1
|
Xie NG, Zhang K, Song P, Li R, Luo J, Zhang DY. High-Throughput Variant Detection Using a Color-Mixing Strategy. J Mol Diagn 2022; 24:878-892. [PMID: 35718091 PMCID: PMC9379672 DOI: 10.1016/j.jmoldx.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Many diseases are related to multiple genetic alterations along a single gene. Probing for highly multiple (>10) variants in a single quantitative PCR tube is not possible because of a limited number of fluorescence channels and one variant per channel, so many more tubes are needed. Herein, a novel color-mixing strategy that uses fluorescence combinations as digital color codes to probe multiple variants simultaneously was experimentally validated. The color-mixing strategy relies on a simple intratube assay that can probe for 15 variants as part of an intertube assay that can probe for an exponentially increased number of variants. This strategy is achieved by using multiplex double-stranded toehold probes modified with fluorophores and quenchers; the probes are designed to be quenched or luminous after binding to wild-type or variant templates. The color-mixing strategy was used to probe for 21 pathogenic variants in thalassemia and to distinguish between heterozygous and homozygous variants in six tubes, with a specificity of 99% and a sensitivity of 94%. To support tuberculosis diagnosis, the same strategy was applied to simultaneously probe in Mycobacterium tuberculosis for rifampicin-resistance mutations occurring within one 81-bp region and one 48-bp region in the rpoB gene, plus five isoniazid-resistance mutations in the inhA and katG genes.
Collapse
Affiliation(s)
- Nina Guanyi Xie
- Department of Bioengineering, Rice University, Houston, Texas
| | - Kerou Zhang
- Department of Bioengineering, Rice University, Houston, Texas
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, Texas
| | | | | | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
2
|
Waturuocha UW, P. J. A, Singh KK, Malhotra V, Krishna MS, Saini DK. A high-frequency single nucleotide polymorphism in the MtrB sensor kinase in clinical strains of Mycobacterium tuberculosis alters its biochemical and physiological properties. PLoS One 2021; 16:e0256664. [PMID: 34529706 PMCID: PMC8445491 DOI: 10.1371/journal.pone.0256664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The DNA polymorphisms found in clinical strains of Mycobacterium tuberculosis drive altered physiology, virulence, and pathogenesis in them. Although the lineages of these clinical strains can be traced back to common ancestor/s, there exists a plethora of difference between them, compared to those that have evolved in the laboratory. We identify a mutation present in ~80% of clinical strains, which maps in the HATPase domain of the sensor kinase MtrB and alters kinase and phosphatase activities, and affects its physiological role. The changes conferred by the mutation were probed by in-vitro biochemical assays which revealed changes in signaling properties of the sensor kinase. These changes also affect bacterial cell division rates, size and membrane properties. The study highlights the impact of DNA polymorphisms on the pathophysiology of clinical strains and provides insights into underlying mechanisms that drive signal transduction in pathogenic bacteria.
Collapse
Affiliation(s)
- Uchenna Watson Waturuocha
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Athira P. J.
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Krishna Kumar Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - M. S. Krishna
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
3
|
Laniado-Laborín R. Clinical Interpretation of Drug Susceptibility Tests in Tuberculosis. CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1573398x16999201007164411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Prompt and accurate diagnosis of drug resistance is essential for optimal treatment of
drug-resistant tuberculosis. However, only 20% of the more than half a million patients eligible for
the treatment of MDR-TB/RR-TB receive an appropriate drug regimen. Drug-resistant TB regimens
must include a sufficient number of effective medications, a significant challenge for clinicians
worldwide, as most are forced to make therapeutic decisions without any, or very little information
on drug susceptibility testing. Although phenotypic DST is still commonly regarded as the
gold standard for determining M. tuberculosis susceptibility to antituberculosis drugs, it has several
limitations, mainly its prolonged turnaround time. Molecular methods based on M. tuberculosis genomic
DNA sequencing have been developed during the past two decades, to identify the most
common mutations involved in drug resistance. The Xpert
®
MTB/RIF is a real-time polymerase
chain reaction that offers results in less than two hours and has an overall sensitivity for rifampin resistance
of 96% and 98% specificity. Line probe assays (LPAs) are commercial DNA strip-based
tests for detecting the most frequent mutations responsible for resistance to rifampin, isoniazid, fluoroquinolones,
and second-line injectable drugs.
:
Discrepancies between phenotypic and genotyping methods are a problem that the clinician will
face in everyday practice. However, any resistance result (with any type of test) in a person with
risk factors for harboring resistant microorganisms should be considered appropriate while the results
of complementary tests are available.
Collapse
Affiliation(s)
- Rafael Laniado-Laborín
- Clinica y Laboratorio de Tuberculosis, Hospital General Tijuana, ISESALUD, Mexicali, Mexico
| |
Collapse
|
4
|
Wibberg D, Price-Carter M, Rückert C, Blom J, Möbius P. Complete Genome Sequence of Ovine Mycobacterium avium subsp. paratuberculosis Strain JIII-386 (MAP-S/type III) and Its Comparison to MAP-S/type I, MAP-C, and M. avium Complex Genomes. Microorganisms 2020; 9:microorganisms9010070. [PMID: 33383865 PMCID: PMC7823733 DOI: 10.3390/microorganisms9010070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP) is a worldwide-distributed obligate pathogen in ruminants causing Johne’s disease. Due to a lack of complete subtype III genome sequences, there is not yet conclusive information about genetic differences between strains of cattle (MAP-C, type II) and sheep (MAP-S) type, and especially between MAP-S subtypes I, and III. Here we present the complete, circular genome of MAP-S/type III strain JIII-386 (DE) closed by Nanopore-technology and its comparison with MAP-S/type I closed genome of strain Telford (AUS), MAP-S/type III draft genome of strain S397 (U.S.), twelve closed MAP-C strains, and eight closed M.-a.-complex-strains. Structural comparative alignments revealed clearly the mosaic nature of MAP, emphasized differences between the subtypes and the higher diversity of MAP-S genomes. The comparison of various genomic elements including transposases and genomic islands provide new insights in MAP genomics. MAP type specific phenotypic features may be attributed to genes of known large sequence polymorphisms (LSPSs) regions I–IV and deletions #1 and #2, confirmed here, but could also result from identified frameshifts or interruptions of various virulence-associated genes (e.g., mbtC in MAP-S). Comprehensive core and pan genome analysis uncovered unique genes (e.g., cytochromes) and genes probably acquired by horizontal gene transfer in different MAP-types and subtypes, but also emphasized the highly conserved and close relationship, and the complex evolution of M.-a.-strains.
Collapse
Affiliation(s)
- Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33501 Bielefeld, Germany; (D.W.); (C.R.)
| | - Marian Price-Carter
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North 4442, New Zealand;
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Bielefeld University, 33501 Bielefeld, Germany; (D.W.); (C.R.)
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Gießen, D-35390 Gießen, Germany;
| | - Petra Möbius
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-(0)3641-8042280
| |
Collapse
|
5
|
Kone B, Somboro AM, Holl JL, Baya B, Togo AACG, Sarro YDS, Diarra B, Kodio O, Murphy RL, Bishai W, Maiga M, Doumbia S. Exploring the usefulness of molecular epidemiology of tuberculosis in Africa: a systematic review. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2020; 11:1-15. [PMID: 32714498 PMCID: PMC7373718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC) and remains a serious global public health threat, especially in resource-limited settings such as the African region. Recent developments in molecular epidemiology tools have significantly improved our understanding of TB transmission patterns and revealed the high genetic diversity of TB isolates across geographical entities in Africa. This study reports the results of a systematic review of current knowledge about MTBC strain diversity and geographical distribution in African regions. METHODS Search tools (PubMed, Embase, Popline, OVID and Africa Wide Information) were employed to identify the relevant literature about prevalence, strain diversity, and geographic distribution of MTBC infection in Africa. RESULTS A total of 59 articles from 739 citations met our inclusion criteria. Most articles reported about patients with presumptive pulmonary TB (73%), fewer reports were on retreatment and treatment failure cases (12%), and presumptive drug resistance cases (3%). Spoligotyping was the most used, alone in 21 studies and in parallel with either the Mycobacterial Interspersed Repetitive Units Variable Number of Tandem Repeats or the Restriction Fragment Length Polymorphism. Various TB lineages were observed across the African continent, with the originally European lineage 4 spotted in all countries studied. CONCLUSION TB molecular epidemiology tools have substantially improved our understanding of the MTBC circulating isolates, their evolution, and diversity in this highly endemic region of Africa. We found that only TB lineage 4 is present throughout all the continent and the clusters identified provides an extended insight into the disease transmission dynamics.
