1
|
Kuyucu AC, Hekimoglu O. Predicting the distribution of Ixodes ricinus in Europe: integrating microclimatic factors into ecological niche models. Parasitology 2024:1-12. [PMID: 39508154 DOI: 10.1017/s003118202400132x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Ixodes ricinus, commonly known as the castor bean tick and sheep tick, is a significant vector of various diseases, such as tick-borne encephalitis and Lyme borreliosis. Owing to climate change, the distribution and activity of I. ricinus are expected to increase, leading to an increase in the number of diseases transmitted by this species. Most distribution models and ecological niche models utilize macroclimate datasets such as WorldClim or CHELSA to map the distribution of disease-transmitting ticks. However, microclimatic factors are crucial for the activity and survival of small arthropods. In this study, an ecological niche modelling approach was used to assess the climatic suitability of I. ricinus using both microclimatic and macroclimatic parameters. A Mixed model was built by combining parameters from the Soiltemp (microclimate) and Wordclim (macroclimate) databases, whereas a Macroclimate model was built with the CHELSA dataset. Additionally, future suitabilities were projected via the macroclimate model under the SSP3-7.0 and SSP5-8.5 scenarios. Macroclimate and Mixed models showed similar distributions, confirming the current distribution of I. ricinus. The most important climatic factors were seasonality, annual temperature range, humidity and precipitation. Future projections suggest significant expansion in northern and eastern Europe, with notable declines in southern Europe.
Collapse
|
2
|
Williams AK, Peterman WE, Pesapane R. Refining Ixodes scapularis (Acari: Ixodidae) distribution models: a comparison of current methods to an established protocol. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:827-844. [PMID: 38686854 DOI: 10.1093/jme/tjae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Blacklegged ticks (Ixodes scapularis Say) pose an enormous public health risk in eastern North America as the vector responsible for transmitting 7 human pathogens, including those causing the most common vector-borne disease in the United States, Lyme disease. Species distribution modeling is an increasingly popular method for predicting the potential distribution and subsequent risk of blacklegged ticks, however, the development of such models thus far is highly variable and would benefit from the use of standardized protocols. To identify where standardized protocols would most benefit current distribution models, we completed the "Overview, Data, Model, Assessment, and Prediction" (ODMAP) distribution modeling protocol for 21 publications reporting 22 blacklegged tick distribution models. We calculated an average adherence of 73.4% (SD ± 29%). Most prominently, we found that authors could better justify and connect their selection of variables and associated spatial scales to blacklegged tick ecology. In addition, the authors could provide clearer descriptions of model development, including checks for multicollinearity, spatial autocorrelation, and plausibility. Finally, authors could improve their reporting of variable effects to avoid undermining the models' utility in informing species-environment relationships. To enhance future model rigor and reproducibility, we recommend utilizing several resources including the ODMAP protocol, and suggest that journals make protocol compliance a publication prerequisite.
Collapse
Affiliation(s)
- Allison K Williams
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - William E Peterman
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Risa Pesapane
- School of Environment and Natural Resources, College of Food, Agriculture, and Environmental Science, The Ohio State University, 210 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Szaroz D, Kulkarni M, Robayo González CX, Zinszer K. Study protocol for a scoping review of Lyme disease prediction methodologies. BMJ Open 2024; 14:e071402. [PMID: 38772589 PMCID: PMC11110606 DOI: 10.1136/bmjopen-2022-071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/27/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION In the temperate world, Lyme disease (LD) is the most common vector-borne disease affecting humans. In North America, LD surveillance and research have revealed an increasing territorial expansion of hosts, bacteria and vectors that has accompanied an increasing incidence of the disease in humans. To better understand the factors driving disease spread, predictive models can use current and historical data to predict disease occurrence in populations across time and space. Various prediction methods have been used, including approaches to evaluate prediction accuracy and/or performance and a range of predictors in LD risk prediction research. With this scoping review, we aim to document the different modelling approaches including types of forecasting and/or prediction methods, predictors and approaches to evaluating model performance (eg, accuracy). METHODS AND ANALYSIS This scoping review will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Review guidelines. Electronic databases will be searched via keywords and subject headings (eg, Medical Subject Heading terms). The search will be performed in the following databases: PubMed/MEDLINE, EMBASE, CAB Abstracts, Global Health and SCOPUS. Studies reported in English or French investigating the risk of LD in humans through spatial prediction and temporal forecasting methodologies will be identified and screened. Eligibility criteria will be applied to the list of articles to identify which to retain. Two reviewers will screen titles and abstracts, followed by a full-text screening of the articles' content. Data will be extracted and charted into a standard form, synthesised and interpreted. ETHICS AND DISSEMINATION This scoping review is based on published literature and does not require ethics approval. Findings will be published in peer-reviewed journals and presented at scientific conferences.
