1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024. [PMID: 39526313 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Frederic Padilla
- Gene Therapy Program, Focused Ultrasound Foundation, Charlottesville, Virginia, USA
- Department of Radiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Kevin J Haworth
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Grogan DP, Abduhalikov T, Kassell NF, Moosa S. Future Directions of MR-guided Focused Ultrasound. Magn Reson Imaging Clin N Am 2024; 32:705-715. [PMID: 39322359 DOI: 10.1016/j.mric.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (MRgFUS) allows for the incisionless treatment of intracranial lesions in an outpatient setting. While this is currently approved for the surgical treatment of essential tremor and Parkinson's disease, advancements in imaging and ultrasound technology are allowing for the expansion of treatment indications to other intracranial diseases. In addition, these advancements are also making MRgFUS treatments easier, safer, and more efficacious.
Collapse
Affiliation(s)
- Dayton P Grogan
- Department of Neurosurgery, University of Virginia Hospital, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Timour Abduhalikov
- University of Virginia, School of Medicine, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, 1230 Cedars Ct Suite 206, Charlottesville, VA 22903, USA
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia Hospital, PO Box 800212, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Han M, Song W, Lei K, Cai B, Qin D. Ultrasonic Nakagami imaging for automatically positioning and identifying the treated lesion induced by histotripsy. ULTRASONICS SONOCHEMISTRY 2024; 109:107002. [PMID: 39084943 PMCID: PMC11384263 DOI: 10.1016/j.ultsonch.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Histotripsy has been proposed as a non-invasive surgical procedure for clinical use that liquefies the tissue into acellular debris by utilizing the mechanical mechanism of bubbles. Accurate and reliable imaging guidance is essential for successful clinical histotripsy implementation. Nakagami imaging is a promising method to evaluate the microstructural change induced by high intensity focused ultrasound. However, practically, it is difficult for the Nakagami imaging to distinguish the treated lesion induced by histotripsy from the surrounding normal biological tissues. In this study, we introduce the use of noise-assisted correlation algorithm (NCA) in Nakagami images as a solution to suppress the background normal tissue and identify the treated lesion induced by histotripsy. Experiments are conducted on fresh porcine liver ex vivo by cavitation-cloud histotripsy. Results show that the contrast-to-noise ratio between the treated lesion and surrounding tissue corresponding to the Nakagami image after NCA and original Nakagami image is 3.434 and 0.505, respectively. The optimal artificial noise level is 1-fold of the background normal tissue amplitude, and the corresponding optimal threshold of correlation coefficient should be between 0.6 and 0.8 in the application of NCA. Therefore, the use of NCA in Nakagami image can suppress the background normal tissues without affecting the information of treated lesion for an appropriate artificial noise level and threshold used in the NCA. Moreover, the Nakagami images after the application of the NCA can also be used for automatically distinguishing and measuring the tissue fractionation accurately using binarization. The proposed Nakagami images overlaid on the B-mode images can provide a promising method for positioning and visualizing the treated lesion to achieve precise histotripsy treatment.
Collapse
Affiliation(s)
- Meng Han
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China.
