1
|
Jammes M, Contentin R, Audigié F, Cassé F, Galéra P. Effect of pro-inflammatory cytokine priming and storage temperature of the mesenchymal stromal cell (MSC) secretome on equine articular chondrocytes. Front Bioeng Biotechnol 2023; 11:1204737. [PMID: 37720315 PMCID: PMC10502223 DOI: 10.3389/fbioe.2023.1204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Context: Osteoarthritis (OA) is an invalidating articular disease characterized by cartilage degradation and inflammatory events. In horses, OA is associated with up to 60% of lameness and leads to reduced animal welfare along with extensive economic losses; currently, there are no curative therapies to treat OA. The mesenchymal stromal cell (MSC) secretome exhibits anti-inflammatory properties, making it an attractive candidate for improving the management of OA. In this study, we determined the best storage conditions for conditioned media (CMs) and tested whether priming MSCs with cytokines can enhance the properties of the MSC secretome. Methods: First, properties of CMs collected from bone-marrow MSC cultures and stored at -80°C, -20°C, 4°C, 20°C or 37°C were assessed on 3D cultures of equine articular chondrocytes (eACs). Second, we primed MSCs with IL-1β, TNF-α or IFN-γ, and evaluated the MSC transcript levels of immunomodulatory effectors and growth factors. The primed CMs were also harvested for subsequent treatment of eACs, either cultured in monolayers or as 3D cell cultures. Finally, we evaluated the effect of CMs on the proliferation and the phenotype of eACs and the quality of the extracellular matrix of the neosynthesized cartilage. Results: CM storage at -80°C, -20°C, and 4°C improved collagen protein accumulation, cell proliferation and the downregulation of inflammation. The three cytokines chosen for the MSC priming influenced MSC immunomodulator gene expression, although each cytokine led to a different pattern of MSC immunomodulation. The cytokine-primed CM had no major effect on eAC proliferation, with IL-1β and TNF-α slightly increasing collagen (types IIB and I) accumulation in eAC 3D cultures (particularly with the CM derived from MSCs primed with IL-1β), and IFN-γ leading to a marked decrease. IL-1β-primed CMs resulted in increased eAC transcript levels of MMP1, MMP13 and HTRA1, whereas IFNγ-primed CMs decreased the levels of HTRA1 and MMP13. Conclusion: Although the three cytokines differentially affected the expression of immunomodulatory molecules, primed CMs induced a distinct effect on eACs according to the cytokine used for MSC priming. Different mechanisms seemed to be triggered by each priming cytokine, highlighting the need for further investigation. Nevertheless, this study demonstrates the potential of MSC-CMs for improving equine OA management.
Collapse
Affiliation(s)
- Manon Jammes
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | | | - Fabrice Audigié
- Unit Under Contract 957 Equine Biomechanics and Locomotor Disorders (USC 957 BPLC), Center of Imaging and Research on Locomotor Affections on Equines (CIRALE), French National Research Institute for Agriculture Food and Environment (INRAE), École Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | | | | |
Collapse
|
2
|
Canonici F, Cocumelli C, Cersini A, Marcoccia D, Zepparoni A, Altigeri A, Caciolo D, Roncoroni C, Monteleone V, Innocenzi E, Alimonti C, Ghisellini P, Rando C, Pechkova E, Eggenhöffner R, Scicluna MT, Barbaro K. Articular Cartilage Regeneration by Hyaline Chondrocytes: A Case Study in Equine Model and Outcomes. Biomedicines 2023; 11:1602. [PMID: 37371697 DOI: 10.3390/biomedicines11061602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cartilage injury defects in animals and humans result in the development of osteoarthritis and the progression of joint deterioration. Cell isolation from equine hyaline cartilage and evaluation of their ability to repair equine joint cartilage injuries establish a new experimental protocol for an alternative approach to osteochondral lesions treatment. Chondrocytes (CCs), isolated from the autologous cartilage of the trachea, grown in the laboratory, and subsequently arthroscopically implanted into the lesion site, were used to regenerate a chondral lesion of the carpal joint of a horse. Biopsies of the treated cartilage taken after 8 and 13 months of implantation for histological and immunohistochemical evaluation of the tissue demonstrate that the tissue was still immature 8 months after implantation, while at 13 months it was organized almost similarly to the original hyaline cartilage. Finally, a tissue perfectly comparable to native articular cartilage was detected 24 months after implantation. Histological investigations demonstrate the progressive maturation of the hyaline cartilage at the site of the lesion. The hyaline type of tracheal cartilage, used as a source of CCs, allows for the repair of joint cartilage injuries through the neosynthesis of hyaline cartilage that presents characteristics identical to the articular cartilage of the original tissue.