Collapse
Affiliation(s)
- Daniel Szaroz
- École de santé publique, Département de médecine sociale et préventive, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche en Santé Publique (CReSP), Montréal, Québec, Canada
| | - Manisha Kulkarni
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Claudia Ximena Robayo González
- École de santé publique, Département de médecine sociale et préventive, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche en Santé Publique (CReSP), Montréal, Québec, Canada
| | - Kate Zinszer
- École de santé publique, Département de médecine sociale et préventive, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche en Santé Publique (CReSP), Montréal, Québec, Canada
| |
Collapse
|
4
|
Ferguson LV, El Nabbout A, Adamo SA. Warming, but not infection with Borrelia burgdorferi, increases off-host winter activity in the ectoparasite, Ixodes scapularis. J Therm Biol 2024; 121:103853. [PMID: 38626664 DOI: 10.1016/j.jtherbio.2024.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/17/2024] [Indexed: 04/18/2024]
Abstract
Warming winters will change patterns of behaviour in temperate and polar arthropods, but we know little about the drivers of winter activity in animals such as ticks. Any changes in behaviour are likely to arise from a combination of both abiotic (e.g. temperature) and biotic (e.g. infection) drivers, and will have important consequences for survival and species interactions. Blacklegged ticks, Ixodes scapularis, have invaded Atlantic Canada and high proportions (30-50%) are infected with the bacteria causing Lyme disease, Borrelia burgdorferi. Infection is correlated with increased overwintering survival of adult females, and ticks are increasingly active in the winter, but it is unclear if infection is associated with activity. Further, we know little about how temperature drives the frequency of winter activity. Here, we exposed wild-caught, adult, female Ixodes scapularis ticks to three different winter temperature regimes (constant low temperatures, increased warming, and increased warming + variability) to determine the thermal and infection conditions that promote or suppress activity. We used automated behaviour monitors to track daily activity in individual ticks and repeated the study with fresh ticks over three years. Following exposure to winter conditions we determined whether ticks were infected with the bacteria B. burgdorferi and if infection was responsible for any patterns in winter activity. Warming conditions promoted increased activity throughout the overwintering period but infection with B. burgdorferi had no impact on the frequency or overall number of ticks active throughout the winter. Individual ticks varied in their levels of activity throughout the winter, such that some were largely dormant for several weeks, while others were active almost daily; however, we do not yet know the drivers behind this individual variation in behaviour. Overall, warming winters will heighten the risk of tick-host encounters.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | - Amal El Nabbout
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| |
Collapse
|
5
|
Crandall KE, Millien V, Kerr JT. High-resolution environmental and host-related factors impacting questing Ixodes scapularis at their northern range edge. Ecol Evol 2024; 14:e10855. [PMID: 38384829 PMCID: PMC10879908 DOI: 10.1002/ece3.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
The geographic range of tick populations has expanded in Canada due to climate warming and the associated poleward range shifts of their vertebrate hosts. Abiotic factors, such as temperature, precipitation, and snow, are known to directly affect tick abundance. Yet, biotic factors, such as the abundance and diversity of mammal hosts, may also alter tick abundance and consequent tick-borne disease risk. Here, we incorporated host surveillance data with high-resolution environmental data to evaluate the combined impact of abiotic and biotic factors on questing Ixodes scapularis abundance in Ontario and Quebec, Canada. High-resolution abiotic factors were derived from remote sensing satellites and meteorological towers, while biotic factors related to mammal hosts were derived from active surveillance data that we collected in the field. Generalized additive models were used to determine the relative importance of abiotic and biotic factors on questing I. scapularis abundance. Combinations of abiotic and biotic factors were identified as important drivers of abundances of questing I. scapularis. Positive and negative linear relationships were found for questing I. scapularis abundance with monthly mean precipitation and accumulated snow, but no effect was found for the relative abundance of white-footed mice. Positive relationships were also identified between questing I. scapularis abundance with monthly mean precipitation and mammal species richness. Therefore, future studies that assess I. scapularis should incorporate host surveillance data with high-resolution environmental factors to determine the key drivers impacting the abundance and geographic spread of tick populations and tick-borne pathogens.