| | - Weidong Song
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Bianyun Cai
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
| | - Dui Qin
- Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Maxwell AD. Revealing physical interactions of ultrasound waves with the body through photoelasticity imaging. OPTICS AND LASERS IN ENGINEERING 2024; 181:108361. [PMID: 39219742 PMCID: PMC11361005 DOI: 10.1016/j.optlaseng.2024.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ultrasound is a ubiquitous technology in medicine for screening, diagnosis, and treatment of disease. The functionality and efficacy of different ultrasound modes relies strongly on our understanding of the physical interactions between ultrasound waves and biological tissue structures. This article reviews the use of photoelasticity imaging for investigating ultrasound fields and interactions. Physical interactions are described for different ultrasound technologies, including those using linear and nonlinear ultrasound waves, as well as shock waves. The use of optical modulation of light by ultrasound is presented for shadowgraphic and photoelastic techniques. Investigations into shock wave and burst wave lithotripsy using photoelastic methods are summarized, along with other endoscopic forms of lithotripsy. Photoelasticity in soft tissue surrogate materials is reviewed, and its deployment in investigating tissue-bubble interactions, generated ultrasound waves, and traumatic brain injury, are discussed. With the continued growth of medical ultrasound, photoelasticity imaging can play a role in elucidating the physical mechanisms leading to useful bioeffects of ultrasound for imaging and therapy.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
5
|
Zheng X, Pan Y, Wang Z, Zhang S. Effect of Ultrasound on Thrombus debris during Sonothrombolysis in a Microfluidic device. J Thromb Thrombolysis 2024; 57:1056-1066. [PMID: 38824486 DOI: 10.1007/s11239-024-03005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Microbubble-mediated sonothrombolysis has been proven to be a non-invasive and efficient method for thrombolysis. Nevertheless, there is a potential risk that the thrombus debris generated during the dissolution of the original thrombus are too large and can lead to hazardous emboli. Using a sonothrombolysis microfluidic platform, we investigated the effects of ultrasound power, thrombolytic agent and microbubble concentration on the size of thrombus debris with the example of microbubble-mediated sonothrombolysis of arterial thrombus. Additionally, we studied the effects of ultrasound power on the size and shape of thrombus debris produced by acute and chronic arterial sonothrombolysis. In acute arterial sonothrombolysis, ultrasound power has significant effect on the size of thrombus debris and steadily increases with the increase of ultrasound power. Conversely, in chronic arterial sonothrombolysis, the size of thrombus debris is minimally affected by ultrasound power. Using the sonothrombolysis microfluidic platform, the relationship between ultrasound power and the safety of sonothrombolysis has been illustrated, and the sonothrombolysis microfluidic platform is demonstrated to be a promising tool for further studies on the process of sonothrombolysis.
Collapse
Affiliation(s)
- Xiaobing Zheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhaojian Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shuguang Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Yang S, Zemzemi C, Escudero DS, Vela DC, Haworth KJ, Holland CK. Histotripsy and Catheter-Directed Lytic: Efficacy in Highly Retracted Porcine Clots In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1167-1177. [PMID: 38777639 DOI: 10.1016/j.ultrasmedbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Standard treatment for deep vein thrombosis (DVT) involves catheter-directed anticoagulants or thrombolytics, but the chronic thrombi present in many DVT cases are often resistant to this therapy. Histotripsy has been found to be a promising adjuvant treatment, using the mechanical action of cavitating bubble clouds to enhance thrombolytic activity. The objective of this study was to determine if histotripsy enhanced recombinant tissue plasminogen activator (rt-PA) thrombolysis in highly retracted porcine clots in vitro in a flow model of occlusive DVT. METHODS Highly retracted porcine whole blood clots were treated for 1 h with either catheter-directed saline (negative control), rt-PA (lytic control), histotripsy, DEFINITY and histotripsy or the combination of rt-PA and histotripsy with or without DEFINITY. Five-cycle, 1.5 MHz histotripsy pulses with a peak negative pressure of 33.2 MPa and pulse repetition frequency of 40 Hz were applied along the clot. B-Mode and passive cavitation images were acquired during histotripsy insonation to monitor bubble activity. RESULTS Clots subjected to histotripsy with and without rt-PA exhibited greater thrombolytic efficacy than controls (7.0% flow recovery or lower), and histotripsy with rt-PA was more efficacious than histotripsy with saline (86.1 ± 10.2% compared with 61.7 ± 19.8% flow recovery). The addition of DEFINITY to histotripsy with or without rt-PA did not enhance either thrombolytic efficacy or cavitation dose. Cavitation dose generally did not correlate with thrombolytic efficacy. CONCLUSION Enhancement of thrombolytic efficacy was achieved using histotripsy, with and without catheter-directed rt-PA, in the presence of physiologic flow. This suggests these treatments may be effective as therapy for DVT.