Collapse
Affiliation(s)
- Bourahima Kone
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurban, South Africa
| | | | - Bocar Baya
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Antieme ACG Togo
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Yeya Dit Sadio Sarro
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - William Bishai
- Center for TB Research, Johns Hopkins UniversityBaltimore, MD, USA
| | - Mamoudou Maiga
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
- Institute for Global Health, Northwestern UniversityChicago, Illinois, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC)-SEREFO, University of Sciences, Techniques and Technologies of Bamako (USTTB)Bamako, Mali
| |
Collapse
|
6
|
Gallant J, Mouton J, Ummels R, Ten Hagen-Jongman C, Kriel N, Pain A, Warren RM, Bitter W, Heunis T, Sampson SL. Identification of gene fusion events in Mycobacterium tuberculosis that encode chimeric proteins. NAR Genom Bioinform 2020; 2:lqaa033. [PMID: 33575588 PMCID: PMC7671302 DOI: 10.1093/nargab/lqaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen responsible for causing tuberculosis. The harsh environment in which M. tuberculosis survives requires this pathogen to continuously adapt in order to maintain an evolutionary advantage. However, the apparent absence of horizontal gene transfer in M. tuberculosis imposes restrictions in the ways by which evolution can occur. Large-scale changes in the genome can be introduced through genome reduction, recombination events and structural variation. Here, we identify a functional chimeric protein in the ppe38-71 locus, the absence of which is known to have an impact on protein secretion and virulence. To examine whether this approach was used more often by this pathogen, we further develop software that detects potential gene fusion events from multigene deletions using whole genome sequencing data. With this software we could identify a number of other putative gene fusion events within the genomes of M. tuberculosis isolates. We were able to demonstrate the expression of one of these gene fusions at the protein level using mass spectrometry. Therefore, gene fusions may provide an additional means of evolution for M. tuberculosis in its natural environment whereby novel chimeric proteins and functions can arise.
Collapse
Affiliation(s)
- James Gallant
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jomien Mouton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Roy Ummels
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Corinne Ten Hagen-Jongman
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nastassja Kriel
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, 001-0020, N20 W10 Kita-ku, Sapporo, Japan
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Wilbert Bitter
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.,Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Tiaan Heunis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
7
|
Kurniawati S, Mertaniasih NM, Ato M, Tamura T, Soedarsono S, Aulanni'am A, Mori S, Maeda Y, Mukai T. Cloning and Protein Expression of eccB5 Gene in ESX-5 System from Mycobacterium tuberculosis. Biores Open Access 2020; 9:86-93. [PMID: 32257624 PMCID: PMC7133456 DOI: 10.1089/biores.2019.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis in human. One of the major M. tuberculosis virulence factors is early secretory antigenic target of 6-kDa (ESAT-6), and EccB5 protein encoded by eccB5 is one of its components. EccB5 protein is a transmembrane protein in ESX-5 system. The aim of this study is to explore the characteristics of wild-type EccB5 and its mutant form N426I. We expressed the EccB5 protein by cloning the mutant and wild-type eccB5 gene in Escherichia coli (E. coli). We compared the protein structure of wild type and mutant form of EccB5 and found changes in structure around Asn426 (loop structure) in wild type and around Ile426 (β-strand) in the mutant. The truncated recombinant protein of EccB5 was successfully cloned and expressed using plasmid pCold I in E. coli DH5α and E. coli strain Rosetta-gami B (DE3) and purified as a 38.6 kDa protein by using the affinity column. There was no detectable adenosine triphosphatase activity in truncated forms of EccB5 and its mutant. In conclusion, our study reveals successful cloning and protein expression of truncated form of eccB5 gene of M. tuberculosis. EccB5 protein in ESX-5 system may be an important membrane component involved in the transport machinery of type VII secretion system, which is essential for growth and virulence.
Collapse
Affiliation(s)
- Siti Kurniawati
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ni Made Mertaniasih
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Soedarsono Soedarsono
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aulanni'am Aulanni'am
- Department of Biochemistry, Faculty of Veterinary Medicine, Brawijaya University, Malang, Indonesia
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Figueroa J, Castro D, Lagos F, Cartes C, Isla A, Yáñez AJ, Avendaño-Herrera R, Haussmann D. Analysis of single nucleotide polymorphisms (SNPs) associated with antibiotic resistance genes in Chilean Piscirickettsia salmonis strains. JOURNAL OF FISH DISEASES 2019; 42:1645-1655. [PMID: 31591746 DOI: 10.1111/jfd.13089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The aetiological agent of Piscirickettsiosis is Piscirickettsia salmonis, a Gram-negative intracellular pathogen, and high doses of antibiotics have regularly been employed to treat this infection. Seven florfenicol and/or oxytetracycline resistance genes (tet pump, tetE, Tclor/flor, Tbcr, TfloR, ompF and mdtN) were identified in strains by in silico genome analyses. Later, the number of single nucleotide polymorphisms (SNPs) and its relationship with the resistance to these antibiotics were identified and analysed, using the original LF-89 strain as reference. Trials to determine and compare the minimum inhibitory concentration (MIC) of oxytetracycline and florfenicol in each strain, as well as to quantify the gPCR transcripts levels in the selected genes, were performed. Therefore, variations in the resistance to both antibiotics were observed, where the strain with fewer SNPs showed the highest susceptibility. Consistently, the in silico 3D analyses of proteins encoded by the selected genes revealed structural changes, evident in the sequences with the highest number of SNPs. These results showed that the bacterial resistance to oxytetracycline was mainly linked to the presence of SNPs in relevant sites, antibiotic resistance genes and an OmpF porin, leading to important changes in the protein structure.
Collapse
Affiliation(s)
- Jaime Figueroa
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Diana Castro
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Fernando Lagos
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Carlos Cartes
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Adolfo Isla
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Alejandro J Yáñez
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
| | - Rubén Avendaño-Herrera
- FONDAP Centre, Interdisciplinary Centre for Aquaculture Research (INCAR), Concepción, Chile
- Laboratory of Pathology of Aquatic Organisms and Aquaculture Biotechnology, Faculty of Life Sciences, Universidad Andrés Bello, Viña del Mar, Chile
| | - Denise Haussmann
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Valdivia, Chile
| |
Collapse
|
9
|
Minias A, Minias P, Czubat B, Dziadek J. Purifying Selective Pressure Suggests the Functionality of a Vitamin B12 Biosynthesis Pathway in a Global Population of Mycobacterium tuberculosis. Genome Biol Evol 2019; 10:2326-2337. [PMID: 30060031 PMCID: PMC6363050 DOI: 10.1093/gbe/evy153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis is one of the deadliest and most challenging pathogens to study in current microbiological research. One of the issues that remains to be resolved is the importance of cobalamin in the metabolism of M. tuberculosis. The functionality of a vitamin B12 biosynthesis pathway in M. tuberculosis is under dispute, and the ability of this pathogen to scavenge vitamin B12 from the host is unknown. Here, we quantified the ratios of nonsynonymous and synonymous nucleotide substitution rates (dN/dS) in the genes involved in vitamin B12 biosynthesis and transport and in genes encoding cobalamin-dependent enzymes in nearly four thousand strains of M. tuberculosis. We showed that purifying selection is the dominant force acting on cobalamin-related genes at the levels of individual codons, genes and groups of genes. We conclude that cobalamin-related genes may not be essential but are adaptive for M. tuberculosis in clinical settings. Furthermore, the cobalamin biosynthesis pathway is likely to be functional in this species.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection University of Łódź, Łódź, Poland
| | - Bożena Czubat
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland.,Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
10
|
Sun J, Champion PA, Bigi F. Editorial: Cellular and Molecular Mechanisms of Mycobacterium tuberculosis Virulence. Front Cell Infect Microbiol 2019; 9:331. [PMID: 31649893 PMCID: PMC6794420 DOI: 10.3389/fcimb.2019.00331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Fabiana Bigi
- Institute of Biotechnology, National Institute of Agricultural Technology, Buenos Aires, Argentina
| |
Collapse
|
11
|
Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med 2019; 11:45. [PMID: 31345251 PMCID: PMC6657377 DOI: 10.1186/s13073-019-0660-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is a global infectious threat that is intensified by an increasing incidence of highly drug-resistant disease. Whole-genome sequencing (WGS) studies of Mycobacterium tuberculosis, the causative agent of TB, have greatly increased our understanding of this pathogen. Since the first M. tuberculosis genome was published in 1998, WGS has provided a more complete account of the genomic features that cause resistance in populations of M. tuberculosis, has helped to fill gaps in our knowledge of how both classical and new antitubercular drugs work, and has identified specific mutations that allow M. tuberculosis to escape the effects of these drugs. WGS studies have also revealed how resistance evolves both within an individual patient and within patient populations, including the important roles of de novo acquisition of resistance and clonal spread. These findings have informed decisions about which drug-resistance mutations should be included on extended diagnostic panels. From its origins as a basic science technique, WGS of M. tuberculosis is becoming part of the modern clinical microbiology laboratory, promising rapid and improved detection of drug resistance, and detailed and real-time epidemiology of TB outbreaks. We review the successes and highlight the challenges that remain in applying WGS to improve the control of drug-resistant TB through monitoring its evolution and spread, and to inform more rapid and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Keira A Cohen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, 21205, USA.
