1
|
Sandhu S, Keyworth M, Karimi-Jashni S, Alomar D, Smith BJ, Kozbenko T, Doty S, Hocking R, Hamada N, Reynolds RJ, Scott RT, Costes SV, Beheshti A, Yauk C, Wilkins RC, Chauhan V. AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:85-111. [PMID: 39387375 DOI: 10.1002/em.22631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Bone loss, commonly seen in osteoporosis, is a condition that entails a progressive decline of bone mineral density and microarchitecture, often seen in post-menopausal women. Bone loss has also been widely reported in astronauts exposed to a plethora of stressors and in patients with osteoporosis following radiotherapy for cancer. Studies on mechanisms are well documented but the causal connectivity of events to bone loss development remains incompletely understood. Herein, the adverse outcome pathway (AOP) framework was used to organize data and develop a qualitative AOP beginning from deposition of energy (the molecular initiating event) to bone loss (the adverse outcome). This qualitative AOP was developed in collaboration with bone loss research experts to aggregate relevant findings, supporting ongoing efforts to understand and mitigate human system risks associated with radiation exposures. A literature review was conducted to compile and evaluate the state of knowledge based on the modified Bradford Hill criteria. Following review of 2029 studies, an empirically supported AOP was developed, showing the progression to bone loss through many factors affecting the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The structural, functional, and quantitative basis of each proposed relationship was defined, for inference of causal changes between key events. Current knowledge and its gaps relating to dose-, time- and incidence-concordance across the key events were identified, as well as modulating factors that influence linkages. The new priorities for research informed by the AOP highlight areas for improvement to enable development of a quantitative AOP used to support risk assessment strategies for space travel or cancer radiotherapy.
Collapse
Affiliation(s)
- Snehpal Sandhu
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mitchell Keyworth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Syna Karimi-Jashni
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Stephen Doty
- Hospital for Special Surgery Research Institute, New York City, New York, USA
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Substantiable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | | | - Ryan T Scott
- KBR, NASA Ames Research Center, Moffett Field, California, USA
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Research Branch, Mountain View, California, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Álvarez-Blanco M, Infante-García D, Marco M, Giner E, Miguélez MH. Development of bone surrogates by material extrusion-based additive manufacturing to mimic flexural mechanical behaviour and fracture prediction via phase-field approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108287. [PMID: 38908222 DOI: 10.1016/j.cmpb.2024.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND AND OBJECTIVE The limited availability of human bone samples for investigation leads to the demand for alternatives. Bone surrogates are crucial in promoting research on the intricate mechanics of osseous tissue. However, solutions are restricted to commercial brands, which frequently fail to faithfully replicate the mechanical response of bone, or oversimplified customised simulants designed for a specific application. The manufacturing and assessment of reliable bone surrogates made of polylactic acid via material extrusion-based additive manufacturing are presented in this work. METHODS An experimental and numerical study with 3D-printed dog-bone and prismatic specimens was carried out to characterise the polymeric feedstock and analyse the influence of process parameters under three-point bending and quasi-static conditions. Besides, three porcine rib samples were considered as a reference for the development of the artificial bones. Bone surrogates were manufactured from the 3D-scanned real bone geometries. In order to reproduce the trabecular and cortical bone, a lattice structure for the infill and a compact shell surrounding the core were employed. Infill density and shell thickness were evaluated through different printing configurations. Additionally, a computational analysis based on the phase-field approach was conducted to simulate the experimental tests and predict fracture. The modelling considered homogenisation of the infill material. RESULTS Outcomes demonstrated the potential of the presented methodology. Maximum force and flexural stiffness were compared to real bone properties to find the optimal printing configuration, replicating the flexural mechanical behaviour of bone tissue. Certain configurations accurately reproduce the studied properties. Regarding the numerical model, strength and stiffness prediction was validated with experimental results. CONCLUSIONS The presented methodology enables the manufacturing of artificial bones with accurate geometries and tailored mechanical properties. Furthermore, the described modelling strategy offers a powerful tool for designing bone surrogates.
Collapse
Affiliation(s)
- Mario Álvarez-Blanco
- Department of Mechanical Engineering. Universidad Carlos III de Madrid, Avenida. de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Diego Infante-García
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miguel Marco
- Department of Mechanical Engineering. Universidad Carlos III de Madrid, Avenida. de la Universidad 30, 28911 Leganés, Madrid, Spain.
| | - Eugenio Giner
- Institute of Mechanical and Biomechanical Engineering - I2MB, Department of Mechanical Engineering and Materials, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - M Henar Miguélez
- Department of Mechanical Engineering. Universidad Carlos III de Madrid, Avenida. de la Universidad 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
3
|
Trefny FN, Glyde M, Hosgood G, Hayes A, Day R. Effect of Plate Length on Construct Stiffness and Strain in a Synthetic Short-Fragment Fracture Gap Model Stabilized with a 3.5-mm Locking Compression Plate. Vet Comp Orthop Traumatol 2024. [PMID: 39168141 DOI: 10.1055/s-0044-1789263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To evaluate the effect of 3.5-mm locking compression plate (LCP) length on construct stiffness and plate and bone model strain in a synthetic, short-fragment, fracture-gap model. STUDY DESIGN Six replicates of 6-hole, 8-hole, 10-hole, and 12-hole LCP constructs on a short-fragment, tubular Delrin fracture gap model underwent four-point compression and tension bending. Construct stiffness and surface strain, calculated using three-dimensional digital image correlation, were compared across plate length and region of interest (ROI) on the construct. RESULTS The 12-hole plates (80% plate-bone ratio) had significantly higher construct stiffness than 6-hole, 8-hole, and 10-hole plates and significantly lower plate strain than 6-hole plates at all ROIs. Strain on the bone model was significantly lower in constructs with 10-hole and 12-hole plates than 6-hole plates under both compression and tension bending. CONCLUSION Incremental increases in construct stiffness and incremental decreases in plate strain were only identified when comparing 6-hole, 8-hole, and 10-hole plates to 12-hole plates, and 6-hole to 12-hole plates, respectively. Strain on the bone model showed an incremental decrease when comparing 6-hole to 10-hole and 12-hole plates. A long plate offered biomechanical advantages of increased construct stiffness and reduced plate and bone model strain, over a short plate in this in vitro model.
Collapse
Affiliation(s)
- Fabian N Trefny
- Division of Health Sciences, School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Mark Glyde
- Division of Health Sciences, School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Giselle Hosgood
- Division of Health Sciences, School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Alex Hayes
- Department of Medical Engineering and Physics, Royal Perth Hospital, Perth, Australia
| | - Robert Day
- Department of Medical Engineering and Physics, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
4
|
Dumont M, Herrel A, Courant J, Padilla P, Shahar R, Milgram J. Femoral bone structure and mechanics at the edge and core of an expanding population of the invasive frog Xenopus laevis. J Exp Biol 2024; 227:jeb246419. [PMID: 38904393 PMCID: PMC11418183 DOI: 10.1242/jeb.246419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Understanding how living tissues respond to changes in their mechanical environment is a key question in evolutionary biology. Invasive species provide an ideal model for this as they are often transplanted between environments that differ drastically in their ecological and environmental context. Spatial sorting, the name given to the phenomenon driving differences between individuals at the core and edge of an expanding range, has been demonstrated to impact the morphology and physiology of Xenopus laevis from the invasive French population. Here, we combined a structural analysis using micro-CT scanning and a functional analysis by testing the mechanical properties of the femur to test whether the increased dispersal at the range edge drives differences in bone morphology and function. Our results show significant differences in the inner structure of the femur as well as bone material properties, with frogs from the centre of the range having more robust and resistant bones. This is suggestive of an energy allocation trade-off between locomotion and investment in bone formation, or alternatively, may point to selection for fast locomotion at the range edge. Overall, our results provide insights on the growth of the long bones and the formation of trabecular bone in frogs.
Collapse
Affiliation(s)
- Maïtena Dumont
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, PO Box 12, 7610001 Rehovot, Israel
- Max-Planck Institute for Sustainable Materials, MPISM, D-40237, Düsseldorf, Germany
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent 9000, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Julien Courant
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Pablo Padilla
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liège, Liège, Liege 4000, Belgium
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, PO Box 12, 7610001 Rehovot, Israel
| | - Joshua Milgram
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, PO Box 12, 7610001 Rehovot, Israel
| |
Collapse
|
5
|
Distefano F, Epasto G. Effect of density grading on the mechanical behaviour of advanced functionally graded lattice structures. J Mech Behav Biomed Mater 2024; 153:106477. [PMID: 38428204 DOI: 10.1016/j.jmbbm.2024.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR). The mechanical behaviour was compared with the same lattice structures having constant density ratio. Electron Beam Melting technology was used to manufacture titanium alloy specimens with global relative densities from 10% to 30%. Functionally graded structures were obtained by increasing the relative density along the specimen, by individually designing the lattice's layers. Scanning electron and a digital microscopy were used to evaluate the dimensional mismatch between actual and designed structures. Compressive tests were carried out to obtain the mechanical properties and to evaluate the collapse modes of the structures in relation to their average relative density and lattice grading. Open-source Digital Image Correlation algorithm was applied to evaluate the deformation behaviour of the structures and to calculate their elastic moduli. The results showed that uniform density structures provide higher mechanical properties than functionally graded ones. The Digital Image Correlation results showed the possibility of effectively designing the different layers of functionally graded structures selecting desired local mechanical properties to mimic the different characteristics of cortical and cancellous bone.
Collapse
Affiliation(s)
- Fabio Distefano
- Department of Engineering, University of Messina, Contrada di Dio, Vill. Sant'Agata, 98166, Messina, Italy
| | - Gabriella Epasto
- Department of Engineering, University of Messina, Contrada di Dio, Vill. Sant'Agata, 98166, Messina, Italy.
| |
Collapse
|
6
|
Castro-Sandoval JC, Chavez A, Corona-Castuera J, Henao J, Rivera-Gil MA, Poblano-Salas CA. Additive manufactured gyroid-based cell structures under compression: design, testing and simulation for biomedical applications. Comput Methods Biomech Biomed Engin 2024; 27:211-221. [PMID: 36790389 DOI: 10.1080/10255842.2023.2179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The mechanical behaviour of a DMLS Ti-6Al-4V gyroid-based cellular structure (CS), with potential application in the fabrication of implants, was studied under compressive conditions. The influence of the CS volumetric fraction on the elastic modulus was experimentally evaluated in cubic and cylindrical samples. The experimental results showed that the selected parameters allowed approximating the mechanical behaviour of the CS to that of trabecular bone. Finite element analysis was employed to study the mechanical behaviour of the CS. The model presented a good approximation of the experimental results, being useful to predict the mechanical behaviour of the CS.