Collapse
Affiliation(s)
- Shumeng Yang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Chadi Zemzemi
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Deborah C Vela
- Cardiovascular Pathology, Texas Heart Institute, Houston, TX, USA
| | - Kevin J Haworth
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Xu Z, Khokhlova TD, Cho CS, Khokhlova VA. Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound. Annu Rev Biomed Eng 2024; 26:141-167. [PMID: 38346277 DOI: 10.1146/annurev-bioeng-073123-022334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Maxwell AD, Vlaisavljevich E. Cavitation-induced pressure saturation: a mechanism governing bubble nucleation density in histotripsy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad3721. [PMID: 38518377 PMCID: PMC11212395 DOI: 10.1088/1361-6560/ad3721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective.Histotripsy is a noninvasive focused ultrasound therapy that mechanically disintegrates tissue by acoustic cavitation clouds. In this study, we investigate a mechanism limiting the density of bubbles that can nucleate during a histotripsy pulse. In this mechanism, the pressure generated by the initial bubble expansion effectively negates the incident pressure in the vicinity of the bubble. From this effect, the immediately adjacent tissue is prevented from experiencing the transient tension to nucleate bubbles. Approach.A Keller-Miksis-type single-bubble model was employed to evaluate the dependency of this effect on ultrasound pressure amplitude and frequency, viscoelastic medium properties, bubble nucleus size, and transducer geometric focusing. This model was further combined with a spatial propagation model to predict the peak negative pressure field as a function of position from a cavitating bubble.Main results. The single-bubble model showed the peak negative pressure near the bubble surface is limited to the inertial cavitation threshold. The predicted bubble density increased with increasing frequency, tissue viscosity, and transducer focusing angle. The simulated results were consistent with the trends observed experimentally in prior studies, including changes in density with ultrasound frequency and transducerF-number.Significance.The efficacy of the therapy is dependent on several factors, including the density of bubbles nucleated within the cavitation cloud formed at the focus. These results provide insight into controlling the density of nucleated bubbles during histotripsy and the therapeutic efficacy.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, United States of America
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, United States of America
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, United States of America
| |
Collapse
|
9
|
Gong L, Wright AR, Hynynen K, Goertz DE. Inducing cavitation within hollow cylindrical radially polarized transducers for intravascular applications. ULTRASONICS 2024; 138:107223. [PMID: 38553135 DOI: 10.1016/j.ultras.2023.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 04/02/2024]
Abstract
Thrombotic occlusions of large blood vessels are increasingly treated with catheter based mechanical approaches, one of the most prominent being to employ aspiration to extract clots through a hollow catheter lumen. A central technical challenge for aspiration catheters is to achieve sufficient suction force to overcome the resistance of clot material entering into the distal tip. In this study, we examine the feasibility of inducing cavitation within hollow cylindrical transducers with a view to ultimately using them to degrade the mechanical integrity of thrombus within the tip of an aspiration catheter. Hollow cylindrical radially polarized PZT transducers with 3.3/2.5 mm outer/inner diameters were assessed. Finite element simulations and hydrophone experiments were used to investigate the pressure field distribution as a function of element length and resonant mode (thickness, length). Operating in thickness mode (∼5 MHz) was found to be associated with the highest internal pressures, estimated to exceed 23 MPa. Cavitation was demonstrated to be achievable within the transducer under degassed water (10 %) conditions using hydrophone detection and high-frequency ultrasound imaging (40 MHz). Cavitation clouds occupied a substantial portion of the transducer lumen, in a manner that was dependent on the pulsing scheme employed (10 and 100 μs pulse lengths; 1.1, 11, and 110 ms pulse intervals). Collectively the results support the feasibility of achieving cavitation within a transducer compatible with mounting in the tip of an aspiration format catheter.
Collapse
Affiliation(s)
- Li Gong
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
| | - Alex R Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
10
|
Simon A, Edsall C, Maxwell A, Vlaisavljevich E. Effects of pulse repetition frequency on bubble cloud characteristics and ablation in single-cycle histotripsy. Phys Med Biol 2024; 69:025018. [PMID: 38041873 DOI: 10.1088/1361-6560/ad11a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/01/2023] [Indexed: 12/04/2023]
Abstract
Objective. Histotripsy is a cavitation-based ultrasound ablation method in development for multiple clinical applications. This work investigates the effects of pulse repetition frequency (PRF) on bubble cloud characteristics and ablative capabilities for histotripsy using single-cycle pulsing methods.Approach.Bubble clouds produced by a 500 kHz histotripsy system at PRFs from 0.1 to 1000 Hz were visualized using high-speed optical imaging in 1% agarose tissue phantoms at peak negative pressures,p-, of 2-36 MPa.Main results.Results showed a decrease in the cavitation cloud threshold with increasing PRF, ranging from 26.7 ± 0.5 MPa at 0.1 Hz to 15.0 ± 1.9 MPa at 1000 Hz. Bubble cloud analysis showed cavitation clouds generated at low PRFs (0.1-1 Hz) were characterized by consistently dense bubble clouds (41.7 ± 2.8 bubbles mm-2at 0.1 Hz), that closely matched regions of the focus above the histotripsy intrinsic threshold. Bubble clouds formed at higher PRFs measured lower cloud densities (23.1 ± 4.0 bubbles mm-2at 1000 Hz), with the lowest density measured for 10 Hz (8.8 ± 4.1 bubbles mm-2). Furthermore, higher PRFs showed increased pulse-to-pulse correlation, characteristic of cavitation memory effects; however, bubble clouds still filled the entire volume of the focus due to their initial density and enhanced bubble expansion from the restimulation of residual nuclei at the higher PRFs. Histotripsy ablation assessed through lesion analysis in red blood cell (RBC) phantoms showed higher PRFs generated lesions with lower adherence to the initial focal region compared to low PRF ablations; however, no trend of decreasing ablation efficiency with PRF was observed, with similar efficiencies observed for all the PRFs tested in this study.Significance.Notably, this result is different than what has previously been shown for shock-scattering histotripsy, which has shown decreased ablation efficiencies at higher PRFs. Overall, this study demonstrates the essential effects of PRF on single-cycle histotripsy procedures that should be considered to help guide future histotripsy pulsing strategies.