| | - Abigail L Manson
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Thomas Abeel
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, 2628, XE, Delft, The Netherlands
| | - Ashlee M Earl
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
12
|
Couvin D, David A, Zozio T, Rastogi N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. INFECTION GENETICS AND EVOLUTION 2018; 72:31-43. [PMID: 30593925 DOI: 10.1016/j.meegid.2018.12.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 02/01/2023]
Abstract
In order to provide a global overview of genotypic, epidemiologic, demographic, phylogeographical, and drug resistance characteristics related to the prevailing tuberculosis (TB) epidemic, we hereby report an update of the 6th version of the international genotyping database SITVIT2. We also make all the available information accessible through a dedicated website (available at http://www.pasteur-guadeloupe.fr:8081/SITVIT2). Thanks to the public release of SITVIT2 which is currently the largest international multimarker genotyping database with a compilation of 111,635 clinical isolates from 169 countries of patient origin (131 countries of isolation, representing 1032 cities), our major aim is to highlight macro- and micro-geographical cleavages and phylogeographical specificities of circulating Mycobacterium tuberculosis complex (MTBC) clones worldwide. For this purpose, we retained strains typed by the most commonly used PCR-based methodology for TB genotyping, i.e., spoligotyping based on the polymorphism of the direct repeat (DR) locus, 5-loci Exact Tandem Repeats (ETRs), and MIRU-VNTR minisatellites used in 12-, 15-, or 24-loci formats. We describe the SITVIT2 database and integrated online applications that permit to interrogate the database using easy drop-down menus to draw maps, graphics and tables versus a long list of parameters and variables available for individual clinical isolates (year and place of isolation, origin, sex, and age of patient, drug-resistance, etc.). Available tools further allow to generate phylogenetical snapshot of circulating strains as Lineage-specific WebLogos, as well as minimum spanning trees of their genotypes in conjunction with their geographical distribution, drug-resistance, demographic, and epidemiologic characteristics instantaneously; whereas online statistical analyses let a user to pinpoint phylogeographical specificities of circulating MTBC lineages and conclude on actual demographic trends. Available associated information on gender (n = 18,944), age (n = 16,968), drug resistance (n = 19,606), and HIV serology (n = 2673), allowed to draw some important conclusions on TB geo-epidemiology; e.g. a positive correlation exists between certain Mycobacterium tuberculosis lineages (such as CAS and Beijing) and drug resistance (p-value<.001), while other lineages (such as LAM, X, and BOV) are more frequently associated with HIV-positive serology (p-value<.001). Besides, availability of information on the year of isolation of strains (range 1759-2012), also allowed to make tentative correlations between drug resistance information and lineages - portraying probable evolution trends over time and space. To conclude, the present approach of geographical mapping of predominant clinical isolates of tubercle bacilli causing the bulk of the disease both at country and regional level in conjunction with epidemiologic and demographic characteristics allows to shed new light on TB geo-epidemiology in relation with the continued waves of peopling and human migration.
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| | - Audrey David
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France.
| |
Collapse
|
13
|
Genetic diversity of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in the capital of Iran. Mol Phylogenet Evol 2018; 132:46-52. [PMID: 30513341 DOI: 10.1016/j.ympev.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Evaluation of the genetic diversity of Mycobacterium tuberculosis (M.tb) and determining if the association between a specific genotype and the site of infection is crucial. Accordingly, the current study aimed at comparing predominant M.tb genotypes in pulmonary (PTB) and extrapulmonary tuberculosis (EPTB) isolates circulating in the capital of Iran. METHODS The genetic diversity of culture-confirmed PTB and EPTB isolates were evaluated by Spoligotyping and MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat) typing methods. Genotyping data were analyzed with SITVIT, MIRU-VNTRplus, and TBminer databases. To assess adjusted associations, chi-square/the Fisher exact test and multiple logistic regression model were applied. RESULTS URAL2 (NEW-1) (28/88; 31.8%) and CAS1-DELHI (25/84; 29.8%) genotypes were predominant in EPTB and PTB strains, respectively. Based on MIRU-VNTR typing, 158 different MIRU-VNTR patterns were identified. Clustering rate and minimum estimate of the proportion of TB caused by recent transmission was 4.1% and 8.1%, respectively. CONCLUSIONS The current study provided new insight into circulating genotypes of M.tb in PTB and EPTB patients in Tehran, Iran. This low percentage of TB transmission rate, demonstrated that mode of TB transmission was mainly associated with reactivation of latent TB rather than recently transmitted infection in this region. There was no significant difference in the association between the genotypes of M.tb strains and the site of the disease.
