fund Saxony, Pferdegesundheitsdienst, 01099 Dresden, Germany;
| | - Martin H. Groschup
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Katharina L. Lohmann
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-97-38224
| |
Collapse
|
8
|
Krzysiak MK, Anusz K, Konieczny A, Rola J, Salat J, Strakova P, Olech W, Larska M. The European bison (Bison bonasus) as an indicatory species for the circulation of tick-borne encephalitis virus (TBEV) in natural foci in Poland. Ticks Tick Borne Dis 2021; 12:101799. [PMID: 34358779 DOI: 10.1016/j.ttbdis.2021.101799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most common zoonotic diseases in Europe transmitted by Ixodidae vectors. While small mammals such as bank voles and ticks constitute the main reservoirs for virus transmission, large sylvatic species act as a food source for ticks. Cervids such as roe deer and red deer are considered sentinel species for TBE in natural foci. In addition, an increase of the population size and density of large wild mammals in an area corresponds to an increase in the tick burden and may potentially increase the prevalence of TBE virus (TBEV) in ticks and tick hosts and further exposure risk in humans. Humans are considered accidental hosts. The prevalence of TBE relies on interactions between host, vector and environment. The present study examines the exposure of the largest European herbivore, the European bison (Bison bonasus) to TBEV infection. Assessed using the IMMUNOZYM FSME ELISA (PROGEN), the overall TBEV seroprevalence was 62.7% in the 335 European bison that were studied. ELISA results were confirmed by the gold-standard virus neutralization test (VNT) with 98.7% sensitivity and thus giving a true prevalence of 63.5%. TBEV seroprevalence was significantly correlated to the origin, age group, sex, population type (free living/captive) and sanitary status (healthy/selectively eliminated/found dead/killed in accident) of the European bison in the univariable analysis. The highest seroprevalences were observed in the three largest north-eastern wild populations (Białowieska, Borecka and Knyszyńska forests), which corresponded with the highest incidence of human cases reported in the country. The risk of TBEV seropositivity increased with age and was higher in female and free-ranging European bison. Additionally, to the epidemiological investigation, the continuous detection of TBEV antibodies was studied by repetitive testing of animals over the course of 34 months. Two of six seropositive animals remained seropositive throughout the study. The presence of antibodies was followed throughout the study in seropositive European bison and for at least a year in animals that seroconverted during the observation period.
Collapse
Affiliation(s)
- Michał K Krzysiak
- Białowieża National Park, Park Pałacowy 11, 17-230, Białowieża, Poland; Faculty of Civil Engineering and Environmental Sciences, Institute of Forest Sciences, Białystok University of Technology, Wiejska 45 E, 15-351, Białystok, Poland.
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University Of Life Sciences (WULS), ul. Nowoursynowska 166, Warszawa 02-786, Poland
| | - Andrzej Konieczny
- Faculty of Agrobioengineering, University of Live Sciences, ul. Akademicka 13, Lublin 20-950, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, AL. Partyzantów 57, Pulawy 24-100, Poland
| | - Jiri Salat
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceské Budejovice 37005, Czech Republic
| | - Petra Strakova
- Veterinary Research Institute, Hudcova 296/70, Brno 621 00, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceské Budejovice 37005, Czech Republic
| | - Wanda Olech
- Institute of Animal Sciences, Warsaw University of Life Science (WULS), ul. Ciszewskiego 8, Warszawa 02-786, Poland
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, AL. Partyzantów 57, Pulawy 24-100, Poland
| |
Collapse
|
9
|
Opalińska P, Wierzbicka A, Asman M, Rączka G, Dyderski MK, Nowak-Chmura M. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci Rep 2021; 11:10649. [PMID: 34017054 PMCID: PMC8137867 DOI: 10.1038/s41598-021-90234-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
The European roe deer (Capreolus capreolus) is the most common deer species in Europe. The species can be a reservoir of some tick-borne diseases but it is primarily recognized for its contribution as an amplifier host. In Central Europe, two roe deer ecotypes are living in adjacent areas: field and forest. We investigated differences in tick load and species composition on these two ecotypes. We collected ticks from 160 (80 the forest ecotype and 80 the field ecotype) roe deer culled in Wielkopolska Region (West-Central Poland). The most common was Ixodes ricinus (n = 1610; 99%) followed by Ixodes hexagonus (n = 22; 1%). The dominant life stage of the ticks was female. Prevalence was higher for forest roe deer. Mean number of ticks found on the forest ecotype was almost fivefold higher than on the field ecotype (3.75 ± 0.83 vs. 0.77 ± 0.20 ticks). The mean probability of tick occurrence was threefold higher in the forest (0.915 ± 0.050) than the field ecotype (0.279 ± 0.125). The most infested body parts of roe deer from both ecotypes were the neck and the head.