Collapse
Affiliation(s)
- Alex Simon
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Connor Edsall
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Adam Maxwell
- Department of Urology, University of Washington, Seattle, WA, United States of America
| | - Eli Vlaisavljevich
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
11
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Ambekar PA, Wang YN, Khokhlova T, Bruce M, Leotta DF, Totten S, Maxwell AD, Chan K, Liles WC, Dellinger EP, Monsky W, Adedipe AA, Matula TJ. Comparative Study of Histotripsy Pulse Parameters Used to Inactivate Escherichia coli in Suspension. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2451-2458. [PMID: 37718123 PMCID: PMC10591824 DOI: 10.1016/j.ultrasmedbio.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Accepted: 08/05/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE Bacterial loads can be effectively reduced using cavitation-mediated focused ultrasound, or histotripsy. In this study, gram-negative bacteria (Escherichia coli) in suspension were used as model bacteria to evaluate the effectiveness of two regimens of histotripsy treatments: cavitation histotripsy (CH) and boiling histotripsy (BH). METHODS Ten-milliliter volumes of Escherichia coli were treated at different negative focal pressure amplitudes and over time periods up to 40 min. Cavitation activity was characterized with coaxial passive cavitation detection (PCD) and synchronized plane wave B-mode imaging. RESULTS CH treatments exhibited a threshold behavior that was consistent with PCD metrics of cavitation. Above the threshold, bacterial inactivation followed a monotonically increasing log-linear relationship that indicated an exponential inactivation rate. BH exhibited no threshold, but instead followed a different monotonically increasing inactivation rate. Inactivation rates were larger for BH at or below the CH threshold, and larger for CH substantially above the threshold. CH studies performed at different pulse lengths at the same duty cycle had similar inactivation rates, suggesting that at any given pressure amplitude, the "on time" was the most important variable for inactivating E. coli. The maximum inactivation was produced by CH at the highest pressure amplitudes used, leading to a log reduction >4.2 for a 40 min treatment. CONCLUSION The results of this study suggest that both CH and BH can be used to inactivate E. coli in suspension, with the optimal regimen depending on the attainable peak negative focal pressure at the target.
Collapse
Affiliation(s)
- Pratik A Ambekar
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Tatiana Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Daniel F Leotta
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Stephanie Totten
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Adam D Maxwell
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Keith Chan
- Vantage Radiology and Diagnostic Services, Renton, WA, USA
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA; Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | | | - Wayne Monsky
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Adeyinka A Adedipe
- Department of Emergency Medicine, University of Washington, Seattle, WA, USA
| | - Thomas J Matula
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Wu H, Tang Y, Zhang B, Klippel P, Jing Y, Yao J, Jiang X. Miniaturized Stacked Transducer for Intravascular Sonothrombolysis With Internal-Illumination Photoacoustic Imaging Guidance and Clot Characterization. IEEE Trans Biomed Eng 2023; 70:2279-2288. [PMID: 37022249 PMCID: PMC10399617 DOI: 10.1109/tbme.2023.3240725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thromboembolism in blood vessels can lead to stroke or heart attack and even sudden death unless brought under control. Sonothrombolysis enhanced by ultrasound contrast agents has shown promising outcome on effective treatment of thromboembolism. Intravascular sonothrombolysis was also reported recently with a potential for effective and safe treatment of deep thrombosis. Despite the promising treatment results, the treatment efficiency for clinical application may not be optimized due to the lack of imaging guidance and clot characterization during the thrombolysis procedure. In this paper, a miniaturized transducer was designed to have an 8-layer PZT-5A stacked with an aperture size of 1.4 × 1.4 mm2 and assembled in a customized two-lumen 10-Fr catheter for intravascular sonothrombolysis. The treatment process was monitored with internal-illumination photoacoustic tomography (II-PAT), a hybrid imaging modality that combines the rich contrast of optical absorption and the deep penetration of ultrasound detection. With intravascular light delivery using a thin optical fiber integrated with the intravascular catheter, II-PAT overcomes the penetration depth limited by strong optical attenuation of tissue. In-vitro PAT-guided sonothrombolysis experiments were carried out with synthetic blood clots embedded in tissue phantom. Clot position, shape, stiffness, and oxygenation level can be estimated by II-PAT at clinically relevant depth of ten centimeters. Our findings have demonstrated the feasibility of the proposed PAT-guided intravascular sonothrombolysis with real-time feedback during the treatment process.
