1
|
Ding J, Wang Y, Liang J, He Z, Zhai C, He Y, Xu J, Lei L, Mu J, Zheng M, Liu B, Shi M. Spatiotemporal pattern and suitable areas analysis of equine influenza in global scale (2005-2022). Front Vet Sci 2024; 11:1395327. [PMID: 38887536 PMCID: PMC11182002 DOI: 10.3389/fvets.2024.1395327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Equine influenza (EI) is a severe infectious disease that causes huge economic losses to the horse industry. Spatial epidemiology technology can explore the spatiotemporal distribution characteristics and occurrence risks of infectious diseases, it has played an important role in the prevention and control of major infectious diseases in humans and animals. For the first time, this study conducted a systematic analysis of the spatiotemporal distribution of EI using SaTScan software and investigated the important environmental variables and suitable areas for EI occurrence using the Maxent model. A total of 517 occurrences of EI from 2005 to 2022 were evaluated, and 14 significant spatiotemporal clusters were identified. Furthermore, a Maxent model was successfully established with high prediction accuracy (AUC = 0.920 ± 0.008). The results indicated that annual average ultraviolet radiation, horse density, and precipitation of the coldest quarter were the three most important environmental variables affecting EI occurrence. The suitable areas for EI occurrence are widely distributed across all continents, especially in Asia (India, Mongolia, and China) and the Americas (Brazil, Uruguay, USA, and Mexico). In the future, these suitable areas will expand and move eastward. The largest expansion is predicted under SSP126 scenarios, while the opposite trend will be observed under SSP585 scenarios. This study presents the spatial epidemiological characteristics of EI for the first time. The results could provide valuable scientific insights that can effectively inform prevention and control strategies in regions at risk of EI worldwide.
Collapse
Affiliation(s)
- Jiafeng Ding
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Nanning New Technology Entrepreneur Center, Nanning, China
| | - Yu Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Jinjiao Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Zhenhuan He
- Shenyang Zhengda Animal Husbandry Co., Ltd., Shenyang, China
| | - Changhong Zhai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yinghao He
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Jiayin Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Lei Lei
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Jing Mu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Boyang Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mingxian Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Gonzalez-Obando J, Forero JE, Zuluaga-Cabrera AM, Ruiz-Saenz J. Equine Influenza Virus: An Old Known Enemy in the Americas. Vaccines (Basel) 2022; 10:vaccines10101718. [PMID: 36298583 PMCID: PMC9610386 DOI: 10.3390/vaccines10101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Equine influenza is a highly contagious disease caused by the H3N8 equine influenza virus (EIV), which is endemically distributed throughout the world. It infects equids, and interspecies transmission to dogs has been reported. The H3N8 Florida lineage, which is divided into clades 1 and 2, is the most representative lineage in the Americas. The EIV infects the respiratory system, affecting the ciliated epithelial cells and preventing the elimination of foreign bodies and substances. Certain factors related to the disease, such as an outdated vaccination plan, age, training, and close contact with other animals, favor the presentation of equine influenza. This review focuses on the molecular, pathophysiological, and epidemiological characteristics of EIV in the Americas to present updated information to achieve prevention and control of the virus. We also discuss the need for monitoring the disease, the use of vaccines, and the appropriate application of those biologicals, among other biosecurity measures that are important for the control of the virus.
Collapse
Affiliation(s)
- Juliana Gonzalez-Obando
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
| | - Jorge Eduardo Forero
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Angélica M Zuluaga-Cabrera
- Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria Autónoma de las Américas, Circular 73 N°35-04, Medellín 050010, Colombia
| | - Julián Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
- Correspondence:
| |
Collapse
|
3
|
Wille M, Tolf C, Latorre-Margalef N, Fouchier RAM, Halpin RA, Wentworth DE, Ragwani J, Pybus OG, Olsen B, Waldenström J. Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evol 2022; 8:veac074. [PMID: 36128050 PMCID: PMC9477075 DOI: 10.1093/ve/veac074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at a high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-9) from mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into three distinct lineages, structured by year of isolation. Specifically, across the 8 years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigenic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.
Collapse
Affiliation(s)
- Michelle Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Neus Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | - Jayna Ragwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London AL9 7TA, UK
| | - Björn Olsen
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala SE751 85, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| |
Collapse
|
4
|
Whitlock F, Murcia PR, Newton JR. A Review on Equine Influenza from a Human Influenza Perspective. Viruses 2022; 14:v14061312. [PMID: 35746783 PMCID: PMC9229935 DOI: 10.3390/v14061312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) have a main natural reservoir in wild birds. IAVs are highly contagious, continually evolve, and have a wide host range that includes various mammalian species including horses, pigs, and humans. Furthering our understanding of host-pathogen interactions and cross-species transmissions is therefore essential. This review focuses on what is known regarding equine influenza virus (EIV) virology, pathogenesis, immune responses, clinical aspects, epidemiology (including factors contributing to local, national, and international transmission), surveillance, and preventive measures such as vaccines. We compare EIV and human influenza viruses and discuss parallels that can be drawn between them. We highlight differences in evolutionary rates between EIV and human IAVs, their impact on antigenic drift, and vaccine strain updates. We also describe the approaches used for the control of equine influenza (EI), which originated from those used in the human field, including surveillance networks and virological analysis methods. Finally, as vaccination in both species remains the cornerstone of disease mitigation, vaccine technologies and vaccination strategies against influenza in horses and humans are compared and discussed.
Collapse
Affiliation(s)
- Fleur Whitlock
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pablo R. Murcia
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
| | - J. Richard Newton
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Correspondence:
| |
Collapse
|
5
|
El-Hage C, Hartley C, Savage C, Watson J, Gilkerson J, Paillot R. Assessment of Humoral and Long-Term Cell-Mediated Immune Responses to Recombinant Canarypox-Vectored Equine Influenza Virus Vaccination in Horses Using Conventional and Accelerated Regimens Respectively. Vaccines (Basel) 2022; 10:vaccines10060855. [PMID: 35746463 PMCID: PMC9229645 DOI: 10.3390/vaccines10060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
During Australia's first and only outbreak of equine influenza (EI), which was restricted to two northeastern states, horses were strategically vaccinated with a recombinant canarypox-vectored vaccine (rCP-EIV; ProteqFlu™, Merial P/L). The vaccine encoded for haemagglutinin (HA) belonging to two equine influenza viruses (EIVs), including an American and Eurasian lineage subtype that predated the EIV responsible for the outbreak (A/equine/Sydney/07). Racehorses in Victoria (a southern state that remained free of EI) were vaccinated prophylactically. Although the vaccine encoded for (HA) belonged to two EIVs of distinct strains of the field virus, clinical protection was reported in vaccinated horses. Our aim is to assess the extent of humoral immunity in one group of vaccinated horses and interferon-gamma ((EIV)-IFN-γ)) production in the peripheral blood mononuclear cells (PBMCs) of a second population of vaccinated horses. Twelve racehorses at work were monitored for haemagglutination inhibition antibodies to three antigenically distinct equine influenza viruses (EIVs) The EIV antigens included two H3N8 subtypes: A/equine/Sydney/07) A/equine/Newmarket/95 (a European lineage strain) and an H7N7 subtype (A/equine/Prague1956). Cell-mediated immune responses of: seven racehorses following an accelerated vaccination schedule, two horses vaccinated using a conventional regimen, and six unvaccinated horses were evaluated by determining (EIV)-IFN-γ levels. Antibody responses following vaccination with ProteqFlu™ were cross-reactive in nature, with responses to both H3N8 EIV strains. Although (EIV)IFN-γ was clearly detected following the in vitro re-stimulation of PBMC, there was no significant difference between the different groups of horses. Results of this study support reports of clinical protection of Australian horses following vaccination with Proteq-Flu™ with objective evidence of humoral cross-reactivity to the outbreak viral strain A/equine/Sydney/07.