Collapse
Affiliation(s)
- Patrycja Opalińska
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland
| | - Anna Wierzbicka
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland.
| | - Marek Asman
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-218, Sosnowiec, Poland
| | - Grzegorz Rączka
- Department of Forest Management Planning, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| | - Marcin K Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie Str. 3, 31-054, Kraków, Poland
| |
Collapse
|
10
|
Comparison of Three Serological Methods for the Epidemiological Investigation of TBE in Dogs. Microorganisms 2021; 9:microorganisms9020399. [PMID: 33671962 PMCID: PMC7919048 DOI: 10.3390/microorganisms9020399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 01/10/2023] Open
Abstract
Tick-borne encephalitis (TBE) virus is an emerging pathogen that causes severe infections in humans. Infection risk areas are mostly defined based on the incidence of human cases, a method which does not work well in areas with sporadic TBE cases. Thus, sentinel animals may help to better estimate the existing risk. Serological tests should be thoroughly evaluated for this purpose. Here, we tested three test formats to assess the use of dogs as sentinel animals. A total of 208 dog sera from a known endemic area in Southern Germany were tested in an All-Species-ELISA and indirect immunofluorescence assays (IIFA), according to the manufacturer’s instructions. Sensitivity and specificity for both were determined in comparison to the micro-neutralization test (NT) results. Of all 208 samples, 22.1% tested positive in the micro-NT. A total of 18.3% of the samples showed characteristic fluorescence in the IIFA and were, thus, judged positive. In comparison to the micro-NT, a sensitivity of 78.3% and a specificity of 98.8% was obtained. In the ELISA, 19.2% of samples tested positive, with a sensitivity of 84.8% and a specificity of 99.4%. The ELISA is a highly specific test for TBE-antibody detection in dogs and should be well suited for acute diagnostics. However, due to deficits in sensitivity, it cannot replace the NT, at least for epidemiological studies. With even lower specificity and sensitivity, the same applies to IIFA.
Collapse
|
11
|
Pautienius A, Armonaite A, Simkute E, Zagrabskaite R, Buitkuviene J, Alpizar-Jara R, Grigas J, Zakiene I, Zienius D, Salomskas A, Stankevicius A. Cross-Sectional Study on the Prevalence and Factors Influencing Occurrence of Tick-Borne Encephalitis in Horses in Lithuania. Pathogens 2021; 10:pathogens10020140. [PMID: 33572628 PMCID: PMC7911650 DOI: 10.3390/pathogens10020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Various animal species have been evaluated in depth for their potential as Tick-borne encephalitis virus (TBEV) sentinel species, although evidence for equine capacity is incomplete. Therefore, a comprehensive cross-sectional stratified serosurvey and PCR analysis of selected horses (n = 301) were performed in TBEV endemic localities in Lithuania. Attached and moving ticks (n = 241) have been collected from aforementioned hosts to evaluate natural infectivity of TBEV vectors (Ixodes spp.) in the recreational environments surrounding equestrian centers. All samples were screened for TBEV IgG and positive samples were confirmed by virus neutralization test (VNT). 113 (37.5%) horses from all counties of Lithuania tested positive for TBEV IgG, revealing age and sex indifferent results of equine seroprevalence that were significantly dependent on pedigree: horses of mixed breed were more susceptible to infection possibly due to their management practices. TBEV prevalence in equine species corresponded to TBEV-confirmed human cases in the precedent year. As much as 3.9% of horses were viraemic with TBEV-RNA with subsequent confirmation of TBEV European subtype. 4/38 of tested tick pools were positive for TBEV-RNA (Minimal infectious rate 1.2%). Several unknown microfoci were revealed during the study indicating areas of extreme risk close to popular human entertainment sites. The study provides important evidence in favor of horses’ usage as sentinel species, as equines could provide more detailed epidemiological mapping of TBEV, as well as more efficient collection of ticks for surveillance studies.
Collapse
Affiliation(s)
- Arnoldas Pautienius
- Virology Laboratory, Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania;
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
- Correspondence:
| | - Austeja Armonaite
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Evelina Simkute
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Ruta Zagrabskaite
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (R.Z.); (J.B.)
| | - Jurate Buitkuviene
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (R.Z.); (J.B.)
| | - Russell Alpizar-Jara
- Research Center in Mathematics and Applications (CIMA-UE), Institute for Advanced Studies and Research, Department of Mathematics, School of Science and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal;
| | - Juozas Grigas
- Virology Laboratory, Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania;
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Indre Zakiene
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Dainius Zienius
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (D.Z.); (A.S.)
| | - Algirdas Salomskas
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (D.Z.); (A.S.)