Collapse
|
7
|
Dibazar ZE, Nie L, Azizi M, Nekounam H, Hamidi M, Shavandi A, Izadi Z, Delattre C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2799. [PMID: 37049093 PMCID: PMC10095723 DOI: 10.3390/ma16072799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Bone tissue engineering integrates biomaterials, cells, and bioactive agents to propose sophisticated treatment options over conventional choices. Scaffolds have central roles in this scenario, and precisely designed and fabricated structures with the highest similarity to bone tissue have shown promising outcomes. On the other hand, using nanotechnology and nanomaterials as the enabling options confers fascinating properties to the scaffolds, such as precisely tailoring the physicochemical features and better interactions with cells and surrounding tissues. Among different nanomaterials, polymeric nanofibers and carbon nanofibers have attracted significant attention due to their similarity to bone extracellular matrix (ECM) and high surface-to-volume ratio. Moreover, bone ECM is a biocomposite of collagen fibers and hydroxyapatite crystals; accordingly, researchers have tried to mimic this biocomposite using the mineralization of various polymeric and carbon nanofibers and have shown that the mineralized nanofibers are promising structures to augment the bone healing process in the tissue engineering scenario. In this paper, we reviewed the bone structure, bone defects/fracture healing process, and various structures/cells/growth factors applicable to bone tissue engineering applications. Then, we highlighted the mineralized polymeric and carbon nanofibers and their fabrication methods.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz 5165687386, Iran
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
8
|
Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review. J Funct Biomater 2023; 14:jfb14030125. [PMID: 36976049 PMCID: PMC10059040 DOI: 10.3390/jfb14030125] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The progress in additive manufacturing has remarkably increased the application of lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes. Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the regeneration of massive bone defects, which require external intervention to be bridged. However, the repair of such critical bone defects remains a challenge. The present review collected the most significant findings in the literature of the last ten years on Ti6Al4V porous scaffolds to provide a comprehensive summary of the mechanical and morphological requirements for the osteointegration process. Particular attention was given on the effects of pore size, surface roughness and the elastic modulus on bone scaffold performances. The application of the Gibson–Ashby model allowed for a comparison of the mechanical performance of the lattice materials with that of human bone. This allows for an evaluation of the suitability of different lattice materials for biomedical applications.
Collapse
|
9
|
Qiu J, Liao Z, Xiang H, Li H, Yuan D, Jiang C, Xie J, Qin M, Li K, Zhao H. Effects of different preservation on the mechanical properties of cortical bone under quasi-static and dynamic compression. Front Bioeng Biotechnol 2023; 11:1082254. [PMID: 36911185 PMCID: PMC9995777 DOI: 10.3389/fbioe.2023.1082254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Mechanical properties of biological tissue are important for numerical simulations. Preservative treatments are necessary for disinfection and long-term storage when conducting biomechanical experimentation on materials. However, few studies have been focused on the effect of preservation on the mechanical properties of bone in a wide strain rate. The purpose of this study was to evaluate the influence of formalin and dehydration on the intrinsic mechanical properties of cortical bone from quasi-static to dynamic compression. Methods: Cube specimens were prepared from pig femur and divided into three groups (fresh, formalin, and dehydration). All samples underwent static and dynamic compression at a strain rate from 10-3 s-1 to 103 s-1. The ultimate stress, ultimate strain, elastic modulus, and strain-rate sensitivity exponent were calculated. A one-way ANOVA test was performed to determine if the preservation method showed significant differences in mechanical properties under at different strain rates. The morphology of the macroscopic and microscopic structure of bones was observed. Results: The results show that ultimate stress and ultimate strain increased as the strain rate increased, while the elastic modulus decreased. Formalin fixation and dehydration did not affect elastic modulus significantly whereas significantly increased the ultimate strain and ultimate stress. The strain-rate sensitivity exponent was the highest in the fresh group, followed by the formalin group and dehydration group. Different fracture mechanisms were observed on the fractured surface, with fresh and preserved bone tending to fracture along the oblique direction, and dried bone tending to fracture along the axial direction. Discussion: In conclusion, preservation with both formalin and dehydration showed an influence on mechanical properties. The influence of the preservation method on material properties should be fully considered in developing a numerical simulation model, especially for high strain rate simulation.
Collapse
Affiliation(s)
- Jinlong Qiu
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Zhikang Liao
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Hongyi Xiang
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Haocheng Li
- Department of Medical Engineering, General Hospital of Central Theater Command, Wuhan, China
| | - Danfeng Yuan
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Chengyue Jiang
- School of Vehicle Engineering, Chongqing University of Technology, Chongqing, China
| | - Jingru Xie
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Mingxin Qin
- College of Biomedical Engineering, Army Medical University, PLA, Chongqing, China
| | - Kui Li
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Hui Zhao
- Daping Hospital of Army Medical University, PLA, Chongqing, China
| |
Collapse
|
10
|
Kalev-Altman R, Janssen JN, Ben-Haim N, Levy T, Shitrit-Tovli A, Milgram J, Shahar R, Sela-Donenfeld D, Monsonego-Ornan E. The gelatinases, matrix metalloproteinases 2 and 9, play individual roles in skeleton development. Matrix Biol 2022; 113:100-121. [DOI: 10.1016/j.matbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
|
11
|
Cronin DS, Watson B, Khor F, Gierczycka D, Malcolm S. Cortical bone continuum damage mechanics constitutive model with stress triaxiality criterion to predict fracture initiation and pattern. Front Bioeng Biotechnol 2022; 10:1022506. [PMID: 36324891 PMCID: PMC9618659 DOI: 10.3389/fbioe.2022.1022506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 01/22/2023] Open
Abstract
A primary objective of finite element human body models (HBMs) is to predict response and injury risk in impact scenarios, including cortical bone fracture initiation, fracture pattern, and the potential to simulate post-fracture injury to underlying soft tissues. Current HBMs have been challenged to predict the onset of failure and bone fracture patterns owing to the use of simplified failure criteria. In the present study, a continuum damage mechanics (CDM) model, incorporating observed mechanical response (orthotropy, asymmetry, damage), was coupled to a novel phenomenological effective strain fracture criterion based on stress triaxiality and investigated to predict cortical bone response under different modes of loading. Three loading cases were assessed: a coupon level notched shear test, whole bone femur three-point bending, and whole bone femur axial torsion. The proposed material model and fracture criterion were able to predict both the fracture initiation and location, and the fracture pattern for whole bone and specimen level tests, within the variability of the reported experiments. There was a dependence of fracture threshold on finite element mesh size, where higher mesh density produced similar but more refined fracture patterns compared to coarser meshes. Importantly, the model was functional, accurate, and numerically stable even for relatively coarse mesh sizes used in contemporary HBMs. The proposed model and novel fracture criterion enable prediction of fracture initiation and resulting fracture pattern in cortical bone such that post-fracture response can be investigated in HBMs.
Collapse
Affiliation(s)
- D. S Cronin
- Department of MME, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: D. S Cronin,
| | - B Watson
- Department of MME, University of Waterloo, Waterloo, ON, Canada
| | - F Khor
- Department of MME, University of Waterloo, Waterloo, ON, Canada
| | - D Gierczycka
- Department of MME, University of Waterloo, Waterloo, ON, Canada
| | - S Malcolm
- Honda Development and Manufacturing of America, Raymond, OH, United States
| |
Collapse
|
12
|
Ma C, Du T, Niu X, Fan Y. Biomechanics and mechanobiology of the bone matrix. Bone Res 2022; 10:59. [PMID: 36042209 PMCID: PMC9427992 DOI: 10.1038/s41413-022-00223-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The bone matrix plays an indispensable role in the human body, and its unique biomechanical and mechanobiological properties have received much attention. The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high strength. These mechanical properties are closely associated with human life activities and correspond to the function of bone in the human body. None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure. Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute implants, bone biomimetic materials and scaffolds for bone tissue repair in humans, as well as for biomimetic applications in other fields. In providing mechanical support to the human body, bone is constantly exposed to mechanical stimuli. Through the study of the mechanobiology of the bone matrix, the response mechanism of the bone matrix to its surrounding mechanical environment can be elucidated and used for the health maintenance of bone tissue and defect regeneration. This paper summarizes the biomechanical properties of the bone matrix and their biological significance, discusses the compositional and structural basis by which the bone matrix is capable of exhibiting these mechanical properties, and studies the effects of mechanical stimuli, especially fluid shear stress, on the components of the bone matrix, cells and their interactions. The problems that occur with regard to the biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future are also described.
Collapse
Affiliation(s)
- Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| |
Collapse
|
13
|
Zhao D, Hua R, Riquelme MA, Cheng H, Guda T, Xu H, Gu S, Jiang JX. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res 2022; 10:49. [PMID: 35851577 PMCID: PMC9293884 DOI: 10.1038/s41413-022-00222-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic β-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas, San Antonio, TX, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
14
|
Mendaza-DeCal R, Ballesteros Y, Peso-Fernandez S, Paz E, del Real-Romero JC, Rodriguez-Quiros J. Biomechanical Test of a New Endoprosthesis for Cylindrical Medullary Canals in Dogs. Front Vet Sci 2022; 9:887676. [PMID: 35847635 PMCID: PMC9280675 DOI: 10.3389/fvets.2022.887676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Exo-endoprosthesis is a limb salvage procedure for animals, although only expensive metal devices have been described. Now-a-days, new materials for this type of implant could be considered due to novel and affordable manufacturing techniques. However, a factor of safety (FoS) should be considered. There are kinetic and kinematic studies of canine natural gaits, which can be used to establish an FoS for mechanical tests for new non-metallic devices. Polyetheretherketone (PEEK) is used in different specialties in human medicine. Its mechanical properties (and its close mechanical stiffness to that of bone) make this polymer an alternative to metals in veterinary traumatology. PEEK could also be used in 3D printing. The suitability of a novel inner part of an exo-endoprosthesis manufactured by fuse deposition modeling (FDM) was presented in this study for long canine bones. Mechanical characterization of 3D-printed PEEK material and ex vivo mechanical tests of a customized endoprosthesis were performed to address it. Young's modulus of 3D-printed PEEK suffered a reduction of 30% in relation to bulk PEEK. Customized 3D-printed PEEK endoprostheses had promising outcomes for the tibiae of 20 kg dogs. Pure compression tests of the non-inserted endoprostheses showed a maximum force of 936 ± 199 N. In the bending tests of non-inserted endoprostheses, the PEEK part remained intact. Quasistatic mechanical tests of bone-inserted endoprostheses (compression-bending and pure compression tests) reached a maximum force of 785 ± 101 N and 1,642 ± 447 N, respectively. In fatigue tests, the samples reached 500,000 cycles without failure or detriment to their quasistatic results. These outcomes surpass the natural weight-bearing of dogs, even during a galloping pace. In conclusion, the 3D-printed PEEK part of the endoprosthesis for an exo-endoprosthesis can withstand loading, even during a galloping pace.