Collapse
Affiliation(s)
- Charles El-Hage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
- Correspondence: ; Tel.: +61-417166029
| | - Carol Hartley
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Catherine Savage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - James Watson
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3216, Australia;
| | - James Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford CM1 3RR, UK;
| |
Collapse
|
6
|
Wang T, Hu L, Liu M, Wang T, Hu X, Li Y, Liu W, Li Y, Wang Y, Ren H, Zhang W, Wang C, Li L. The Emergence of Viral Encephalitis in Donkeys by Equid Herpesvirus 8 in China. Front Microbiol 2022; 13:840754. [PMID: 35308333 PMCID: PMC8930201 DOI: 10.3389/fmicb.2022.840754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
The equine herpesvirus type 8 (EHV-8) can cause significant economic losses in the global horses and donkey industry. The disease has been associated with abortion and respiratory symptoms. However, it is rare for a study to be reported about donkeys with neurological diseases induced by EHV-8 infection. In the present study, one 2-year-old male donkey, from a large-scale donkey farm in China, died with a severe neurological disorder. The causative agent, donkey/Shandong/10/2021 (GenBank accession: OL856098), was identified and isolated from the brain tissue of the dead donkey. Meanwhile, BALB/c mice were used as an animal model to evaluate the pathogenicity of the EHV-8 isolate. Our data showed that EHV-8 was positive in brains by PCR and immunohistochemistry, which induced typical viral encephalitis lesions in both donkey and mice consistent with clinical signs. For the first time, we reported that EHV-8 had been isolated from donkeys with a neurological illness in China, which is helpful to reveal the pathogenicity of EHV-8 in the donkey.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Leyu Hu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengyuan Liu
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Tianjiao Wang
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xinyao Hu
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Ying Li
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yubao Li
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wei Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changfa Wang
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- College of Agronomy, Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Khan A, Mushtaq MH, Muhammad J, Ahmed B, Khan EA, Khan A, Zakki SA, Altaf E, Haq I, Saleem A, Warraich MA, Ahmed N, Rabaan AA. Global epidemiology of Equine Influenza viruses; "A possible emerging zoonotic threat in future" an extensive systematic review with evidence. BRAZ J BIOL 2021; 83:e246591. [PMID: 34468519 DOI: 10.1590/1519-6984.246591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
There are different opinions around the World regarding the zoonotic capability of H3N8 equine influenza viruses. In this report, we have tried to summarize the findings of different research and review articles from Chinese, English, and Mongolian Scientific Literature reporting the evidence for equine influenza virus infections in human beings. Different search engines i.e. CNKI, PubMed, ProQuest, Chongqing Database, Mongol Med, and Web of Knowledge yielded 926 articles, of which 32 articles met the inclusion criteria for this review. Analyzing the epidemiological and Phylogenetic data from these articles, we found a considerable experimental and observational evidence of H3N8 equine influenza viruses infecting human being in different parts of the World in the past. Recently published articles from Pakistan and China have highlighted the emerging threat and capability of equine influenza viruses for an epidemic in human beings in future. In this review article we have summarized the salient scientific reports published on the epidemiology of equine influenza viruses and their zoonotic aspect. Additionally, several recent developments in the start of 21st century, including the transmission and establishment of equine influenza viruses in different animal species i.e. camels and dogs, and presumed encephalopathy associated to influenza viruses in horses, have documented the unpredictable nature of equine influenza viruses. In sum up, several reports has highlighted the unpredictable nature of H3N8 EIVs highlighting the need of continuous surveillance for H3N8 in equines and humans in contact with them for novel and threatening mutations.
Collapse
Affiliation(s)
- A Khan
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - M H Mushtaq
- The University of Veterinary and Animal Sciences, Department of Epidemiology and Public Health, Lahore, Pakistan
| | - J Muhammad
- The University of Haripur, Department of Microbiology, Haripur, Pakistan
| | - B Ahmed
- Nanjing Medical University, School of Pharmacy, Nanjing, Jiangsu, China
| | - E A Khan
- Lady Reading Hospital Peshawar, Peshawar, Pakistan
| | - A Khan
- Pir Mehr Ali Shah Arid Agriculture University, Department of Clinical Medicine and Surgery, Rawalpindi, Pakistan
| | - S A Zakki
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - E Altaf
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - I Haq
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - A Saleem
- The University of Haripur, Department of Microbiology, Haripur, Pakistan
| | - M A Warraich
- Marketing Rennes School of Business, Rennes, France
| | - N Ahmed
- Centre of Excellence in Molecular Biology, Lahore, Pakistan
| | - A A Rabaan
- Johns Hopkins Aramco Healthcare, Molecular Diagnostic Laboratory, Dhahran, Saudi Arabia
| |
Collapse
|
8
|
Alnaeem A, Shawaf T, Ali AM, Hemida MG. Clinical observations and molecular detection of Type-A influenza virus in some of the family Equidae in eastern Saudi Arabia winter-2019. Vet Res Commun 2021; 45:423-430. [PMID: 34435308 DOI: 10.1007/s11259-021-09822-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES In the current study, we are investigating the viral causes of some respiratory clinical signs in some animals belongs to the family Equidae in eastern Saudi Arabia (ESA) during winter- 2019. We observed the progression of severe respiratory clinical signs among some horses, donkeys, and ponies in the ESA. Animals showed rapid respiration, fever, nasal discharges (started as serous then changed into mucopurulent with the progression of the infection per some animals). We conducted a longitudinal study to monitor the progression of this outbreak. We conducted molecular surveillance for the influenza virus Type-A using real-time PCR and regular RT-PCR. We also conducted a serosurveillance of the virus in sera of the tested animals using the commercially available enzyme-linked immunosorbent assay (ELISA). RESULTS The molecular detection of the Influenza virus type-A virus from nasal swabs of the affected animals using the real-time PCR results clearly showing that 35.1% of the tested horses, donkeys, and ponies were positives. Further confirmation was achieved by reporting the seroconversion of some of the affected animals. Several attempts were conducted to isolate the circulating influenza strains using the embryonated chicken eggs were unsuccessful. This was based on the absence of any amplicons in the harvested embryonated egg fluids using some oligonucleotides for the common influenza virus genes (HA, NA, M, and N). Meanwhile, ELISA results revealed the detection of the antibodies in sera of horses and donkeys 72.9%. Seroconversion was reported in many animals several weeks after the onset of the outbreak. Taken together all these pieces of evidence, we confirm an influenza virus type-A outbreak among the tested animals during winter 2019.
Collapse
Affiliation(s)
- Abdelmohsen Alnaeem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Turke Shawaf
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Ali M Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al Hofuf, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, Egypt
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia. .,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, Egypt.
| |
Collapse
|
9
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
10
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
11
|
Olguin-Perglione C, Barrandeguy ME. An Overview of Equine Influenza in South America. Viruses 2021; 13:v13050888. [PMID: 34065839 PMCID: PMC8151294 DOI: 10.3390/v13050888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Equine influenza virus (EIV) is one of the most important respiratory pathogens of horses as outbreaks of the disease lead to significant economic losses worldwide. In this review, we summarize the information available on equine influenza (EI) in South America. In the region, the major events of EI occurred almost in the same period in the different countries, and the EIV isolated showed high genetic identity at the hemagglutinin gene level. It is highly likely that the continuous movement of horses, some of them subclinically infected, among South American countries, facilitated the spread of the virus. Although EI vaccination is mandatory for mobile or congregates equine populations in the region, EI outbreaks continuously threaten the equine industry. Vaccine breakdown could be related to the fact that many of the commercial vaccines available in the region contain out-of-date EIV strains, and some of them even lack reliable information about immunogenicity and efficacy. This review highlights the importance of disease surveillance and reinforces the need to harmonize quarantine and biosecurity protocols, and encourage vaccine manufacturer companies to carry out quality control procedures and update the EIV strains in their products.