| | - Arunas Stankevicius
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| |
Collapse
|
12
|
Haut M, Girl P, Oswald B, Romig T, Obiegala A, Dobler G, Pfeffer M. The Red Fox ( Vulpes vulpes) as Sentinel for Tick-Borne Encephalitis Virus in Endemic and Non-Endemic Areas. Microorganisms 2020; 8:microorganisms8111817. [PMID: 33218052 PMCID: PMC7698811 DOI: 10.3390/microorganisms8111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is one of the most important viral zoonosis caused by a neurotropic arbovirus (TBEV). In Germany, TBE is classified as a notifiable disease with an average of 350 autochthonous human cases annually. The incidence-based risk assessment in Germany came under criticism because every year, a number of autochthonous human TBE cases have been detected outside of the official risk areas. Therefore, it is necessary to find additional parameters to strengthen TBEV surveillance. The aim of this study was to examine red foxes as sentinels for TBE. Thus far, there are no published data about the sensitivity and specificity for serological methods testing fox samples. Hence, we aimed to define a system for the screening of TBEV-specific antibodies in red foxes. A total of 1233 fox sera were collected and examined by ELISA and IIFA and confirmed by micro-NT. The overall seroprevalence of antibodies against TBEV in red foxes from Germany confirmed by micro-NT was 21.1%. The seroprevalence differed significantly between risk (30.5%) and non-risk areas (13.1%), with good correlations to local TBE incidence in humans. In conclusion, serological monitoring of red foxes represents a promising surrogate marker system and may even determine unexpected TBEV foci in regions currently regarded as non-risk areas.
Collapse
Affiliation(s)
- Maja Haut
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (M.H.); (A.O.)
| | - Philipp Girl
- German National Consultant Laboratory for TBEV, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (B.O.); (G.D.)
| | - Beate Oswald
- German National Consultant Laboratory for TBEV, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (B.O.); (G.D.)
| | - Thomas Romig
- Parasitology Unit, Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (M.H.); (A.O.)
| | - Gerhard Dobler
- German National Consultant Laboratory for TBEV, Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (B.O.); (G.D.)
- Parasitology Unit, Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (M.H.); (A.O.)
- Correspondence: ; Tel.: +49-341-9738152
| |
Collapse
|
13
|
Król N, Chitimia-Dobler L, Dobler G, Karliuk Y, Birka S, Obiegala A, Pfeffer M. Tick burden on European roe deer (Capreolus capreolus) from Saxony, Germany, and detection of tick-borne encephalitis virus in attached ticks. Parasitol Res 2020; 119:1387-1392. [PMID: 32211989 DOI: 10.1007/s00436-020-06637-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Southern Germany is known as tick-borne encephalitis (TBE) risk area; however, the north of the country is almost free of human TBE cases. Due to its location in the transition zone between TBE risk areas and areas with only sporadic cases, Saxony is of importance in the surveillance of TBE. Roe deer (Capreolus capreolus), showing high seroprevalence of TBE virus (TBEV) antibodies, are considered to be sentinels for TBE risk assessment. Thus, roe deer could be used as indicators helping to better understand the focality of the TBEV in nature and as a possible source to isolate TBEV. Therefore, the aims of this study were to examine roe deer coats for the presence of ticks to establish the tick burden and to detect the TBEV in attached ticks. One hundred thirty-four roe deer coats were provided by hunters from the Hunting Association in Saxony (August 2017-January 2019). The coats were frozen at - 80 °C and after de-freezing examined on both sides-inside and outside. Attached and nonattached ticks were collected, morphologically identified and tested using real-time RT-PCR for the presence of TBEV. In total, 1279 ticks were found on 48 coats. The predominant species was Ixodes ricinus (99.76%; n = 1276). Three remaining specimens were Ixodes spp. (0.16%, 1 female and 1 nymph) and Dermacentor reticulatus (0.08%, 1 male). The average infestation rate was 26.7 (SD = 69.5), with maximum of 439 ticks per animal. Females were the dominant life stage of ticks (n = 536; 42%), followed by nymphs (n = 397; n = 31.1%), males (n = 175; 13.7%), and larvae (n = 168; 13.2%). Only half of collected ticks were attached (n = 662; 51.8%). TBEV was detected only in one tick out of 1279 tested ticks. It was a female infesting a roe deer from Saxon Switzerland-East Ore Mountain. The results show that the method used in this study is not sufficient as a sentinel marker to predict TBEV spreading in nature. Although previous studies demonstrated the usefulness of serological testing of roe deer in order to trace TBE-endemic regions, using ticks attached to them to get virus isolates is not productive.