Collapse
|
14
|
Rana A, Thakur S, Kumar G, Akhter Y. Recent Trends in System-Scale Integrative Approaches for Discovering Protective Antigens Against Mycobacterial Pathogens. Front Genet 2018; 9:572. [PMID: 30538722 PMCID: PMC6277634 DOI: 10.3389/fgene.2018.00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterial infections are one of the deadliest infectious diseases still posing a major health burden worldwide. The battle against these pathogens needs to focus on novel approaches and key interventions. In recent times, availability of genome scale data has revolutionized the fields of computational biology and immunoproteomics. Here, we summarize the cutting-edge ‘omics’ technologies and innovative system scale strategies exploited to mine the available data. These may be targeted using high-throughput technologies to expedite the identification of novel antigenic candidates for the rational next generation vaccines and serodiagnostic development against mycobacterial pathogens for which traditional methods have been failing.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Girish Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
15
|
Ezewudo M, Borens A, Chiner-Oms Á, Miotto P, Chindelevitch L, Starks AM, Hanna D, Liwski R, Zignol M, Gilpin C, Niemann S, Kohl TA, Warren RM, Crook D, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, McNerney R, Cirillo DM, Schito M, Rodwell TC, Posey J. Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Sci Rep 2018; 8:15382. [PMID: 30337678 PMCID: PMC6194142 DOI: 10.1038/s41598-018-33731-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) ( https://github.com/CPTR-ReSeqTB/UVP ) to identify variants and assign lineage from MTBC sequence data. Stringent thresholds and quality control measures were incorporated in this open source tool. The pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on the accompanying DST results in the platform. The aggregation of variants over time in the platform will establish confidence-graded mutations statistically associated with phenotypic drug resistance. These tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, public health agencies and clinicians working towards the control of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Matthew Ezewudo
- Critical Path Institute, 1730 E River Rd., Tucson, AZ, 85718, USA
| | - Amanda Borens
- Critical Path Institute, 1730 E River Rd., Tucson, AZ, 85718, USA
| | - Álvaro Chiner-Oms
- Joint unit Infection and Public Health FISABIO-CSISP/University of Valencia, Institute of integrative Systems Biology, Valencia, Spain
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, via Olgettina 58, 20132, Milano, Italy
| | - Leonid Chindelevitch
- School of Computing Science, Simon Fraser University, 8888 University Ave, Burnaby, BC, V5A 1S6, Canada
| | - Angela M Starks
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road MS F08, Atlanta, GA, 30329, USA
| | - Debra Hanna
- Critical Path Institute, 1730 E River Rd., Tucson, AZ, 85718, USA
| | - Richard Liwski
- Critical Path Institute, 1730 E River Rd., Tucson, AZ, 85718, USA
| | - Matteo Zignol
- Global Tuberculosis Program, World Health Organization, Geneva, Switzerland
| | - Christopher Gilpin
- Global Tuberculosis Program, World Health Organization, Geneva, Switzerland
| | - Stefan Niemann
- German Center for Infection Research, Partner Site Borstel, Borstel, Germany
| | - Thomas Andreas Kohl
- Molecular and Experimental Mycobacteriology, Priority area Infections, Research Center Borstel, Borstel, Germany
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Derrick Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | | | - Sven Hoffner
- Department of Public Health Sciences, Karolinska institute, Stockholm, Sweden
| | | | - Iñaki Comas
- Tuberculosis Genomics Unit, Biomedicine Institute of Valencia (IBV-CSIC), Street Jaime Roig 11. P.O., 4010, Valencia, Spain
| | - David M Engelthaler
- Translational Genomics Research Institute, 3051 W. Shamrell Blvd. Ste 106, Flagstaff, AZ, 86005, USA
| | - David Alland
- Center for Emerging Pathogens, Rutgers-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Leen Rigouts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christoph Lange
- Division of Clinical Infectious Diseases and German Center for Infection Research Tuberculosis Unit, Research Center Borstel, Borstel, Germany
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Old Main Building, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Ruth McNerney
- Department of Medicine, Division of Pulmonology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, via Olgettina 58, 20132, Milano, Italy
| | - Marco Schito
- Critical Path Institute, 1730 E River Rd., Tucson, AZ, 85718, USA
| | - Timothy C Rodwell
- Department of Medicine, University of California, San Diego, CA, USA.,The Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - James Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road MS F08, Atlanta, GA, 30329, USA.
| |
Collapse
|
16
|
Macedo R, Nunes A, Portugal I, Duarte S, Vieira L, Gomes JP. Dissecting whole-genome sequencing-based online tools for predicting resistance in Mycobacterium tuberculosis: can we use them for clinical decision guidance? Tuberculosis (Edinb) 2018; 110:44-51. [PMID: 29779772 DOI: 10.1016/j.tube.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 11/30/2022]
Abstract
Whole-genome sequencing (WGS)-based bioinformatics platforms for the rapid prediction of resistance will soon be implemented in the Tuberculosis (TB) laboratory, but their accuracy assessment still needs to be strengthened. Here, we fully-sequenced a total of 54 multidrug-resistant (MDR) and five susceptible TB strains and performed, for the first time, a simultaneous evaluation of the major four free online platforms (TB Profiler, PhyResSE, Mykrobe Predictor and TGS-TB). Overall, the sensitivity of resistance prediction ranged from 84.3% using Mykrobe predictor to 95.2% using TB profiler, while specificity was higher and homogeneous among platforms. TB profiler revealed the best performance robustness (sensitivity, specificity, PPV and NPV above 95%), followed by TGS-TB (all parameters above 90%). We also observed a few discrepancies between phenotype and genotype, where, in some cases, it was possible to pin-point some "candidate" mutations (e.g., in the rpsL promoter region) highlighting the need for their confirmation through mutagenesis assays and potential review of the anti-TB genetic databases. The rampant development of the bioinformatics algorithms and the tremendously reduced time-frame until the clinician may decide for a definitive and most effective treatment will certainly trigger the technological transition where WGS-based bioinformatics platforms could replace phenotypic drug susceptibility testing for TB.
Collapse
Affiliation(s)
- Rita Macedo
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.
| | - Isabel Portugal
- iMed.ULisboa-Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
| | - Sílvia Duarte
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal.
| | - Luís Vieira
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School, New University of Lisbon, Lisbon, Portugal.
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.
| |
Collapse
|
17
|
Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, Hanna D, Kim PS, Liwski R, Zignol M, Gilpin C, Niemann S, Denkinger CM, Fleming J, Warren RM, Crook D, Posey J, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Murray M, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, Ranganathan UDK, McNerney R, Ezewudo M, Cirillo DM, Schito M, Köser CU, Rodwell TC. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 2017; 50:1701354. [PMID: 29284687 PMCID: PMC5898944 DOI: 10.1183/13993003.01354-2017] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/13/2017] [Indexed: 11/24/2022]
Abstract
A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype-phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6-90.9%), while for isoniazid it was 78.2% (77.4-79.0%) and their specificities were 96.3% (95.7-96.8%) and 94.4% (93.1-95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1-70.6%) for capreomycin to 88.2% (85.1-90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1-92.5%) for moxifloxacin to 99.5% (99.0-99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Belay Tessema
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Angela M Starks
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Claudia Emerson
- Institute on Ethics & Policy for Innovation, Department of Philosophy, McMaster University, Hamilton, ON, Canada
| | | | - Peter S Kim
- Office of AIDS Research, National Institutes of Health, Rockville, MD, USA
| | | | - Matteo Zignol
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Christopher Gilpin
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| | - Claudia M Denkinger
- Foundation for Innovative New Diagnostics, Campus Biotech, Geneva, Switzerland
| | - Joy Fleming
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Derrick Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Infection Service, Public Health England, London, UK
| | - James Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sven Hoffner
- Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | - Iñaki Comas
- Tuberculosis Genomics Unit, Biomedicine Institute of Valencia (IBV-CSIC), Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- CIBER (Centros de Investigación Biomédica en Red) in Epidemiology and Public Health, Madrid, Spain
| | | | - Megan Murray
- Harvard School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - David Alland
- Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Leen Rigouts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christoph Lange
- Division of Clinical Infectious Diseases and German Center for Infection Research Tuberculosis Unit, Research Center Borstel, Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Internal Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Ruth McNerney
- Department of Medicine, Division of Pulmonology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | | | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Timothy C Rodwell
- Foundation for Innovative New Diagnostics, Campus Biotech, Geneva, Switzerland
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
18
|
Guthrie JL, Gardy JL. A brief primer on genomic epidemiology: lessons learned from Mycobacterium tuberculosis. Ann N Y Acad Sci 2016; 1388:59-77. [PMID: 28009051 DOI: 10.1111/nyas.13273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
Genomics is now firmly established as a technique for the investigation and reconstruction of communicable disease outbreaks, with many genomic epidemiology studies focusing on revealing transmission routes of Mycobacterium tuberculosis. In this primer, we introduce the basic techniques underlying transmission inference from genomic data, using illustrative examples from M. tuberculosis and other pathogens routinely sequenced by public health agencies. We describe the laboratory and epidemiological scenarios under which genomics may or may not be used, provide an introduction to sequencing technologies and bioinformatics approaches to identifying transmission-informative variation and resistance-associated mutations, and discuss how variation must be considered in the light of available clinical and epidemiological information to infer transmission.
Collapse
Affiliation(s)
- Jennifer L Guthrie
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer L Gardy
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.,Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Bioinformatics tools and databases for whole genome sequence analysis of Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2016; 45:359-368. [PMID: 27637931 DOI: 10.1016/j.meegid.2016.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022]
Abstract
Tuberculosis (TB) is an infectious disease of global public health importance caused by Mycobacterium tuberculosis complex (MTC) in which M. tuberculosis (Mtb) is the major causative agent. Recent advancements in genomic technologies such as next generation sequencing have enabled high throughput cost-effective generation of whole genome sequence information from Mtb clinical isolates, providing new insights into the evolution, genomic diversity and transmission of the Mtb bacteria, including molecular mechanisms of antibiotic resistance. The large volume of sequencing data generated however necessitated effective and efficient management, storage, analysis and visualization of the data and results through development of novel and customized bioinformatics software tools and databases. In this review, we aim to provide a comprehensive survey of the current freely available bioinformatics software tools and publicly accessible databases for genomic analysis of Mtb for identifying disease transmission in molecular epidemiology and in rapid determination of the antibiotic profiles of clinical isolates for prompt and optimal patient treatment.
