1
|
Lundmark F, Vorobyeva A, Liu Y, Lindbo S, Xu T, Oroujeni M, Rinne SS, Rosenström U, Garousi J. Reduction of renal activity retention of radiolabeled albumin binding domain‑derived affinity proteins using a non‑residualizing label strategy compared with a cleavable glycine‑leucine‑glycine‑lysine‑linker. Mol Med Rep 2024; 29:32. [PMID: 38186305 PMCID: PMC10784736 DOI: 10.3892/mmr.2023.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
The feasibility of targeted imaging and therapy using radiolabeled albumin‑binding domain‑derived affinity proteins (ADAPTs) has been demonstrated. However, high renal uptake of radioactivity limits the maximum tolerated dose. Successful reduction of renal retention of radiolabeled Fab fragments has been demonstrated by incorporating a cleavable linker between the targeting agent and the radiometal chelator. The present study investigated if the introduction of a glycine‑leucine‑glycine‑lysine (GLGK)‑linker would reduce the kidney uptake of radiolabeled ADAPT6 and also compared it with the non‑residualizing [125I]I‑[(4‑hydroxyphenyl)ethyl]maleimide ([125I]I‑HPEM) labeling strategy. GLGK was site‑specifically coupled to human epidermal growth factor receptor 2 (HER2)‑targeting ADAPT6. Conjugates without the cleavable linker were used as controls and all constructs were labeled with lutetium‑177 (177Lu). [125I]I‑HPEM was coupled to ADAPT6 at the C‑terminus. Biodistribution of all constructs was evaluated in NMRI mice 4 h after injection. Specific binding to HER2‑expressing cells in vitro was demonstrated for all constructs. No significant difference in kidney uptake was observed between the [177Lu]Lu‑2,2',2",2"'‑(1,4,7,10‑tetraazacyclododecane‑1,4,7,10‑tetrayl)tetraacetic acid‑GLGK‑conjugates and the controls. The renal activity of [125I]I‑HPEM‑ADAPT6 was significantly lower compared with all other constructs. In conclusion, the incorporation of the cleavable GLGK‑linker did not result in lower renal retention. Therefore, the present study emphasized that, in order to achieve a reduction of renal retention, alternative molecular design strategies may be required for different targeting agents.
Collapse
Affiliation(s)
- Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Sarah Lindbo
- Department of Protein Technology, Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
2
|
Meng L, Collier KA, Wang P, Li Z, Monk P, Mortazavi A, Hu Z, Spakowicz D, Zheng L, Yang Y. Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma. Cells 2023; 13:34. [PMID: 38201238 PMCID: PMC10777977 DOI: 10.3390/cells13010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The most common subtype of renal cell carcinoma is clear cell renal cell carcinoma (ccRCC). While localized ccRCC can be cured with surgery, metastatic disease has a poor prognosis. Recently, immunotherapy has emerged as a promising approach for advanced ccRCC. This review provides a comprehensive overview of the evolving immunotherapeutic landscape for metastatic ccRCC. Immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 and CTLA-4 inhibitors have demonstrated clinical efficacy as monotherapies and in combination regimens. Combination immunotherapies pairing ICIs with antiangiogenic agents, other immunomodulators, or novel therapeutic platforms such as bispecific antibodies and chimeric antigen receptor (CAR) T-cell therapy are areas of active research. Beyond the checkpoint blockade, additional modalities including therapeutic vaccines, cytokines, and oncolytic viruses are also being explored for ccRCC. This review discusses the mechanisms, major clinical trials, challenges, and future directions for these emerging immunotherapies. While current strategies have shown promise in improving patient outcomes, continued research is critical for expanding and optimizing immunotherapy approaches for advanced ccRCC. Realizing the full potential of immunotherapy will require elucidating mechanisms of response and resistance, developing predictive biomarkers, and rationally designing combination therapeutic regimens tailored to individual patients. Advances in immunotherapy carry immense promise for transforming the management of metastatic ccRCC.
Collapse
Affiliation(s)
- Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Katharine A. Collier
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Peng Wang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Paul Monk
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Zhiwei Hu
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Linghua Zheng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| |
Collapse
|
3
|
Timperanza C, Jensen H, Bäck T, Lindegren S, Aneheim E. Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211. Pharmaceuticals (Basel) 2023; 16:ph16040595. [PMID: 37111352 PMCID: PMC10145095 DOI: 10.3390/ph16040595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
To enhance targeting efficacy in the radioimmunotherapy of disseminated cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with a modified monoclonal antibody that has an affinity for both tumor antigens and radiolabeled carriers. In this work, we aimed to synthesize and evaluate poly-L-lysine-based effector molecules for pretargeting applications based on the tetrazine and trans-cyclooctene reaction using 211At for targeted alpha therapy and 125I as a surrogate for the imaging radionuclides 123, 124I. Poly-L-lysine in two sizes was functionalized with a prosthetic group, for the attachment of both radiohalogens, and tetrazine, to allow binding to the trans-cyclooctene-modified pretargeting agent, maintaining the structural integrity of the polymer. Radiolabeling resulted in a radiochemical yield of over 80% for astatinated poly-L-lysines and a range of 66-91% for iodinated poly-L-lysines. High specific astatine activity was achieved without affecting the stability of the radiopharmaceutical or the binding between tetrazine and transcyclooctene. Two sizes of poly-L-lysine were evaluated, which displayed similar blood clearance profiles in a pilot in vivo study. This work is a first step toward creating a pretargeting system optimized for targeted alpha therapy with 211At.
Collapse
Affiliation(s)
- Chiara Timperanza
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Holger Jensen
- PET and Cyclotron Unit, KF-3982, Copenhagen University Hospital, DK2100 Copenhagen, Denmark
| | - Tom Bäck
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Sture Lindegren
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Emma Aneheim
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, 413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Escure G, Manier S. [Bispecific antibodies in multiple myeloma]. Bull Cancer 2021; 108:S205-S212. [PMID: 34920804 DOI: 10.1016/j.bulcan.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
Immunotherapies have recently emerged as potential game changers in the treatment of multiple myeloma (MM). Those include monoclonal antibodies (targeting CD38 or CS1), bispecific antibodies (BsAb, mainly targeting BCMA, GPRC5D or FcRH5), antibody-drug conjugate (mainly targeting BCMA) and CAR-T cells (mainly targeting BCMA). BsAb have the capacity to bind two different antigens, one at the tumor cell surface and one on T cells (CD3), recreating the immune synapse. In this article, we discuss the main clinical data on BsAb in MM, as well as their different constructs and the potential mechanism of resistance.