Collapse
Affiliation(s)
- Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| | - Lidia Chitimia-Dobler
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937, Munich, Germany
| | - Gerhard Dobler
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937, Munich, Germany
| | - Yauhen Karliuk
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Stefan Birka
- Institute of Food Hygiene, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| |
Collapse
|
14
|
Paulsen KM, das Neves CG, Granquist EG, Madslien K, Stuen S, Pedersen BN, Vikse R, Rocchi M, Laming E, Stiasny K, Andreassen ÅK. Cervids as sentinel-species for tick-borne encephalitis virus in Norway - A serological study. Zoonoses Public Health 2019; 67:342-351. [PMID: 31855321 DOI: 10.1111/zph.12675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE). TBEV is one of the most important neurological pathogens transmitted by tick bites in Europe. The objectives of this study were to investigate the seroprevalence of TBE antibodies in cervids in Norway and the possible emergence of new foci, and furthermore to evaluate if cervids can function as sentinel animals for the distribution of TBEV in the country. Serum samples from 286 moose, 148 roe deer, 140 red deer and 83 reindeer from all over Norway were collected and screened for TBE immunoglobulin G (IgG) antibodies with a modified commercial enzyme-linked immunosorbent assay (ELISA) and confirmed by TBEV serum neutralisation test (SNT). The overall seroprevalence against the TBEV complex in the cervid specimens from Norway was 4.6%. The highest number of seropositive cervids was found in south-eastern Norway, but seropositive cervids were also detected in southern- and central Norway. Antibodies against TBEV detected by SNT were present in 9.4% of the moose samples, 1.4% in red deer, 0.7% in roe deer, and nil in reindeer. The majority of the positive samples in our study originated from areas where human cases of TBE have been reported in Norway. The study is the first comprehensive screening of cervid species in Norway for antibodies to TBEV, and shows that cervids are useful sentinel animals to indicate TBEV occurrence, as supplement to studies in ticks. Furthermore, the results indicate that TBEV might be spreading northwards in Norway. This information may be of relevance for public health considerations and supports previous findings of TBEV in ticks in Norway.
Collapse
Affiliation(s)
- Katrine M Paulsen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Erik G Granquist
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research and Herd Health, Norwegian University of Life Sciences, Sandnes, Norway
| | - Benedikte N Pedersen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Rose Vikse
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mara Rocchi
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, Scotland, UK
| | - Ellie Laming
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, Scotland, UK
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Åshild K Andreassen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
15
|
Bournez L, Umhang G, Faure E, Boucher JM, Boué F, Jourdain E, Sarasa M, Llorente F, Jiménez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago. Viruses 2019; 12:E10. [PMID: 31861683 PMCID: PMC7019733 DOI: 10.3390/v12010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Collapse
Affiliation(s)
- Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Eva Faure
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
| | - Jean-Marc Boucher
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité mixte de recherche Epidémiologie des maladies animales et zoonotiques (UMR EPIA), 63122 Saint-Genès-Champanelle, France;
| | - Mathieu Sarasa
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
- Biologie et Ecologie des Organismes et Populations Sauvages (BEOPS), 1 Esplanade Compans Caffarelli, 31000 Toulouse, France
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
| | - Miguel A. Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sara Moutailler
- Unité mixte de recherche Biologie moléculaire et Immunologie Parasitaire (UMR BIPAR), ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | - Sandrine A. Lacour
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Sylvie Lecollinet
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Cécile Beck
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| |
Collapse
|
16
|
Rijks JM, Montizaan MGE, Bakker N, de Vries A, Van Gucht S, Swaan C, van den Broek J, Gröne A, Sprong H. Tick-Borne Encephalitis Virus Antibodies in Roe Deer, the Netherlands. Emerg Infect Dis 2019; 25:342-345. [PMID: 30666954 PMCID: PMC6346459 DOI: 10.3201/eid2502.181386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To increase knowledge of tick-borne encephalitis virus (TBEV) circulation in the Netherlands, we conducted serosurveillance in roe deer (Capreolus capreolus) during 2017 and compared results with those obtained during 2010. Results corroborate a more widespread occurrence of the virus in 2017. Additional precautionary public health measures have been taken.
Collapse
|
17
|
Michelitsch A, Wernike K, Klaus C, Dobler G, Beer M. Exploring the Reservoir Hosts of Tick-Borne Encephalitis Virus. Viruses 2019; 11:E669. [PMID: 31336624 PMCID: PMC6669706 DOI: 10.3390/v11070669] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important arbovirus, which is found across large parts of Eurasia and is considered to be a major health risk for humans. Like any other arbovirus, TBEV relies on complex interactions between vectors, reservoir hosts, and the environment for successful virus circulation. Hard ticks are the vectors for TBEV, transmitting the virus to a variety of animals. The importance of these animals in the lifecycle of TBEV is still up for debate. Large woodland animals seem to have a positive influence on virus circulation by providing a food source for adult ticks; birds are suspected to play a role in virus distribution. Bank voles and yellow-necked mice are often referred to as classical virus reservoirs, but this statement lacks strong evidence supporting their highlighted role. Other small mammals (e.g., insectivores) may also play a crucial role in virus transmission, not to mention the absence of any suspected reservoir host for non-European endemic regions. Theories highlighting the importance of the co-feeding transmission route go as far as naming ticks themselves as the true reservoir for TBEV, and mammalian hosts as a mere bridge for transmission. A deeper insight into the virus reservoir could lead to a better understanding of the development of endemic regions. The spatial distribution of TBEV is constricted to certain areas, forming natural foci that can be restricted to sizes of merely 500 square meters. The limiting factors for their occurrence are largely unknown, but a possible influence of reservoir hosts on the distribution pattern of TBE is discussed. This review aims to give an overview of the multiple factors influencing the TBEV transmission cycle, focusing on the role of virus reservoirs, and highlights the questions that are waiting to be further explored.