Collapse
Affiliation(s)
- Kirsten E. Crandall
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Department of BiologyMcGill UniversityMontréalQuébecCanada
- Redpath MuseumMcGill UniversityMontréalQuébecCanada
| | - Virginie Millien
- Department of BiologyMcGill UniversityMontréalQuébecCanada
- Redpath MuseumMcGill UniversityMontréalQuébecCanada
| | - Jeremy T. Kerr
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
6
|
Eisen RJ, Eisen L. Evaluation of the association between climate warming and the spread and proliferation of Ixodes scapularis in northern states in the Eastern United States. Ticks Tick Borne Dis 2024; 15:102286. [PMID: 38016209 PMCID: PMC10884982 DOI: 10.1016/j.ttbdis.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Ixodes scapularis (the blacklegged tick) is widely distributed in forested areas across the eastern United States. The public health impact of I. scapularis is greatest in the north, where nymphal stage ticks commonly bite humans and serve as primary vectors for multiple human pathogens. There were dramatic increases in the tick's distribution and abundance over the last half-century in the northern part of the eastern US, and climate warming is commonly mentioned as a primary driver for these changes. In this review, we summarize the evidence for the observed spread and proliferation of I. scapularis being driven by climate warming. Although laboratory and small-scale field studies have provided insights into how temperature and humidity impact survival and reproduction of I. scapularis, using these associations to predict broad-scale distribution and abundance patterns is more challenging. Numerous efforts have been undertaken to model the distribution and abundance of I. scapularis at state, regional, and global scales based on climate and landscape variables, but outcomes have been ambiguous. Across the models, the functional relationships between seasonal or annual measures of heat, cold, precipitation, or humidity and tick presence or abundance were inconsistent. The contribution of climate relative to landscape variables was poorly defined. Over the last half-century, climate warming occurred in parallel with spread and population increase of the white-tailed deer, the most important reproductive host for I. scapularis adults, in the northern part of the eastern US. There is strong evidence for white-tailed deer playing a key role to facilitate spread and proliferation of I. scapularis in the US over the last century. However, due to a lack of spatially and temporally congruent data, climate, landscape, and host variables are rarely included in the same models, thus limiting the ability to evaluate their relative contributions or interactions in defining the geographic range and abundance patterns of ticks. We conclude that the role of climate change as a key driver for geographic expansion and population increase of I. scapularis in the northern part of the eastern US over the last half-century remains uncertain.