Collapse
Affiliation(s)
- Cecilia Olguin-Perglione
- Instituto de Virología CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina;
- Correspondence: ; Tel.: +54-11-4621-1447 (ext. 3368)
| | - María Edith Barrandeguy
- Instituto de Virología CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina;
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar B1630AHU, Argentina
| |
Collapse
|
12
|
Pavulraj S, Bergmann T, Trombetta CM, Marchi S, Montomoli E, Alami SSE, Ragni-Alunni R, Osterrieder N, Azab W. Immunogenicity of Calvenza-03 EIV/EHV ® Vaccine in Horses: Comparative In Vivo Study. Vaccines (Basel) 2021; 9:vaccines9020166. [PMID: 33671378 PMCID: PMC7922102 DOI: 10.3390/vaccines9020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/20/2023] Open
Abstract
Equine influenza (EI) is a highly contagious acute respiratory disease of equines that is caused mainly by the H3N8 subtype of influenza A virus. Vaccinating horses against EI is the most effective strategy to prevent the infection. The current study aimed to compare the kinetics of EI-specific humoral- and cell-mediated immunity (CMI) in horses receiving either identical or mixed vaccinations. Two groups of horses were previously (six months prior) vaccinated with either Calvenza 03 EIV EHV® (G1) or Fluvac Innovator® (G2) vaccine. Subsequently, both groups received a booster single dose of Calvenza 03 EIV EHV®. Immune responses were assessed after 10 weeks using single radial hemolysis (SRH), virus neutralization (VN), and EliSpot assays. Our results revealed that Calvenza-03 EIV/EHV®-immunized horses had significantly higher protective EI-specific SRH antibodies and VN antibodies. Booster immunization with Calvenza-03 EIV/EHV® vaccine significantly stimulated cell-mediated immune response as evidenced by significant increase in interferon-γ-secreting peripheral blood mononuclear cells. In conclusion, Calvenza-03 EIV/EHV® vaccine can be safely and effectively used for booster immunization to elicit optimal long persisting humoral and CMI responses even if the horses were previously immunized with a heterogeneous vaccine.
Collapse
Affiliation(s)
- Selvaraj Pavulraj
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
| | - Tobias Bergmann
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
- VisMederi srl, 53100 Siena, Italy
| | | | - Roberto Ragni-Alunni
- Equine Marketing Division, Boehringer Ingelheim META, Dubai P.O. Box 507066, United Arab Emirates;
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
- Correspondence:
| |
Collapse
|
13
|
Determining Equine Influenza Virus Vaccine Efficacy-The Specific Contribution of Strain Versus Other Vaccine Attributes. Vaccines (Basel) 2020; 8:vaccines8030501. [PMID: 32899189 PMCID: PMC7564743 DOI: 10.3390/vaccines8030501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/02/2023] Open
Abstract
Vaccination is an effective tool to limit equine influenza virus (EIV H3N8) infection, a contagious respiratory disease with potentially huge economic impact. The study assessed the effects of antigenic change on vaccine efficacy and the need for strain update. Horses were vaccinated (V1 and V2) with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza, group 2, FC1 and European strains) or a carbomer-adjuvanted, modified vector vaccine (ProteqFlu, group 3, FC1 and FC2 HA genes). Serology (SRH, HI, VN), clinical signs and viral shedding were assessed in comparison to unvaccinated control horses. The hypothesis was that group 2 (no FC2 vaccine strain) would be less well protected than group 3 following experimental infection with a recent FC2 field strain (A/equi-2/Wexford/14) 4.5 months after vaccination. All vaccinated horses had antibody titres to FC1 and FC2. After challenge, serology increased more markedly in group 3 than in group 2. Vaccinated horses had significantly lower total clinical scores and viral shedding. Unexpectedly, viral RNA shedding was significantly lower in group 2 than in group 3. Vaccination induced protective antibody titres to FC1 and FC2 and reduced clinical signs and viral shedding. The two tested vaccines provided equivalent protection against a recent FC2 EIV field strain.
Collapse
|
14
|
Olguin-Perglione C, Vissani MA, Alamos F, Tordoya MS, Barrandeguy M. Multifocal outbreak of equine influenza in vaccinated horses in Argentina in 2018: Epidemiological aspects and molecular characterisation of the involved virus strains. Equine Vet J 2020; 52:420-427. [PMID: 31494962 DOI: 10.1111/evj.13176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Equine influenza is an important cause of respiratory disease of horses worldwide. The equine influenza virus (EIV) undergoes antigenic drift through the accumulation of amino acid substitutions in the viral proteins, which may lead to vaccine breakdown. OBJECTIVES To describe the epidemiological findings and the molecular characteristics of the EIV detected during the multifocal outbreak that occurred in Argentina between March and July 2018 and evidence a vaccine breakdown. STUDY DESIGN Observational, descriptive study. METHODS Virus was detected in nasopharyngeal swabs using real-time reverse transcriptase PCR (RT-PCR). Nucleotide and deduced amino acid sequences of the haemagglutinin (HA) and neuraminidase (NA) genes were obtained from EIV positive nasopharyngeal swabs, and phylogenetic analysis was undertaken. Amino acid sequences were compared against the current World Organisation for Animal Health (OIE)-recommended Florida clade 1 vaccine strain and strain components of vaccines used in Argentina. Serum samples were tested using haemagglutination inhibition test. RESULTS Equine influenza virus infection was confirmed using real-time RT-PCR and serological testing. The phylogenetic analysis of the HA and NA genes revealed that all the EIV identified during the outbreak belong to the H3N8 subtype, Florida clade 1. Multiple amino acid changes, some of them at antigenic sites, were observed in the circulating virus when compared with the strains included in the most commonly used vaccine in Argentina. Seventy-six percent of the affected horses had been vaccinated with this vaccine, suggesting the occurrence of vaccine breakdown. MAIN LIMITATIONS The study does not include antigenic characterisation and full genome sequencing of Argentinian strains, that could provide additional information. CONCLUSIONS The occurrence of this multifocal equine influenza outbreak in regularly vaccinated horses is a field evidence of vaccine breakdown, reinforcing the necessity of keeping vaccine strains updated according to OIE recommendations. It also underlines the importance of the implementation of appropriate quarantine measures and restriction of horse movement in the face of disease.