Collapse
Affiliation(s)
- Fernando Canonici
- Equine Practice s.r.l., Campagnano, Strada Valle del Baccano 80, 00063 Rome, Italy
| | - Cristiano Cocumelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Alessia Zepparoni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Annalisa Altigeri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Daniela Caciolo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Cristina Roncoroni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Valentina Monteleone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Elisa Innocenzi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Paola Ghisellini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Cristina Rando
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Eugenia Pechkova
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Roberto Eggenhöffner
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
3
|
Honkanen MKM, Mohammadi A, Te Moller NCR, Ebrahimi M, Xu W, Plomp S, Pouran B, Lehto VP, Brommer H, van Weeren PR, Korhonen RK, Töyräs J, Mäkelä JTA. Dual-contrast micro-CT enables cartilage lesion detection and tissue condition evaluation ex vivo. Equine Vet J 2023; 55:315-324. [PMID: 35353399 PMCID: PMC10084070 DOI: 10.1111/evj.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Post-traumatic osteoarthritis is a frequent joint disease in the horse. Currently, equine medicine lacks effective methods to diagnose the severity of chondral defects after an injury. OBJECTIVES To investigate the capability of dual-contrast-enhanced computed tomography (dual-CECT) for detection of chondral lesions and evaluation of the severity of articular cartilage degeneration in the equine carpus ex vivo. STUDY DESIGN Pre-clinical experimental study. METHODS In nine Shetland ponies, blunt and sharp grooves were randomly created (in vivo) in the cartilage of radiocarpal and middle carpal joints. The contralateral joint served as control. The ponies were subjected to an 8-week exercise protocol and euthanised 39 weeks after surgery. CECT scanning (ex vivo) of the joints was performed using a micro-CT scanner 1 hour after an intra-articular injection of a dual-contrast agent. The dual-contrast agent consisted of ioxaglate (negatively charged, q = -1) and bismuth nanoparticles (BiNPs, q = 0, diameter ≈ 0.2 µm). CECT results were compared to histological cartilage proteoglycan content maps acquired using digital densitometry. RESULTS BiNPs enabled prolonged visual detection of both groove types as they are too large to diffuse into the cartilage. Furthermore, proportional ioxaglate diffusion inside the tissue allowed differentiation between the lesion and ungrooved articular cartilage (3 mm from the lesion and contralateral joint). The mean ioxaglate partition in the lesion was 19 percentage points higher (P < 0.001) when compared with the contralateral joint. The digital densitometry and the dual-contrast CECT findings showed good subjective visual agreement. MAIN LIMITATIONS Ex vivo study protocol and a low number of investigated joints. CONCLUSIONS The dual-CECT methodology, used in this study for the first time to image whole equine joints, is capable of effective lesion detection and simultaneous evaluation of the condition of the articular cartilage.