Collapse
|
20
|
Witney AA, Cosgrove CA, Arnold A, Hinds J, Stoker NG, Butcher PD. Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Med 2016; 14:46. [PMID: 27004841 PMCID: PMC4804576 DOI: 10.1186/s12916-016-0598-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023] Open
Abstract
Drug-resistant tuberculosis (TB) remains a major challenge to global health and to healthcare in the UK. In 2014, a total of 6,520 cases of TB were recorded in England, of which 1.4 % were multidrug-resistant TB (MDR-TB). Extensively drug-resistant TB (XDR-TB) occurs at a much lower rate, but the impact on the patient and hospital is severe. Current diagnostic methods such as drug susceptibility testing and targeted molecular tests are slow to return or examine only a limited number of target regions, respectively. Faster, more comprehensive diagnostics will enable earlier use of the most appropriate drug regimen, thus improving patient outcomes and reducing overall healthcare costs. Whole genome sequencing (WGS) has been shown to provide a rapid and comprehensive view of the genotype of the organism, and thus enable reliable prediction of the drug susceptibility phenotype within a clinically relevant timeframe. In addition, it provides the highest resolution when investigating transmission events in possible outbreak scenarios. However, robust software and database tools need to be developed for the full potential to be realized in this specialized area of medicine.
Collapse
Affiliation(s)
- Adam A Witney
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | - Catherine A Cosgrove
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.,Clinical Infection Unit, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Amber Arnold
- Clinical Infection Unit, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Jason Hinds
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Neil G Stoker
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Philip D Butcher
- Institute of Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
21
|
Wampande EM, Hatzios SK, Achan B, Mupere E, Nsereko M, Mayanja HK, Eisenach K, Boom WH, Gagneux S, Joloba ML. A single-nucleotide-polymorphism real-time PCR assay for genotyping of Mycobacterium tuberculosis complex in peri-urban Kampala. BMC Infect Dis 2015; 15:396. [PMID: 26423522 PMCID: PMC4590274 DOI: 10.1186/s12879-015-1121-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 09/11/2015] [Indexed: 01/25/2023] Open
Abstract
Background Accurate and high-throughput genotyping of Mycobacterium tuberculosis complex (MTBC) may be important for understanding the epidemiology and pathogenesis of tuberculosis (TB). In this study, we report the development of a LightCycler® real-time PCR single-nucleotide-polymorphism (LRPS) assay for the rapid determination of MTBC lineages/sublineages in minimally processed sputum samples from TB patients. Method Genotyping analysis of 70 MTBC strains was performed using the Long Sequence Polymorphism-PCR (LSP-PCR) technique and the LRPS assay in parallel. For targeted sequencing, 9 MTBC isolates (three isolates per MTBC lineage) were analyzed for lineage-specific single nucleotide polymorphisms (SNPs) in the following three genes to verify LRPS results: Rv004c for MTB Uganda family, Rv2962 for MTB lineage 4, and Rv0129c for MTB lineage 3. The MTBC lineages present in 300 smear-positive sputum samples were then determined by the validated LRPS method without prior culturing. Results The LSP-PCR and LRPS assays produced consistent genotyping data for all 70 MTBC strains; however, the LSP-PCR assay was 10-fold less sensitive than the LRPS method and required higher DNA concentrations to successfully characterize the MTBC lineage of certain samples. Targeted sequencing of genes containing lineage-specific SNPs was 100 % concordant with the genotyping results and provided further validation of the LRPS assay. Of the 300 sputum samples analyzed, 58 % contained MTBC from the MTBC-Uganda family, 27 % from the MTBC lineage 4 (excluding MTBC Uganda family), 13 % from the MTBC lineage 3, and the remaining 2 % were of indeterminate lineage. Conclusion The LRPS assay is a sensitive, high-throughput technique with potential application to routine genotyping of MTBC in sputum samples from TB patients. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1121-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eddie M Wampande
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, P.O BOX 7072, Kampala, Uganda. .,Department of Bio-molecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resources and Bio Security, Makerere University, Kampala, Uganda.
| | - Stavroula K Hatzios
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, P.O BOX 7072, Kampala, Uganda. .,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| | - Beatrice Achan
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, P.O BOX 7072, Kampala, Uganda.
| | - Ezekiel Mupere
- Department of Pediatrics and Child Health College of Health Sciences, Makerere University, Kampala, Uganda.
| | - Mary Nsereko
- Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda.
| | - Harriet K Mayanja
- Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda.
| | - Kathleen Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - W Henry Boom
- Tuberculosis Research Unit, School of Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA.
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Moses L Joloba
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, P.O BOX 7072, Kampala, Uganda. .,Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda.
| | | |
Collapse
|
22
|
Möbius P, Hölzer M, Felder M, Nordsiek G, Groth M, Köhler H, Reichwald K, Platzer M, Marz M. Comprehensive insights in the Mycobacterium avium subsp. paratuberculosis genome using new WGS data of sheep strain JIII-386 from Germany. Genome Biol Evol 2015; 7:2585-2601. [PMID: 26384038 PMCID: PMC4607514 DOI: 10.1093/gbe/evv154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP)—the etiologic agent of Johne’s disease—affects cattle, sheep, and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III], respectively, MAP-C [Type-II]), comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. This study presents the so far best assembled genome of a MAP-S-strain: Sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from the United States and Australia, and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI (National Center for Biotechnology Information) annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined by either NCBI or BacProt. A new Shine–Dalgarno sequence motif (5′-AGCTGG-3′) was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 noncoding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four of ten assumed MAP-S-specific large sequence polymorphism regions (LSPSs) are still present in MAP-C strains; new LSPSs were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirms the strong similarity of MAP-C strains and shows higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to Mycobacterium intracellulare.
Collapse
Affiliation(s)
- Petra Möbius
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Marius Felder
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Gabriele Nordsiek
- Department of Genome Analysis, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Marco Groth
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Heike Köhler
- NRL for Paratuberculosis, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Straße 96a, 07743 Jena, Germany
| | - Kathrin Reichwald
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
23
|
Mehla K, Ramana J. DBDiaSNP: An Open-Source Knowledgebase of Genetic Polymorphisms and Resistance Genes Related to Diarrheal Pathogens. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:354-60. [PMID: 25978092 PMCID: PMC4486150 DOI: 10.1089/omi.2015.0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diarrhea is a highly common infection among children, responsible for significant morbidity and mortality rate worldwide. After pneumonia, diarrhea remains the second leading cause of neonatal deaths. Numerous viral, bacterial, and parasitic enteric pathogens are associated with diarrhea. With increasing antibiotic resistance among enteric pathogens, there is an urgent need for global surveillance of the mutations and resistance genes primarily responsible for resistance to antibiotic treatment. Single Nucleotide Polymorphisms are important in this regard as they have a vast potential to be utilized as molecular diagnostics for gene-disease or pharmacogenomics association studies linking genotype to phenotype. DBDiaSNP is a comprehensive repository of mutations and resistance genes among various diarrheal pathogens and hosts to advance breakthroughs that will find applications from development of sequence-based diagnostic tools to drug discovery. It contains information about 946 mutations and 326 resistance genes compiled from literature and various web resources. As of March 2015, it houses various pathogen genes and the mutations responsible for antibiotic resistance. The pathogens include, for example, DEC (Diarrheagenic E.coli), Salmonella spp., Campylobacter spp., Shigella spp., Clostridium difficile, Aeromonas spp., Helicobacter pylori, Entamoeba histolytica, Vibrio cholera, and viruses. It also includes mutations from hosts (e.g., humans, pigs, others) that render them either susceptible or resistant to a certain type of diarrhea. DBDiaSNP is therefore intended as an integrated open access database for researchers and clinicians working on diarrheal diseases. Additionally, we note that the DBDiaSNP is one of the first antibiotic resistance databases for the diarrheal pathogens covering mutations and resistance genes that have clinical relevance from a broad range of pathogens and hosts. For future translational research involving integrative biology and global health, the database offers veritable potentials, particularly for developing countries and worldwide monitoring and personalized effective treatment of pathogens associated with diarrhea. The database is accessible on the public domain at http://www.juit.ac.in/attachments/dbdiasnp/ .