Collapse
Affiliation(s)
- Guillaume Escure
- CHU Lille, hôpital Huriez, service d'hématologie, 59000 Lille, France; Université de Lille, Unité CANTHER, Inserm UMR-S1277 & CNRS UMR9020, 59000 Lille, France
| | - Salomon Manier
- CHU Lille, hôpital Huriez, service d'hématologie, 59000 Lille, France; Université de Lille, Unité CANTHER, Inserm UMR-S1277 & CNRS UMR9020, 59000 Lille, France.
| |
Collapse
|
5
|
Dimasi N, Kumar A, Gao C. Generation of bispecific antibodies using chemical conjugation methods. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:13-24. [PMID: 34916015 DOI: 10.1016/j.ddtec.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Bispecific antibodies combine the specificity of two antibodies into one molecule. During the past two decades, advancement in protein engineering enabled the development of more than 100 bispecific formats, three of which are approved by the FDA for clinical use. In parallel to protein engineering methods, advancement in conjugation chemistries have spurred the use of chemical engineering approaches to generate bispecific antibodies. Herein, we review selected chemical strategies employed to generate bispecific antibodies that cannot be made using protein engineering methods.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Amit Kumar
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
6
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
7
|
Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules 2020; 25:molecules25194448. [PMID: 32998229 PMCID: PMC7583817 DOI: 10.3390/molecules25194448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Albumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys. In this study, we investigated whether a co-injection of lysine or gelofusin, commonly used for reduction of renal uptake of radiolabeled peptides in clinics, would reduce the renal uptake of [99mTc]Tc(CO)3-ADAPT6 in NMRI mice. In order to better understand the mechanism behind the reabsorption of [99mTc]Tc(CO)3-ADAPT6, we included several compounds that act on various parts of the reabsorption system in kidneys. Administration of gelofusine, lysine, probenecid, furosemide, mannitol, or colchicine did not change the uptake of [99mTc]Tc(CO)3-ADAPT6 in kidneys. Sodium maleate reduced the uptake of [99mTc]Tc(CO)3-ADAPT6 to ca. 25% of the uptake in the control, a high dose of fructose (50 mmol/kg) reduced the uptake by ca. two-fold. However, a lower dose (20 mmol/kg) had no effect. These results indicate that common clinical strategies are not effective for reduction of kidney uptake of [99mTc]Tc(CO)3-ADAPT6 and that other strategies for reduction of activity uptake or retention in kidneys should be investigated for ADAPT6.
Collapse
|
8
|
Garousi J, Vorobyeva A, Altai M. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules 2020; 25:molecules25112673. [PMID: 32526905 PMCID: PMC7321166 DOI: 10.3390/molecules25112673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Affibody molecules are the most studied class of engineered scaffold proteins (ESPs) in radionuclide molecular imaging. Attempts to use affibody molecules directly labelled with radiometals for targeted radionuclide therapy were hampered by the high uptake and retention of radioactivity in kidneys. Several promising strategies have been implemented to circumvent this problem. Here, we investigated whether a pharmacological approach targeting different components of the reabsorption system could be used to lower the uptake of [99mTc]Tc-ZHER:2395 affibody molecule in kidneys. Pre-injection of probenecid, furosemide, mannitol or colchicine had no influence on activity uptake in kidneys compared to the control group. Mice pre-injected with maleate and fructose had 33% and 51% reduction in the kidney-associated activity, respectively, compared to the control group. Autoradiography images showed that the accumulation of activity after [99mTc]Tc-ZHER2:2395 injection was in the renal cortex and that both maleate and fructose could significantly reduce it. Results from this study demonstrate that pharmacological intervention with maleate and fructose was effective in reducing the kidney uptake of affibody molecules. A presumable mechanism is the disruption of ATP-mediated cellular uptake and endocytosis processes of affibody molecules by tubular cells.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (A.V.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (A.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia
| | - Mohamed Altai
- Division of Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, 222 43 Lund, Sweden
- Correspondence: ; Tel.: +46-704128699
| |
Collapse
|
9
|
Nie S, Wang Z, Moscoso-Castro M, D'Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther 2020; 3:18-62. [PMID: 33928225 PMCID: PMC7990219 DOI: 10.1093/abt/tbaa003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
A bispecific antibody (bsAb) is able to bind two different targets or two distinct epitopes on the same target. Broadly speaking, bsAbs can include any single molecule entity containing dual specificities with at least one being antigen-binding antibody domain. Besides additive effect or synergistic effect, the most fascinating applications of bsAbs are to enable novel and often therapeutically important concepts otherwise impossible by using monoclonal antibodies alone or their combination. This so-called obligate bsAbs could open up completely new avenue for developing novel therapeutics. With evolving understanding of structural architecture of various natural or engineered antigen-binding immunoglobulin domains and the connection of different domains of an immunoglobulin molecule, and with greatly improved understanding of molecular mechanisms of many biological processes, the landscape of therapeutic bsAbs has significantly changed in recent years. As of September 2019, over 110 bsAbs are under active clinical development, and near 180 in preclinical development. In this review article, we introduce a system that classifies bsAb formats into 30 categories based on their antigen-binding domains and the presence or absence of Fc domain. We further review the biology applications of approximately 290 bsAbs currently in preclinical and clinical development, with the attempt to illustrate the principle of selecting a bispecific format to meet biology needs and selecting a bispecific molecule as a clinical development candidate by 6 critical criteria. Given the novel mechanisms of many bsAbs, the potential unknown safety risk and risk/benefit should be evaluated carefully during preclinical and clinical development stages. Nevertheless we are optimistic that next decade will witness clinical success of bsAbs or multispecific antibodies employing some novel mechanisms of action and deliver the promise as next wave of antibody-based therapeutics.
Collapse
Affiliation(s)
- Siwei Nie
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| | - Zhuozhi Wang
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | | | - Paul D'Souza
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Can Lei
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Jianqing Xu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | - Jijie Gu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| |
Collapse
|
10
|
Parker CL, McSweeney MD, Lucas AT, Jacobs TM, Wadsworth D, Zamboni WC, Lai SK. Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102076. [PMID: 31394261 PMCID: PMC7224238 DOI: 10.1016/j.nano.2019.102076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
Pretargeting is an increasingly explored strategy to improve nanoparticle targeting, in which pretargeting molecules that bind both selected epitopes on target cells and nanocarriers are first administered, followed by the drug-loaded nanocarriers. Bispecific antibodies (bsAb) represent a promising class of pretargeting molecules, but how different bsAb formats may impact the efficiency of pretargeting remains poorly understood, in particular Fab valency and Fc receptor (FcR)-binding of bsAb. We found the tetravalent bsAb markedly enhanced PEGylated nanoparticle binding to target HER2+ cells relative to the bivalent bsAb in vitro. Pretargeting with tetravalent bsAb with abrogated FcR binding increased tumor accumulation of PEGylated liposomal doxorubicin (PLD) 3-fold compared to passively targeted PLD alone, and 5-fold vs pretargeting with tetravalent bsAb with normal FcR binding in vivo. Our work demonstrates that multivalency and elimination of FcRn recycling are both important features of pretargeting molecules, and further supports pretargeting as a promising nanoparticle delivery strategy.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/pharmacology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Drug Carriers/chemistry
- Drug Carriers/pharmacology
- Female
- Humans
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Xenograft Model Antitumor Assays
- omega-Chloroacetophenone
Collapse
Affiliation(s)
- Christina L Parker
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Carolina Center for Nanotechnology Excellence, University of North Carolina at Chapel Hill, United States
| | - Timothy M Jacobs
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Daniel Wadsworth
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Carolina Center for Nanotechnology Excellence, University of North Carolina at Chapel Hill, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
11
|
Strebl MG, Yang J, Isaacs L, Hooker JM. Adamantane/Cucurbituril: A Potential Pretargeted Imaging Strategy in Immuno-PET. Mol Imaging 2019; 17:1536012118799838. [PMID: 30354934 PMCID: PMC6204619 DOI: 10.1177/1536012118799838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) imaging with biological macromolecules greatly expands the possibilities of molecular imaging. There are, however, practical aspects limiting the potential of the approach, including the dosimetric consequences of the slow kinetics of radiolabeled biomacromolecules. Pretargeting strategies have led to impactful improvements in the field but are themselves limited by shortcomings of available bioconjugation methodology. We report our initial findings concerning the suitability of the adamantane/cucurbit[7]uril system for pretargeted immuno-PET imaging and provide proof-of-concept PET/computed tomography imaging experiments to establish the stability and rapid formation of host–guest complexes in vivo. The adamantane/cucurbit[7]uril system itself without antibody conjugation has shown remarkably fast association kinetics and clearance in vivo. We further demonstrate the modulation of biodistribution achievable by cucurbituril complexation with relevance for pharmaceutical formulation as well as the radiosynthetic access to relevant reporter molecules labeled with 11C or 18F. This work, an early proof-of-concept, supports the notion that the adamantane/cucurbit[7]uril system warrants further exploration in pretargeted PET imaging applications.