Collapse
Affiliation(s)
- C Olguin-Perglione
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - M A Vissani
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Escuela de Veterinaria, Universidad del Salvador, Pilar, Buenos Aires, Argentina
| | - F Alamos
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - M S Tordoya
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - M Barrandeguy
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Escuela de Veterinaria, Universidad del Salvador, Pilar, Buenos Aires, Argentina
| |
Collapse
|
15
|
Codon usage bias of H3N8 equine influenza virus - An evolutionary perspective. J Infect 2020; 80:671-693. [PMID: 31958543 DOI: 10.1016/j.jinf.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023]
|
16
|
He W, Li G, Wang R, Shi W, Li K, Wang S, Lai A, Su S. Host-range shift of H3N8 canine influenza virus: a phylodynamic analysis of its origin and adaptation from equine to canine host. Vet Res 2019; 50:87. [PMID: 31666126 PMCID: PMC6822366 DOI: 10.1186/s13567-019-0707-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Prior to the emergence of H3N8 canine influenza virus (CIV) and the latest avian-origin H3N2 CIV, there was no evidence of a circulating canine-specific influenza virus. Molecular and epidemiological evidence suggest that H3N8 CIV emerged from H3N8 equine influenza virus (EIV). This host-range shift of EIV from equine to canine hosts and its subsequent establishment as an enzootic CIV is unique because this host-range shift was from one mammalian host to another. To further understand this host-range shift, we conducted a comprehensive phylodynamic analysis using all the available whole-genome sequences of H3N8 CIV. We found that (1) the emergence of H3N8 CIV from H3N8 EIV occurred in approximately 2002; (2) this interspecies transmission was by a reassortant virus of the circulating Florida-1 clade H3N8 EIV; (3) once in the canine species, H3N8 CIV spread efficiently and remained an enzootic virus; (4) H3N8 CIV evolved and diverged into multiple clades or sublineages, with intra and inter-lineage reassortment. Our results provide a framework to understand the molecular basis of host-range shifts of influenza viruses and that dogs are potential “mixing vessels” for the establishment of novel influenza viruses.
Collapse
Affiliation(s)
- Wanting He
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruyi Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Taian, 271000, China
| | - Kemang Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shilei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Alexander Lai
- College of Natural, Applied, and Health Sciences, Kentucky State University, Frankfort, KY, USA.
| | - Shuo Su
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
17
|
Blanco-Lobo P, Rodriguez L, Reedy S, Oladunni FS, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. A Bivalent Live-Attenuated Vaccine for the Prevention of Equine Influenza Virus. Viruses 2019; 11:v11100933. [PMID: 31614538 PMCID: PMC6832603 DOI: 10.3390/v11100933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Vaccination remains the most effective approach for preventing and controlling equine influenza virus (EIV) in horses. However, the ongoing evolution of EIV has increased the genetic and antigenic differences between currently available vaccines and circulating strains, resulting in suboptimal vaccine efficacy. As recommended by the World Organization for Animal Health (OIE), the inclusion of representative strains from clade 1 and clade 2 Florida sublineages of EIV in vaccines may maximize the protection against presently circulating viral strains. In this study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N8 (Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs, fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs for the control and protection against other EIV strains of epidemiological relevance to horses.
Collapse
Affiliation(s)
- Pilar Blanco-Lobo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
- Agencia Española de Medicamentos y Productos Sanitarios, E28022 Madrid, Spain.
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Fatai S Oladunni
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
- Center for Animal Health Research- National Institute for Agricultural and Food Research and Technology, Valdeolmos, 28130 Madrid, Spain.
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1AF, UK.
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
18
|
Lu G, Zhang G, Li S. Equine influenza vaccine in China: Current status and challenges. Equine Vet J 2019; 50:544-545. [PMID: 29878512 DOI: 10.1111/evj.12962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, People's Republic of China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
19
|
Wille M, Bröjer C, Lundkvist Å, Järhult JD. Alternate routes of influenza A virus infection in Mallard (Anas platyrhynchos). Vet Res 2018; 49:110. [PMID: 30373662 PMCID: PMC6206871 DOI: 10.1186/s13567-018-0604-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/12/2018] [Indexed: 01/07/2023] Open
Abstract
The natural reservoir for all influenza A viruses (IAVs) is wild birds, particularly dabbling ducks. During the autumn, viral prevalence can be very high in dabbling ducks (> 30%) in the Northern Hemisphere, and individuals may be repeatedly infected. Transmission and infection is through the fecal-oral route, whereby birds shed viruses in feces and conspecifics are infected though feeding in virus-contaminated water. In this study we wanted to assess two alternative infection routes: cloacal drinking and preening. Using experimental infections, we assessed patterns of infection using a combination of virus shedding, as assessed by real-time PCR from cloacal swabs, and patterns of viral replication using virus-immunohistochemistry of gastrointestinal tissues. The cloacal drinking experiment consisted of two trials using cloacal inoculation at two different time points to account for age differences, as well as a trial whereby ducks were allowed to take up virus-laden water through the cloaca. All ducks became infected, and rather than the bursa of Fabricius being the main site of replication, the colon had the highest intensity of replication, as inferred through immunohistochemistry. In experiments assessing preening, feathers were contaminated with virus-laden water and all ducks became infected, regardless of whether they were kept individually or together. Further, naive contacts were infected by the individuals whose feathers were virus-contaminated. Overall, we reinforce that IAV transmission in dabbling ducks is multifactorial-if exposed to virus-contaminated water ducks may be infected through dabbling, preening of infected feathers, and cloacal drinking.
Collapse
Affiliation(s)
- Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. .,WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
21
|
Rodriguez L, Reedy S, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. Development of a novel equine influenza virus live-attenuated vaccine. Virology 2018; 516:76-85. [PMID: 29331866 PMCID: PMC5840510 DOI: 10.1016/j.virol.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/16/2022]
Abstract
H3N8 equine influenza virus (EIV) is an important and significant respiratory pathogen of horses. EIV is enzootic in Europe and North America, mainly due to the suboptimal efficacy of current vaccines. We describe, for the first time, the generation of a temperature sensitive (ts) H3N8 EIV live-attenuated influenza vaccine (LAIV) using reverse-genetics approaches. Our EIV LAIV was attenuated (att) in vivo and able to induce, upon a single intranasal administration, protection against H3N8 EIV wild-type (WT) challenge in both a mouse model and the natural host, the horse. Notably, since our EIV LAIV was generated using reverse genetics, the vaccine can be easily updated against drifting or emerging strains of EIV using the safety backbone of our EIV LAIV as master donor virus (MDV). These results demonstrate the feasibility of implementing a novel EIV LAIV approach for the prevention and control of currently circulating H3N8 EIVs in horse populations.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
22
|
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Detection of West Nile Virus and other common equine viruses in three locations from the Leeward Islands, West Indies. Acta Trop 2017. [PMID: 28648789 DOI: 10.1016/j.actatropica.2017.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Equines in the West Indies are used for recreational purposes, tourism industry, racing and agriculture or can be found in feral populations. Little is known in the Caribbean basin about the prevalence of some major equine infectious diseases, some with zoonotic potential, listed as reportable by the OIE. Our objective was to study the prevalence of antibodies for West Nile Virus (WNV), Equine Herpes Virus-1 and 4 (EHV-1 and EHV-4), Equine Influenza (EI), Equine Viral Arteritis (EVA) and Equine Infectious Anemia Virus (EIAV) using a retrospective serological convenience study. We used 180 equine serum samples, 140 from horses and 40 from donkeys in St. Kitts, Nevis, and Sint Eustatius, collected between 2006 and 2015 that were tested with ELISA kits and virus neutralization (for WNV and EVA). Combining ELISA with virus neutralization testing, 25 (13.8%) equine sera were WNV positive (a mixture of indigenous and imported equines) and 3 sera (1.6%) showed doubtful results. For EHV-1, 41 equines (23.7%), mean age 6.7 years, were seropositive. For EHV-4, 138 equines were found seropositive (82.8%), mean age 6.3 years. For EI, 49 equines (27.2%), mean age 7.5 years, were seropositive on ELISA, some previously vaccinated horses. No antibodies against EAV were found on virus neutralization testing, although one animal (0.6%), was EAV positive on ELISA. All samples were EIAV negative. The seroprevalence for EHV-1 and EHV-4 is similar to other parts of the world. For the first time in the study location serologic evidence of antibodies against WNV and EI is reported. This was found in both indigenous and imported animals, highlighting the need for developing proper surveillance plans based on complementary methods of virus detection. Further studies will be needed to define the prevalence, rates of transmission, characterize local virus strains, and study their impact on these populations.