Collapse
Affiliation(s)
- Rosa Mendaza-DeCal
- Animal Medicine and Surgery Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
- ABAX Innovation Technologies, Villanueva de la Cañada, Madrid, Spain
- *Correspondence: Rosa Mendaza-DeCal
| | - Yolanda Ballesteros
- Institute for Research in Technology/Mechanical Engineering Department, Universidad Pontificia Comillas, Madrid, Spain
| | | | - Eva Paz
- Institute for Research in Technology/Mechanical Engineering Department, Universidad Pontificia Comillas, Madrid, Spain
| | - Juan Carlos del Real-Romero
- Institute for Research in Technology/Mechanical Engineering Department, Universidad Pontificia Comillas, Madrid, Spain
| | - Jesus Rodriguez-Quiros
- Animal Medicine and Surgery Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Shanas N, Querido W, Oswald J, Jepsen K, Carter E, Raggio C, Pleshko N. Infrared Spectroscopy-Determined Bone Compositional Changes Associated with Anti-Resorptive Treatment of the oim/oim Mouse Model of Osteogenesis Imperfecta. APPLIED SPECTROSCOPY 2022; 76:416-427. [PMID: 34643134 DOI: 10.1177/00037028211055477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Applications of vibrational spectroscopy to assess bone disease and therapeutic interventions are continually advancing, with tissue mineral and protein composition frequently investigated. Here, we used two spectroscopic approaches for determining bone composition in a mouse model (oim) of the brittle bone disease osteogenesis imperfecta (OI) with and without antiresorptive agent treatment (alendronate, or ALN, and RANK-Fc). Near-infrared (NIR) spectral analysis using a fiber optic probe and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) mode were applied to investigate bone composition, including water, mineral, and protein content. Spectral parameters revealed differences among the control wildtype (WT) and OIM groups. NIR spectral analysis of protein and water showed that OIM mouse humerii had ∼50% lower protein and ∼50% higher overall water content compared to WT bone. Moreover, some OIM-treated groups showed a reduction in bone water compared to OIM controls, approximating values observed in WT bone. Differences in bone quality based on increased mineral content and reduced carbonate content were also found between some groups of treated OIM and WT bone, but crystallinity did not differ among all groups. The spectroscopically determined parameters were evaluated for correlations with gold-standard mechanical testing values to gain insight into how composition influenced bone strength. As expected, bone mechanical strength parameters were consistently up to threefold greater in WT mice compared to OIM groups, except for stiffness in the ALN-treated OIM groups. Furthermore, bone stiffness, maximum load, and post-yield displacement showed the strongest correlations with NIR-determined protein content (positive correlations) and bound-water content (negative correlations). These results demonstrate that in this study, NIR spectral parameters were more sensitive to bone composition differences than ATR parameters, highlighting the potential of this nondestructive approach for screening of bone diseases and therapeutic efficacy in pre-clinical models.
Collapse
Affiliation(s)
- No'ad Shanas
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Jack Oswald
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Karl Jepsen
- Department of Orthopaedic Surgery and Bioengineering. University of Michigan, Ann Arbor, MI, USA
| | - Erin Carter
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, 25062Hospital for Special Surgery, New York City, NY, USA
| | - Cathleen Raggio
- Kathryn O. and Alan C. Greenberg Center for Skeletal Dysplasias, 25062Hospital for Special Surgery, New York City, NY, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Zhao D, Riquelme MA, Guda T, Tu C, Xu H, Gu S, Jiang JX. Connexin hemichannels with prostaglandin release in anabolic function of bone to mechanical loading. eLife 2022; 11:74365. [PMID: 35132953 PMCID: PMC8824479 DOI: 10.7554/elife.74365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023] Open
Abstract
Mechanical stimulation, such as physical exercise, is essential for bone formation and health. Here, we demonstrate the critical role of osteocytic Cx43 hemichannels in anabolic function of bone in response to mechanical loading. Two transgenic mouse models, R76W and Δ130–136, expressing dominant-negative Cx43 mutants in osteocytes were adopted. Mechanical loading of tibial bone increased cortical bone mass and mechanical properties in wild-type and gap junction-impaired R76W mice through increased PGE2, endosteal osteoblast activity, and decreased sclerostin. These anabolic responses were impeded in gap junction/hemichannel-impaired Δ130–136 mice and accompanied by increased endosteal osteoclast activity. Specific inhibition of Cx43 hemichannels by Cx43(M1) antibody suppressed PGE2 secretion and impeded loading-induced endosteal osteoblast activity, bone formation and anabolic gene expression. PGE2 administration rescued the osteogenic response to mechanical loading impeded by impaired hemichannels. Together, osteocytic Cx43 hemichannels could be a potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States.,School of Life Sciences, Northwestern Polytechnical University, Xian, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, United States
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xian, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| |
Collapse
|
17
|
Moreno CR, Santschi EM, Younkin JT, Larson RL, Litsky AS. The failure mode of a mechanically loaded equine medial femoral condyle analog with a void and the impact of lag and neutral screw placement. Vet Surg 2022; 51:474-481. [PMID: 35102588 DOI: 10.1111/vsu.13765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/08/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the failure method of simulated equine medial femoral condyle (MFC) subchondral bone defects under compression and the influence of screw placement on failure resistance. STUDY DESIGN In vitro study. SAMPLE POPULATION Composite disks (CD) simulating the moduli of yearling bone in the MFC. METHODS Four CD conditions were tested, all with a 12.7 mm void (n = 6 per condition): intact (no void), void only, void with a 4.5 mm screw placed in neutral fashion, and void with a 4.5 mm screw placed in lag fashion. Composite disks of each condition were tested under monotonic compression to 6000 N and cyclic compression to 10 000 cycles. Observable failure, load at first observable failure, and displacement at peak 2000 N load were compared among conditions. RESULTS Specimens failed by cracking at the superior aspect of the void or the screw exit hole. After monotonic loading, cracks were observed 6/6 CD with a void, 6/6 CD with a void/lag screw, and 5/6 CD with a void/neutral screw. After cyclical testing, cracks were noted only on the superior aspect of 6/6 CD with a void and 3/6 CD with a void/lag screw. Displacement at peak load was 0.06 mm (intact), 0.32 mm (void), 0.24 mm (void/lag screw), and 0.11 mm (void/neutral screw). CONCLUSION Model MFC voids failed by superior cracking that was resisted by lag and neutral screw placement. CLINICAL SIGNIFICANCE Neutral screws may be an acceptable treatment for subchondral lucencies in the MFC.
Collapse
Affiliation(s)
- Caitlin R Moreno
- Department of Clinical Sciences, Kansas State University, Manhattan, Kansas, USA
| | - Elizabeth M Santschi
- Department of Clinical Sciences, Kansas State University, Manhattan, Kansas, USA
| | - Jarrod T Younkin
- Department of Clinical Sciences, Kansas State University, Manhattan, Kansas, USA
| | - Robert L Larson
- Department of Clinical Sciences, Kansas State University, Manhattan, Kansas, USA
| | - Alan S Litsky
- Departments of Orthopaedics and Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Orthopaedic BioMaterials Laboratory, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
How Artificial Intelligence and Machine Learning Is Assisting Us to Extract Meaning from Data on Bone Mechanics? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1356:195-221. [PMID: 35146623 DOI: 10.1007/978-3-030-87779-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dramatic advancements in interdisciplinary research with the fourth paradigm of science, especially the implementation of computer science, nourish the potential for artificial intelligence (AI), machine learning (ML), and artificial neural network (ANN) algorithms to be applied to studies concerning mechanics of bones. Despite recent enormous advancement in techniques, gaining deep knowledge to find correlations between bone shape, material, mechanical, and physical responses as well as properties is a daunting task. This is due to both complexity of the material itself and the convoluted shapes that this complex material forms. Moreover, many uncertainties and ambiguities exist concerning the use of traditional computational techniques that hinders gaining a full comprehension of this advanced biological material. This book chapter offers a review of literature on the use of AI, ML, and ANN in the study of bone mechanics research. A main question as to why to implement AI and ML in the mechanics of bones is fully addressed and explained. This chapter also introduces AI and ML and elaborates on the main features of ML algorithms such as learning paradigms, subtypes, main ideas with examples, performance metrics, training algorithms, and training datasets. As a frequently employed ML algorithm in bone mechanics, feedforward ANNs are discussed to make their taxonomy and working principles more readily comprehensible to researchers. A summary as well as detailed review of papers that employed ANNs to learn from collected data on bone mechanics are presented. Reviewing literature on the use of these data-driven tools is essential since their wider application has the potential to: improve clinical assessments enabling real-time simulations; avoid and/or minimize injuries; and, encourage early detection of such injuries in the first place.