Collapse
Affiliation(s)
- Martin G Strebl
- 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jane Yang
- 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lyle Isaacs
- 2 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Jacob M Hooker
- 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
12
|
Membreno R, Cook BE, Zeglis BM. Pretargeted Radioimmunotherapy Based on the Inverse Electron Demand Diels-Alder Reaction. J Vis Exp 2019. [PMID: 30774125 DOI: 10.3791/59041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
While radioimmunotherapy (RIT) is a promising approach for the treatment of cancer, the long pharmacokinetic half-life of radiolabeled antibodies can result in high radiation doses to healthy tissues. Perhaps not surprisingly, several different strategies have been developed to circumvent this troubling limitation. One of the most promising of these approaches is pretargeted radioimmunotherapy (PRIT). PRIT is predicated on decoupling the radionuclide from the immunoglobulin, injecting them separately, and then allowing them to combine in vivo at the target tissue. This approach harnesses the exceptional tumor-targeting properties of antibodies while skirting their pharmacokinetic drawbacks, thereby lowering radiation doses to non-target tissues and facilitating the use of radionuclides with half-lives that are considered too short for use in traditional radioimmunoconjugates. Over the last five years, our laboratory and others have developed an approach to in vivo pretargeting based on the inverse electron-demand Diels-Alder (IEDDA) reaction between trans-cyclooctene (TCO) and tetrazine (Tz). This strategy has been successfully applied to pretargeted positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging with a variety of antibody-antigen systems. In a pair of recent publications, we have demonstrated the efficacy of IEDDA-based PRIT in murine models of pancreatic ductal adenocarcinoma and colorectal carcinoma. In this protocol, we describe protocols for PRIT using a 177Lu-DOTA-labeled tetrazine radioligand ([177Lu]Lu-DOTA-PEG7-Tz) and a TCO-modified variant of the colorectal cancer targeting huA33 antibody (huA33-TCO). More specifically, we will describe the construction of huA33-TCO, the synthesis and radiolabeling of [177Lu]Lu-DOTA-PEG7-Tz, and the performance of in vivo biodistribution and longitudinal therapy studies in murine models of colorectal carcinoma.
Collapse
Affiliation(s)
- Rosemery Membreno
- Department of Chemistry, Hunter College of the City University of New York; Ph.D. Program in Chemistry, Graduate Center of the City University of New York
| | - Brendon E Cook
- Department of Chemistry, Hunter College of the City University of New York; Ph.D. Program in Chemistry, Graduate Center of the City University of New York; Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York; Ph.D. Program in Chemistry, Graduate Center of the City University of New York; Department of Radiology, Memorial Sloan Kettering Cancer Center; Department of Radiology, Weill Cornell Medical College;
| |
Collapse
|
13
|
Abstract
Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.
Collapse
Affiliation(s)
- Bushra Husain
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Diego Ellerman
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018; 179:209-245. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Pretargeted nuclear imaging and radiotherapy have recently attracted increasing attention for diagnosis and treatment of cancer with nanomedicines. This is because it conceptually offers better imaging contrast and therapeutic efficiency while reducing the dose to radiosensitive tissues compared to conventional strategies. In conventional imaging and radiotherapy, a directly radiolabeled nano-sized vector is administered and allowed to accumulate in the tumor, typically on a timescale of several days. In contrast, pretargeting is based on a two-step approach. First, a tumor-accumulating vector carrying a tag is administered followed by injection of a fast clearing radiolabeled agent that rapidly recognizes the tag of the tumor-bound vector in vivo. Therefore, pretargeting circumvents the use of long-lived radionuclides that is a necessity for sufficient tumor accumulation and target-to-background ratios using conventional approaches. In this review, we give an overview of recent advances in pretargeted imaging strategies. We will critically reflect on the advantages and disadvantages of current state-of-the-art conventional imaging approaches and compare them to pretargeted strategies. We will discuss the pretargeted imaging concept and the involved chemistry. Finally, we will discuss the steps forward in respect to clinical translation, and how pretargeted strategies could be applied to improve state-of-the-art radiotherapeutic approaches.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Patricia E Edem
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J Nucl Med 2018; 59:878-884. [PMID: 29545378 DOI: 10.2967/jnumed.116.186338] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.g., half-life) can limit their widespread dissemination. The first part of this review will explore the diversity, basic radiochemistry, restrictions, and hurdles of α-emitters.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College, New York, New York.,Graduate Center of City University of New York, New York, New York
| | - Michael R McDevitt
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
16
|
Yumura K, Akiba H, Nagatoishi S, Kusano-Arai O, Iwanari H, Hamakubo T, Tsumoto K. Use of SpyTag/SpyCatcher to construct bispecific antibodies that target two epitopes of a single antigen. J Biochem 2017. [DOI: 10.1093/jb/mvx023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kyohei Yumura
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hiroki Akiba
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo 153-8904, Japan
| | - Kouhei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
17
|
Abstract
Molecular imaging allows for the visualization of changes at the cellular level in diseases such as cancer. A successful molecular imaging agent must rely on disease-selective targets and ligands that specifically interact with those targets. Unfortunately, the translation of novel target-specific ligands into the clinic has been frustratingly slow with limitations including the complex design and screening approaches for ligand identification, as well as their subsequent optimization into useful imaging agents. This review focuses on combinatorial library approaches towards addressing these two challenges, with particular focus on phage display and one-bead one-compound (OBOC) libraries. Both of these peptide-based techniques have proven successful in identifying new ligands for cancer-specific targets and some of the success stories will be highlighted. New developments in screening methodology and sequencing technology have pushed the bounds of phage display and OBOC even further, allowing for even faster and more robust discovery of novel ligands. The combination of multiple high-throughput technologies will not only allow for more accurate identification, but also faster affinity maturation, while overall streamlining the process of translating novel ligands into clinical imaging agents.
Collapse
|
18
|
Trivedi A, Stienen S, Zhu M, Li H, Yuraszeck T, Gibbs J, Heath T, Loberg R, Kasichayanula S. Clinical Pharmacology and Translational Aspects of Bispecific Antibodies. Clin Transl Sci 2017; 10:147-162. [PMID: 28297195 PMCID: PMC5421745 DOI: 10.1111/cts.12459] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- A Trivedi
- Amgen Inc., Thousand Oaks, California, USA
| | - S Stienen
- Amgen Research (Munich), Munich, Germany
| | - M Zhu
- Amgen Inc., Thousand Oaks, California, USA
| | - H Li
- Amgen Inc., Thousand Oaks, California, USA
| | | | - J Gibbs
- Amgen Inc., Thousand Oaks, California, USA.,Current address: AbbVie Inc., North Chicago, Illinois, USA
| | - T Heath
- Amgen Inc., Thousand Oaks, California, USA
| | - R Loberg
- Amgen Inc., Thousand Oaks, California, USA
| | - S Kasichayanula
- Amgen Inc., Thousand Oaks, California, USA.,Current Address: AbbVie Inc., South San Francisco, California, USA
| |
Collapse
|
19
|
Jung KO, Youn H, Kim SH, Kim YH, Kang KW, Chung JK. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM. Biochem Biophys Res Commun 2016; 477:483-9. [PMID: 27317485 DOI: 10.1016/j.bbrc.2016.06.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and (64)Cu. HT29 (hTERT+) and U2OS (hTERT-) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo.