Collapse
|
24
|
Wille M, Latorre-Margalef N, Tolf C, Stallknecht DE, Waldenström J. No evidence for homosubtypic immunity of influenza H3 in Mallards following vaccination in a natural experimental system. Mol Ecol 2017; 26:1420-1431. [PMID: 27997047 PMCID: PMC5347849 DOI: 10.1111/mec.13967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
Abstract
The Mallard (Anas platyrhynchos) is an important reservoir species for influenza A viruses (IAV), and in this host, prevalence and virus diversity are high. Studies have demonstrated the presence of homosubtypic immunity, where individuals are unlikely to be reinfected with the same subtype within an autumn season. Further, evidence for heterosubtypic immunity exists, whereby immune responses specific for one subtype offer partial or complete protection against related HA subtypes. We utilized a natural experimental system to determine whether homo- or heterospecific immunity could be induced following experimental vaccination. Thirty Mallards were vaccinated with an inactivated H3, H6 or a sham vaccine and after seroconversion were exposed to naturally infected wild conspecifics. All ducks were infected within 2 days and had both primary and secondary infections. Overall, there was no observable difference between groups; all individuals were infected with H3 and H10 IAV. At the cessation of the experiment, most individuals had anti-NP antibodies and neutralizing antibodies against H10. Not all individuals had H3 neutralizing antibodies. The isolated H3 IAVs revealed genetic dissimilarity to the H3 vaccine strain, specifically substitutions in the vicinity of the receptor-binding site. There was no evidence of vaccine-induced homosubtypic immunity to H3, a likely result of both a poor H3 immune response in the ducks and H3 immune escape. Likewise, there was no observed heterosubtypic protection related to H6 vaccination. This study highlights the need for experimental approaches to assess how exposure to pathogens and resulting immune processes translates to individual and population disease dynamics.
Collapse
Affiliation(s)
- M Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| | - N Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden.,Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, GA, 30602, USA
| | - C Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| | - D E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, GA, 30602, USA
| | - J Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| |
Collapse
|
25
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
26
|
Olguin Perglione C, Golemba MD, Torres C, Barrandeguy M. Molecular Epidemiology and Spatio-Temporal Dynamics of the H3N8 Equine Influenza Virus in South America. Pathogens 2016; 5:E61. [PMID: 27754468 PMCID: PMC5198161 DOI: 10.3390/pathogens5040061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023] Open
Abstract
Equine influenza virus (EIV) is considered the most important respiratory pathogen of horses as outbreaks of the disease lead to substantial economic losses. The H3N8 EIV has caused respiratory disease in horses across the world, including South American countries. Nucleotide and deduced amino acid sequences for the complete haemagglutinin gene of the H3N8 EIV detected in South America since 1963 were analyzed. Phylogenetic and Bayesian coalescent analyses were carried out to study the origin, the time of the most recent common ancestors (tMRCA), the demographic and the phylogeographic patterns of the H3N8 EIV. The phylogenetic analysis demonstrated that the H3N8 EIV detected in South America grouped in 5 well-supported monophyletic clades, each associated with strains of different origins. The tMRCA estimated for each group suggested that the virus was circulating in North America at least one year before its effective circulation in the South American population. Phylogenetic and coalescent analyses revealed a polyphyletic behavior of the viruses causing the outbreaks in South America between 1963 and 2012, possibly due to the introduction of at least 4 different EIVs through the international movement of horses. In addition, phylodynamic analysis suggested South America as the starting point of the spread of the H3N8 EIV in 1963 and showed migration links from the United States to South America in the subsequent EIV irruptions. Further, an increase in the relative genetic diversity was observed between 2006 and 2007 and a subsequent decline since 2009, probably due to the co-circulation of different lineages and as a result of the incorporation of the Florida clade 2 strain in vaccines, respectively. The observed data highlight the importance of epidemiological surveillance and the implementation of appropriate quarantine procedures to prevent outbreaks of the disease.
Collapse
Affiliation(s)
- Cecilia Olguin Perglione
- Instituto de Virología CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Dr. Nicolás Repetto y De Los Reseros s/n Hurlingham B1686LQF, Buenos Aires, Argentina.
| | - Marcelo D Golemba
- Hospital de Pediatría S.A.M.I.C. "Prof. Dr. Juan P. Garrahan", Combate de los Pozos 1881, Ciudad Autónoma de Buenos Aires C1245AAM, Argentina.
| | - Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
- CONICET, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina.
| | - Maria Barrandeguy
- Instituto de Virología CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Dr. Nicolás Repetto y De Los Reseros s/n Hurlingham B1686LQF, Buenos Aires, Argentina.
- Escuela de Veterinaria, Universidad del Salvador, Viamonte 1856, Ciudad Autónoma de Buenos Aires C1056ABB, Argentina.
| |
Collapse
|
27
|
Barba M, Daly JM. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis? Pathogens 2016; 5:pathogens5030057. [PMID: 27589809 PMCID: PMC5039437 DOI: 10.3390/pathogens5030057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1) has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.
Collapse
Affiliation(s)
- Marta Barba
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
28
|
Perglione CO, Gildea S, Rimondi A, Miño S, Vissani A, Carossino M, Cullinane A, Barrandeguy M. Epidemiological and virological findings during multiple outbreaks of equine influenza in South America in 2012. Influenza Other Respir Viruses 2016; 10:37-46. [PMID: 26406274 PMCID: PMC4687505 DOI: 10.1111/irv.12349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/22/2022] Open
Abstract
Background In 2012, equine influenza (EI) virus was confirmed as the cause of outbreaks of respiratory disease in horses throughout South America. In Uruguay and Argentina, hundreds of vaccinated thoroughbred horses in training and racing facilities were clinically affected. Objective To characterise the EI viruses detected during the outbreak in Uruguay and Argentina. Methods Virus was detected in nasopharyngeal swabs by a pan‐reactive influenza type A real‐time RT‐PCR. The nucleotide sequence of the HA1 gene was determined and analysed phylogenetically using mega 5 software. Amino acid sequences alignments were constructed and virus was antigenically characterised with specific ferret antisera. Paired serum samples were tested by haemagglutination inhibition and single radial haemolysis. Results The diagnosis of EIV was confirmed by real‐time RT‐PCR, virus isolation and serological testing. The phylogenetic analysis of HA1 gene sequences of 18 EI viruses indicated that all of them belong to clade 1 of the Florida sublineage of the American lineage and are closely related to viruses isolated in the United States in 2012. The HA1 of viruses identified in horses in racing facilities in Maroñas, Uruguay, and in Palermo, Argentina, displayed 100% amino acid sequence identity and were identical to that of a virus isolated in Dubai in 2012, from vaccinated endurance horses recently imported from Uruguay. Conclusions The surveillance data reported illustrate the international spread of EI viruses and support the recommendations of the OIE expert surveillance panel to include viruses of the Florida sublineage in vaccines.