Collapse
Affiliation(s)
- Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| |
Collapse
|
7
|
Deshpande G, Beetch JE, Heller JG, Naqvi OH, Kuhn KG. Assessing the Influence of Climate Change and Environmental Factors on the Top Tick-Borne Diseases in the United States: A Systematic Review. Microorganisms 2023; 12:50. [PMID: 38257877 PMCID: PMC10821204 DOI: 10.3390/microorganisms12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In the United States (US), tick-borne diseases (TBDs) have more than doubled in the past fifteen years and are a major contributor to the overall burden of vector-borne diseases. The most common TBDs in the US-Lyme disease, rickettsioses (including Rocky Mountain spotted fever), and anaplasmosis-have gradually shifted in recent years, resulting in increased morbidity and mortality. In this systematic review, we examined climate change and other environmental factors that have influenced the epidemiology of these TBDs in the US while highlighting the opportunities for a One Health approach to mitigating their impact. We searched Medline Plus, PUBMED, and Google Scholar for studies focused on these three TBDs in the US from January 2018 to August 2023. Data selection and extraction were completed using Covidence, and the risk of bias was assessed with the ROBINS-I tool. The review included 84 papers covering multiple states across the US. We found that climate, seasonality and temporality, and land use are important environmental factors that impact the epidemiology and patterns of TBDs. The emerging trends, influenced by environmental factors, emphasize the need for region-specific research to aid in the prediction and prevention of TBDs.
Collapse
Affiliation(s)
| | | | | | | | - Katrin Gaardbo Kuhn
- Department of Biostatistics & Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.D.); (J.E.B.); (J.G.H.); (O.H.N.)
| |
Collapse
|
8
|
Nabbout AE, Ferguson LV, Miyashita A, Adamo SA. Female ticks (Ixodes scapularis) infected with Borrelia burgdorferi have increased overwintering survival, with implications for tick population growth. INSECT SCIENCE 2023; 30:1798-1809. [PMID: 37147777 DOI: 10.1111/1744-7917.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat into these areas. Warming temperatures appear to be one cause of its range expansion to the north. However, other factors are also involved. We show that unfed adult female ticks infected with B. burgdorferi have greater overwintering survival than uninfected female ticks. Locally collected adult female ticks were placed in individual microcosms and allowed to overwinter in both forest and dune grass environments. In the spring we collected the ticks and tested both dead and living ticks for B. burgdorferi DNA. Infected ticks had greater overwintering survival compared with uninfected ticks every winter for three consecutive winters in both forest and dune grass environments. We discuss the most plausible explanations for this result. The increased winter survival of adult female ticks could enhance tick population growth. Our results suggest that, in addition to climate change, B. burgdorferi infection itself may be promoting the northern range expansion of I. scapularis. Our study highlights how pathogens could work synergistically with climate change to promote host range expansion.
Collapse
Affiliation(s)
- Amal El Nabbout
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
9
|
Hunt EA, Schwartz S, Chinnici N. Passive Surveillance of SARS-CoV-2 in Adult Blacklegged Ticks ( Ixodes scapularis) from Northeast Pennsylvania. Life (Basel) 2023; 13:1857. [PMID: 37763261 PMCID: PMC10532621 DOI: 10.3390/life13091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wildlife is vital to public health. White-tailed deer (Odocoileus virginianus) in the United States have tested positive for SARS-CoV-2, and their interactions with blacklegged ticks (Ixodes scapularis) raise the question of whether or not these ticks also carry SARS-CoV-2. In this study, 449 blacklegged ticks from Northeast Pennsylvania were collected in the fall of 2022 and tested via RT-qPCR for the presence of SARS-CoV-2. Fourteen ticks were amplified with late quantification cycles (Cq) using primers from two nucleocapsid genes (N1 and N2) via TaqMan assays. Three of these samples were amplified on a SYBR green assay during secondary testing. However, melt curve and gel electrophoresis analysis verified negative results for these three samples. Genetic sequencing was performed on one of the three samples to look for potential cross-reactions causing the amplification observed. However, no significant match was found in the NCBI database. Although all 449 blacklegged ticks were negative for SARS-CoV-2, I. scapularis should continue to be tested for COVID-19. If blacklegged ticks test positive for COVID-19 in the future, research should focus on determining the stability of SARS-CoV-2 with the tick vector and the potential for transmission through tick bites.