Collapse
Affiliation(s)
- Anna Michelitsch
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Klaus
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) partner site Munich, Neuherbergstraße 11, 80937 München, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
18
|
Boelke M, Bestehorn M, Marchwald B, Kubinski M, Liebig K, Glanz J, Schulz C, Dobler G, Monazahian M, Becker SC. First Isolation and Phylogenetic Analyses of Tick-Borne Encephalitis Virus in Lower Saxony, Germany. Viruses 2019; 11:E462. [PMID: 31117224 PMCID: PMC6563265 DOI: 10.3390/v11050462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is the most important tick-borne arboviral disease in Europe. Presently, the main endemic regions in Germany are located in the southern half of the country. Although recently, sporadic human TBE cases were reported outside of these known endemic regions. The detection and characterization of invading TBE virus (TBEV) strains will considerably facilitate the surveillance and assessment of this important disease. In 2018, ticks were collected by flagging in several locations of the German federal state of Lower Saxony where TBEV-infections in humans (diagnosed clinical TBE disease or detection of TBEV antibodies) were reported previously. Ticks were pooled according to their developmental stage and tested for TBEV-RNA by RT-qPCR. Five of 730 (0.68%) pools from Ixodes spp. ticks collected in the areas of "Rauher Busch" and "Barsinghausen/Mooshuette" were found positive for TBEV-RNA. Phylogenetic analysis of the whole genomes and E gene sequences revealed a close relationship between the two TBEV isolates, which cluster with a TBEV strain from Poland isolated in 1971. This study provides first data on the phylogeny of TBEV in the German federal state of Lower Saxony, outside of the known TBE endemic areas of Germany. Our results support the hypothesis of an east-west invasion of TBEV strains in Western Europe.
Collapse
Affiliation(s)
- Mathias Boelke
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Malena Bestehorn
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70599 Stuttgart, Germany.
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937 Munich, Germany.
| | - Birgit Marchwald
- The Governmental Institute of Public Health of Lower Saxony (NLGA), Roesebeckstraße 4-6, 30449 Hannover, Germany.
| | - Mareike Kubinski
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Katrin Liebig
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Julien Glanz
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Claudia Schulz
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Gerhard Dobler
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70599 Stuttgart, Germany.
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937 Munich, Germany.
| | - Masyar Monazahian
- The Governmental Institute of Public Health of Lower Saxony (NLGA), Roesebeckstraße 4-6, 30449 Hannover, Germany.
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| |
Collapse
|
19
|
Frimmel S, Löbermann M, Feldhusen F, Seelmann M, Stiasny K, Süss J, Reisinger EC. Detection of tick-borne encephalitis virus antibodies in sera of sheep and goats in Mecklenburg-Western Pomerania (north-eastern Germany). Ticks Tick Borne Dis 2019; 10:901-904. [PMID: 31003897 DOI: 10.1016/j.ttbdis.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Silvius Frimmel
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University of Rostock Medical School, 18055 Rostock, Germany.
| | - Micha Löbermann
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University of Rostock Medical School, 18055 Rostock, Germany
| | - Frerk Feldhusen
- State Institute for Agriculture, Food Safety and Fisheries Mecklenburg-Western Pomerania, D-18059 Rostock, Germany
| | - Matthias Seelmann
- State Institute for Agriculture, Food Safety and Fisheries Mecklenburg-Western Pomerania, D-18059 Rostock, Germany
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Jochen Süss
- Brehm Memorial Center Renthendorf, 07646 Renthendorf, Germany
| | - Emil Christian Reisinger
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University of Rostock Medical School, 18055 Rostock, Germany
| |
Collapse
|
20
|
Bestehorn M, Weigold S, Kern WV, Chitimia-Dobler L, Mackenstedt U, Dobler G, Borde JP. Phylogenetics of tick-borne encephalitis virus in endemic foci in the upper Rhine region in France and Germany. PLoS One 2018; 13:e0204790. [PMID: 30335778 PMCID: PMC6193627 DOI: 10.1371/journal.pone.0204790] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022] Open
Abstract
Objective Tick-borne encephalitis (TBE) caused by the tick-borne encephalitis virus (TBEV) is the most important tick-borne arboviral disease in Europe and Asia. The Upper Rhine Valley is thought to be the very western border of TBEV distribution in Europe. The aim of our study was to identify natural foci and isolate TBEV from ticks, to determine the prevalence of TBEV in local tick populations and to study the phylogenetic relatedness of circulating TBEV strains in this region. Material and methods Ticks were collected between 2016, 2017 and 2018 by flagging. TBEV was isolated from collected ticks and phylogenetic analyses were performed. Minimal infection rates (MIR) of the collected ticks were calculated. Results At 12 sampling sites, a total of 4,064 Ixodes ticks were collected in 2016 and 2017 –(and one single collection 2018). 953 male, 856 female adult ticks and 2,255 nymphs were identified. The MIR rates were 0,17% (1/595) for Schiltach (Germany) and 0,11% (1/944) for Foret de la Robertsau (France), respectively. Overall, the three newly described TBEV strains, isolated in the years 2016 and 2017 from the Upper Rhine Valley have no close phylogenetic relation and show a genetic relationship with strains from eastern Europe. The 2018 TBEV strain from Aubachstrasse (Germany), however, is closely related to the TBEV found in Schiltach (Germany). Conclusion In conclusion, we demonstrate, to our knowledge for the first time, the phylogenetic relations of the newly isolated TBEV strains on both sides of the upper Rhine river.