Collapse
Affiliation(s)
- Miitu K M Honkanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Nikae C R Te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Behdad Pouran
- Department of Orthopedics, University Medical Center Utrecht, The Netherlands
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Zayed M, Adair S, Dhar M. Effects of Normal Synovial Fluid and Interferon Gamma on Chondrogenic Capability and Immunomodulatory Potential Respectively on Equine Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22126391. [PMID: 34203758 PMCID: PMC8232615 DOI: 10.3390/ijms22126391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial fluid contains cytokines, growth factors and resident mesenchymal stem cells (MSCs). The present study aimed to (1) determine the effects of autologous and allogeneic synovial fluid on viability, proliferation and chondrogenesis of equine bone marrow MSCs (BMMSCs) and (2) compare the immunomodulatory properties of equine synovial fluid MSCs (SFMSCs) and BMMSCs after stimulation with interferon gamma (INF-γ). To meet the first aim of the study, the proliferation and viability of MSCs were evaluated by MTS and calcein AM staining assays. To induce chondrogenesis, MSCs were cultured in a medium containing TGF-β1 or different concentrations of synovial fluid. To meet the second aim, SFMSCs and BMMSCs were stimulated with IFN-γ. The concentration of indoleamine-2,3-dioxygenase (IDO) and nitric oxide (NO) were examined. Our results show that MSCs cultured in autologous or allogeneic synovial fluid could maintain proliferation and viability activities. Synovial fluid affected chondrocyte differentiation significantly, as indicated by increased glycosaminoglycan contents, compared to the chondrogenic medium containing 5 ng/mL TGF-β1. After culturing with IFN-γ, the conditioned media of both BMMSCs and SFMSCs showed increased concentrations of IDO, but not NO. Stimulating MSCs with synovial fluid or IFN-γ could enhance chondrogenesis and anti-inflammatory activity, respectively, suggesting that the joint environment is suitable for chondrogenesis.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.Z.); (S.A.)
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Steve Adair
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.Z.); (S.A.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.Z.); (S.A.)
- Correspondence:
| |
Collapse
|
5
|
Watkins A, Fasanello D, Stefanovski D, Schurer S, Caracappa K, D'Agostino A, Costello E, Freer H, Rollins A, Read C, Su J, Colville M, Paszek M, Wagner B, Reesink H. Investigation of synovial fluid lubricants and inflammatory cytokines in the horse: a comparison of recombinant equine interleukin 1 beta-induced synovitis and joint lavage models. BMC Vet Res 2021; 17:189. [PMID: 33980227 PMCID: PMC8117281 DOI: 10.1186/s12917-021-02873-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lameness is a debilitating condition in equine athletes that leads to more performance limitation and loss of use than any other medical condition. There are a limited number of non-terminal experimental models that can be used to study early inflammatory and synovial fluid biophysical changes that occur in the equine joint. Here, we compare the well-established carpal IL-1β-induced synovitis model to a tarsal intra-articular lavage model, focusing on serial changes in synovial fluid inflammatory cytokines/chemokines and the synovial fluid lubricating molecules lubricin/proteoglycan 4 and hyaluronic acid. The objectives of this study were to evaluate clinical signs; synovial membrane and synovial fluid inflammation; and synovial fluid lubricants and biophysical properties in response to carpal IL-1β synovitis and tarsal intra-articular lavage. RESULTS Hyaluronic acid (HA) concentrations, especially high molecular weight HA, and synovial fluid viscosity decreased after both synovitis and lavage interventions. Synovial fluid lubricin concentrations increased 17-20-fold for both synovitis and lavage models, with similar changes in both affected and contralateral joints, suggesting that repeated arthrocentesis alone resulted in elevated synovial fluid lubricin concentrations. Synovitis resulted in a more severe inflammatory response based on clinical signs (temperature, heart rate, respiratory rate, lameness and joint effusion) and clinicopathological and biochemical parameters (white blood cell count, total protein, prostaglandin E2, sulfated glycosaminoglycans, tumor necrosis factor-α and CC chemokine ligands - 2, - 3, - 5 and - 11) as compared to lavage. CONCLUSIONS Synovial fluid lubricin increased in response to IL-1β synovitis and joint lavage but also as a result of repeated arthrocentesis. Frequent repeated arthrocentesis is associated with inflammatory changes, including increased sulfated glycosaminoglycan concentrations and decreased hyaluronic acid concentrations. Synovitis results in more significant inflammatory changes than joint lavage. Our data suggests that synovial fluid lubricin, TNF-α, CCL2, CCL3, CCL5, CCL11 and sGAG may be useful biomarkers for synovitis and post-lavage joint inflammation. Caution should be exercised when performing repeated arthrocentesis clinically or in experimental studies due to the inflammatory response and loss of HA and synovial fluid viscosity.