Collapse
|
14
|
Bader KB, Flores Basterrechea K, Hendley SA. In silico assessment of histotripsy-induced changes in catheter-directed thrombolytic delivery. Front Physiol 2023; 14:1225804. [PMID: 37449013 PMCID: PMC10336328 DOI: 10.3389/fphys.2023.1225804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: For venous thrombosis patients, catheter-directed thrombolytic therapy is the standard-of-care to recanalize the occluded vessel. Limitations with thrombolytic drugs make the development of adjuvant treatments an active area of research. One potential adjuvant is histotripsy, a focused ultrasound therapy that lyses red blood cells within thrombus via the spontaneous generation of bubbles. Histotripsy has also been shown to improve the efficacy of thrombolytic drugs, though the precise mechanism of enhancement has not been elucidated. In this study, in silico calculations were performed to determine the contribution of histotripsy-induced changes in thrombus diffusivity to alter catheter-directed therapy. Methods: An established and validated Monte Carlo calculation was used to predict the extent of histotripsy bubble activity. The distribution of thrombolytic drug was computed with a finite-difference time domain (FDTD) solution of the perfusion-diffusion equation. The FDTD calculation included changes in thrombus diffusivity based on outcomes of the Monte Carlo calculation. Fibrin degradation was determined using the known reaction rate of thrombolytic drug. Results: In the absence of histotripsy, thrombolytic delivery was restricted in close proximity to the catheter. Thrombolytic perfused throughout the focal region for calculations that included the effects of histotripsy, resulting in an increased degree of fibrinolysis. Discussion: These results were consistent with the outcomes of in vitro studies, suggesting histotripsy-induced changes in the thrombus diffusivity are a primary mechanism for enhancement of thrombolytic drugs.
Collapse
Affiliation(s)
- Kenneth B. Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
15
|
Heo J, Park JH, Kim HJ, Pahk K, Pahk KJ. Sonothrombolysis with an acoustic net-assisted boiling histotripsy: A proof-of-concept study. ULTRASONICS SONOCHEMISTRY 2023; 96:106435. [PMID: 37178667 DOI: 10.1016/j.ultsonch.2023.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Whilst sonothrombolysis is a promising and noninvasive ultrasound technique for treating blood clots, bleeding caused by thrombolytic agents used for dissolving clots and potential obstruction of blood flow by detached clots (i.e., embolus) are the major limitations of the current approach. In the present study, a new sonothrombolysis method is proposed for treating embolus without the use of thrombolytic drugs. Our proposed method involves (a) generating a spatially localised acoustic radiation force in a blood vessel against the blood flow to trap moving blood clots (i.e., generation of an acoustic net), (b) producing acoustic cavitation to mechanically destroy the trapped embolus, and (c) acoustically monitoring the trapping and mechanical fractionation processes. Three different ultrasound transducers with different purposes were employed in the proposed method: (1) 1-MHz dual focused ultrasound (dFUS) transducers for capturing moving blood clots, (2) a 2-MHz High Intensity Focused Ultrasound (HIFU) source for fractionating blood clots and (3) a passive acoustic emission detector with broad bandwidth (10 kHz to 20 MHz) for receiving and analysing acoustic waves scattered from a trapped embolus and acoustic cavitation. To demonstrate the feasibility of the proposed method, in vitro experiments with an optically transparent blood vessel-mimicking phantom filled with a blood mimicking fluid and a blood clot (1.2 to 5 mm in diameter) were performed with varying the dFUS and HIFU exposure conditions under various flow conditions (from 1.77 to 6.19 cm/s). A high-speed camera was used to observe the production of acoustic fields, acoustic cavitation formation and blood clot fragmentation within a blood vessel by the proposed method. Numerical simulations of acoustic and temperature fields generated under a given exposure condition were also conducted to further interpret experimental results on the proposed sonothrombolysis. Our results clearly showed that fringe pattern-like acoustic pressure fields (fringe width of 1 mm) produced in a blood vessel by the dFUS captured an embolus (1.2 to 5 mm in diameter) at the flow velocity up to 6.19 cm/s. This was likely to be due to the greater magnitude of the dFUS-induced acoustic radiation force exerted on an embolus in the opposite direction to the flow in a blood vessel than that of the drag force produced by the flow. The acoustically trapped embolus was then mechanically destructed into small pieces of debris (18 to 60 μm sized residual fragments) by the HIFU-induced strong cavitation without damaging the blood vessel walls. We also observed that acoustic emissions emitted from a blood clot captured by the dFUS and cavitation produced by the HIFU were clearly distinguished in the frequency domain. Taken together, these results can suggest that our proposed sonothrombolysis method could be used as a promising tool for treating thrombosis and embolism through capturing and destroying blood clots effectively.