Collapse
|
19
|
Travinsky-Shmul T, Beresh O, Zaretsky J, Griess-Fishheimer S, Rozner R, Kalev-Altman R, Penn S, Shahar R, Monsonego-Ornan E. Ultra-Processed Food Impairs Bone Quality, Increases Marrow Adiposity and Alters Gut Microbiome in Mice. Foods 2021; 10:foods10123107. [PMID: 34945658 PMCID: PMC8701231 DOI: 10.3390/foods10123107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023] Open
Abstract
Ultra processed foods (UPF) consumption is becoming dominant in the global food system, to the point of being the most recent cause of malnutrition. Health outcomes of this diet include obesity and metabolic syndrome; however, its effect on skeletal development has yet to be examined. This project studied the influence of UPF diet on the development and quality of the post-natal skeleton. Young female mice were fed with regular chow diet, UPF diet, UPF diet supplemented with calcium or with multivitamin and mineral complex. Mice fed UPF diet presented unfavorable morphological parameters, evaluated by micro-CT, alongside inferior mechanical performance of the femora, evaluated by three-point bending tests. Growth-plate histology evaluation suggested a modification of the growth pattern. Accumulation of adipose tissue within the bone marrow was significantly higher in the group fed UPF diet. Finally, microbiome 16SrRNA sequencing was used to explore the connection between diets, gut microbial community and skeletal development. Together, we show that consumption of UPF diet during the postnatal developmental period alters the microbiome and has negative outcomes on bone parameters and bone marrow adiposity. Micronutrients improved these phenotypes only partially. Thus, consuming a wholesome diet that contributes to a healthy microbiota is of a great significance in order to achieve healthy skeletal development.
Collapse
Affiliation(s)
- Tamara Travinsky-Shmul
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Olga Beresh
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Janna Zaretsky
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Shelley Griess-Fishheimer
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Reut Rozner
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Rotem Kalev-Altman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (R.K.-A.); (R.S.)
| | - Sveta Penn
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (R.K.-A.); (R.S.)
| | - Efrat Monsonego-Ornan
- School of Nutrition Science, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 7610001, Israel; (T.T.-S.); (O.B.); (J.Z.); (S.G.-F.); (R.R.); (S.P.)
- Correspondence: ; Tel.: +972-8-9489712
| |
Collapse
|
20
|
Long EB, Barak MM, Frost VJ. The effect of Staphylococcus aureus exposure on white-tailed deer trabecular bone stiffness and yield. J Mech Behav Biomed Mater 2021; 126:105000. [PMID: 34894499 DOI: 10.1016/j.jmbbm.2021.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
With a growing number of osteomyelitis diagnoses, many of which are linked to Staphylococcus aureus (S. aureus), it is imperative to understand the pathology of S. aureus in relation to bone to provide better diagnostics and patient care. While the cellular mechanisms of S. aureus and osteomyelitis have been studied, little information exists on the biomechanical effects of such infections. The aim of this study was to determine the effect of S. aureus exposure on the stiffness and yield of trabecular bone tissue. S. aureus-ATCC-12600, a confirmed biofilm producer, along with one hundred and three trabecular cubes (5 × 5 × 5 mm) from the proximal tibiae of Odocoileus virginianus (white-tailed deer) were used in this experiment. Bone cubes were disinfected and then swabbed to confirm no residual living microbes or endospore contamination before inoculation with S. aureus (test group) or sterile nutrient broth (control group) for 72 h. All cubes were then tested in compression until yield using an Instron 5942 Single-Column machine. Structural stiffness (N/mm) and yield (MPa) were calculated and compared between the two groups. Our results revealed that acute exposure to S. aureus, within the context of our deer tibia model, does not significantly decrease trabecular bone stiffness or yield. The results of this study may be of value clinically when assessing fracture risks for osteomyelitis or other patients whose cultures test positive for S. aureus.
Collapse
Affiliation(s)
- Emily Brooke Long
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA.
| | - Meir Max Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548, USA
| | | |
Collapse
|
21
|
Knox AM, McGuire AC, Natoli RM, Kacena MA, Collier CD. Methodology, selection, and integration of fracture healing assessments in mice. J Orthop Res 2021; 39:2295-2309. [PMID: 34436797 PMCID: PMC8542592 DOI: 10.1002/jor.25172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023]
Abstract
Long bone fractures are one of the most common and costly medical conditions encountered after trauma. Characterization of the biology of fracture healing and development of potential medical interventions generally involves animal models of fracture healing using varying genetic or treatment groups, then analyzing relative repair success via the synthesis of diverse assessment methodologies. Murine models are some of the most widely used given their low cost, wide variety of genetic variants, and rapid breeding and maturation. This review addresses key concerns regarding fracture repair investigations in mice and may serve as a guide in conducting and interpreting such studies. Specifically, this review details the procedures, highlights relevant parameters, and discusses special considerations for the selection and integration of the major modalities used for quantifying fracture repair in such studies, including X-ray, microcomputed tomography, histomorphometric, biomechanical, gene expression and biomarker analyses.
Collapse
Affiliation(s)
- Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Roman M. Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
- Richard L. Roudebush VA Medical Center, IN, USA
| | | |
Collapse
|
22
|
Zhang H, Majdeddin M, Gaublomme D, Taminiau B, Boone M, Elewaut D, Daube G, Josipovic I, Zhang K, Michiels J. 25-hydroxycholecalciferol reverses heat induced alterations in bone quality in finisher broilers associated with effects on intestinal integrity and inflammation. J Anim Sci Biotechnol 2021; 12:104. [PMID: 34620220 PMCID: PMC8499578 DOI: 10.1186/s40104-021-00627-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alterations in ambient temperature have been associated with multiple detrimental effects on broilers such as intestinal barrier disruption and dysbiosis resulting in systemic inflammation. Inflammation and 25-hydroxycholecalciferol (25-OH-D3) have shown to play a negative and positive role, respectively, in the regulation of bone mass. Hence the potential of 25-OH-D3 in alleviating heat induced bone alterations and its mechanisms was studied. RESULTS Heat stress (HS) directly induced a decrease in tibia material properties and bone mass, as demonstrated by lower mineral content, and HS caused a notable increase in intestinal permeability. Treatment with dietary 25-OH-D3 reversed the HS-induced bone loss and barrier leak. Broilers suffering from HS exhibited dysbiosis and increased expression of inflammatory cytokines in the ileum and bone marrow, as well as increased osteoclast number and activity. The changes were prevented by dietary 25-OH-D3 administration. Specifically, dietary 25-OH-D3 addition decreased abundance of B- and T-cells in blood, and the expression of inflammatory cytokines, especially TNF-α, in both the ileum and bone marrow, but did not alter the diversity and population or composition of major bacterial phyla. With regard to bone remodeling, dietary 25-OH-D3 supplementation was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen reflecting bone resorption and a concomitant decrement in osteoclast-specific marker genes expression (e.g. cathepsin K), whereas it did not apparently change serum bone formation markers during HS. CONCLUSIONS These data underscore the damage of HS to intestinal integrity and bone health, as well as that dietary 25-OH-D3 supplementation was identified as a potential therapy for preventing these adverse effects.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 611130, Sichuan, China
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Djoere Gaublomme
- Unit Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Bernard Taminiau
- Department of Food Sciences - Microbiology, University of Liège, 4000, Liège, Belgium
| | - Matthieu Boone
- Ghent University Centre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium.,Department of Physics and Astronomy, Radiation Physics Research Group, Ghent University, 9000, Ghent, Belgium
| | - Dirk Elewaut
- Unit Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - George Daube
- Department of Food Sciences - Microbiology, University of Liège, 4000, Liège, Belgium
| | - Iván Josipovic
- Ghent University Centre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium
| | - Keying Zhang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 611130, Sichuan, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
23
|
Nedelkovski V, Andriotis OG, Wieland K, Gasser C, Steiger-Thirsfeld A, Bernardi J, Lendl B, Pretterklieber ML, Thurner PJ. Microbeam bending of hydrated human cortical bone lamellae from the central region of the body of femur shows viscoelastic behaviour. J Mech Behav Biomed Mater 2021; 125:104815. [PMID: 34678618 DOI: 10.1016/j.jmbbm.2021.104815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Bone is a biological tissue with unique mechanical properties, owing to a complex hierarchical structure ranging from the nanoscale up to the macroscale. To better understand bone mechanics, investigation of mechanical properties of all structural elements at every hierarchical level and how they interact is necessary. Testing of bone structures at the lower microscale, e.g. bone lamellae, has been least performed and remains a challenge. Focused ion beam (FIB) milling is an attractive technique for machining microscopic samples from bone material and performing mechanical testing at the microscale using atomic force microscopy (AFM) and nanoindentation setups. So far, reported studies at this length scale have been performed on bone samples of animal origin, mostly in a dehydrated state, except for one study. Here we present an AFM-based microbeam bending method for performing bending measurements in both dehydrated and rehydrated conditions at the microscale. Single lamella bone microbeams of four human donors, aged 65-94 yrs, were machined via FIB and tested both in air and fully submerged in Hank's Balanced Salt Solution (HBSS) to investigate the effect of (de)hydration and to a certain extent, of age, on bone mechanics. Bending moduli were found to reduce up to 5 times after 2 h of rehydration and no trend of change in bending moduli with respect to age could be observed. Mechanical behavior changed from almost purely elastic to viscoelastic upon rehydration and a trend of lower dissipated energy in samples from older donors could be observed in the rehydrated state. These results confirm directly the importance of water for the mechanical properties of bone tissue at the microscale. Moreover, the trend of lowered capability of energy dissipation in older donors may contribute to a decrease of fracture toughness and thus an increase in bone fragility with age.