Collapse
Affiliation(s)
- Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diana Fasanello
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darko Stefanovski
- Department of Biostatistics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Schurer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Katherine Caracappa
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Albert D'Agostino
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily Costello
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Claire Read
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Regenerative Medicine for Equine Musculoskeletal Diseases. Animals (Basel) 2021; 11:ani11010234. [PMID: 33477808 PMCID: PMC7832834 DOI: 10.3390/ani11010234] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Lameness due to musculoskeletal disease is the most common diagnosis in equine veterinary practice. Many of these orthopaedic disorders are chronic problems, for which no clinically satisfactory treatment exists. Thus, high hopes are pinned on regenerative medicine, which aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. Some regenerative medicine therapies have already made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising but diverse results. This review summarises the current knowledge of commonly used regenerative medicine treatments and critically discusses their use. Abstract Musculoskeletal injuries and chronic degenerative diseases commonly affect both athletic and sedentary horses and can entail the end of their athletic careers. The ensuing repair processes frequently do not yield fully functional regeneration of the injured tissues but biomechanically inferior scar or replacement tissue, causing high reinjury rates, degenerative disease progression and chronic morbidity. Regenerative medicine is an emerging, rapidly evolving branch of translational medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. It includes tissue engineering but also cell-based and cell-free stimulation of endogenous self-repair mechanisms. Some regenerative medicine therapies have made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising results. However, the qualitative and quantitative spatiotemporal requirements for specific bioactive factors to trigger tissue regeneration in the injury response are still unknown, and consequently, therapeutic approaches and treatment results are diverse. To exploit the full potential of this burgeoning field of medicine, further research will be required and is ongoing. This review summarises the current knowledge of commonly used regenerative medicine treatments in equine patients and critically discusses their use.
Collapse
|
7
|
White JL, Salinas EY, Link JM, Hu JC, Athanasiou KA. Characterization of Adult and Neonatal Articular Cartilage From the Equine Stifle. J Equine Vet Sci 2021; 96:103294. [PMID: 33349403 DOI: 10.1016/j.jevs.2020.103294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022]
Abstract
A significant portion of equine lameness is localized to the stifle joint. Effective cartilage repair strategies are largely lacking, however, recent advances in surgical techniques, biomaterials, and cellular therapeutics have broadened the clinical strategies of cartilage repair. To date, no studies have been performed directly comparing neonatal and adult articular cartilage from the stifle across multiple sites. An understanding of the differences in properties between the therapeutic target cartilage (i.e., adult cartilage) as well as potential donor cartilage (i.e., neonatal cartilage) could aid in selection of optimal harvest sites within a donor joint as well as evaluation of the success of the grafted cells or tissues within the host. Given the dearth of characterization studies of the equine stifle joint, and in particular neonatal stifle cartilage, the goal of this study was to measure properties of both potential source tissue and host tissue. Articular cartilage of the distal femur and patella (P) was assessed in regards to two specific factors, age of the animal and specific site within the joint. Two age groups were considered: neonatal (<1 week) and adult (4-14 years). Cartilage samples were harvested from 17 sites across the distal femur and patella. It was hypothesized that properties would vary significantly between neonatal and adult horses as well as within age groups on a site-by-site basis. Adult thickness varied by site. With the exception of water content, there were no significant biochemical differences among sites within regions of the distal femur (condyles and trochlea) and the patella in either the adult or neonate. Neonatal cartilage had a significantly higher water content than adult. Surprisingly, biochemical measurements of cellularity did not differ significantly between neonatal and adult, however, adult cartilage had greater variance in cellularity than neonatal. Overall, there were no significant differences between neonatal and adult glycosaminoglycan content. Collagen per wet weight was found to be significantly higher in adult cartilage than neonatal when averaged across all levels. In terms of biomechanical properties, aggregate modulus varied significantly across the condyles of adult cartilage but not the neonate. Neonatal cartilage was significantly less permeable, and the Young's modulus of neonatal cartilage was significantly higher than the adult. The tensile strength did not vary in a statistically significant manner between age groups. An understanding of morphological, histological, biochemical, and biomechanical properties enhances the understanding of cartilage tissue physiology and structure-function relationships. This study revealed important differences in biomechanical and biochemical properties among the 17 sites and among the six joint regions, as well as age-related differences between neonatal and adult cartilage. These location and age-related variations are informative toward determining the donor tissue harvest site.