Collapse
Affiliation(s)
- Kyung Oh Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, South Korea; Biomedical Sciences, Seoul National University College of Medicine, South Korea; Cancer Research Institute, Seoul National University College of Medicine, South Korea; Tumor Microenvironment Global Core Research Center, Seoul National University, South Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, South Korea; Cancer Research Institute, Seoul National University College of Medicine, South Korea; Tumor Microenvironment Global Core Research Center, Seoul National University, South Korea; Cancer Imaging Center, Seoul National University Hospital, Seoul, South Korea.
| | - Seung Hoo Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, South Korea; Cancer Research Institute, Seoul National University College of Medicine, South Korea
| | - Young-Hwa Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, South Korea; Biomedical Sciences, Seoul National University College of Medicine, South Korea; Cancer Research Institute, Seoul National University College of Medicine, South Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, South Korea; Cancer Research Institute, Seoul National University College of Medicine, South Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, South Korea; Biomedical Sciences, Seoul National University College of Medicine, South Korea; Cancer Research Institute, Seoul National University College of Medicine, South Korea; Tumor Microenvironment Global Core Research Center, Seoul National University, South Korea.
| |
Collapse
|
20
|
Hou S, Choi JS, Garcia MA, Xing Y, Chen KJ, Chen YM, Jiang ZK, Ro T, Wu L, Stout DB, Tomlinson JS, Wang H, Chen K, Tseng HR, Lin WY. Pretargeted Positron Emission Tomography Imaging That Employs Supramolecular Nanoparticles with in Vivo Bioorthogonal Chemistry. ACS NANO 2016; 10:1417-24. [PMID: 26731174 PMCID: PMC4893318 DOI: 10.1021/acsnano.5b06860] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A pretargeted oncologic positron emission tomography (PET) imaging that leverages the power of supramolecular nanoparticles with in vivo bioorthogonal chemistry was demonstrated for the clinically relevant problem of tumor imaging. The advantages of this approach are that (i) the pharmacokinetics (PKs) of tumor-targeting and imaging agents can be independently altered via chemical alteration to achieve the desired in vivo performance and (ii) the interplay between the two PKs and other controllable variables confers a second layer of control toward improved PET imaging. In brief, we utilized supramolecular chemistry to synthesize tumor-targeting nanoparticles containing transcyclooctene (TCO, a bioorthogonal reactive motif), called TCO⊂SNPs. After the intravenous injection and subsequent concentration of the TCO⊂SNPs in the tumors of living mice, a small molecule containing both the complementary bioorthogonal motif (tetrazine, Tz) and a positron-emitting radioisotope ((64)Cu) was injected to react selectively and irreversibly to TCO. High-contrast PET imaging of the tumor mass was accomplished after the rapid clearance of the unreacted (64)Cu-Tz probe. Our nanoparticle approach encompasses a wider gamut of tumor types due to the use of EPR effects, which is a universal phenomenon for most solid tumors.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - Jin-sil Choi
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - Mitch Andre Garcia
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - Yan Xing
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9061, United States
| | - Kuan-Ju Chen
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - Yi-Ming Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Ziyue K. Jiang
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - Tracy Ro
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - David B. Stout
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - James S. Tomlinson
- Department of Surgery, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hao Wang
- National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun Haidian District, Beijing, 100190, People’s Republic of China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9061, United States
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095-1770, United States
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| |
Collapse
|
21
|
Lim EK, Bae P, Kim H, Jung J. A leucine zipper pair-based lipid vesicle for image-guided therapy in breast cancer. Chem Commun (Camb) 2016; 52:2687-90. [DOI: 10.1039/c5cc08659k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a controllable image-guided therapy system as a powerful tool for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Panki Bae
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Haeran Kim
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Nanobiotechnology Major
| |
Collapse
|
22
|
Taking up Cancer Immunotherapy Challenges: Bispecific Antibodies, the Path Forward? Antibodies (Basel) 2015; 5:antib5010001. [PMID: 31557983 PMCID: PMC6698871 DOI: 10.3390/antib5010001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023] Open
Abstract
As evidenced by the recent approvals of Removab (EU, Trion Pharma) in 2009 and of Blincyto (US, Amgen) in 2014, the high potential of bispecific antibodies in the field of immuno-oncology is eliciting a renewed interest from pharmaceutical companies. Supported by rapid advances in antibody engineering and the development of several technological platforms such as Triomab or bispecific T cell engagers (BiTEs), the “bispecifics” market has increased significantly over the past decade and may occupy a pivotal space in the future. Over 30 bispecific molecules are currently in different stages of clinical trials and more than 70 in preclinical phase. This review focuses on the clinical potential of bispecific antibodies as immune effector cell engagers in the onco-immunotherapy field. We summarize current strategies targeting various immune cells and their clinical interests. Furthermore, perspectives of bispecific antibodies in future clinical developments are addressed.
Collapse
|
23
|
Abstract
![]()
Development
of novel imaging probes for cancer diagnostics remains
critical for early detection of disease, yet most imaging agents are
hindered by suboptimal tumor accumulation. To overcome these limitations,
researchers have adapted antibodies for imaging purposes. As cancerous
malignancies express atypical patterns of cell surface proteins in
comparison to noncancerous tissues, novel antibody-based imaging agents
can be constructed to target individual cancer cells or surrounding
vasculature. Using molecular imaging techniques, these agents may
be utilized for detection of malignancies and monitoring of therapeutic
response. Currently, there are several imaging modalities commonly
employed for molecular imaging. These imaging modalities include positron
emission tomography (PET), single-photon emission computed tomography
(SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence
and bioluminescence), and photoacoustic (PA) imaging. While antibody-based
imaging agents may be employed for a broad range of diseases, this
review focuses on the molecular imaging of pancreatic cancer, as there
are limited resources for imaging and treatment of pancreatic malignancies.
Additionally, pancreatic cancer remains the most lethal cancer with
an overall 5-year survival rate of approximately 7%, despite significant
advances in the imaging and treatment of many other cancers. In this
review, we discuss recent advances in molecular imaging of pancreatic
cancer using antibody-based imaging agents. This task is accomplished
by summarizing the current progress in each type of molecular imaging
modality described above. Also, several considerations for designing
and synthesizing novel antibody-based imaging agents are discussed.
Lastly, the future directions of antibody-based imaging agents are
discussed, emphasizing the potential applications for personalized
medicine.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Savo Bou Zein Eddine
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53792, United States.,University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53792, United States
| |
Collapse
|
24
|
Yang Q, Parker CL, McCallen JD, Lai SK. Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. J Control Release 2015; 220:715-26. [PMID: 26407672 DOI: 10.1016/j.jconrel.2015.09.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors.