Collapse
Affiliation(s)
- Jeongmin Heo
- Bionics Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jun Hong Park
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Hyo Jun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
16
|
Koukas E, Papoutsakis A, Gavaises M. Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy. ULTRASONICS SONOCHEMISTRY 2023; 95:106393. [PMID: 37031534 PMCID: PMC10114246 DOI: 10.1016/j.ultsonch.2023.106393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In this paper we investigate the bubble collapse dynamics under shock-induced loading near soft and rigid bio-materials, during shock wave lithotripsy. A novel numerical framework was developed, that employs a Diffuse Interface Method (DIM) accounting for the interaction across fluid-solid-gas interfaces. For the resolution of the extended variety of length scales, due to the dynamic and fine interfacial structures, an Adaptive Mesh Refinement (AMR) framework for unstructured grids was incorporated. This multi-material multi-scale approach aims to reduce the numerical diffusion and preserve sharp interfaces. The presented numerical framework is validated for cases of bubble dynamics, under high and low ambient pressure ratios, shock-induced collapses, and wave transmission problems across a fluid-solid interface, against theoretical and numerical results. Three different configurations of shock-induced collapse applications near a kidney stone and soft tissue have been simulated for different stand-off distances and bubble attachment configurations. The obtained results reveal the detailed collapse dynamics, jet formation, solid deformation, rebound, primary and secondary shock wave emissions, and secondary collapse that govern the near-solid collapse and penetration mechanisms. Significant correlations of the problem configuration to the overall collapse mechanisms were found, stemming from the contact angle/attachment of the bubble and from the properties of solid material. In general, bubbles with their center closer to the kidney stone surface produce more violent collapses. For the soft tissue, the bubble movement prior to the collapse is of great importance as new structures can emerge which can trap the liquid jet into induced crevices. Finally, the tissue penetration is examined for these cases and a novel tension-driven tissue injury mechanism is elucidated, emanating from the complex interaction of the bubble/tissue interaction during the secondary collapse phase of an entrapped bubble in an induced crevice with the liquid jet.
Collapse
Affiliation(s)
- Evangelos Koukas
- Department of Mechanical Engineering and Aeronautics, School of Mathematics, Computer Science and Engineering, City University of London, Northampton Square, EC1V 0HB London, UK.