Collapse
Affiliation(s)
- Malena Bestehorn
- Parasitology Unit, University of Hohenheim, D-Stuttgart, Germany
| | - Sebastian Weigold
- Division of Infectious Diseases, Department of Medicine II, University of Freiburg Medical Center and Faculty of Medicine, Freiburg i.Br., Germany
| | - Winfried V Kern
- Division of Infectious Diseases, Department of Medicine II, University of Freiburg Medical Center and Faculty of Medicine, Freiburg i.Br., Germany
| | - Lidia Chitimia-Dobler
- Parasitology Unit, University of Hohenheim, D-Stuttgart, Germany.,Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) partner site Munich, Neuherbergstraße 11, München, Germany
| | - Ute Mackenstedt
- Parasitology Unit, University of Hohenheim, D-Stuttgart, Germany
| | - Gerhard Dobler
- Parasitology Unit, University of Hohenheim, D-Stuttgart, Germany.,Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) partner site Munich, Neuherbergstraße 11, München, Germany
| | - Johannes P Borde
- Division of Infectious Diseases, Department of Medicine II, University of Freiburg Medical Center and Faculty of Medicine, Freiburg i.Br., Germany.,Praxis Dr. J. Borde / Gesundheitszentrum Oberkirch, Am Marktplatz 8, Oberkirch, Germany
| |
Collapse
|
21
|
Andersen NS, Larsen SL, Olesen CR, Stiasny K, Kolmos HJ, Jensen PM, Skarphédinsson S. Continued expansion of tick-borne pathogens: Tick-borne encephalitis virus complex and Anaplasma phagocytophilum in Denmark. Ticks Tick Borne Dis 2018; 10:115-123. [PMID: 30245088 DOI: 10.1016/j.ttbdis.2018.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a tick-transmitted flavivirus within the tick-borne encephalitis (TBE) complex. The TBE complex is represented by both TBEV and louping ill virus (LIV) in Denmark. Anaplasma phagocytophilum is also transmitted by ticks and is believed to play an essential role in facilitating and aggravating LIV infection in sheep. This study aimed to describe the distribution of TBE complex viruses in Denmark, to establish the possible emergence of new foci and their association with the distribution of A. phagocytophilum. We performed a nationwide seroprevalence study of TBE complex viruses using roe deer (Capreolus capreolus) as sentinels and determined the prevalence of A. phagocytophilum in roe deer. Danish hunters obtained blood samples from roe deer during the hunting season of 2013-14. The samples were examined for TBEV-specific antibodies by virus neutralization tests (NT). A. phagocytophilum infection was assessed by specific real-time-PCR. The overall seroprevalence of the TBE complex viruses in roe deer was 6.9% (51/736). The positive samples were primarily obtained from a known TBE endemic foci and risk areas identified in previous sentinel studies. However, new TBE complex risk areas were also identified. The overall prevalence of A. phagocytophilum was 94.0% (173 PCR-positive of 184 roe deer), which is twice the rate observed ten years ago. These results point to an expansion of these tick-borne diseases geographically and within reservoir populations and, therefore, rationalize the use of sentinel models to monitor changes in transmission of tick-borne diseases and development of new risk areas. We found no association between TBE complex-positive roe deer and the prevalence of A. phagocytophilum, as almost all roe deer were infected. Based on our findings we encourage health care providers to be attentive to tick-borne illnesses such as TBE when treating patients with compatible symptoms.