Collapse
Affiliation(s)
- Qi Yang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Christina L Parker
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Justin D McCallen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Samuel K Lai
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
25
|
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 2015; 20:1271-83. [PMID: 26360055 DOI: 10.1016/j.drudis.2015.09.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Abstract
The first candidates from the promising class of small non-antibody protein scaffolds are now moving into clinical development and practice. Challenges remain, and scaffolds will need to be further tailored toward applications where they provide real advantages over established therapeutics to succeed in a rapidly evolving drug development landscape.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Carsten Zimmermann
- University of San Diego, School of Business Administration, 5998 Alcala Park, San Diego, CA 92110, USA
| | - David Lowe
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Lutz Jermutus
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK; Trinity Hall, University of Cambridge, Trinity Lane CB2 1TJ, UK.
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia.
| |
Collapse
|
26
|
PET-based compartmental modeling of (124)I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer. Eur J Nucl Med Mol Imaging 2015; 42:1700-1706. [PMID: 26194713 DOI: 10.1007/s00259-015-3061-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the "best-fit" parameters and model-derived quantities for optimizing biodistribution of intravenously injected (124)I-labeled antitumor antibodies. METHODS As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as "A33") were performed in 11 colorectal cancer patients. Serial whole-body PET scans of (124)I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. RESULTS Excellent agreement was observed between fitted and measured parameters of tumor uptake, "off-target" uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. CONCLUSION This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting "best-fit" nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived.
Collapse
|
27
|
Knight JC, Mosley M, Stratford MRL, Uyeda HT, Benink HA, Cong M, Fan F, Faulkner S, Cornelissen B. Development of an enzymatic pretargeting strategy for dual-modality imaging. Chem Commun (Camb) 2015; 51:4055-8. [PMID: 25660394 DOI: 10.1039/c4cc10265g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
A pretargeted imaging strategy based on the HaloTag dehalogenase enzyme is described. Here, a HaloTag-Trastuzumab conjugate has been used as the primary agent targeting HER2 expression, and three new radiolabelled HaloTag ligands have been used as secondary agents, two of which offer dual-modality (SPECT/optical) imaging capability.
Collapse
Affiliation(s)
- J C Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kawato T, Mizohata E, Shimizu Y, Meshizuka T, Yamamoto T, Takasu N, Matsuoka M, Matsumura H, Kodama T, Kanai M, Doi H, Inoue T, Sugiyama A. Structure-based design of a streptavidin mutant specific for an artificial biotin analogue. J Biochem 2015; 157:467-75. [PMID: 25645976 DOI: 10.1093/jb/mvv004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/10/2014] [Indexed: 01/03/2023] Open
Abstract
For a multistep pre-targeting method using antibodies, a streptavidin mutant with low immunogenicity, termed low immunogenic streptavidin mutant No. 314 (LISA-314), was produced previously as a drug delivery tool. However, endogenous biotins (BTNs) with high affinity (Kd < 10(-10) M) for the binding pocket of LISA-314 prevents access of exogenous BTN-labelled anticancer drugs. In this study, we improve the binding pocket of LISA-314 to abolish its affinity for endogenous BTN species, therefore ensuring that the newly designed LISA-314 binds only artificial BTN analogue. The replacement of three amino acid residues was performed in two steps to develop a mutant termed V212, which selectively binds to 6-(5-((3aS,4S,6aR)-2-iminohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoic acid (iminobiotin long tail, IMNtail). Surface plasmon resonance results showed that V212 has a Kd value of 5.9 × 10(-7) M towards IMNtail, but no binding affinity for endogenous BTN species. This V212/IMNtail system will be useful as a novel delivery tool for anticancer therapy.
Collapse
Affiliation(s)
- Tatsuya Kawato
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Eiichi Mizohata
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yohei Shimizu
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomohiro Meshizuka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomohiro Yamamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Noriaki Takasu
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Matsuoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroyoshi Matsumura
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuhiko Kodama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Motomu Kanai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hirofumi Doi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tsuyoshi Inoue
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akira Sugiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; and Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
29
|
Parat A, Kryza D, Degoul F, Taleb J, Viallard C, Janier M, Garofalo A, Bonazza P, Heinrich-Balard L, Cohen R, Miot-Noirault E, Chezal JM, Billotey C, Felder-Flesch D. Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma. J Mater Chem B 2015; 3:2560-2571. [DOI: 10.1039/c5tb00235d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small-sized and bifunctional111In-radiolabeled dendron shows highin vivotargeting efficiency towards an intracellular target in a murine melanoma model.
Collapse
|
30
|
Altai M, Honarvar H, Wållberg H, Strand J, Varasteh Z, Rosestedt M, Orlova A, Dunås F, Sandström M, Löfblom J, Tolmachev V, Ståhl S. Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re. Eur J Med Chem 2014; 87:519-28. [PMID: 25282673 DOI: 10.1016/j.ejmech.2014.09.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
Collapse
Affiliation(s)
- Mohamed Altai
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Wållberg
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden; Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Strand
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Zohreh Varasteh
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Maria Rosestedt
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | - John Löfblom
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | - Stefan Ståhl
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden
| |
Collapse
|
31
|
Eggleston H, Panizzi P. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation. INFORMATICS (MDPI) 2014; 1:72-99. [PMID: 26985401 PMCID: PMC4790455 DOI: 10.3390/informatics1010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.
Collapse
Affiliation(s)
- Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| |
Collapse
|
32
|
Knight JC, Cornelissen B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:96-113. [PMID: 24753979 PMCID: PMC3992206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Due to their rapid and highly selective nature, bioorthogonal chemistry reactions are attracting a significant amount of recent interest in the radiopharmaceutical community. Over the last few years, reactions of this type have found tremendous utility in the construction of new radiopharmaceuticals and as a method of bioconjugation. Furthermore, reports are beginning to emerge in which these reactions are also being applied in vivo to facilitate a novel pretargeting strategy for the imaging and therapy of cancer. The successful implementation of such an approach could lead to dramatic improvements in image quality, therapeutic index, and reduced radiation dose to non-target organs and tissues. This review will focus on the potential of various bioorthogonal chemistry reactions to be used successfully in such an approach.
Collapse
Affiliation(s)
- James C Knight
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of OxfordOxford, OX3 7LJ, United Kingdom
- Radiobiology Research Institute, Churchill HospitalOxford, OX3 7LJ, United Kingdom
| | - Bart Cornelissen
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of OxfordOxford, OX3 7LJ, United Kingdom
- Radiobiology Research Institute, Churchill HospitalOxford, OX3 7LJ, United Kingdom
| |
Collapse
|
33
|
Mallikaratchy P, Gardner J, Nordstrøm LUR, Veomett NJ, McDevitt MR, Heaney ML, Scheinberg DA. A self-assembling short oligonucleotide duplex suitable for pretargeting. Nucleic Acid Ther 2013; 23:289-99. [PMID: 23848521 DOI: 10.1089/nat.2013.0425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies (mAbs) have naturally evolved as suitable, high affinity and specificity targeting molecules. However, the large size of full-length mAbs yields poor pharmacokinetic properties. A solution to this issue is the use of a multistep administration approach, in which the slower clearing mAb is administered first and allowed to reach the target site selectively, followed by administration of a rapidly clearing small molecule carrier of the cytotoxic or imaging ligand, which bears a cognate receptor for the mAb. Here, we introduce a novel pretargetable RNA based system comprised of locked nucleic acids (LNA) and 2'O-Methyloligoribonucleotides (2'OMe-RNA). The duplex shows fast hybridization, high melting temperatures, excellent affinity, and high nuclease stability in plasma. Using a prototype model system with rituximab conjugated to 2'OMe-RNA (oligo), we demonstrate that LNA-based complementary strand (c-oligo) effectively hybridizes with rituximab-oligo, which is slowly circulating in vivo, despite the high clearance rates of c-oligo.