Collapse
Affiliation(s)
- Jamie L White
- Integrative Pathobiology Graduate Group, University of California, Davis, Davis, CA
| | - Evelia Y Salinas
- Henry Samueli School of Engineering, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA
| | - Jarrett M Link
- Henry Samueli School of Engineering, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA
| | - Jerry C Hu
- Henry Samueli School of Engineering, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA
| | - Kyriacos A Athanasiou
- Henry Samueli School of Engineering, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA.
| |
Collapse
|
8
|
Bourebaba L, Michalak I, Baouche M, Kucharczyk K, Marycz K. Cladophora glomerata methanolic extract promotes chondrogenic gene expression and cartilage phenotype differentiation in equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome. Stem Cell Res Ther 2019; 10:392. [PMID: 31847882 PMCID: PMC6916455 DOI: 10.1186/s13287-019-1499-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chondrogenesis represents a highly dynamic cellular process that leads to the establishment of various types of cartilage. However, when stress-related injuries occur, a rapid and efficient regeneration of the tissues is necessary to maintain cartilage integrity. Mesenchymal stem cells (MSCs) are known to exhibit high capacity for self-renewal and pluripotency effects, and thus play a pivotal role in the repair and regeneration of damaged cartilage. On the other hand, the influence of certain pathological conditions such as metabolic disorders on MSCs can seriously impair their regenerative properties and thus reduce their therapeutic potential. OBJECTIVES In this investigation, we attempted to improve and potentiate the in vitro chondrogenic ability of adipose-derived mesenchymal stromal stem cells (ASCs) isolated from horses suffering from metabolic syndrome. METHODS Cultured cells in chondrogenic-inductive medium supplemented with Cladophora glomerata methanolic extract were experimented for expression of the main genes and microRNAs involved in the differentiation process using RT-PCR, for their morphological changes through confocal and scanning electron microscopy and for their physiological homeostasis. RESULTS The different added concentrations of C. glomerata extract to the basic chondrogenic inductive culture medium promoted the proliferation of equine metabolic syndrome ASCs (ASCsEMS) and resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II, aggrecan, cartilage oligomeric matrix protein, and Sox9 among others. The results reveal an obvious inhibitory effect of hypertrophy and a strong repression of miR-145-5p, miR-146-3p, and miR-34a and miR-449a largely involved in cartilage degradation. Treated cells additionally exhibited significant reduced apoptosis and oxidative stress, as well as promoted viability and mitochondrial potentiation. CONCLUSION Chondrogenesis in EqASCsEMS was found to be prominent after chondrogenic induction in conditions containing C. glomerata extract, suggesting that the macroalgae could be considered for the enhancement of ASC cultures and their reparative properties.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa, 11, Wisznia Mała, 55-114, Malin, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Meriem Baouche
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa, 11, Wisznia Mała, 55-114, Malin, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
- International Institute of Translational Medicine, Jesionowa, 11, Wisznia Mała, 55-114, Malin, Poland.
- Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Wóycickiego 1/3, 01-938, Warsaw, Poland.
| |
Collapse
|
9
|
De Angelis E, Cacchioli A, Ravanetti F, Bileti R, Cavalli V, Martelli P, Borghetti P. Gene expression markers in horse articular chondrocytes: Chondrogenic differentiaton IN VITRO depends on the proliferative potential and ageing. Implication for tissue engineering of cartilage. Res Vet Sci 2019; 128:107-117. [PMID: 31778851 DOI: 10.1016/j.rvsc.2019.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/05/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Chondrocyte dedifferentiation is a key limitation in therapies based on autologous chondrocyte implantation for cartilage repair. Articular chondrocytes, obtained from (metacarpophalangeal and metatarsophalangeal) joints of different aged horses, were cultured in monolayer for several passages (P0 to P8). Cumulative Populations Doublings Levels (PDL) and gene expression of relevant chondrocyte phenotypic markers were analysed during culturing. Overall data confirmed that, during proliferation in vitro, horse chondrocytes undergo marked morphological and phenotypic alterations of their differentiation status. Particularly, the dedifferentiation started early in culture (P0-P1) and was very marked at P3 subculture (PDL 4-6): proliferative phase after P3 could be critical for maintenance/loss of differentiation potential. In elderly animals, chondrocytes showed aspects of dedifferentiation shortly after their isolation, associated with reduced proliferative capacity. Regarding the gene expression of major cartilage markers (Col2, Aggrecan, SOX9) there was a very early reduction (P1) in proliferating chondrocytes independent of age. The chondrocytes from adult donors showed a more stable expression (up to P3) of some (Col6, Fibromodulin, SOX6, TGβ1) markers of mature cartilage; these markers could be tested as parameter to determine the dedifferentiation level. This study can provide parameters to identify up to which "culture step" chondrocytes for implantation with a conserved phenotypic potential can be obtained, and to test the efficiency of biomaterial scaffold or chondroinductive media/signals to maintain/recover the chondrocyte phenotype. Moreover, the determination of levels and time related expression of these markers can be useful during the chondroinduction of mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | | | - Rossana Bileti
- Department of Veterinary Sciences, University of Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Paolo Martelli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Italy
| |
Collapse
|
10
|
Viganò M, Tessaro I, Trovato L, Colombini A, Scala M, Magi A, Toto A, Peretti G, de Girolamo L. Rationale and pre-clinical evidences for the use of autologous cartilage micrografts in cartilage repair. J Orthop Surg Res 2018; 13:279. [PMID: 30400946 PMCID: PMC6218996 DOI: 10.1186/s13018-018-0983-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The management of cartilage lesions is an open issue in clinical practice, and regenerative medicine represents a promising approach, including the use of autologous micrografts whose efficacy was already tested in different clinical settings. The aim of this study was to characterize in vitro the effect of autologous cartilage micrografts on chondrocyte viability and differentiation and perform an evaluation of their application in racehorses affected by joint diseases. MATERIALS AND METHODS Matched human chondrocytes and micrografts were obtained from articular cartilage using Rigenera® procedure. Chondrocytes were cultured in the presence or absence of micrografts and chondrogenic medium to assess cell viability and cell differentiation. For the pre-clinical evaluation, three racehorses affected by joint diseases were treated with a suspension of autologous micrografts and PRP in arthroscopy interventions. Clinical and radiographic follow-ups were performed up to 4 months after the procedure. RESULTS Autologous micrografts support the formation of chondrogenic micromasses thanks to their content of matrix and growth factors, such as transforming growth factor β (TGFβ) and insulin-like growth factor 1 (IGF-1). On the other hand, no significant differences were observed on the gene expression of type II collagen, aggrecan, and SOX9. Preliminary data in the treatment of racehorses are suggestive of a potential in vivo use of micrografts to treat cartilage lesions. CONCLUSION The results reported in this study showed the role of articular micrografts in the promoting chondrocyte differentiation suggesting their potential use in the clinical practice to treat articular lesions.