Collapse
Affiliation(s)
- Nanna Skaarup Andersen
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark; Research Unit of Clinical Microbiology, University of Southern Denmark, J.B. Winsløvsvej 21.2, DK-5000, Odense C, Denmark.
| | - Sanne Løkkegaard Larsen
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark; Research Unit of Clinical Microbiology, University of Southern Denmark, J.B. Winsløvsvej 21.2, DK-5000, Odense C, Denmark.
| | | | - Karin Stiasny
- Center for Virology, Medical University Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology, University of Southern Denmark, J.B. Winsløvsvej 21.2, DK-5000, Odense C, Denmark.
| | - Per Moestrup Jensen
- Department of Plant- and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark.
| | - Sigurdur Skarphédinsson
- Clinical Centre for Emerging and Vector-borne Infections, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark; Department of Infectious diseases, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark.
| |
Collapse
|
22
|
Uchida L, Hayasaka D, Ngwe Tun MM, Morita K, Muramatsu Y, Hagiwara K. Survey of tick-borne zoonotic viruses in wild deer in Hokkaido, Japan. J Vet Med Sci 2018; 80:985-988. [PMID: 29669948 PMCID: PMC6021891 DOI: 10.1292/jvms.18-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tick-borne encephalitis (TBE) and severe fever with thrombocytopenia syndrome (SFTS) are both tick-borne zoonotic diseases caused by TBE virus (TBEV) and SFTS phlebovirus (SFTSV). In 2016, a second domestic TBE case was reported in Hokkaido, Japan, after an absence of 23 years. We conducted IgG ELISA for TBEV and SFTSV on 314 deer (Cervus nippon yesoensis) serum samples collected from 3 places in Hokkaido. There were 7 seropositive samples for TBEV but none for SFTSV by ELISA. The specificity of the 7 positive samples was confirmed by neutralization tests against TBEV, and 5 sera showed 320 to 640 of 50% focus reduction endpoint titers. Our results provide information about the infectious status of TBEV in wild deer in Hokkaido, Japan.
Collapse
Affiliation(s)
- Leo Uchida
- Laboratory of Zoonotic Diseases, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, Nagasaki 852-8521, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Yasukazu Muramatsu
- Laboratory of Zoonotic Diseases, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Katsuro Hagiwara
- Laboratory of Veterinary Virology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
23
|
Molecular Detection and Serological Evidence of Tick-Borne Encephalitis Virus in Serbia. Vector Borne Zoonotic Dis 2017; 17:813-820. [DOI: 10.1089/vbz.2017.2167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
24
|
Seroprevalence of tick-borne-encephalitis virus in wild game in Mecklenburg-Western Pomerania (north-eastern Germany). Ticks Tick Borne Dis 2016; 7:1151-1154. [PMID: 27527383 DOI: 10.1016/j.ttbdis.2016.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
Mecklenburg-Western Pomerania, a federal state in the north east of Germany, has never been a risk area for TBEV infection, but a few autochthonous cases, along with TBEV-RNA detection in ticks, have shown a low level of activity in natural foci of the virus in the past. As wild game and domestic animals have been shown to be useful sentinels for TBEV we examined sera from wild game shot in Mecklenburg-Western Pomerania for the prevalence of TBEV antibodies. A total of 359 sera from wild game were investigated. All animals were shot in Mecklenburg-Western Pomerania in 2012. Thirteen of 359 sera tested positive or borderline for anti-TBEV-IgG with ELISA and four samples tested positive using NT. The four TBEV-positive sera confirmed by NT constitute the first detection of TBEV-antibodies in sera of wild game in Mecklenburg-Western Pomerania since 1986-1989. This underlines that the serological examination of wild game can be a useful tool in defining areas of possible TBEV infection, especially in areas of low TBEV-endemicity.
Collapse
|
25
|
Tonteri E, Jokelainen P, Matala J, Pusenius J, Vapalahti O. Serological evidence of tick-borne encephalitis virus infection in moose and deer in Finland: sentinels for virus circulation. Parasit Vectors 2016; 9:54. [PMID: 26825371 PMCID: PMC4733276 DOI: 10.1186/s13071-016-1335-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/21/2016] [Indexed: 12/30/2022] Open
Abstract
Background The incidence of tick-borne encephalitis (TBE) in humans has increased in Finland, and the disease has emerged in new foci. These foci have been investigated to determine the circulating virus subtype, the tick host species and the ecological parameters, but countrywide epidemiological information on the distribution of TBEV has been limited. Methods In this study, we screened sera from hunter-harvested wild cervids for the presence of antibodies against tick-borne encephalitis virus (TBEV) with a hemagglutination inhibition test. The positive results were confirmed by a neutralisation assay. Results Nine (0.74 %) of 1213 moose, one (0.74 %) of 135 white-tailed deer, and none of the 17 roe deer were found seropositive for TBEV. A close geographical congruence between seropositive cervids and recently reported human TBE cases was observed: nine of the ten seropositive animals were from known endemic areas. Conclusions Our results confirm the local circulation of TBEV in several known endemic areas. One seropositive moose had been shot in an area where human TBE cases have not been reported, suggesting a possible new focus. Moose appear to be a useful sentinel animal for the presence of TBEV in the taiga region.