Collapse
Affiliation(s)
- Prabodhika Mallikaratchy
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Duan D, Li SL, Zhu YQ, Zhang T, Lei CM, Cheng XH. Radioimmunoimaging with mixed monoclonal antibodies of nude mice bearing human lung adenocarcinoma xenografts. Asian Pac J Cancer Prev 2013; 13:4255-61. [PMID: 23167324 DOI: 10.7314/apjcp.2012.13.9.4255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The present study was conducted to evaluate radioimmunoimaging (RII) and in vivo distribution of mixed antibodies 99mTc-EGFR-mAb and 99mTc-CD44- mAb in nude mice bearing human lung adenocarcinoma xenografts. Single and mixed applications of the two radiolabeled monoclonal antibodies (mAbs) were compared. Direct labeling of 99mTc was applied to radiolabel the EGFR and CD44 mAbs. The properties of the radiolabeled antibodies were then characterized. RII and assessment of the distribution of the antibodies in nude mice bearing lung adenocarcinoma xenografts were achieved by applying separate and combined doses of 99mTc-EGFR-mAb and 99mTc-CD44-mAb. The labeling rates of 99mTc for EGFR-mAb and CD44-mAb were 91.5% ±3.8% and 92.3% ± 4.1% respectively, with specific activities of 2.8 and 2.9 MBq/μg, respectively, and radiochemical purities (RCP) of 96.5% and 96.2%. The radioactivity uptake of the combined application of both radiolabeled antibodies was clearly higher than with a single application of either alone. The relative values of target-to-nontarget (T/ NT) measured through the regional interest (ROI) technique were 5.59 ± 0.42 (mixed antibodies), 2.78 ±0.20 (99mTc-EGFR-mAb), and 2.28 ± 0.16 (99mTc-CD44-mAb) in the RII. The body distribution of the radiolabeled antibodies and their imaging results were basically identical. Application of the mixed antibodies with 99mTc- EGFR-mAb and 99mTc-CD44-mAb can increase the radioactivity uptake of tumor tissue, leading to more ideal target-to-nontarget ratios, and therefore superior results.
Collapse
Affiliation(s)
- Dong Duan
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
35
|
Guo Y, Yuan H, Cho H, Kuruppu D, Jokivarsi K, Agarwal A, Shah K, Josephson L. High efficiency diffusion molecular retention tumor targeting. PLoS One 2013; 8:e58290. [PMID: 23505478 PMCID: PMC3594319 DOI: 10.1371/journal.pone.0058290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for (111) In(3+)), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111)In] RGD and [(111)In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111)In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.
Collapse
Affiliation(s)
- Yanyan Guo
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hushan Yuan
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Hoonsung Cho
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Darshini Kuruppu
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kimmo Jokivarsi
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Aayush Agarwal
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Lee Josephson
- Department of Radiology, Center for Translational Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
McAleese F, Eser M. RECRUIT-TandAbs: harnessing the immune system to kill cancer cells. Future Oncol 2012; 8:687-95. [PMID: 22764766 DOI: 10.2217/fon.12.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tandem diabodies (TandAbs) are tetravalent bispecific molecules comprised of antibody variable domains with two binding sites for each antigen. RECRUIT-TandAbs can simultaneously engage an immune system effector cell, such as a natural killer cell or a cytotoxic T cell, and an antigen expressed specifically on a cancer cell, thus leading to killing of the cancer cell. Recruitment of immune effector cells is highly specific and mediated via binding of the TandAb to molecules expressed on the surface of these cells. Furthermore, the absence of an Fc domain allows TandAbs to avoid certain IgG-mediated side effects. With a molecular weight of approximately 110 kDa, TandAbs are far above the first-pass renal clearance limit, offering a pharmacokinetic advantage compared with smaller bispecific antibody formats. This article reviews the RECRUIT-TandAb technology and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Fionnuala McAleese
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
37
|
Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielink C, Regino C, Cardillo TM, McBride WJ, Chang CH, Boerman OC, Goldenberg DM. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med 2012; 53:1625-32. [PMID: 22952342 DOI: 10.2967/jnumed.112.104364] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED RS7 is an internalizing anti-Trop-2 pancarcinoma antibody capable of targeting most epithelial cancers. Because pretargeting strategies could improve the tumor localization of radionuclides, a new anti-Trop-2 × antihapten bispecific antibody for pretargeting, based on humanized RS7, was prepared and evaluated with a radiolabeled hapten-peptide in vitro and in vivo to determine whether its internalization properties would interfere with pretargeting. METHODS The anti-Trop-2 × antihapten bispecific antibody, TF12, was prepared using the modular dock-and-lock method. TF12 and humanized RS7 binding was assessed by cell binding assays and fluorescence-activated cell sorting analysis in a variety of human carcinoma cell lines. The internalization of TF12 was evaluated in vitro using a fluorescent TF12 conjugate or hapten-peptide and (111)In-labeled TF12 and RS7. The biodistribution of TF12 and its use as a pretargeting agent with an (111)In-labeled hapten-peptide were assessed in several human epithelial cancer xenografts. Dose optimization was examined in 2 tumor models. RESULTS TF12 internalizes, but a substantial fraction remained accessible on the tumor surface. Fluorescence-activated cell sorting analysis showed only a minor change in fluorescent signal when the tumor was probed with a fluorescent hapten-peptide over 4 h, and microscopy showed substantial membrane staining when reassessed at 24 h after TF12 exposure. Only 40.1% of (111)In-TF12 was internalized after 24 h. In vivo, excellent tumor localization of the (111)In-labeled peptide was observed in several tumor models. CONCLUSION TF12 was retained sufficiently on the cell surface in several epithelial cancers, thereby making it suitable for pretargeted imaging and therapy of various Trop-2-expressing carcinomas.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, New Jersey 07950, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Patil V, Gada K, Panwar R, Varvarigou A, Majewski S, Weisenberger A, Ferris C, Tekabe Y, Khaw BA. Imaging small human prostate cancer xenografts after pretargeting with bispecific bombesin-antibody complexes and targeting with high specific radioactivity labeled polymer-drug conjugates. Eur J Nucl Med Mol Imaging 2012; 39:824-39. [PMID: 22302089 DOI: 10.1007/s00259-011-2050-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/27/2011] [Indexed: 01/04/2023]
Abstract
PURPOSE Pretargeting with bispecific monoclonal antibodies (bsMAb) for tumor imaging was developed to enhance target to background activity ratios. Visualization of tumors was achieved by the delivery of mono- and divalent radiolabeled haptens. To improve the ability to image tumors with bsMAb, we have combined the pretargeting approach with targeting of high specific activity radiotracer labeled negatively charged polymers. The tumor antigen-specific antibody was replaced with bombesin (Bom), a ligand that binds specifically to the growth receptors that are overexpressed by many tumors including prostate cancer. Bomanti- diethylenetriaminepentaacetic acid (DTPA) bispecific antibody complexes were used to demonstrate pretargeting and imaging of very small human prostate cancer xenografts targeted with high specific activity ¹¹¹In- or ⁹⁹mTc-labeled negatively charged polymers. METHODS Bispecific antibody complexes consisting of intact anti-DTPA antibody or Fab′ linked to Bom via thioether bonds (Bom-bsCx or Bom-bsFCx, respectively) were used to pretarget PC-3 human prostate cancer xenografts in SCID mice. Negative control mice were pretargeted with Bom or anti-DTPA Ab. 111In-Labeled DTPA-succinyl polylysine (DSPL) was injected intravenously at 24 h (7.03 ± 1.74 or 6.88 ± 1.89 MBq ¹¹¹In-DSPL) after Bom-bsCx or 50 ± 5.34 MBq of ⁹⁹mTc-DSPL after Bom-bsFCx pretargeting, respectively. Planar or single photon emission computed tomography (SPECT)/CT gamma images were obtained for up to 3 h and only planar images at 24 h. After imaging, all mice were killed and biodistribution of 111In or 99mTc activities were determined by scintillation counting. RESULTS Both planar and SPECT/CT imaging enabled detection of PC-3 prostate cancer lesions less than 1-2 mm in diameter in 1-3 h post 111In-DSPL injection. No lesions were visualized in Bom or anti-DTPA Ab pretargeted controls. 111In-DSPL activity in Bom-bsCx pretargeted tumors (1.21 ± 0.36 %ID/g) was 5.4 times that in tumors pretargeted with Bom or anti-DTPA alone (0.22 ± 0.08, p = 0.001). PC-3 xenografts pretargeted with Bom-bsFCx and targeted with ⁹⁹mTc-DSPL were visualizable by 1-3 h. Exquisite tumor uptake at 24 h (6.54 ± 1.58 %ID/g) was about 15 times greater than that of Bom pretargeted controls (0.44 ± 0.17, p = 0.002). CONCLUSION Pretargeting prostate cancer with Bom-bsCx or Bom-bsFCx enabled fast delivery of high specific radioactivity ¹¹¹In- or ⁹⁹mTc-labeled polymer-drug conjugates resulting in visualization of lesions smaller than 1- 2 mm in diameter within 3 h.