Collapse
Affiliation(s)
- Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Irene Tessaro
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| | - Letizia Trovato
- Human Brain Wave, corso Galileo Ferraris 63, 10128 Turin, Italy
| | | | - Marco Scala
- Primus Gel srl, Via Casaregis, 30, 16129 Genoa, Italy
| | - Alberto Magi
- Clinica Veterinaria San Rossore, via delle cascine 149, 56100 Pisa, Italy
| | - Andrea Toto
- Clinica Veterinaria San Rossore, via delle cascine 149, 56100 Pisa, Italy
| | - Giuseppe Peretti
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, via Riccardo Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
11
|
Barrachina L, Remacha AR, Romero A, Zaragoza P, Vázquez FJ, Rodellar C. Differentiation of equine bone marrow derived mesenchymal stem cells increases the expression of immunogenic genes. Vet Immunol Immunopathol 2018; 200:1-6. [DOI: 10.1016/j.vetimm.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
|
12
|
da Silva Morais A, Oliveira JM, Reis RL. Small Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:423-439. [DOI: 10.1007/978-3-319-76735-2_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zayed M, Adair S, Ursini T, Schumacher J, Misk N, Dhar M. Concepts and challenges in the use of mesenchymal stem cells as a treatment for cartilage damage in the horse. Res Vet Sci 2018; 118:317-323. [PMID: 29601969 DOI: 10.1016/j.rvsc.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA), the most common form of joint disease affecting humans and horses, is characterized by the advance and decline of cartilage and loss of function of the affected joint. The progression of OA is steadily accompanied with biochemical events, which interfere with the cytokines and proteolytic enzymes responsible for progress of the disease. Recently, regenerative therapies have been used with an assumption that mesenchymal stem cells (MSCs) possess the potential to prevent the advancement of cartilage damage and potentially regenerate the injured tissue with an ultimate goal of preventing OA. We believe that despite various challenges, the use of allogenic versus autologous MSCs in cartilage regeneration, is a major issue which can directly or indirectly affect the other factors including, the timing of implantation, dose or cell numbers for implantation, and the source of MSCs. Current knowledge reporting some of these challenges that the clinicians might face in the treatment of cartilage damage in horses are presented. In this regard we conducted two independent studies. In the first study we compared donor matched bone marrow and synovial fluid - derived equine MSCs in vitro, and showed that the SFMSCs were similar to the BMMSCs in their proliferation, expression of CD29, CD44 and CD90, but, exhibited a significantly different chondrogenesis. Additionally, 3.2-21% of all SFMSCs were positive for MHC II, whereas, BMMSCs were negative. In the second study we observed that injection of both the autologous and allogenic SFMSCs into the tarsocrural joint resulted in elevated levels of total protein and total nucleated cell counts. Further experiments to evaluate the in vivo acute or chronic response to allogenic or autologous MSCs are imperative.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Steve Adair
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Tena Ursini
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - James Schumacher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Nabil Misk
- Department of Animal Surgery, College of Veterinary Medicine, Assuit University, 71526 Assuit, Egypt
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
14
|
Yousefi F, Kim M, Nahri SY, Mauck RL, Pleshko N. Near-Infrared Spectroscopy Predicts Compositional and Mechanical Properties of Hyaluronic Acid-Based Engineered Cartilage Constructs. Tissue Eng Part A 2018; 24:106-116. [PMID: 28398127 PMCID: PMC5770116 DOI: 10.1089/ten.tea.2017.0035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/03/2017] [Indexed: 11/12/2022] Open
Abstract