Collapse
Affiliation(s)
- Kusum Mehla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan, Himachal Pradesh, India
| | - Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Solan, Himachal Pradesh, India
| |
Collapse
|
24
|
Denkinger CM, Dolinger D, Schito M, Wells W, Cobelens F, Pai M, Zignol M, Cirillo DM, Alland D, Casenghi M, Gallarda J, Boehme CC, Perkins MD. Target product profile of a molecular drug-susceptibility test for use in microscopy centers. J Infect Dis 2015; 211 Suppl 2:S39-49. [PMID: 25765105 DOI: 10.1093/infdis/jiu682] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current phenotypic testing for drug resistance in patients with tuberculosis is inadequate primarily with respect to turnaround time. Molecular tests hold the promise of an improved time to diagnosis. METHODS A target product profile for a molecular drug-susceptibility test (DST) was developed on the basis of a collaborative effort that included opinions gathered from researchers, clinicians, policy makers, and test developers on optimal clinical and operational characteristics in settings of intended use. In addition, the current diagnostic ecosystem and the diagnostic development landscape were mapped. RESULTS Molecular DSTs for detecting tuberculosis in microscopy centers should ideally evaluate for resistance to rifampin, fluoroquinolones, isoniazid, and pyrazinamide and enable the selection of the most appropriate treatment regimen. Performance characteristics of DSTs need to be optimized, but compromises can be made that depend on the trade-off between a false-positive result and a false-negative result. The operational requirements of a test will vary depending on the site of implementation. However, the most-important considerations pertain to quality control, maintenance and calibration, and the ability to export data. CONCLUSION This target product profile defines the needs as perceived by the tuberculosis stakeholder community and attempts to provide a means of communication with test developers to ensure that fit-for-purpose DSTs are being developed.
Collapse
Affiliation(s)
- Claudia M Denkinger
- FIND Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Marco Schito
- Division of AIDS, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | - Frank Cobelens
- KNCV Tuberculosis Foundation, the Hague Amsterdam Institute for Global Health and Development, Academic Medical Center, Amsterdam, The Netherlands
| | - Madhukar Pai
- McGill International TB Centre Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | | | | | | | | | - Jim Gallarda
- Bill and Melinda Gates Foundation, Seattle, Washington
| | | | | |
Collapse
|
25
|
Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL. Integration of published information into a resistance-associated mutation database for Mycobacterium tuberculosis. J Infect Dis 2015; 211 Suppl 2:S50-7. [PMID: 25765106 DOI: 10.1093/infdis/jiu816] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis remains a major global public health challenge. Although incidence is decreasing, the proportion of drug-resistant cases is increasing. Technical and operational complexities prevent Mycobacterium tuberculosis drug susceptibility phenotyping in the vast majority of new and retreatment cases. The advent of molecular technologies provides an opportunity to obtain results rapidly as compared to phenotypic culture. However, correlations between genetic mutations and resistance to multiple drugs have not been systematically evaluated. Molecular testing of M. tuberculosis sampled from a typical patient continues to provide a partial picture of drug resistance. A database of phenotypic and genotypic testing results, especially where prospectively collected, could document statistically significant associations and may reveal new, predictive molecular patterns. We examine the feasibility of integrating existing molecular and phenotypic drug susceptibility data to identify associations observed across multiple studies and demonstrate potential for well-integrated M. tuberculosis mutation data to reveal actionable findings.
Collapse
Affiliation(s)
| | | | | | - Paolo Miotto
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Schito
- HJF-DAIDS, a Division of The Henry M. Jackson Foundation for the Advancement of, Military Medicine, Inc., NIH, DHHS, Bethesda, Maryland
| | - James Posey
- Center for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Willcocks S, Wren BW. Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence. Future Microbiol 2015; 9:657-68. [PMID: 24957092 DOI: 10.2217/fmb.14.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis, an etiologic agent of tuberculosis, exacts a heavy toll in terms of human morbidity and mortality. Although an ancient disease, new strains are emerging as human population density increases. The emergent virulent strains appear adept at steering the host immune response from a protective Th1 type response towards a Th2 bias, a feature shared with some pathogenic fungi. Other common characteristics include infection site, metabolic features, the composition and display of cell surface molecules, the range of innate immune receptors engaged during infection, and the ability to form granulomas. Literature from these two distinct fields of research are reviewed to propose that the emergent virulent strains of M. tuberculosis are in the process of convergent evolution with pathogenic fungi, and are increasing the prominence of conserved traits from environmental phylogenetic ancestors that facilitate their evasion of host defenses and dissemination.
Collapse
Affiliation(s)
- Sam Willcocks
- The London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | | |
Collapse
|
27
|
Ochoa-Montaño B, Mohan N, Blundell TL. CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav026. [PMID: 25833954 PMCID: PMC4381106 DOI: 10.1093/database/bav026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/01/2015] [Indexed: 11/18/2022]
Abstract
Tuberculosis kills more than a million people annually and presents increasingly high levels of resistance against current first line drugs. Structural information about Mycobacterium tuberculosis (Mtb) proteins is a valuable asset for the development of novel drugs and for understanding the biology of the bacterium; however, only about 10% of the ∼4000 proteins have had their structures determined experimentally. The CHOPIN database assigns structural domains and generates homology models for 2911 sequences, corresponding to ∼73% of the proteome. A sophisticated pipeline allows multiple models to be created using conformational states characteristic of different oligomeric states and ligand binding, such that the models reflect various functional states of the proteins. Additionally, CHOPIN includes structural analyses of mutations potentially associated with drug resistance. Results are made available at the web interface, which also serves as an automatically updated repository of all published Mtb experimental structures. Its RESTful interface allows direct and flexible access to structures and metadata via intuitive URLs, enabling easy programmatic use of the models. Database URL: http://structure.bioc.cam.ac.uk/chopin
Collapse
Affiliation(s)
- Bernardo Ochoa-Montaño
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Nishita Mohan
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
28
|
Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. Improved data analysis for the MinION nanopore sequencer. Nat Methods 2015; 12:351-6. [PMID: 25686389 PMCID: PMC4907500 DOI: 10.1038/nmeth.3290] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
The Oxford Nanopore MinION sequences individual DNA molecules using an array of pores that read nucleotide identities based on ionic current steps. We evaluated and optimized MinION performance using M13 genomic dsDNA. Using expectation-maximization (EM) we obtained robust maximum likelihood (ML) estimates for read insertion, deletion and substitution error rates (4.9%, 7.8%, and 5.1% respectively). We found that 99% of high-quality ‘2D’ MinION reads mapped to reference at a mean identity of 85%. We present a MinION-tailored tool for single nucleotide variant (SNV) detection that uses ML parameter estimates and marginalization over many possible read alignments to achieve precision and recall of up to 99%. By pairing our high-confidence alignment strategy with long MinION reads, we resolved the copy number for a cancer/testis gene family (CT47) within an unresolved region of human chromosome Xq24.