Collapse
Affiliation(s)
- Vishwesh Patil
- Department of Pharmaceutical Sciences, Northeastern University, School of Pharmacy, Mugar Bldg, Rm 205, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Goldenberg DM, Chang CH, Rossi EA, McBride WJ, Sharkey RM, Sharkey RM. Pretargeted molecular imaging and radioimmunotherapy. Am J Cancer Res 2012; 2:523-40. [PMID: 22737190 PMCID: PMC3364558 DOI: 10.7150/thno.3582] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 10/31/2011] [Indexed: 01/31/2023] Open
Abstract
Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors.
Collapse
|
40
|
Ghobril C, Lamanna G, Kueny-Stotz M, Garofalo A, Billotey C, Felder-Flesch D. Dendrimers in nuclear medical imaging. NEW J CHEM 2012. [DOI: 10.1039/c1nj20416e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Grote M, Haas AK, Klein C, Schaefer W, Brinkmann U. Bispecific antibody derivatives based on full-length IgG formats. Methods Mol Biol 2012; 901:247-63. [PMID: 22723106 DOI: 10.1007/978-1-61779-931-0_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Monoclonal antibodies have emerged as an effective therapeutic modality, and numerous antibodies have been approved for the treatment of several severe diseases or are currently in clinical development. To improve their therapeutic potential, monoclonal antibodies are constantly evolved by protein engineering. Particularly, the generation of bispecific antibodies raised special interest because of their ability to bind two different antigens at the same time, and the efficiency of these formats has been demonstrated in several clinical and preclinical studies. Up to now, the major drawbacks in using bispecific antibodies as a therapeutic agent have been difficult design and low-yield expression of homogeneous antibody populations. However, major technological improvements were made in protein engineering during the last years. This allows the design of several new IgG-based bispecific antibody formats that can be prepared in high yields and high homogeneity using conventional expression and purification techniques. Especially, recent development of IgG-fusions with disulfide-stabilized Fv fragments and of CrossMab-technologies facilitates the generation of bispecific antibodies with IgG-like architectures. Here we describe design principles and methods to express and purify different bispecific antibody formats derived from full-length IgGs.
Collapse
Affiliation(s)
- Michael Grote
- Large Molecule Research, Roche Pharma Research and Early Development, Penzberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Paun O, Lazarus HM. Novel transplant strategies in adults with acute leukemia. Hematol Oncol Clin North Am 2011; 25:1319-39, ix. [PMID: 22093589 DOI: 10.1016/j.hoc.2011.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autologous and allogeneic hematopoietic cell transplantation (HCT) is regularly used as a curative treatment option for patients with various disorders, including acute leukemia in adults. The past decade has witnessed dramatic improvements in the reduction of treatment-related mortality (TRM), in part attributable to improved supportive care but also due to better graft selection and donor-to-recipient matching regimens, and the emergence of reduced-intensity conditioning in place of myeloablative conditioning. Despite these advances, HCT remains plagued by the risk of relapse or failure due to graft-versus-host disease, infectious complications, and TRM. This article reviews new approaches that may improve overall patient outcome.
Collapse
Affiliation(s)
- Oana Paun
- Department of Medicine, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
43
|
Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK. Recent trends in antibody-based oncologic imaging. Cancer Lett 2011; 315:97-111. [PMID: 22104729 DOI: 10.1016/j.canlet.2011.10.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 01/27/2023]
Abstract
Antibodies, with their unmatched ability for selective binding to any target, are considered as potentially the most specific probes for imaging. Their clinical utility, however, has been limited chiefly due to their slow clearance from the circulation, longer retention in non-targeted tissues and the extensive optimization required for each antibody-tracer. The development of newer contrast agents, combined with improved conjugation strategies and novel engineered forms of antibodies (diabodies, minibodies, single chain variable fragments, and nanobodies), have triggered a new wave of antibody-based imaging approaches. Apart from their conventional use with nuclear imaging probes, antibodies and their modified forms are increasingly being employed with non-radioisotopic contrast agents (MRI and ultrasound) as well as newer imaging modalities, such as quantum dots, near infra red (NIR) probes, nanoshells and surface enhanced Raman spectroscopy (SERS). The review article discusses new developments in the usage of antibodies and their modified forms in conjunction with probes of various imaging modalities such as nuclear imaging, optical imaging, ultrasound, MRI, SERS and nanoshells in preclinical and clinical studies on the diagnosis, prognosis and therapeutic responses of cancer.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
44
|
Pretargeted radioimmunotherapy of colorectal cancer metastases: models and pharmacokinetics predict influence of the physical and radiochemical properties of the radionuclide. Eur J Nucl Med Mol Imaging 2011; 38:2153-64. [PMID: 21858527 DOI: 10.1007/s00259-011-1903-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
PURPOSE We investigated influences of pretargeting variables, tumor location, and radionuclides in pretargeted radioimmunotherapy (PRIT) as well as estimated tumor absorbed doses. METHODS LS-174T human colonic carcinoma cells expressing carcinoembryonic antigen (CEA) were inoculated in nude mice. Biodistribution of a bispecific anti-CEA x anti-hapten antibody, TF2, and of a TF2-pretargeted peptide was assessed and a multi-compartment pharmacokinetic model was devised. Tissue absorbed doses were calculated for (131)I, (177)Lu, (90)Y, (211)At, and (213)Bi using realistic specific activities. RESULTS Under conditions optimized for tumor imaging (10:1 TF2 to peptide molar ratio, interval time 15-24 h), tumor uptake reached ∼9 ID/g in subcutaneous tumors at 2 h with very low accretion in normal tissues (tumor to blood ratio >20:1 after 2 h). For a low dose of peptide (0.04 nmol), (211)At is predicted to deliver a high absorbed dose to tumors [41.5 Gy considering a relative biologic effect (RBE) of 5], kidneys being dose-limiting. (90)Y and (213)Bi would also deliver high absorbed doses to tumor (18.6 for (90)Y and 26.5 Gy for (213)Bi, taking RBE into account, for 0.1 nmol) and acceptable absorbed doses to kidneys. With hepatic metastases, a twofold higher tumor absorbed dose is expected. Owing to the low activities measured in blood, the bone marrow absorbed dose is expected to be without significant toxicity. CONCLUSION Pretargeting achieves high tumor uptake and higher tumor to background ratios compared to direct RIT. Short-lived radionuclides are predicted to deliver high tumor absorbed doses especially (211)At, with kidneys being the dose-limiting organ. (177)Lu and (131)I should be considered for repeated injections.