Hyaluronic acid (HA) has been widely used for cartilage tissue engineering applications. However, the optimal time point to harvest HA-based engineered constructs for cartilage repair is still under investigation. In this study, we investigated the ability of a nondestructive modality, near-infrared spectroscopic (NIR) analysis, to predict compositional and mechanical properties of HA-based engineered cartilage constructs. NIR spectral data were collected from control, unseeded constructs, and twice per week by fiber optic from constructs seeded with chondrocytes during their development over an 8-week period. Constructs were harvested at 2, 4, 6, and 8 weeks, collagen and sulfated glycosaminoglycan content measured using biochemical assays, and the mechanical properties of the constructs evaluated using unconfined compression tests. NIR absorbances associated with the scaffold material, water, and engineered cartilage matrix, were identified. The NIR-determined matrix absorbance plateaued after 4 weeks of culture, which was in agreement with the biochemical assay results. Similarly, the mechanical properties of the constructs also plateaued at 4 weeks. A multivariate partial least square model based on NIR spectral input was developed to predict the moduli of the constructs, which resulted in a prediction error of 10% and R value of 0.88 for predicted versus actual values of dynamic modulus. Furthermore, the maximum increase in moduli was calculated from the first derivative of the curve fit of NIR-predicted and actual moduli values over time, and both occurred at ∼2 weeks. Collectively, these data suggest that NIR spectral data analysis could be an alternative to destructive biochemical and mechanical methods for evaluation of HA-based engineered cartilage construct properties.
Collapse
Affiliation(s)
- Farzad Yousefi
- Tissue Imaging and Spectroscopy Lab, Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Minwook Kim
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Syeda Yusra Nahri
- Tissue Imaging and Spectroscopy Lab, Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nancy Pleshko
- Tissue Imaging and Spectroscopy Lab, Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
16
|
te Moller NCR, Pitkänen M, Sarin JK, Väänänen S, Liukkonen J, Afara IO, Puhakka PH, Brommer H, Niemelä T, Tulamo RM, Argüelles Capilla D, Töyräs J. Semi-automated International Cartilage Repair Society scoring of equine articular cartilage lesions in optical coherence tomography images. Equine Vet J 2016; 49:552-555. [DOI: 10.1111/evj.12637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/25/2016] [Indexed: 11/27/2022]
Affiliation(s)
- N. C. R. te Moller
- Department of Equine Sciences; Utrecht University; Utrecht the Netherlands
| | - M. Pitkänen
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
| | - J. K. Sarin
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
- Diagnostic Imaging Centre; Kuopio University Hospital; Kuopio Finland
| | - S. Väänänen
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
- Diagnostic Imaging Centre; Kuopio University Hospital; Kuopio Finland
| | - J. Liukkonen
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
| | - I. O. Afara
- Department of Electrical and Computer Engineering; Elizade University; Ondo Nigeria
| | - P. H. Puhakka
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
- Diagnostic Imaging Centre; Kuopio University Hospital; Kuopio Finland
| | - H. Brommer
- Department of Equine Sciences; Utrecht University; Utrecht the Netherlands
| | - T. Niemelä
- Department of Equine and Small Animal Medicine; University of Helsinki; Helsinki Finland
| | - R.-M. Tulamo
- Department of Equine and Small Animal Medicine; University of Helsinki; Helsinki Finland
| | - D. Argüelles Capilla
- Department of Equine and Small Animal Medicine; University of Helsinki; Helsinki Finland
| | - J. Töyräs
- Department of Applied Physics; University of Eastern Finland; Kuopio Finland
- Diagnostic Imaging Centre; Kuopio University Hospital; Kuopio Finland
| |
Collapse
|
17
|
Wright S. Highlights of recent clinically relevant papers. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Oosterlinck M. The holy grail of cartilage defect repair: Crossing species and disciplinary boundaries. Vet J 2016; 213:24-5. [PMID: 27240910 DOI: 10.1016/j.tvjl.2016.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Maarten Oosterlinck
- Department of Surgery and Anaesthesiology of Domestic Animals, Ghent University, Merelbeke, Belgium.
| |
Collapse
|