Collapse
Affiliation(s)
- Vedran Nedelkovski
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| | - Karin Wieland
- Institute of Chemical Technologies and Analytics, TU Wien, 1060, Vienna, Austria
| | - Christoph Gasser
- Institute of Chemical Technologies and Analytics, TU Wien, 1060, Vienna, Austria
| | | | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, 1040, Vienna, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, TU Wien, 1060, Vienna, Austria
| | - Michael L Pretterklieber
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, 1090, Vienna, Austria; Division of Macroscopic and Clinical Anatomy, Medical University Graz, 8010, Graz, Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria.
| |
Collapse
|
24
|
Microscale compressive behavior of hydrated lamellar bone at high strain rates. Acta Biomater 2021; 131:403-414. [PMID: 34245895 DOI: 10.1016/j.actbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
The increased risk of fracture in the elderly associated with metabolic conditions like osteoporosis poses a significant strain on health care systems worldwide. Due to bone's hierarchical nature, it is necessary to study its mechanical properties and failure mechanisms at several length scales. We conducted micropillar compression experiments on ovine cortical bone to assess the anisotropic mechanical response at the lamellar scale over a wide range of strain rates (10-4 to 8·102 s-1). At the microscale, lamellar bone exhibits a strain rate sensitivity similar to what is reported at the macroscale suggesting that it is an intrinsic property of the extracellular matrix. Significant shear band thickening was observed at high strain rates by HRSEM and STEM imaging. This is likely caused by the material's inability to accommodate the imposed deformation by propagation of thin kink bands and shear cracks at high strain rates, leading to shear band thickening and nucleation. The post-yield behavior is strain rate and direction dependent: hardening was observed for transverse oriented micropillars and hardening modulus increases with strain rate by a factor of almost 2, while axially oriented micropillars showed strain softening and an increase of the softening peak width and work to ultimate stress as a function of strain rate. This suggests that for compression at the micrometer scale, energy absorption in bone increases with strain rate. This study highlights the importance of investigating bone strength and post-yield behavior at lower length scales, under hydrated conditions and at clinically relevant strain rates. STATEMENT OF SIGNIFICANCE: We performed micropillar compression experiments of ovine cortical bone at two different orientations and over seven orders of magnitude of strain rate. Experiments were performed under humid condition to mimic the natural conditions of bone in a human body using a newly developed micro-indenter setup. The strain rate sensitivity was found to be of a similar magnitude to what has been reported for higher length scales, suggesting that the strain rate sensitivity is an intrinsic property of the bone extracellular matrix. In addition, localized shear deformation in thick bands was observed for the first time at high strain rates, highlighting the importance of investigating bone under conditions representative of an accident or fall at several length scales.
Collapse
|
25
|
Irarrázaval S, Ramos-Grez JA, Pérez LI, Besa P, Ibáñez A. Finite element modeling of multiple density materials of bone specimens for biomechanical behavior evaluation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04760-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AbstractThe finite elements method allied with the computerized axial tomography (CT) is a mathematical modeling technique that allows constructing computational models for bone specimens from CT data. The objective of this work was to compare the experimental biomechanical behavior by three-point bending tests of porcine femur specimens with different types of computational models generated through the finite elements’ method and a multiple density materials assignation scheme. Using five femur specimens, 25 scenarios were created with differing quantities of materials. This latter was applied to computational models and in bone specimens subjected to failure. Among the three main highlights found, first, the results evidenced high precision in predicting experimental reaction force versus displacement in the models with larger number of assigned materials, with maximal results being an R2 of 0.99 and a minimum root-mean-square error of 3.29%. Secondly, measured and computed elastic stiffness values follow same trend with regard to specimen mass, and the latter underestimates stiffness values a 6% in average. Third and final highlight, this model can precisely and non-invasively assess bone tissue mechanical resistance based on subject-specific CT data, particularly if specimen deformation values at fracture are considered as part of the assessment procedure.
Collapse
|
26
|
Lin CY, Kang JH. Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4224. [PMID: 34361418 PMCID: PMC8347989 DOI: 10.3390/ma14154224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022]
Abstract
Mechanical properties are crucial parameters for scaffold design for bone tissue engineering; therefore, it is important to understand the definitions of the mechanical properties of bones and relevant analysis methods, such that tissue engineers can use this information to properly design the mechanical properties of scaffolds for bone tissue engineering. The main purpose of this article is to provide a review and practical guide to understand and analyze the mechanical properties of compact bone that can be defined and extracted from the stress-strain curve measured using uniaxial tensile test until failure. The typical stress-strain curve of compact bone measured using uniaxial tensile test until failure is a bilinear, monotonically increasing curve. The associated mechanical properties can be obtained by analyzing this bilinear stress-strain curve. In this article, a computer programming code for analyzing the bilinear stress-strain curve of compact bone for quantifying the associated mechanical properties is provided, such that the readers can use this computer code to perform the analysis directly. In addition to being applied to compact bone, the information provided by this article can also be applied to quantify the mechanical properties of any material having a bilinear stress-strain curve, such as a whole bone, some metals and biomaterials. The information provided by this article can be applied by tissue engineers, such that they can have a reference to properly design the mechanical properties of scaffolds for bone tissue engineering. The information can also be applied by researchers in biomechanics and orthopedics to compare the mechanical properties of bones in different physiological or pathological conditions.
Collapse
Affiliation(s)
- Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, 252 Wuxing Str., Taipei 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Str., Taipei 11031, Taiwan
- Research Center of Artificial Intelligence in Medicine, Taipei Medical University, 250 Wuxing Str., Taipei 11031, Taiwan
| |
Collapse
|
27
|
Isa MI, Fenton TW, Antonelli LS, Vaughan PE, Wei F. Investigating reverse butterfly fractures: An experimental approach and application of fractography. Forensic Sci Int 2021; 325:110899. [PMID: 34247140 DOI: 10.1016/j.forsciint.2021.110899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 11/15/2022]
Abstract
Butterfly fractures are expected to form with the transverse portion on the tension side and the wedge portion on the compression side of a bent bone, however wedges have also been observed in the reverse orientation and are reported to be frequent in concentrated 4-point bending. To investigate how these fractures form, concentrated 4-point bending experiments were performed on nine human femora and documented using high-speed video. Videos showed the wedge portion formed as fracture initiated in tension, branched obliquely, then curved to terminate on the tension face. The transverse portion formed as a crack traveled between the curved fracture branch and the compression face. Fractography was also applied to evaluate fracture surfaces. At least one fractography feature was present in all femora and 32/35 bone fragments examined. Fracture propagation sequences interpreted using fractography matched those observed on video, demonstrating the utility of this method for evaluating complex fracture patterns.
Collapse
Affiliation(s)
- Mariyam I Isa
- Department of Anthropology, Michigan State University, 655 Auditorium Dr., East Lansing, MI, United States 48824.
| | - Todd W Fenton
- Department of Anthropology, Michigan State University, 655 Auditorium Dr., East Lansing, MI, United States 48824.
| | - Lillian S Antonelli
- Department of Anthropology, Michigan State University, 655 Auditorium Dr., East Lansing, MI, United States 48824.
| | - Patrick E Vaughan
- Orthopaedic Biomechanics Laboratories, Michigan State University, 965 Fee Rd., East Lansing, MI, United States 48824.
| | - Feng Wei
- Orthopaedic Biomechanics Laboratories, Michigan State University, 965 Fee Rd., East Lansing, MI, United States 48824.
| |
Collapse
|
28
|
Peterson JE, Tseng ZJ, Brink S. Bite force estimates in juvenile Tyrannosaurus rex based on simulated puncture marks. PeerJ 2021; 9:e11450. [PMID: 34141468 PMCID: PMC8179241 DOI: 10.7717/peerj.11450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background Bite marks attributed to adult Tyrannosaurus rex have been subject to numerous studies. However, few bite marks attributed to T. rex have been traced to juveniles, leaving considerable gaps in understanding ontogenetic changes in bite mechanics and force, and the paleoecological role of juvenile tyrannosaurs in the late Cretaceous. Methods Here we present bite force estimates for a juvenile Tyrannosaurus rex based on mechanical tests designed to replicate bite marks previously attributed to a T. rex of approximately 13 years old. A maxillary tooth of the juvenile Tyrannosaurus specimen BMR P2002.4.1 was digitized, replicated in dental grade cobalt chromium alloy, and mounted to an electromechanical testing system. The tooth was then pressed into bovine long bones in various locations with differing cortical bone thicknesses at varying speeds for a total of 17 trials. Forces required to replicate punctures were recorded and puncture dimensions were measured. Results Our experimentally derived linear models suggest bite forces up to 5,641.19 N from cortical bone thickness estimated from puncture marks on an Edmontosaurus and a juvenile Tyrannosaurus. These findings are slightly higher than previously estimated bite forces for a juvenile Tyrannosaurus rex of approximately the same size as BMR P2002.4.1 but fall within the expected range when compared to estimates of adult T. rex. Discussion The results of this study offer further insight into the role of juvenile tyrannosaurs in late Cretaceous ecosystems. Furthermore, we discuss the implications for feeding mechanisms, feeding behaviors, and ontogenetic niche partitioning.
Collapse
Affiliation(s)
- Joseph E Peterson
- Department of Geology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California Berkeley, Berkeley, California, United States of America
| | - Shannon Brink
- Department of Geological Sciences, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
29
|
Du X, Jiang B, Zhang G, Chou CC, Bai Z. Study on the Long Bone Failure Behaviors Under the Indenter Rigid-Contact by Experiment Analysis and Subject-Specific Simulation. J Biomech Eng 2021; 143:021003. [PMID: 32839823 DOI: 10.1115/1.4048203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/08/2022]
Abstract
The bending fracture behaviors of long bone have gained great attention due to the high bending fracture risk during sports events, traffic accidents, and falling incidents, etc. For evaluating bone bending behaviors, most of the previous studies used an indenter in three point bending experiments while the effect of its rigidity was never considered. In this work, using the porcine long bones, the three point bending tests were conducted to explore the bone fracture behaviors under a rigid indenter. In addition to collecting the force applied, the bone fracture dynamic process was recorded by high-speed photography, and the fracture surface profile in mesoscale was observed by the scanning electron microscope (SEM). Based on CT scanning of long bones, the cross section properties of test specimens were calculated by a homemade matlab script for correlating with their failure strengths. Also, a subject-specific finite element (FE) model was developed to identify the outcomes induced by a rigid indenter on simulation. Findings led to conclusions as follows: (1) The tension fracture came with fracture path deflection, which was caused by the bone indentation induced mesoscale crack-opening. Due to this damage before the whole bone fracture, a bone fracture moment correction was established to compensate experimental data. (2) The plastic indentation caused the force fluctuation as suggested by correlation analysis. (3) The bone failure moment correlated with the inertial moment of the bone cross section at the fracture location higher than the traditional cross section area. (4) In the subject-specific simulation, the indentation caused compression fracture under a much lower failure force. Removing the element erosion on the indenter-contacted area only during the validation was verified as a good option to solve this issue.