Collapse
Affiliation(s)
| | - Sarah Gildea
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Agustina Rimondi
- CICVyA, INTA, Instituto de Virología, Buenos Aires, Hurlingham, Argentina
| | - Samuel Miño
- CICVyA, INTA, Instituto de Virología, Buenos Aires, Hurlingham, Argentina
| | - Aldana Vissani
- CICVyA, INTA, Instituto de Virología, Buenos Aires, Hurlingham, Argentina
| | - Mariano Carossino
- Cátedra de Enfermedades Infecciosas, Escuela de Veterinaria, Universidad del Salvador, Buenos Aires, Argentina.,Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ann Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Maria Barrandeguy
- CICVyA, INTA, Instituto de Virología, Buenos Aires, Hurlingham, Argentina.,Cátedra de Enfermedades Infecciosas, Escuela de Veterinaria, Universidad del Salvador, Buenos Aires, Argentina
| |
Collapse
|
29
|
Targeted disruption of influenza A virus hemagglutinin in genetically modified mice reduces viral replication and improves disease outcome. Sci Rep 2016; 6:23746. [PMID: 27033724 PMCID: PMC4817130 DOI: 10.1038/srep23746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/15/2016] [Indexed: 11/09/2022] Open
Abstract
Influenza A virus can cause acute respiratory infection in animals and humans around the globe, and is still a major threat to animal husbandry and public health. Due to antigenic drift and antigenic shift of the virus, development of novel anti-influenza strategies has become an urgent task. Here we generated transgenic (TG) mice stably expressing a short-hairpin RNA specifically targeting hemagglutinin (HA) of influenza A virus, and investigated the susceptibility of the mice to influenza virus infection. We found that HA expression was dramatically disrupted in TG mice infected with WSN or PR8 virus. Importantly, the animals showed reduced virus production in lungs, slower weight loss, attenuated acute organ injury and consequently increased survival rates as compared to wild type (WT) mice after the viral infection. Moreover, TG mice exhibited a normal level of white blood cells following the virus infection, whereas the number of these cells was significantly decreased in WT mice with same challenge. Together, these experiments demonstrate that the TG mice are less permissive for influenza virus replication, and suggest that shRNA-based efficient disruption of viral gene expression in animals may be a useful strategy for prevention and control of a viral zoonosis.
Collapse
|
30
|
Yamanaka T, Nemoto M, Bannai H, Tsujimura K, Kondo T, Matsumura T, Gildea S, Cullinane A. Evaluation of twenty-two rapid antigen detection tests in the diagnosis of Equine Influenza caused by viruses of H3N8 subtype. Influenza Other Respir Viruses 2016; 10:127-33. [PMID: 26568369 PMCID: PMC4746556 DOI: 10.1111/irv.12358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 11/26/2022] Open
Abstract
Background Equine influenza (EI) is a highly contagious disease caused by viruses of the H3N8 subtype. The rapid diagnosis of EI is essential to reduce the disease spread. Many rapid antigen detection (RAD) tests for diagnosing human influenza are available, but their ability to diagnose EI has not been systematically evaluated. Objectives The aim of this study was to compare the performance of 22 RAD tests in the diagnosis of EI. Methods The 22 RAD tests were performed on fivefold serial dilutions of EI virus to determine their detection limits. The four most sensitive RAD tests (ImmunoAce Flu, BD Flu examan, Quick chaser Flu A, B and ESPLINE Influenza A&B‐N) were further evaluated using nasopharyngeal samples collected from experimentally infected and naturally infected horses. The results were compared to those obtained using molecular tests. Results The detection limits of the 22 RAD tests varied hugely. Even the four RAD tests showing the best sensitivity were 125‐fold less sensitive than the molecular techniques. The duration of virus detection in the experimentally infected horses was shorter using the RAD tests than using the molecular techniques. The RAD tests detected between 27% and 73% of real‐time RT‐PCR‐positive samples from naturally infected horses. Conclusions The study demonstrated the importance of choosing the right RAD tests as only three of 22 were fit for diagnosing EI. It was also indicated that even RAD tests with the highest sensitivity serve only as an adjunct to molecular tests because of the potential for false‐negative results.
Collapse
Affiliation(s)
- Takashi Yamanaka
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Takashi Kondo
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Tomio Matsumura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Sarah Gildea
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Ann Cullinane
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| |
Collapse
|
31
|
Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine. J Virol 2015; 89:11190-202. [PMID: 26311894 DOI: 10.1128/jvi.01509-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we could not detect specific antibodies against hemagglutinin in any H3N8-infected pigs. Therefore, special attention should be focused toward viruses of the H3N8 subtype since they could behave as stealth viruses in pigs.
Collapse
|
32
|
ISCOM-based equine influenza vaccine: Duration of immunity and randomised clinical trials to assess an accelerated schedule of immunisation and efficacy. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.trivac.2015.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Chaves AJ, Vergara-Alert J, Busquets N, Valle R, Rivas R, Ramis A, Darji A, Majó N. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model. PLoS One 2014; 9:e115138. [PMID: 25506836 PMCID: PMC4266681 DOI: 10.1371/journal.pone.0115138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/18/2014] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) causes central nervous system (CNS) lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI) virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i) detecting Evans blue (EB) extravasation into the brain, (ii) determining the leakage of the serum protein immunoglobulin Y (IgY) into the brain and (iii) assessing the stability of the tight-junction (TJ) proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi). The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR) at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi) with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma.
Collapse
Affiliation(s)
- Aida J. Chaves
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Valle
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Rivas
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Ramis
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ayub Darji
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Natàlia Majó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
A live attenuated equine H3N8 influenza vaccine is highly immunogenic and efficacious in mice and ferrets. J Virol 2014; 89:1652-9. [PMID: 25410860 DOI: 10.1128/jvi.02449-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. IMPORTANCE Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and protected mice and ferrets against homologous and heterologous EIV.
Collapse
|
35
|
A Systematic Review of Recent Advances in Equine Influenza Vaccination. Vaccines (Basel) 2014; 2:797-831. [PMID: 26344892 PMCID: PMC4494246 DOI: 10.3390/vaccines2040797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 01/28/2023] Open
Abstract
Equine influenza (EI) is a major respiratory disease of horses, which is still causing substantial outbreaks worldwide despite several decades of surveillance and prevention. Alongside quarantine procedures, vaccination is widely used to prevent or limit spread of the disease. The panel of EI vaccines commercially available is probably one of the most varied, including whole inactivated virus vaccines, Immuno-Stimulating Complex adjuvanted vaccines (ISCOM and ISCOM-Matrix), a live attenuated equine influenza virus (EIV) vaccine and a recombinant poxvirus-vectored vaccine. Several other strategies of vaccination are also evaluated. This systematic review reports the advances of EI vaccines during the last few years as well as some of the mechanisms behind the inefficient or sub-optimal response of horses to vaccination.
Collapse
|
36
|
Contact heterogeneity, rather than transmission efficiency, limits the emergence and spread of canine influenza virus. PLoS Pathog 2014; 10:e1004455. [PMID: 25340642 PMCID: PMC4207809 DOI: 10.1371/journal.ppat.1004455] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022] Open
Abstract
Host-range shifts in influenza virus are a major risk factor for pandemics. A key question in the study of emerging zoonoses is how the evolution of transmission efficiency interacts with heterogeneity in contact patterns in the new host species, as this interplay influences disease dynamics and prospects for control. Here we use a synergistic mixture of models and data to tease apart the evolutionary and demographic processes controlling a host-range shift in equine H3N8-derived canine influenza virus (CIV). CIV has experienced 15 years of continuous transfer among dogs in the United States, but maintains a patchy distribution, characterized by sporadic short-lived outbreaks coupled with endemic hotspots in large animal shelters. We show that CIV has a high reproductive potential in these facilities (mean R0 = 3.9) and that these hotspots act as refugia from the sparsely connected majority of the dog population. Intriguingly, CIV has evolved a transmission efficiency that closely matches the minimum required to persist in these refugia, leaving it poised on the extinction/invasion threshold of the host contact network. Corresponding phylogenetic analyses show strong geographic clustering in three US regions, and that the effective reproductive number of the virus (Re) in the general dog population is close to 1.0. Our results highlight the critical role of host contact structure in CIV dynamics, and show how host contact networks could shape the evolution of pathogen transmission efficiency. Importantly, efficient control measures could eradicate the virus, in turn minimizing the risk of future sustained transmission among companion dogs that could represent a potential new axis to the human-animal interface for influenza. Influenza virus infects a range of vertebrate hosts, including domesticated animals as well as humans. Some of the most serious influenza pandemics in humans have involved host range shifts, when an influenza virus jumps from one host species to another. Importantly, however, host range shifts do not always cause pandemics. Rather, epidemiological patterns tend to be unpredictable in new host species, causing disease patterns that change over space and time. In this paper, we analyze epidemiological and evolutionary dynamics of canine influenza virus (CIV), which jumped to dogs in the late 1990s from an equine strain (EIV) prevalent in horses. We show that the epidemiology and evolution of CIV is strongly influenced by heterogeneous patterns of infectious contact among dogs in the US. A few large populations in metropolitan animal shelters serve as reservoirs for CIV, but the virus cannot be maintained for long in smaller facilities or in the companion dog population without input from the larger shelters, which represent disease hotspots. These hotspot dynamics give a clear picture of what can happen in the time between the beginning of a host range shift and the onset of a possible pandemic, allowing more targeted strategies for control and eradication.