Collapse
Affiliation(s)
- Elina Tonteri
- Department of Virology, University of Helsinki, Faculty of Medicine, Helsinki, Finland.
| | - Pikka Jokelainen
- Department of Veterinary Biosciences, University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. .,Department of Food Hygiene and Environmental Health, University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. .,Department of Basic Veterinary Sciences and Population Medicine, Estonian University of Life Sciences, Tartu, Estonia.
| | - Juho Matala
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Joensuu, Finland.
| | - Jyrki Pusenius
- Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Joensuu, Finland.
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Faculty of Medicine, Helsinki, Finland. .,Department of Veterinary Biosciences, University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. .,Department of Virology and Immunology, Hospital district of Helsinki and Uusimaa (HUSLAB), Helsinki, Finland.
| |
Collapse
|
26
|
Paillard L, Jones KL, Evans AL, Berret J, Jacquet M, Lienhard R, Bouzelboudjen M, Arnemo JM, Swenson JE, Voordouw MJ. Serological signature of tick-borne pathogens in Scandinavian brown bears over two decades. Parasit Vectors 2015; 8:398. [PMID: 26215889 PMCID: PMC4517347 DOI: 10.1186/s13071-015-0967-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anthropogenic disturbances are changing the geographic distribution of ticks and tick-borne diseases. Over the last few decades, the tick Ixodes ricinus has expanded its range and abundance considerably in northern Europe. Concurrently, the incidence of tick-borne diseases, such as Lyme borreliosis and tick-borne encephalitis, has increased in the human populations of the Scandinavian countries. METHODS Wildlife populations can serve as sentinels for changes in the distribution of tick-borne diseases. We used serum samples from a long-term study on the Scandinavian brown bear, Ursus arctos, and standard immunological methods to test whether exposure to Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, and tick-borne encephalitis virus (TBEV) had increased over time. Bears had been sampled over a period of 18 years (1995-2012) from a southern area, where Ixodes ricinus ticks are present, and a northern area where ticks are uncommon or absent. RESULTS Bears had high levels of IgG antibodies against B. burgdorferi sensu lato but not TBEV. Bears at the southern area had higher values of anti-Borrelia IgG antibodies than bears at the northern area. Over the duration of the study, the value of anti-Borrelia IgG antibodies increased in the southern area but not the northern area. Anti-Borrelia IgG antibodies increased with the age of the bear but declined in the oldest age classes. CONCLUSIONS Our study is consistent with the view that ticks and tick-borne pathogens are expanding their abundance and prevalence in Scandinavia. Long-term serological monitoring of large mammals can provide insight into how anthropogenic disturbances are changing the distribution of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Lye Paillard
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Krista L Jones
- Department of Forestry and Wildlife Management, Faculty of Forestry and Wildlife Management, Hedmark University College, Campus Evenstad, NO-2418, Elverum, Norway.
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Faculty of Forestry and Wildlife Management, Hedmark University College, Campus Evenstad, NO-2418, Elverum, Norway.
| | - Jérémy Berret
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Reto Lienhard
- ADMED Microbiologie, Boucle de Cydalise 16, 2300, la Chaux-de-Fonds, Switzerland.
| | - Mahmoud Bouzelboudjen
- Informatics and Telematics Service, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Faculty of Forestry and Wildlife Management, Hedmark University College, Campus Evenstad, NO-2418, Elverum, Norway.
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| | - Jon E Swenson
- Department of Ecology and Natural Resources Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432, Ås, Norway.
- Norwegian Institute for Nature Research, NO-7485, Trondheim, Norway.
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
27
|
Imhoff M, Hagedorn P, Schulze Y, Hellenbrand W, Pfeffer M, Niedrig M. Review: Sentinels of tick-borne encephalitis risk. Ticks Tick Borne Dis 2015; 6:592-600. [PMID: 26005107 DOI: 10.1016/j.ttbdis.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 05/01/2015] [Indexed: 12/28/2022]
Abstract
Tick-borne encephalitis (TBE) is a viral zoonotic disease endemic in many regions of Eurasia. The definition of TBE risk areas is complicated by the focal nature of the TBE virus transmission. Furthermore, vaccination may reduce case numbers and thus mask infection risk to unvaccinated persons. Therefore, additional risk indicators are sought to complement the current risk assessment solely based on human incidence. We reviewed studies published over the past ten years investigating potential new sentinels of TBE risk to understand the advantages and disadvantages of the various sentinel animal surveys and surrogate indicator methods. Virus prevalence in questing ticks is an unsuitable indicator of TBE infection risk as viral RNA is rarely detected even in large sample sizes collected at known TBE endemic areas. Seroprevalence in domestic animals, on the other hand, showed good spatial correlation with TBE incidence in humans and might also uncover presently unknown TBEV foci.
Collapse
Affiliation(s)
- Maren Imhoff
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Peter Hagedorn
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Yesica Schulze
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Wiebke Hellenbrand
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Martin Pfeffer
- Institute of Animal Hygiene & Veterinary Public Health, Centre of Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany.
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|