Collapse
|
45
|
Recent progress in cancer therapy with radiolabeled monoclonal antibodies. Ther Deliv 2011; 2:675-9. [DOI: 10.4155/tde.11.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
Immunolymphoscintigraphy for metastatic sentinel nodes: test of a model. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:828151. [PMID: 21603241 PMCID: PMC3094924 DOI: 10.1155/2011/828151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
Abstract
Aim. To develop a method and obtain proof-of-principle for immunolymphoscintigraphy for identification of metastatic sentinel nodes. Methods. We selected one of four tumour-specific antibodies against human breast cancer and investigated (1), in immune-deficient (nude) mice with xenograft human breast cancer expressing the antigen if specific binding of the intratumorally injected, radioactively labelled, monoclonal antibody could be scintigraphically visualized, and (2) transportation to and retention in regional lymph nodes of the radioactively labelled antibody after subcutaneous injection in healthy rabbits. Results and Conclusion. Our paper suggests the theoretical possibility of a model of dual isotope immuno-lymphoscintigraphy for noninvasive, preoperative, malignant sentinel node imaging.
Collapse
|
47
|
Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc Natl Acad Sci U S A 2011; 108:8194-9. [PMID: 21536919 DOI: 10.1073/pnas.1018565108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bispecific antibodies that bind cell-surface targets as well as digoxigenin (Dig) were generated for targeted payload delivery. Targeting moieties are IgGs that bind the tumor antigens Her2, IGF1R, CD22, or LeY. A Dig-binding single-chain Fv was attached in disulfide-stabilized form to C termini of CH3 domains of targeting antibodies. Bispecific molecules were expressed in mammalian cells and purified in the same manner as unmodified IgGs. They are stable without aggregation propensity and retain binding specificity/affinity to cell-surface antigens and Dig. Digoxigeninylated payloads were generated that retain full functionality and can be complexed to bispecific antibodies in a defined 21 ratio. Payloads include small compounds (Dig-Cy5, Dig-Doxorubicin) and proteins (Dig-GFP). Complexed payloads are targeted by the bispecifics to cancer cells and because these complexes are stable in serum, they can be applied for targeted delivery. Because Dig bispecifics also effectively capture digoxigeninylated compounds under physiological conditions, separate administration of uncharged Dig bispecifics followed by application of Dig payload is sufficient to achieve antibody-mediated targeting in vitro and in vivo.
Collapse
|
48
|
Meller B, Rave-Fränck M, Breunig C, Schirmer M, Baehre M, Nadrowitz R, Liersch T, Meller J. Novel Carcinoembryonic-Antigen-(CEA)-Specific Pretargeting System to Assess Tumor Cell Viability after Irradiation of Colorectal Cancer Cells. Strahlenther Onkol 2011; 187:120-6. [PMID: 21271227 DOI: 10.1007/s00066-010-2191-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/11/2010] [Indexed: 01/01/2023]
Abstract
PURPOSE To date, no valid imaging modality exists for early response prediction to neoadjuvant radiochemotherapy in carcinoembryonic-antigen-(CEA)-expressing rectal cancers (UICC stages II and III). It is hypothesized that the uptake of an anti-CEA antibody is directly related to the number of viable tumor cells and may be quantified by immuno-positron emission tomography (immuno-PET). Therefore, we evaluated a novel pretargeting system using TF2, a humanized bispecific trivalent monoclonal antibody (mAb), directed against CEA and the IMP-288-peptide, a hapten for binding radiometals for imaging. Uptake and kinetics of the pretargeting system were investigated in vitro prior to and after irradiation. METHODS TF2 was labeled with ¹³¹I and IMP-288 with ¹¹¹InCl₃. The colorectal cancer cell lines HT29, SW480, and T84 with known varying CEA expression were incubated (≤ 72 hours) with ¹³¹I-TF2 or the TF2-¹¹¹In-IMP-288 pretargeting system. Parallel cultures were irradiated with 2-10 Gy high-energy photons. Tracer uptake, proliferation, apoptosis, and CEA-RNA expression of cancer cells were investigated. RESULTS The uptake of tracers was dependent on CEA expression and cell count of the cell lines (uptake/10⁶ cells: 0.3% in HT29, 1.5% in SW480, and 14% in T84, p < 0.001). The TF2-¹¹¹In-IMP-288 pretargeting system showed a higher uptake after 4 and 72 hours compared to (131)I-TF2 in parallel cultures. Only in one cell line (SW480) an increased apoptosis after irradiation could be detected. Irradiation increased dose dependently both the specific uptake of ¹³¹I-TF2 and of the TF2-¹¹¹In-IMP-288 system (4-fold in HT29 and T84 after 10 Gy (72 hours), p < 0.001). These results were CEA-mRNA independent. CONCLUSION This novel pretargeting system allows the quantitative analysis of CEA-expressing colorectal cancer cells and represents a promising tool for evaluation of tumor cell viability after irradiation.
Collapse
Affiliation(s)
- Birgit Meller
- Department of Nuclear Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bispecific Antibodies for Diagnostic Applications. BISPECIFIC ANTIBODIES 2011. [PMCID: PMC7123020 DOI: 10.1007/978-3-642-20910-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bispecific monoclonal antibodies (BsMAb) are unique engineered macromolecules that have two different pre-determined binding specificities. Their ability to simultaneously bind to a specific antigen and a given detection moiety enables them to function as excellent bifunctional immunoprobes in diagnostic assays. BsMAb are being exploited for the development of simple, rapid, and highly sensitive immunoassays for diagnosis of bacterial and viral infectious diseases. This chapter describes the use of BsMAb for the detection of Mycobacterium tuberculosis, Escherichia coli O157:H7, Bordetella pertussis, Severe Acute Respiratory Syndrome coronavirus, and Dengue virus. Further, BsMAb have been utilized for diagnosis of various types of cancers. The use of BsMAb in detection of prostate cancer and in cancer diagnostic imaging is also discussed.
Collapse
|
50
|
Orcutt KD, Slusarczyk AL, Cieslewicz M, Ruiz-Yi B, Bhushan KR, Frangioni JV, Wittrup KD. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging. Nucl Med Biol 2010; 38:223-33. [PMID: 21315278 DOI: 10.1016/j.nucmedbio.2010.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 08/04/2010] [Accepted: 08/31/2010] [Indexed: 11/28/2022]
Abstract
INTRODUCTION In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. METHODS We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). RESULTS Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2±1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a (111)In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. CONCLUSIONS We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.
Collapse
Affiliation(s)
- Kelly Davis Orcutt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|