Collapse
Affiliation(s)
- Miten Jain
- 1] UC Santa Cruz Genomics Institute, Santa Cruz, California, USA. [2] Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Ian T Fiddes
- 1] UC Santa Cruz Genomics Institute, Santa Cruz, California, USA. [2] Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Karen H Miga
- 1] UC Santa Cruz Genomics Institute, Santa Cruz, California, USA. [2] Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Hugh E Olsen
- 1] UC Santa Cruz Genomics Institute, Santa Cruz, California, USA. [2] Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Benedict Paten
- 1] UC Santa Cruz Genomics Institute, Santa Cruz, California, USA. [2] Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Mark Akeson
- 1] UC Santa Cruz Genomics Institute, Santa Cruz, California, USA. [2] Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| |
Collapse
|
29
|
Jiang J, Gu J, Zhang L, Zhang C, Deng X, Dou T, Zhao G, Zhou Y. Comparing Mycobacterium tuberculosis genomes using genome topology networks. BMC Genomics 2015; 16:85. [PMID: 25766780 PMCID: PMC4342819 DOI: 10.1186/s12864-015-1259-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/20/2015] [Indexed: 11/25/2022] Open
Abstract
Background Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. Results In this work, we introduce a ‘Genome Topology Network’ (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of ‘unfixed ortholog’ has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). Conclusions The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/, and allows re-annotating the ‘lost’ genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes were found to be affected by SVs in M. tuberculosis genomes. We believe that the GTN method will be suitable for the exploration of genomic SVs in connection with biological features of bacterial strains, and that GTN-based phylogenetic analysis will provide additional insights into whole genome-based phylogenetic analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1259-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianping Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Jianlei Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Chenyi Zhang
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xiao Deng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Tonghai Dou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
30
|
Sola C. Clustured regularly interspersed short palindromic repeats (CRISPR) genetic diversity studies as a mean to reconstruct the evolution of the Mycobacterium tuberculosis complex. Tuberculosis (Edinb) 2015; 95 Suppl 1:S159-66. [PMID: 25748060 DOI: 10.1016/j.tube.2015.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The natural history of tuberculosis may be tackled by various means, among which the record of molecular scars that have been registered by the Mycobacterium tuberculosis complex (MTBC) genomes transmitted from patient to patient for tens of thousands years and possibly more. Recently discovered polymorphic loci, the CRISPR sequences, are indirect witnesses of the historical phage-bacteria struggle, and may be related to the time when the ancestor of today's tubercle bacilli were environmental bacteria, i.e. before becoming intracellular parasites. In this article, we present what are CRISPRs and try to summarize almost 20 years of research results obtained using the genetic diversity of the CRISPR loci in MTBC as a perspective for studying new models. We show that the study of the diversity of CRISPR sequences, thanks to «spoligotyping», has played a great role in our global understanding of the population structure of MTBC.
Collapse
Affiliation(s)
- Christophe Sola
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
31
|
Warner DF, Koch A, Mizrahi V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol 2015; 23:14-21. [DOI: 10.1016/j.tim.2014.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
|
32
|
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014; 26:431-44. [PMID: 25453224 PMCID: PMC4314449 DOI: 10.1016/j.smim.2014.09.012] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
Collapse
Affiliation(s)
- Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
33
|
Vasconcellos SEG, Acosta CC, Gomes LL, Conceição EC, Lima KV, de Araujo MI, Leite MDL, Tannure F, Caldas PCDS, Gomes HM, Santos AR, Gomgnimbou MK, Sola C, Couvin D, Rastogi N, Boechat N, Suffys PN. Strain classification of Mycobacterium tuberculosis isolates in Brazil based on genotypes obtained by spoligotyping, mycobacterial interspersed repetitive unit typing and the presence of large sequence and single nucleotide polymorphism. PLoS One 2014; 9:e107747. [PMID: 25314118 PMCID: PMC4196770 DOI: 10.1371/journal.pone.0107747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022] Open
Abstract
Rio de Janeiro is endemic for tuberculosis (TB) and presents the second largest prevalence of the disease in Brazil. Here, we present the bacterial population structure of 218 isolates of Mycobacterium tuberculosis, derived from 186 patients that were diagnosed between January 2008 and December 2009. Genotypes were generated by means of spoligotyping, 24 MIRU-VNTR typing and presence of fbpC103, RDRio and RD174. The results confirmed earlier data that predominant genotypes in Rio de Janeiro are those of the Euro American Lineages (99%). However, we observed differences between the classification by spoligotyping when comparing to that of 24 MIRU-VNTR typing, being respectively 43.6% vs. 62.4% of LAM, 34.9% vs. 9.6% of T and 18.3% vs. 21.5% of Haarlem. Among isolates classified as LAM by MIRU typing, 28.0% did not present the characteristic spoligotype profile with absence of spacers 21 to 24 and 32 to 36 and we designated these conveniently as “LAM-like”, 79.3% of these presenting the LAM-specific SNP fbpC103. The frequency of RDRio and RD174 in the LAM strains, as defined both by spoligotyping and 24 MIRU-VNTR loci, were respectively 11% and 15.4%, demonstrating that RD174 is not always a marker for LAM/RDRio strains. We conclude that, although spoligotyping alone is a tool for classification of strains of the Euro-American lineage, when combined with MIRU-VNTRs, SNPs and RD typing, it leads to a much better understanding of the bacterial population structure and phylogenetic relationships among strains of M. tuberculosis in regions with high incidence of TB.
Collapse
Affiliation(s)
- Sidra E. G. Vasconcellos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Research Laboratory, University Hospital Clementino Fraga Filho – HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chyntia Carolina Acosta
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lia Lima Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Karla Valéria Lima
- Instituto Evandro Chagas, Section of Bacteriology and Mycology, Belém, Pará, Brazil
| | - Marcelo Ivens de Araujo
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria de Lourdes Leite
- Hospital Municipal Rafael de Paula Souza, Municipal Secretary of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávio Tannure
- Hospital Municipal Rafael de Paula Souza, Municipal Secretary of Health, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Cesar de Souza Caldas
- Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Publica Sergio Arouca, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Harrison M. Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Rezende Santos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michel K. Gomgnimbou
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie–Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - Christophe Sola
- CNRS–Université Paris–Sud, Institut de Génétique et Microbiologie–Infection Genetics Emerging Pathogens Evolution Team, Orsay, France
| | - David Couvin
- Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Nalin Rastogi
- Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes, Guadeloupe, France
| | - Neio Boechat
- Multidisciplinary Research Laboratory, University Hospital Clementino Fraga Filho – HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Clinical Medicine, Faculty of Medicine, University Hospital Clementino Fraga Filho, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
34
|
Steiner A, Stucki D, Coscolla M, Borrell S, Gagneux S. KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics 2014; 15:881. [PMID: 25297886 PMCID: PMC4197298 DOI: 10.1186/1471-2164-15-881] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput DNA sequencing produces vast amounts of data, with millions of short reads that usually have to be mapped to a reference genome or newly assembled. Both reference-based mapping and de novo assembly are computationally intensive, generating large intermediary data files, and thus require bioinformatics skills that are often lacking in the laboratories producing the data. Moreover, many research and practical applications in microbiology require only a small fraction of the whole genome data. RESULTS We developed KvarQ, a new tool that directly scans fastq files of bacterial genome sequences for known variants, such as single nucleotide polymorphisms (SNP), bypassing the need of mapping all sequencing reads to a reference genome and de novo assembly. Instead, KvarQ loads "testsuites" that define specific SNPs or short regions of interest in a reference genome, and directly synthesizes the relevant results based on the occurrence of these markers in the fastq files. KvarQ has a versatile command line interface and a graphical user interface. KvarQ currently ships with two "testsuites" for Mycobacterium tuberculosis, but new "testsuites" for other organisms can easily be created and distributed. In this article, we demonstrate how KvarQ can be used to successfully detect all main drug resistance mutations and phylogenetic markers in 880 bacterial whole genome sequences. The average scanning time per genome sequence was two minutes. The variant calls of a subset of these genomes were validated with a standard bioinformatics pipeline and revealed >99% congruency. CONCLUSION KvarQ is a user-friendly tool that directly extracts relevant information from fastq files. This enables researchers and laboratory technicians with limited bioinformatics expertise to scan and analyze raw sequencing data in a matter of minutes. KvarQ is open-source, and pre-compiled packages with a graphical user interface are available at http://www.swisstph.ch/kvarq.
Collapse
Affiliation(s)
| | | | | | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland.
| |
Collapse
|
35
|
Kodaman N, Sobota RS, Mera R, Schneider BG, Williams SM. Disrupted human-pathogen co-evolution: a model for disease. Front Genet 2014; 5:290. [PMID: 25202324 PMCID: PMC4142859 DOI: 10.3389/fgene.2014.00290] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
A major goal in infectious disease research is to identify the human and pathogenic genetic variants that explain differences in microbial pathogenesis. However, neither pathogenic strain nor human genetic variation in isolation has proven adequate to explain the heterogeneity of disease pathology. We suggest that disrupted co-evolution between a pathogen and its human host can explain variation in disease outcomes, and that genome-by-genome interactions should therefore be incorporated into genetic models of disease caused by infectious agents. Genetic epidemiological studies that fail to take both the pathogen and host into account can lead to false and misleading conclusions about disease etiology. We discuss our model in the context of three pathogens, Helicobacter pylori, Mycobacterium tuberculosis and human papillomavirus, and generalize the conditions under which it may be applicable.