Collapse
Affiliation(s)
| | | | - Nicole Chinnici
- Dr. Jane Huffman Wildlife Genetics Institute, East Stroudsburg University, East Stroudsburg, PA 18301, USA; (E.A.H.); (S.S.)
| |
Collapse
|
10
|
Cassens J, Jarnefeld J, Berman JD, Oliver JD. Environmental Drivers of Immature Ixodes scapularis in Minnesota's Metro Area. ECOHEALTH 2023; 20:273-285. [PMID: 37987876 DOI: 10.1007/s10393-023-01656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 11/22/2023]
Abstract
Research on the public health significance of Ixodes scapularis ticks in the Midwest seldom focuses on extreme weather conditions that can modulate their population dynamics and ability to transmit pathogenic organisms. In this study, we assessed whether the distributional abundance of I. scapularis immatures is associated with current and time-lagged climatic determinants either directly or indirectly. We analyzed a 20-year longitudinal small mammal live-trapping dataset within a seven-county metropolitan area in Minnesota (1998-2016) using yearly tick counts at each site to assess whether inter- and intra-annual variation in immature I. scapularis counts is associated with climate and land-use conditions. We found that (1) immature I. scapularis ticks infesting mammals expanded southwesterly over the study period, (2) eastern chipmunks, Tamias striatus, supplied a substantial proportion of nymphal blood meals, (3) a suite of climatological variables are demonstrably associated with I. scapularis presence, and abundance across sites, most notably summer vapor pressure deficit, and (4) immature I. scapularis display an affinity for deciduous forests in metro areas. Our results suggest that climatic and land-type conditions may impact host-seeking I. scapularis ticks through numerous mechanistic avenues. These findings extend our understanding of the abiotic factors supporting I. scapularis populations in metro areas of the upper Midwest with strong implications for discerning future tick-borne pathogen risk.
Collapse
Affiliation(s)
- Jacob Cassens
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| | | | - Jesse D Berman
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Jonathan D Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
11
|
McBride SE, Lieberthal BA, Buttke DE, Cronk BD, De Urioste-Stone SM, Goodman LB, Guarnieri LD, Rounsville TF, Gardner AM. Patterns and Ecological Mechanisms of Tick-Borne Disease Exposure Risk in Acadia National Park, Mount Desert Island, Maine, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:62-72. [PMID: 36271802 DOI: 10.1093/jme/tjac152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 06/16/2023]
Abstract
National parks are unique and significant vector-borne pathogen transmission settings, engaging over 300 million people in outdoor recreation per year. In this study, we integrated vector surveys and ecological habitat feature data in spatial models to characterize tick-borne disease exposure risk in Acadia National Park (ANP), Maine. To determine the broad-scale patterns of blacklegged tick Ixodes scapularis Say (Acari: Ixodidae) densities in ANP, we conducted host-seeking tick collections at 114 sites across the park over two years. Using these tick survey data and geospatial landscape feature data (i.e., land cover, elevation, forest patch size, and aspect) we developed a random forest model of nymphal tick density. We found that host-seeking tick density varies significantly across the park and is particularly high in areas characterized by deciduous forest cover and relatively low elevation. To explore potential fine-scale ecological drivers of tick density spatial patterns, we quantified microclimate conditions, host activity, and vegetation characteristics at a subset of 19 sites. We identified significant differences in microclimate conditions but not host activity or vegetation metrics across broad-scale landscape feature classes. Mean temperature and mean humidity were correlated to nymphal densities and therefore may provide a mechanistic link between landscape features and blacklegged tick densities. Finally, we detected multiple tick-borne pathogens in both ticks and small mammals sampled in ANP, including Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum. Our findings demonstrate the value of using ecological metrics to estimate vector-borne disease exposure risk and provide insight into habitat characteristics that may drive tick-borne disease exposure risk.
Collapse
Affiliation(s)
- Sara E McBride
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| | - Brandon A Lieberthal
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| | - Danielle E Buttke
- National Park Service, 1201 Oakridge Drive, Fort Collins, CO 80525, USA
| | - Brittany D Cronk
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Laura B Goodman
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lucy D Guarnieri
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| | - Thomas F Rounsville
- Pest Management Unit, University of Maine Cooperative Extension Diagnostic and Research Laboratory, 17 Godfrey Drive, Orono, ME 04473, USA
| | - Allison M Gardner
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| |
Collapse
|