Collapse
Affiliation(s)
- Xianping Du
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China; Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854
| | - Binhui Jiang
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 2 Lushan S Rd., Yuelu District, Changsha, Hunan 410082, China
| | - Guanjun Zhang
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Clifford C Chou
- Bioengineering Center, Wayne State University, Detroit, MI 48201
| | - Zhonghao Bai
- The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
30
|
Ahmad RA, Aithal HP, Amarpal, Kinjavdekar P, Gope PC, Madhu DN. Biomechanical properties of a novel locking compression plate to stabilize oblique tibial osteotomies in buffaloes. Vet Surg 2020; 50:444-454. [PMID: 33325099 DOI: 10.1111/vsu.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/18/2020] [Accepted: 11/21/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Quantitation of mechanical properties of a novel locking compression plate (LCP) for bovine tibia. STUDY DESIGN Prospective in vitro study. SAMPLE POPULATION Adult Murrah buffalo (250-350 kg) tibiae. METHODS Forty tibiae were randomly assigned to five treatment groups (n = 8/group): intact bone and bone constructs with a standard nonlocking plate, single LCP, double LCP, and novel LCP. During implant application, a mid-diaphyseal, oblique osteotomy was performed in all constructs, which were subsequently tested in axial compression (n = 4 each) or three-point craniocaudal bending (n = 4 each). Novel LCP alone (n = 4) was tested only in bending. Stiffness, yield load, ultimate failure load, and bending moment were determined from the load deformation curves and compared among different treatment groups (P < .05). RESULTS Under compression, yield load of the novel LCP (24.07 ± 3.45 kN) was greater than that of the nonlocking plate (11.10 ± 2.46 kN) and the single LCP (18.01 ± 2.07 kN) but less than that of the double LCP (30.61 ± 1.95 kN), and ultimate failure load of the novel LCP (25.85 ± 4.32 kN) was greater than that of the nonlocking plate (13.18 ± 2.91 kN) but similar to that of the single LCP (21.17 ± 2.33 kN) and the double LCP (32.40 ± 1.46 kN). Bending moment, yield load, and ultimate failure load of the novel LCP were 565.37 ± 79.30 Nm, 7.90 ± 1.14 kN, 9.83 ± 1.38 kN, respectively, which were greater than those of the nonlocking plate and the single LCP but comparable to those of the double LCP. CONCLUSION The novel LCP developed for bovine tibia was mechanically superior to the standard nonlocking plate or the single LCP and comparable to the double LCP. CLINICAL SIGNIFICANCE The novel LCP may provide rigid fixation of tibial diaphyseal fractures in buffaloes and cattle weighing 250 to 350 kg.
Collapse
Affiliation(s)
- Raja A Ahmad
- Division of Surgery, Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Hari Prasad Aithal
- Training and Education Centre, ICAR-Indian Veterinary Research Institute, College of Agriculture Campus, Maharashtra, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, Indian Veterinary Research Institute, Uttar Pradesh, India
| | | | | |
Collapse
|
31
|
Pritchard A, Robison C, Nguyen T, Nielsen BD. Silicon supplementation affects mineral metabolism but not bone density or strength in male broilers. PLoS One 2020; 15:e0243007. [PMID: 33284796 PMCID: PMC7721172 DOI: 10.1371/journal.pone.0243007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022] Open
Abstract
Because leg injuries produce welfare concerns and impact production for broilers, numerous interventions have been suggested as potential solutions. One mineral which may affect bone quality is silicon. The objective of this study was to determine if supplementing bioavailable silicon could affect bone morphology, mineralization, and strength without negatively influencing welfare and meat quality. Male broilers were raised from d 1 after hatching until 42 d of age and randomly assigned to treatment groups for silicon supplementation in water: Control (no supplement, C; n = 125), Normal (0.011 ml supplement/kg bodyweight, N; n = 125) and High (0.063 ml supplement/kg bodyweight, H; n = 125). Toe damage, footpad dermatitis, hock burn, and keel blisters were assessed on d 42. Blood samples were collected from wing veins for serum osteocalcin, pyridinoline cross-links, and mineral analysis. Clinical QCT scans and analysis were conducted immediately before four-point bending tests of tibias. Texture analysis was performed on cooked fillets. Silicon supplementation tended to increase daily water consumption in N and H as compared to C (P = 0.07). Footpad dermatitis and hock burn scores were higher in H than in N or C (P < 0.05 for both comparisons). Supplementation altered serum minerals (P < 0.001), but bone density, morphology, and strength measures were similar among groups. The highest level of supplementation in the current study on a kg bodyweight basis was above recommended intakes but below previous amounts demonstrating silicon’s positive influence on bone, indicating that previously suggested minimum thresholds need to be reevaluated. Factors such as growth rate and mechanical loading likely play a greater role in developing bone quality than trying to supplement on top of good basic nutrition alone.
Collapse
Affiliation(s)
- Abby Pritchard
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Cara Robison
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Tristin Nguyen
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
32
|
Abstract
One of the primary functions of bone is to support the skeleton by withstanding load. In the diseased state, bone's ability to perform this function is altered. Quantification of the features of bone that support its functional behavior, and how they may change with disease, is accomplished through mechanical testing. As such, mechanical testing is a useful tool for scientists studying orthopedic-related diseases. Furthermore, a common animal model used to investigate disease and its treatment is the mouse. Therefore, in this chapter we (1) describe central concepts of mechanical testing, (2) describe factors that influence the mechanical behavior of bone, and (3) describe the application of a widely used mechanical testing technique, four-point bending, to the mouse bone for characterization of its structural properties.
Collapse
|
33
|
Kim Y, Jin S, Park K, Lee J, Lim JH, Yoo B. Effect of Pulse Current and Pre-annealing on Thermal Extrusion of Cu in Through-Silicon via (TSV). Front Chem 2020; 8:771. [PMID: 33195017 PMCID: PMC7591792 DOI: 10.3389/fchem.2020.00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Thermal stress induced by annealing the Cu filling of through-silicon vias (TSVs) requires further investigation as it can inhibit the performance of semiconductor devices. This study reports the filling behavior of TSVs prepared using direct current and pulse current Cu electrodeposition with and without pre-annealing. The thermal extrusion of Cu inside the TSVs was studied by observing the extrusion behavior after annealing and the changes in grain orientation using scanning electron microscopy and electron backscatter diffraction. The bottom-up filling ratio achieved by the direct current approach decreased because the current was used both to fill the TSV and to grow bump defects on the top surface of the wafer. In contrast, pulse current electrodeposition yielded an improved TSV bottom-up filling ratio and no bump defects, which is attributable to strong suppression and thin diffusion layer. Moreover, Cu deposited with a pulse current exhibited lesser thermal extrusion, which was attributed to the formation of nanotwins and a change in the grain orientation from random to (101). Based on the results, thermal extrusion of the total area of the TSVs could be obtained by pulse current electrodeposition with pre-annealing.
Collapse
Affiliation(s)
- Youjung Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, South Korea
| | - Sanghyun Jin
- Department of Material Engineering, Hanyang University, Ansan, South Korea
| | - Kimoon Park
- Department of Advanced Material Science Engineering, Hanyang University, Ansan, South Korea
| | - Jinhyun Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, South Korea
| | - Jae-Hong Lim
- Department of Materials Science and Engineering, Gachon University, Seongnam-Si, South Korea
| | - Bongyoung Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, South Korea.,Department of Material Engineering, Hanyang University, Ansan, South Korea.,Department of Advanced Material Science Engineering, Hanyang University, Ansan, South Korea
| |
Collapse
|
34
|
Rozner R, Vernikov J, Griess-Fishheimer S, Travinsky T, Penn S, Schwartz B, Mesilati-Stahy R, Argov-Argaman N, Shahar R, Monsonego-Ornan E. The Role of Omega-3 Polyunsaturated Fatty Acids from Different Sources in Bone Development. Nutrients 2020; 12:nu12113494. [PMID: 33202985 PMCID: PMC7697266 DOI: 10.3390/nu12113494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) are essential nutrients that must be obtained from the diet. We have previously showed that endogenous n-3 PUFAs contribute to skeletal development and bone quality in fat-1 mice. Unlike other mammals, these transgenic mice, carry the n-3 desaturase gene and thus can convert n-6 to n-3 PUFAs endogenously. Since this model does not mimic dietary exposure to n-3 PUFAs, diets rich in fish and flaxseed oils were used to further elucidate the role of n-3 PUFAs in bone development. Our investigation reveals that dietary n-3 PUFAs decrease fat accumulation in the liver, lower serum fat levels, and alter fatty acid (FA) content in liver and serum. Bone analyses show that n-3 PUFAs improve mechanical properties, which were measured using a three-point bending test, but exert complex effects on bone structure that vary according to its source. In a micro-CT analysis, we found that the flaxseed oil diet improves trabecular bone micro-architecture, whereas the fish oil diet promotes higher bone mineral density (BMD) with no effect on trabecular bone. The transcriptome characterization of bone by RNA-seq identified regulatory mechanisms of n-3 PUFAs via modulation of the cell cycle and peripheral circadian rhythm genes. These results extend our knowledge and provide insights into the molecular mechanisms of bone remodeling regulation induced by different sources of dietary n-3 PUFAs.
Collapse
Affiliation(s)
- Reut Rozner
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Janna Vernikov
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Shelley Griess-Fishheimer
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Tamar Travinsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Svetlana Penn
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Betty Schwartz
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Ronit Mesilati-Stahy
- Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.M.-S.); (N.A.-A.)
| | - Nurit Argov-Argaman
- Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.M.-S.); (N.A.-A.)
| | - Ron Shahar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Efrat Monsonego-Ornan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
- Correspondence:
| |
Collapse
|
35
|
Nguyen JT, Barak MM. Secondary osteon structural heterogeneity between the cranial and caudal cortices of the proximal humerus in white-tailed deer. J Exp Biol 2020; 223:jeb225482. [PMID: 32366689 PMCID: PMC7295587 DOI: 10.1242/jeb.225482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023]
Abstract
Cortical bone remodeling is an ongoing process triggered by microdamage, where osteoclasts resorb existing bone and osteoblasts deposit new bone in the form of secondary osteons (Haversian systems). Previous studies revealed regional variance in Haversian systems structure and possibly material, between opposite cortices of the same bone. As bone mechanical properties depend on tissue structure and material, it is predicted that bone mechanical properties will vary in accordance with structural and material regional heterogeneity. To test this hypothesis, we analysed the structure, mineral content and compressive stiffness of secondary bone from the cranial and caudal cortices of the white-tailed deer proximal humerus. We found significantly larger Haversian systems and canals in the cranial cortex but no significant difference in mineral content between the two cortices. Accordingly, we found no difference in compressive stiffness between the two cortices and thus our working hypothesis was rejected. As the deer humerus is curved and thus likely subjected to bending during habitual locomotion, we expect that similar to other curved long bones, the cranial cortex of the deer humerus is likely subjected primarily to tensile strains and the caudal cortex is subject primarily to compressive strains. Consequently, our results suggest that strain magnitude (larger in compression) and sign (compression versus tension) affect the osteoclasts and osteoblasts differently in the basic multicellular unit. Our results further suggest that osteoclasts are inhibited in regions of high compressive strains (creating smaller Haversian systems) while the osteoid deposition and mineralization by osteoblasts is not affected by strain magnitude and sign.