Collapse
|
37
|
The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 2014; 66:89-96. [PMID: 25457878 DOI: 10.1016/j.molimm.2014.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
The modern horse, Equus caballus has historically made important contributions to the field of immunology, dating back to Emil von Behring's description of curative antibodies in equine serum over a century ago. While the horse continues to play an important role in human serotherapy, the mouse has replaced the horse as the predominant experimental animal in immunology research. Nevertheless, continuing efforts have led to an improved understanding of the equine immune response in a variety of infectious and non-infectious diseases. Based on this information, we can begin to identify specific situations where the horse may provide a unique immunological model for certain human diseases.
Collapse
|
38
|
Slater J, Borchers K, Chambers T, Cullinane A, Duggan V, Elton D, Legrand L, Paillot R, Fortier G. Report of the International Equine Influenza Roundtable Expert Meeting at Le Touquet, Normandy, February 2013. Equine Vet J 2014; 46:645-50. [PMID: 25146166 DOI: 10.1111/evj.12302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Slater
- Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Manuja BK, Manuja A, Dahiya R, Singh S, Sharma RC, Gahlot SK. Diversity of interferon inducible Mx gene in horses and association of variations with susceptibility vis-à-vis resistance against equine influenza infection. INFECTION GENETICS AND EVOLUTION 2014; 27:142-8. [PMID: 25064524 DOI: 10.1016/j.meegid.2014.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
Equine influenza (EI) is primarily an infection of the upper respiratory tract and is one of the major infectious respiratory diseases of economic importance in equines. Re-emergence of the disease, species jumping by H3N8 virus in canines and possible threat of human pandemic due to the unpredictable nature of the virus have necessitated research on devising strategies for preventing the disease. The myxovirus resistance protein (Mx) has been reported to confer resistance to Orthomyxo virus infection by modifying cellular functions needed along the viral replication pathway. Polymorphisms and differential antiviral activities of Mx gene have been reported in pigs and chicken. Here we report the diversity of Mx gene, its expression in response to stimulation with interferon (IFN) α/β and their association with EI resistance and susceptibility in Marwari horses. Blood samples were collected from horses declared positive for equine influenza and in contact animals with a history of no clinical signs. Mx gene was amplified by reverse transcription from total RNA isolated from peripheral blood mononuclear cells (PBMCs) stimulated with IFN α/β using gene specific primers. The amplified gene products from representative samples were cloned and sequenced. Nucleotide sequences and deduced amino acid sequences were analyzed. Out of a total 24 amino acids substitutions sorting intolerant from tolerant (SIFT) analysis predicted 13 substitutions with functional consequences. Five substitutions (V67A, W123L, E346Y, N347Y, S689N) were observed only in resistant animals. Evolutionary distances based on nucleotide sequences with in equines ranged between 0.3-2.0% and 20-24% with other species. On phylogenetic analysis all equine sequences clustered together while other species formed separate clades.
Collapse
Affiliation(s)
| | - Anju Manuja
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Rajni Dahiya
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Sandeep Singh
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - R C Sharma
- National Research Centre on Equines, Hisar 125001, Haryana, India
| | - S K Gahlot
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125005, Haryana, India
| |
Collapse
|
40
|
Boukharta M, Zakham F, Touil N, Elharrak M, Ennaji MM. Cleavage site and Ectodomain of HA2 sub-unit sequence of three equine influenza virus isolated in Morocco. BMC Res Notes 2014; 7:448. [PMID: 25016480 PMCID: PMC4118787 DOI: 10.1186/1756-0500-7-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/23/2014] [Indexed: 11/20/2022] Open
Abstract
Background The equine influenza (EI) is an infectious and contagious disease of the upper respiratory tract of horses. Two outbreaks were notified in Morocco during 1997 and 2004 respectively in Nador and Essaouira. The aims of the present study concern the amino acids sequences comparison with reference strain A/equine/Miami/1963(H3N8) of the HA2 subunit including the cleavage site of three equine influenza viruses (H3N8) isolated in Morocco: A/equine/Nador/1/1997(H3N8), A/equine/Essaouira/2/2004 (H3N8) and A/equine/Essaouira/3/2004 (H3N8). Results The obtained results demonstrated that the substitutions were located at Ectodomain (ED) and transmembrane domain (TD), and they have only one arginine in cleavage site (HA1-PEKQI-R329-GI-HA2). In the Ectodomain, the mutation N/1542/T deleted the NGT glycosylation site at position 154 for both strains A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8). Except for mutation D/1602/Y of the A/equine/Nador/1/1997(H3N8) strain, the other mutations were involved in non conserved sites. While the transmembrane domain (TM) of the strain A/equine/Essaouira/3/2004(H3N8) exhibits a substitution at residue C/1992/F. For the A/equine/Nador/1/1997(H3N8) strain the HA2 shows a mutation at residue M/2072/L. Three Moroccan strains reveals a common substitution at the residue E/2112/Q located between transmembrane domain TM and the cytoplasmic domain (CD). Conclusion The given nature virulence of three Moroccan strains, the identified and reported mutations certainly played a permissive role of infection viral process.
Collapse
Affiliation(s)
| | | | | | | | - Moulay Mustapha Ennaji
- University Hassan II, Faculty of Sciences and Techniques, Mohammedia-Casablanca, Laboratory of Virology, Microbiology and Quality/ETB, Mohammedia BP 146, (20650), Morocco.
| |
Collapse
|
41
|
Pouwels HGW, Van de Zande SMA, Horspool LJI, Hoeijmakers MJH. Efficacy of a non-updated, Matrix-C-based equine influenza subunit-tetanus vaccine following Florida sublineage clade 2 challenge. Vet Rec 2014; 174:633. [PMID: 24795071 PMCID: PMC4078751 DOI: 10.1136/vr.101993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Assessing the ability of current equine influenza vaccines to provide cross-protection against emerging strains is important. Horses not vaccinated previously and seronegative for equine influenza based on haemagglutination inhibition (HI) assay were assigned at random to vaccinated (n=7) or non-vaccinated (control, n=5) groups. Vaccination was performed twice four weeks apart with a 1 ml influenza subunit (A/eq/Prague/1/56, A/eq/Newmarket/1/93, A/eq/Newmarket/2/93), tetanus toxoid vaccine with Matrix-C adjuvant (EquilisPrequenza Te). All the horses were challenged individually by aerosol with A/eq/Richmond/1/07 three weeks after the second vaccination. Rectal temperature, clinical signs, serology and virus excretion were monitored for 14 days after challenge. There was no pain at the injection site or increases in rectal temperature following vaccination. Increases in rectal temperature and characteristic clinical signs were recorded in the control horses. Clinical signs were minimal in vaccinated horses. Clinical (P=0.0345) and total clinical scores (P=0.0180) were significantly lower in the vaccinated than in the control horses. Vaccination had a significant effect on indicators of viraemia – the extent (P=0.0006) and duration (P=<0.0001) of virus excretion and the total amount of virus excreted (AUC, P=0.0006). Vaccination also had a significant effect (P=0.0017) on whether a horse was positive or negative for virus excretion during the study. Further research is needed to fully understand the specific properties of this vaccine that may contribute to its cross-protective capacity.