Collapse
Affiliation(s)
- Nuri Kodaman
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Rafal S Sobota
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Robertino Mera
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA
| |
Collapse
|
36
|
Sengstake S, Bablishvili N, Schuitema A, Bzekalava N, Abadia E, de Beer J, Tadumadze N, Akhalaia M, Tuin K, Tukvadze N, Aspindzelashvili R, Bachiyska E, Panaiotov S, Sola C, van Soolingen D, Klatser P, Anthony R, Bergval I. Optimizing multiplex SNP-based data analysis for genotyping of Mycobacterium tuberculosis isolates. BMC Genomics 2014; 15:572. [PMID: 25001491 PMCID: PMC4117977 DOI: 10.1186/1471-2164-15-572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Multiplex ligation-dependent probe amplification (MLPA) is a powerful tool to identify genomic polymorphisms. We have previously developed a single nucleotide polymorphism (SNP) and large sequence polymorphisms (LSP)-based MLPA assay using a read out on a liquid bead array to screen for 47 genetic markers in the Mycobacterium tuberculosis genome. In our assay we obtain information regarding the Mycobacterium tuberculosis lineage and drug resistance simultaneously. Previously we called the presence or absence of a genotypic marker based on a threshold signal level. Here we present a more elaborate data analysis method to standardize and streamline the interpretation of data generated by MLPA. The new data analysis method also identifies intermediate signals in addition to classification of signals as positive and negative. Intermediate calls can be informative with respect to identifying the simultaneous presence of sensitive and resistant alleles or infection with multiple different Mycobacterium tuberculosis strains. Results To validate our analysis method 100 DNA isolates of Mycobacterium tuberculosis extracted from cultured patient material collected at the National TB Reference Laboratory of the National Center for Tuberculosis and Lung Diseases in Tbilisi, Republic of Georgia were tested by MLPA. The data generated were interpreted blindly and then compared to results obtained by reference methods. MLPA profiles containing intermediate calls are flagged for expert review whereas the majority of profiles, not containing intermediate calls, were called automatically. No intermediate signals were identified in 74/100 isolates and in the remaining 26 isolates at least one genetic marker produced an intermediate signal. Conclusion Based on excellent agreement with the reference methods we conclude that the new data analysis method performed well. The streamlined data processing and standardized data interpretation allows the comparison of the Mycobacterium tuberculosis MLPA results between different experiments. All together this will facilitate the implementation of the MLPA assay in different settings. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-572) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Sengstake
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Coll F, Preston M, Guerra-Assunção JA, Hill-Cawthorn G, Harris D, Perdigão J, Viveiros M, Portugal I, Drobniewski F, Gagneux S, Glynn JR, Pain A, Parkhill J, McNerney R, Martin N, Clark TG. PolyTB: a genomic variation map for Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94:346-54. [PMID: 24637013 PMCID: PMC4066953 DOI: 10.1016/j.tube.2014.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/08/2014] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest.
Collapse
Affiliation(s)
- Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK.
| | - Mark Preston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - José Afonso Guerra-Assunção
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Grant Hill-Cawthorn
- Pathogen Genomics Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Sydney Emerging Infections and Biosecurity Institute and School of Public Health, Sydney, NSW 2006, Australia
| | - David Harris
- Pathogen Genomics Faculty, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA Cambridge, UK
| | - João Perdigão
- Centro de Patogénese Molecular, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Miguel Viveiros
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Isabel Portugal
- Centro de Patogénese Molecular, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Francis Drobniewski
- Centre for Immunology and Infectious Disease, Queen Mary University of London, E1 2AT London, UK
| | | | - Judith R Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Arnab Pain
- Pathogen Genomics Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Julian Parkhill
- Pathogen Genomics Faculty, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA Cambridge, UK
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Nigel Martin
- School of Computer Science and Information Systems, Birkbeck College, WC1E 7HX London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK; Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| |
Collapse
|
38
|
Müller R, Roberts CA, Brown TA. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity. Proc Biol Sci 2014; 281:20133236. [PMID: 24573854 PMCID: PMC3953847 DOI: 10.1098/rspb.2013.3236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second–nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth–nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis.
Collapse
Affiliation(s)
- Romy Müller
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, , 131 Princess Street, Manchester M1 7DN, UK, Department of Archaeology, Durham University, , South Road, Durham DH1 3LE, UK
| | | | | |
Collapse
|
39
|
Joshi KR, Dhiman H, Scaria V. tbvar: A comprehensive genome variation resource for Mycobacterium tuberculosis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bat083. [PMID: 24408216 PMCID: PMC3885892 DOI: 10.1093/database/bat083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis, along with closely related species, commonly known as M. tuberculosis complex (MTBC), causes tuberculosis in humans and other organisms. Tuberculosis is a disease with high morbidity and mortality, especially in the third world. The genetic variability between clinical isolates of MTBC has been poorly understood, although recent years have seen the re-sequencing of a large number of clinical isolates of MTBC from around the world. The availability of genomic data of multiple isolates in public domain would potentially offer a unique opportunity toward understanding the variome of the organism and the functional consequences of the variations. This nevertheless has been limited by the lack of systematic curation and analysis of data sets available in public domain. In this report, we have re-analyzed re-sequencing data sets corresponding to >450 isolates of MTBC available in public domain to create a comprehensive variome map of MTBC comprising >29 000 single nucleotide variations. Using a systematic computational pipeline, we have annotated potential functional variants and drug-resistance-associated variants from the variome. We have made available this data set as a searchable database. Apart from a user-friendly interface, the database also has a novel option to annotate variants from clinical re-sequencing data sets of MTBC. To the best of our knowledge, tbvar is the largest and most comprehensive genome variation resources for MTBC. Database URL:http://genome.igib.res.in/tbvar/
Collapse
Affiliation(s)
- Kandarp Rakeshkumar Joshi
- CSIR Open Source Drug Discovery Unit, Anusandhan Bhawan, Delhi 110001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Delhi 110001, India; Department of Biotechnology, Delhi Technological University, Bawana Road, Delhi 110042, India and GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | | | | |
Collapse
|
40
|
Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Holmes EC, Birren B, Galagan J, Feldman MW. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 2013; 9:e1003543. [PMID: 23966858 PMCID: PMC3744410 DOI: 10.1371/journal.ppat.1003543] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/24/2013] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), is estimated to infect a new host every second. While analyses of genetic data from natural populations of M.tb have emphasized the role of genetic drift in shaping patterns of diversity, the influence of natural selection on this successful pathogen is less well understood. We investigated the effects of natural selection on patterns of diversity in 63 globally extant genomes of M.tb and related pathogenic mycobacteria. We found evidence of strong purifying selection, with an estimated genome-wide selection coefficient equal to -9.5 × 10(-4) (95% CI -1.1 × 10(-3) to -6.8 × 10(-4)); this is several orders of magnitude higher than recent estimates for eukaryotic and prokaryotic organisms. We also identified different patterns of variation across categories of gene function. Genes involved in transport and metabolism of inorganic ions exhibited very low levels of non-synonymous polymorphism, equivalent to categories under strong purifying selection (essential and translation-associated genes). The highest levels of non-synonymous variation were seen in a group of transporter genes, likely due to either diversifying selection or local selective sweeps. In addition to selection, we identified other important influences on M.tb genetic diversity, such as a 25-fold expansion of global M.tb populations coincident with explosive growth in human populations (estimated timing 1684 C.E., 95% CI 1620-1713 C.E.). These results emphasize the parallel demographic histories of this obligate pathogen and its human host, and suggest that the dominant effect of selection on M.tb is removal of novel variants, with exceptions in an interesting group of genes involved in transportation and defense. We speculate that the hostile environment within a host imposes strict demands on M.tb physiology, and thus a substantial fitness cost for most new mutations. In this respect, obligate bacterial pathogens may differ from other host-associated microbes such as symbionts.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Departments of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|