Collapse
Affiliation(s)
- Jack T Nguyen
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
36
|
Li J, Cui X, Hooper GJ, Lim KS, Woodfield TB. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater 2020; 105:103671. [DOI: 10.1016/j.jmbbm.2020.103671] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
|
37
|
Nedelkovski V, Hahn R, Mayrhofer PH, Steiger-Thirsfeld A, Bernardi J, Thurner PJ. Influence of experimental constraints on micromechanical assessment of micromachined hard-tissue samples. J Mech Behav Biomed Mater 2020; 106:103741. [PMID: 32250952 DOI: 10.1016/j.jmbbm.2020.103741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 11/26/2022]
Abstract
Continuing technological advancement of mechanical characterization at the microscale has enabled the isolation of micron-sized specimens and their direct mechanical characterization. Such techniques, initially developed for engineering materials and MEMS, can also be applied on hard biological materials. Bone is a material with a complex hierarchical structure ranging from the macro- all the way down to the nanoscale. To fully understand bone tissue mechanics, knowledge of the mechanics of all structural elements i.e. at every length scale is necessary. Particularly, the mechanical properties of microstructural elements, such as bone lamellae are still largely unknown. In the last decade, testing protocols have been devised to close this gap including bending and compression of micrometer-sized bone specimens. However, the precision and accuracy of results obtained have not been discussed. In this study, we aim to do exactly this: we validate microbeam bending by testing silicon microbeams with known mechanical constants, and evaluate the precision and sources of errors in both microbeam bending and micropillar compression by means of finite element (FE) modeling. Bending of Si-microbeams reproduced the expected value for the bending modulus within 17% accuracy, although the effect of geometrical uncertainties was estimated to result in relative errors of up to 50%. The deformation of constraining bulk material had a smaller influence, with relative errors of 11%, for microbeam bending and 25% for micropillar compression. For the latter this error could be sufficiently eliminated by the Sneddon correction. The tapering of micropillars had a negligible effect on overall apparent stiffness, but induced inhomogeneous stress state within micropillars may lead to superposed structural deformation mechanisms and be responsible for failure patterns observed in past studies.
Collapse
Affiliation(s)
- Vedran Nedelkovski
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria
| | - Rainer Hahn
- Institute of Materials Science and Technology, TU Wien, 1060, Vienna, Austria
| | - Paul H Mayrhofer
- Institute of Materials Science and Technology, TU Wien, 1060, Vienna, Austria
| | | | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy, TU Wien, 1040, Vienna, Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1060, Vienna, Austria.
| |
Collapse
|
38
|
Mesenchymal MACF1 Facilitates SMAD7 Nuclear Translocation to Drive Bone Formation. Cells 2020; 9:cells9030616. [PMID: 32143362 PMCID: PMC7140458 DOI: 10.3390/cells9030616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a large crosslinker that contributes to cell integrity and cell differentiation. Recent studies show that MACF1 is involved in multiple cellular functions such as neuron development and epidermal migration, and is the molecular basis for many degenerative diseases. MACF1 is highly abundant in bones, especially in mesenchymal stem cells; however, its regulatory role is still less understood in bone formation and degenerative bone diseases. In this study, we found MACF1 expression in mesenchymal stem cells (MSCs) of osteoporotic bone specimens was significantly lower. By conditional gene targeting to delete the mesenchymal Macf1 gene in mice, we observed in MSCs decreased osteogenic differentiation capability. During early stage bone development, the MACF1 conditional knockout (cKO) mice exhibit significant ossification retardation in skull and hindlimb, and by adulthood, mesenchymal loss of MACF1 attenuated bone mass, bone microarchitecture, and bone formation capability significantly. Further, we showed that MACF1 interacts directly with SMAD family member 7 (SMAD7) and facilitates SMAD7 nuclear translocation to initiate downstream osteogenic pathways. Hopefully these findings will expand the biological scope of the MACF1 gene, and provide an experimental basis for targeting MACF1 in degenerative bone diseases such as osteoporosis.
Collapse
|
39
|
Mirzavandi Chegeni M, Mottaghitalab M, Hosseini Moghaddam SH, Golshekan M. Broiler intestine DMT1 gene expression and bone characteristics, as affected by in ovo injection of different forms of manganese. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1646106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Majid Mottaghitalab
- Department of Animal Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| | | | - Mostafa Golshekan
- Institute of Medical Advanced Technologies, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
40
|
Pineda-Gomez P, Hernández-Becerra E, Rojas-Molina I, Rosales-Rivera A, Rodríguez-Garcia ME. The Effect of Calcium Deficiency on Bone Properties in Growing Rats. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401314666180919142102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In this work, the study of the physicochemical properties of the rat bones
that were fed under severe and moderate calcium depletion was carried out. Calcium depletion is a
common problem in the diet of the third world.
Objective:
Three calcium levels: 5000, 2500, and 1039 mg/kg, were used in the diets to evaluate the
influence of calcium deficiency on the bone quality by post-mortem tests.
Methods:
Inductive Coupled Plasma was used to study the elemental chemical composition of the
bones; X-ray diffraction evaluated the bone structure and crystallinity; the microstructure and architecture
were investigated using scanning electron microscopy; thermogravimetric analysis assessed
the ratio between organic and inorganic phases of bones. All of these results were correlated with
flexion and compression test determining the biomechanical properties to evaluate the bone quality.
Results:
The results showed that severe calcium depletion (75% depletion, 1039 mg/kg) was a critical
factor in the unsuitable mineralization process responsible for the deterioration of bone quality.
Bone architecture with delicate trabeculae caused the poor mechanical response. For moderate calcium
depletion (50% of the request, 2500 mg/kg), the bone quality and its mechanical behavior
showed less deterioration in comparison with bones of severe calcium depletion diet.
Conclusion:
By using this animal model, the effect of calcium depletion in bone mineralization in
rats was understood and can be extrapolated for humans.
Collapse
Affiliation(s)
- Posidia Pineda-Gomez
- Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales, Caldas, Colombia
| | - Ezequiel Hernández-Becerra
- Doctorado en Ciencias Quimico Biologicas, Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las campanas S/N Queretaro, Qro., 76010, Mexico
| | - Isela Rojas-Molina
- Doctorado en Ciencias Quimico Biologicas, Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las campanas S/N Queretaro, Qro., 76010, Mexico
| | - Andres Rosales-Rivera
- Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales, Caldas, Colombia
| | - Mario E. Rodríguez-Garcia
- Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico Campus Juriquilla C.P.7600 Queretaro, Qro, Mexico
| |
Collapse
|
41
|
Pinet K, McLaughlin KA. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev Biol 2019; 451:134-145. [DOI: 10.1016/j.ydbio.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
42
|
Asgari M, Abi-Rafeh J, Hendy GN, Pasini D. Material anisotropy and elasticity of cortical and trabecular bone in the adult mouse femur via AFM indentation. J Mech Behav Biomed Mater 2019; 93:81-92. [DOI: 10.1016/j.jmbbm.2019.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
|
43
|
Mohammad NA, Razaly NI, Rani MDM, Aris MSM, Effendy NM. An Evidence-Based Review: The Effects of Malaysian Traditional Herbs on Osteoporotic Rat Models. Malays J Med Sci 2019; 25:6-30. [PMID: 30914844 PMCID: PMC6422536 DOI: 10.21315/mjms2018.25.4.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
Osteoporosis is considered a silent disease, the early symptoms of which often go unrecognised. Osteoporosis causes bone loss, reduces mineralised density, and inevitably leads to bone fracture. Hormonal deficiencies due to aging or drug induction are also frequently attributed to osteoporosis. Nevertheless, the phytochemical content of natural plants has been proven to significantly reduce osteoporotic conditions. A systematic review was conducted by this study to identify research specifically on the effects of Malaysian herbs such as Piper sarmentosum, Eurycoma longifolia and Labisia pumila on osteoporotic bone changes. This review consisted of a comprehensive search of five databases for the effects of specific herbs on osteoporotic bone change. These databases were Web of Science (WOS), Medline, Scopus, ScienceDirect and PubMed. The articles were selected throughout the years, were limited to the English language and fully documented. Duplication, irrelevant titles, different herbs and in vitro studies were excluded, including those that are not original research papers. A total of 399 potential studies were identified, but only 21 samples were accepted based on the inclusion and exclusion criteria. Six of the twenty one studies were on Piper sarmentosum, six on Eurycoma longifolia, and the remaining nine studies were on Labisia pumila. Overall, in three of the studies a glucocorticoid-induced model was used, while in 12 of the studies an ovariectomised model was used, and for the other six studies an orchidectomised model was used as the osteoporotic model. All of the studies reported varied results based on the type of herbs used, but in comparison to Eurycoma longifolia, Piper sarmentosum and Labisia pumila recorded better anti-osteoporotic effects, while the majority of studies on Eurycoma longifolia were unable to preserve bone strength.