Collapse
Affiliation(s)
- H G W Pouwels
- Global R&D, MSD Animal Health, Boxmeer, The Netherlands
| | | | - L J I Horspool
- Global Companion Animal Business, MSD Animal Health, Intervet International bv, PO Box 31, Boxmeer 5830 AA, The Netherlands
| | - M J H Hoeijmakers
- Global Clinical Research, MSD Animal Health, Boxmeer, The Netherlands
| |
Collapse
|
42
|
Yamanaka T, Cullinane A, Gildea S, Bannai H, Nemoto M, Tsujimura K, Kondo T, Matsumura T. The potential impact of a single amino-acid substitution on the efficacy of equine influenza vaccines. Equine Vet J 2014; 47:456-62. [DOI: 10.1111/evj.12290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022]
Affiliation(s)
- T. Yamanaka
- Epizootic Research Center; Equine Research Institute; Japan Racing Association; Shimotsuke Japan
| | - A. Cullinane
- Virology Unit; Irish Equine Centre; Johnstown Naas Co.; Kildare Ireland
| | - S. Gildea
- Virology Unit; Irish Equine Centre; Johnstown Naas Co.; Kildare Ireland
| | - H. Bannai
- Epizootic Research Center; Equine Research Institute; Japan Racing Association; Shimotsuke Japan
| | - M. Nemoto
- Epizootic Research Center; Equine Research Institute; Japan Racing Association; Shimotsuke Japan
| | - K. Tsujimura
- Epizootic Research Center; Equine Research Institute; Japan Racing Association; Shimotsuke Japan
| | - T. Kondo
- Epizootic Research Center; Equine Research Institute; Japan Racing Association; Shimotsuke Japan
| | - T. Matsumura
- Epizootic Research Center; Equine Research Institute; Japan Racing Association; Shimotsuke Japan
| |
Collapse
|
43
|
Aharonson-Raz K, Davidson I, Porat Y, Altory A, Klement E, Steinman A. Seroprevalence and Rate of Infection of Equine Influenza Virus (H3N8 and H7N7) and Equine Herpesvirus (1 and 4) in the Horse Population in Israel. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2014.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Yamanaka T, Bannai H, Tsujimura K, Nemoto M, Kondo T, Matsumura T. Comparison of the Virucidal Effects of Disinfectant Agents Against Equine Influenza A Virus. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2013.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
|
46
|
Abstract
ABSTRACT
Influenza A viruses are zoonotic pathogens that infect a variety of host species including wild aquatic birds, domestic poultry, and a limited number of mammals including humans. The error-prone nature of the virus's replication machinery and its ability to transmit among multiple hosts lead to generation of novel virus variants with altered pathogenicity and virulence. Spatial, molecular, and physiological barriers inhibit cross-species infections, particularly in the case of human infection with avian viruses. Pigs are proposed as a mixing vessel that facilitates movement of avian viruses from the wild bird reservoir into humans. However, the past decade has witnessed the emergence of highly pathogenic and virulent avian H5 and H7 viruses that have breached these barriers, bypassed the pig intermediate host, and infected humans with a high mortality rate, but have not established human-to-human transmissible lineages. Because influenza viruses pose a significant risk to both human and animal health, it is becoming increasingly important to attempt to predict their identities and pathogenic potential before their widespread emergence. Surveillance of the wild bird reservoir, molecular characterization and documentation of currently circulating viruses in humans and animals, and a comprehensive risk assessment analysis of individual isolates should remain a high priority. Such efforts are critical to the pursuit of prevention and control strategies, including vaccine development and assessment of antiviral susceptibility, that will have a direct impact on the well-being of humans and animals worldwide.
Collapse
|
47
|
Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res 2013; 178:63-77. [PMID: 23735535 PMCID: PMC3787969 DOI: 10.1016/j.virusres.2013.05.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in Southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Richard J. Webby
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Robert G. Webster
- corresponding author, Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA Tel +1 901 595 3400 Fax +1 901 595 8559
| |
Collapse
|
48
|
Horspool LJI, King A. Equine influenza vaccines in Europe: A view from the animal health industry. Equine Vet J 2013; 45:774-5. [DOI: 10.1111/evj.12171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - A. King
- MSD Animal Health; Boxmeer The Netherlands
| |
Collapse
|
49
|
Baz M, Paskel M, Matsuoka Y, Zengel J, Cheng X, Jin H, Subbarao K. Replication and immunogenicity of swine, equine, and avian h3 subtype influenza viruses in mice and ferrets. J Virol 2013; 87:6901-10. [PMID: 23576512 PMCID: PMC3676140 DOI: 10.1128/jvi.03520-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 01/11/2023] Open
Abstract
Since it is difficult to predict which influenza virus subtype will cause an influenza pandemic, it is important to prepare influenza virus vaccines against different subtypes and evaluate the safety and immunogenicity of candidate vaccines in preclinical and clinical studies prior to a pandemic. In addition to infecting humans, H3 influenza viruses commonly infect pigs, horses, and avian species. We selected 11 swine, equine, and avian H3 influenza viruses and evaluated their kinetics of replication and ability to induce a broadly cross-reactive antibody response in mice and ferrets. The swine and equine viruses replicated well in the upper respiratory tract of mice. With the exception of one avian virus that replicated poorly in the lower respiratory tract, all of the viruses replicated in mouse lungs. In ferrets, all of the viruses replicated well in the upper respiratory tract, but the equine viruses replicated poorly in the lungs. Extrapulmonary spread was not observed in either mice or ferrets. No single virus elicited antibodies that cross-reacted with viruses from all three animal sources. Avian and equine H3 viruses elicited broadly cross-reactive antibodies against heterologous viruses isolated from the same or other species, but the swine viruses did not. We selected an equine and an avian H3 influenza virus for further development as vaccines.
Collapse
Affiliation(s)
- Mariana Baz
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Myeisha Paskel
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Yumiko Matsuoka
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Xing Cheng
- MedImmune LLC, Mountain View, California, USA
| | - Hong Jin
- MedImmune LLC, Mountain View, California, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Cullinane A, Newton JR. Equine influenza--a global perspective. Vet Microbiol 2013; 167:205-14. [PMID: 23680107 DOI: 10.1016/j.vetmic.2013.03.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
To date, equine influenza outbreaks have been reported all over the world with the exception of a small number of island nations including New Zealand and Iceland. Influenza is endemic in Europe and North America and is considered to be of potentially major economic significance to the equine industry worldwide. The importation of subclinically infected vaccinated horses, and inadequate quarantine procedures have resulted in several major outbreaks in susceptible populations for example, in Australia (2007) when more than 76,000 horses on over 10,000 properties were reported as infected. This review summarises the current understanding of, and recent research on, equine influenza, including epidemiology, pathogenesis, clinical characteristics, laboratory diagnosis, management and prevention. Recent advances in diagnostic techniques are discussed as are the merits of different vaccination regimes.
Collapse
Affiliation(s)
- A Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland.
| | | |
Collapse
|