Collapse
Affiliation(s)
- Nur Adlina Mohammad
- Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia
| | - Norfarah Izzaty Razaly
- Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia
| | - Mohd Dzulkhairi Mohd Rani
- Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia
| | - Muhammad Shamsir Mohd Aris
- Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia
| | - Nadia Mohd Effendy
- Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Khor F, Cronin D, Watson B, Gierczycka D, Malcolm S. Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation. J Mech Behav Biomed Mater 2018; 87:213-229. [DOI: 10.1016/j.jmbbm.2018.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 12/01/2022]
|
45
|
Singh A, Scholze M, Hammer N. On the influence of surface coating on tissue biomechanics - effects on rat bones under routine conditions with implications for image-based deformation detection. BMC Musculoskelet Disord 2018; 19:387. [PMID: 30368235 PMCID: PMC6204271 DOI: 10.1186/s12891-018-2308-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background Biomechanical testing using image-based deformation detection techniques such as digital image correlation (DIC) offer optical contactless methods for strain and displacement measurements of biological tissues. However, given the need of most samples to be speckled for image correlation using sprays, chemical alterations with impact on tissue mechanicals may result. The aim of this study was to assess the impact of such surface coating on the mechanical properties of rat bones, under routine laboratory conditions including multiple freeze-thaw cycles. Methods Two groups of rat bones, highly-uniform and mixed-effects, were assigned to six subgroups consisting of three types of surface coating (uncoated, commercially-available water- and solvent-based sprays) and two types of bone conditions (periosteum attached and removed). The mixed-effects group had undergone an additional freeze-thaw cycle at − 20 degrees. All bones underwent a three-point bending test ranging until material failure. Results Coating resulted in similar and non-significantly different mechanical properties of rat bones, indicated by elastic moduli, maximum force and bending stress. Scanning electron microscopy showed more pronounced mechanical alterations related to the additional freeze-thaw cycle, with fewer cracks being present in a bone from the highly-uniform group. Conclusions This study has concluded that surface coating with water- or solvent-based sprays for enhancing image correlation for DIC and having an additional freeze-thaw cycle do not significantly alter mechanical properties of rat bones. Therefore, this method may be recommended as an effective way of obtaining a speckled pattern.
Collapse
Affiliation(s)
- Aqeeda Singh
- Department of Anatomy, University of Otago, Lindo Ferguson Building, 270 Great King St, Dunedin, 9016, New Zealand
| | - Mario Scholze
- Department of Anatomy, University of Otago, Lindo Ferguson Building, 270 Great King St, Dunedin, 9016, New Zealand.,Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Lindo Ferguson Building, 270 Great King St, Dunedin, 9016, New Zealand. .,Department of Orthopedic and Trauma Surgery, University Clinics of Leipzig, Leipzig, Germany. .,Fraunhofer IWU, Dresden, Germany.
| |
Collapse
|
46
|
Bailey S, Vashishth D. Mechanical Characterization of Bone: State of the Art in Experimental Approaches-What Types of Experiments Do People Do and How Does One Interpret the Results? Curr Osteoporos Rep 2018; 16:423-433. [PMID: 29915968 PMCID: PMC8078087 DOI: 10.1007/s11914-018-0454-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The mechanical integrity of bone is determined by the direct measurement of bone mechanical properties. This article presents an overview of the current, most common, and new and upcoming experimental approaches for the mechanical characterization of bone. The key outcome variables of mechanical testing, as well as interpretations of the results in the context of bone structure and biology are also discussed. RECENT FINDINGS Quasi-static tests are the most commonly used for determining the resistance to structural failure by a single load at the organ (whole bone) level. The resistance to crack initiation or growth by fracture toughness testing and fatigue loading offers additional and more direct characterization of tissue material properties. Non-traditional indentation techniques and in situ testing are being increasingly used to probe the material properties of bone ultrastructure. Destructive ex vivo testing or clinical surrogate measures are considered to be the gold standard for estimating fracture risk. The type of mechanical test used for a particular investigation depends on the length scale of interest, where the outcome variables are influenced by the interrelationship between bone structure and composition. Advancement in the sensitivity of mechanical characterization techniques to detect changes in bone at the levels subjected to modifications by aging, disease, and/or pharmaceutical treatment is required. As such, a number of techniques are now available to aid our understanding of the factors that contribute to fracture risk.
Collapse
Affiliation(s)
- Stacyann Bailey
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
47
|
Yamanaka JS, Yanagihara GR, Carlos BL, Ramos J, Brancaleon BB, Macedo AP, Issa JPM, Shimano AC. A high-fat diet can affect bone healing in growing rats. J Bone Miner Metab 2018; 36:255-263. [PMID: 28516218 DOI: 10.1007/s00774-017-0837-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
Abstract
A high-fat diet (HFD) can have a negative effect on bone quality in young and old people. Although bone healing in children is normally efficient, there is no evidence that children who have a diet rich in fat have compromised bone fracture regeneration compared with children with recommended dietary fat levels. The purpose of the present study was to evaluate the effects of an HFD on bone healing in growing female rats. Twenty-six postweaning female Wistar rats were divided into two groups (13 animals per group): a standard diet (SD) group and an HFD (with 60% of energy from fat) group. The rats received the assigned diets for 5 weeks, and in the third week they were submitted to an osteotomy procedure of the left tibia. Body mass and feed intake were recorded during the experiment. One day before euthanasia, an insulin tolerance test was performed. After euthanasia, the tibiae were removed and analyzed by densitometry, mechanical testing, histomorphometry, stereology and immunohistochemistry. An HFD caused an adaptive response to maintain energetic balance by decreasing feed intake and causing insulin insensitivity. There was no change in bone mineral density, collagen amount and immunostaining for bone formation, but maximal load and stiffness were decreased in the HFD group. In addition, bone volume had a tendency to be higher in the SD group than in the HFD group. Compared with rats receiving an SD, growing rats receiving an HFD for 5 weeks had similar bone mineral density but altered mechanical properties at the osteotomy defect site.
Collapse
Affiliation(s)
- Jéssica Suzuki Yamanaka
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Rezende Yanagihara
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Leonel Carlos
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Júnia Ramos
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Brígida Batista Brancaleon
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Macedo
- Departamento de Materiais Dentários e Próteses, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Paulo Mardegan Issa
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antônio Carlos Shimano
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
48
|
Abstract
Bows and arrows are used more for recreation, sport and hunting in the Western world and tend not to be as popular a weapon as firearms or knives. Yet there are still injuries and fatalities caused by these low-velocity weapons due to their availability to the public and that a licence is not required to own them. This study aimed to highlight the penetration capabilities of aluminium arrows into soft tissue and bones in the presence of clothing. Further from that, how the type and fit of clothing as well as arrowhead type contribute to penetration capacity. In this study ballistic gelatine blocks (non-clothed and loose fit or tight fit clothed) were shot using a 24lb weight draw recurve bow and aluminium arrows accompanied by four different arrowheads (bullet, judo, blunt and broadhead). The penetration capability of aluminium arrows was examined, and the depth of penetration was found to be dependent on the type of arrowhead used as well as by the type and fit or lack thereof of the clothing covering the block. Loose fit clothing reduced penetration with half of the samples, reducing penetration capacity by percentages between 0% and 98.33%, at a range of 10m. While the remaining half of the samples covered with tight clothing led to reductions in penetration of between 14.06% and 94.12%. The damage to the clothing and the gelatine (puncturing, cutting and tearing) was affected by the shape of the arrowhead, with the least damaged caused by the blunt arrowheads and the most by the broadhead arrows. Clothing fibres were also at times found within the projectile tract within the gelatine showing potential for subsequent infection of an individual with an arrow wound. Ribs, femur bones and spinal columns encased in some of the gelatine blocks all showed varying levels of damage, with the most and obvious damage being exhibited by the ribs and spinal column. The information gleaned from the damage to clothing, gelatine blocks and bones could potentially be useful for forensic investigators, for example, when a body has been discovered with no weapons or gunshot residue present.
Collapse
|
49
|
Schulze C, Weinmann M, Schweigel C, Keßler O, Bader R. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb. MATERIALS 2018; 11:ma11010124. [PMID: 29342864 PMCID: PMC5793622 DOI: 10.3390/ma11010124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.
Collapse
Affiliation(s)
- Christian Schulze
- Biomechanics and Implant Technology Research Laboratory (FORBIOMIT), Department of Orthopaedics, University Medicine Rostock, Doberaner Straße 142, 18057 Rostock, Germany.
| | - Markus Weinmann
- H.C. Starck Tantalum and Niobium GmbH, Im Schleeke 78-91, 38642 Goslar, Germany.
| | - Christoph Schweigel
- Chair of Material Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert- Einstein- Str. 2, 18059 Rostock, Germany.
| | - Olaf Keßler
- Chair of Material Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert- Einstein- Str. 2, 18059 Rostock, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory (FORBIOMIT), Department of Orthopaedics, University Medicine Rostock, Doberaner Straße 142, 18057 Rostock, Germany.
| |
Collapse
|
50
|
An in vitro biomechanical investigation of an interlocking nail system developed for buffalo tibia. Vet Comp Orthop Traumatol 2017; 27:36-44. [DOI: 10.3415/vcot-12-12-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 09/09/2013] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: The objectives of the study were to determine the mechanical properties of a customized buffalo interlocking nail (BIN), intact buffalo tibia, and ostectomized tibia stabilized with BIN in different configurations, as well as to assess the convenience of interlocking nailing in buffalo tibia.Methods: The BIN (316L stainless steel, 12 mm diameter, 250 mm long, nine-hole solid nails with 10° proximal bend) alone was loaded in compression and three-point bending (n = 4 each); intact tibiae and ostectomized tibiae (of buffaloes aged 5–8 years, weighing 300–350 kg) stabilized with BIN using 4.9 mm standard or modified locking bolts (4 or 8) in different configurations were subjected to axial compression, cranio-caudal three-point bending and torsion (n = 4 each) using a universal testing machine. Mechanical parameters were determined from load-displacement curves and compared using Kruskal-Wallis test (p <0.05).Results: Intact tibiae were significantly stronger than BIN and bone-BIN constructs in all testing modes. The strength of fixation constructs with eight locking bolts was significantly more than with four bolts. Overall strength of fixation with modified locking bolts was better than standard bolts. Based on technical ease and biomechanical properties, cranio-caudal insertion of bolts into the bone was found better than medio-lateral insertion.Clinical significance: The eight bolt BINbone constructs could be useful to treat tibial fractures in large ruminants, especially buffaloes.
Collapse
|