| | - Andreas Papoutsakis
- Department of Engineering, School of Physics Engineering and Computer Science (SPECS), University of Hertfordshire, College Lane Campus, AL10 9AB Hatfield, UK
| | - Manolis Gavaises
- Department of Mechanical Engineering and Aeronautics, School of Mathematics, Computer Science and Engineering, City University of London, Northampton Square, EC1V 0HB London, UK
| |
Collapse
|
17
|
Yeats E, Lu N, Sukovich JR, Xu Z, Hall TL. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1182-1193. [PMID: 36759271 PMCID: PMC10082475 DOI: 10.1016/j.ultrasmedbio.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as "point sources" for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse. METHODS A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested. DISCUSSION On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%-99% of the hydrophone-corrected pressure, while collapse obtained 95%-99%. CONCLUSION The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Rayes A, Zhang J, Lu G, Qian X, Schroff ST, Ryu R, Jiang X, Zhou Q. Estimating Thrombus Elasticity by Shear Wave Elastography to Evaluate Ultrasound Thrombolysis for Thrombus With Different Stiffness. IEEE Trans Biomed Eng 2023; 70:135-143. [PMID: 35759590 PMCID: PMC10370280 DOI: 10.1109/tbme.2022.3186586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE There is uncertainty about deep vein thrombosis standard treatment as thrombus stiffness alters each case. Here, we investigated thrombus' stiffness of different compositions and ages using shear wave elastography (SWE). We then studied the effectiveness of ultrasound-thrombolysis on different thrombus compositions. METHODS Shear waves generated through mechanical shaker and traveled along thrombus of different hematocrit (HCT) levels, whereas 18-MHz ultrasound array used to detect wave propagation. Thrombus' stiffness was identified by the shear wave speed (SWS). In thrombolysis, a 3.2 MHz focused transducer was applied to different thrombus compositions using different powers. The thrombolysis rate was defined as the percentage of weight loss. RESULTS The estimated average SWS of 20%, 40%, and 60% HCT thrombus were 0.75 m/s, 0.44 m/s, and 0.32 m/s, respectively. For Thrombolysis, the percentage weight loss at 8 MPa Negative pressure for the same HCT groups were 23.1%, 35.29%, and 39.66% respectively. CONCLUSION SWS is inversely related to HCT level and positively related to thrombus age. High HCT thrombus had higher weight loss compared to low HCT. However, the difference between 20% and 40% HCT was more significant than between 40% and 60% HCT in both studies. Our results suggest that thrombus with higher SWS require more power to achieve the same thrombolysis rate as thrombus with lower SWS. SIGNIFICANCE Characterizing thrombus elastic property undergoing thrombolysis enables evaluation of ultrasound efficacy for fractionating thrombus and reveals the appropriate ultrasound parameters selection to achieve a certain thrombolysis rate in the case of a specific thrombus stiffness.
Collapse
Affiliation(s)
- Adnan Rayes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stuart T. Schroff
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Robert Ryu
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Xiaoning Jiang
- department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
19
|
Raghuram H, Looi T, Pichardo S, Waspe AC, Drake JM. A robotic MR-guided high-intensity focused ultrasound platform for intraventricular hemorrhage: assessment of clot lysis efficacy in a brain phantom. J Neurosurg Pediatr 2022; 30:586-594. [PMID: 36115058 DOI: 10.3171/2022.8.peds22144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraventricular hemorrhage (IVH) is a neurovascular complication due to premature birth that results in blood clots forming within the ventricles. Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) has been investigated as a noninvasive treatment to lyse clots. The authors designed and constructed a robotic MRgHIFU platform to treat the neonatal brain that facilitates ergonomic patient positioning. The clot lysis efficacy of the platform is quantified using a brain phantom and clinical MRI system. METHODS A thermosensitive brain-mimicking phantom with ventricular cavities was developed to test the clot lysis efficacy of the robotic MRgHIFU platform. Whole porcine blood was clotted within the phantom's cavities. Using the MRgHIFU platform and a boiling histotripsy treatment procedure (500 W, 10-msec pulse duration, 1.0% duty cycle, and 40-second duration), the clots were lysed inside the phantom. The contents of the cavities were vacuum filtered, and the remaining mass of the solid clot particles was used to quantify the percentage of clot lysis. The interior of the phantom's cavities was inspected for any collateral damage during treatment. RESULTS A total of 9 phantoms were sonicated, yielding an average (± SD) clot lysis of 97.0% ± 2.57%. Treatment resulted in substantial clot lysis within the brain-mimicking phantoms that were apparent on postsonication T2-weighted MR images. No apparent collateral damage was observed within the phantom after treatment. The results from the study showed the MRgHIFU platform was successful at lysing more than 90% of a blood clot at a statistically significant level. CONCLUSIONS The robotic MRgHIFU platform was shown to lyse a large percentage of a blood clot with no observable collateral damage. These results demonstrate the platform's ability to induce clot lysis when targeting through simulated brain matter and show promise toward the final application in neonatal patients.
Collapse
Affiliation(s)
- Hrishikesh Raghuram
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- 2The Institute of Biomedical Engineering, University of Toronto, Ontario
| | - Thomas Looi
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- 4Mechanical Engineering, and
| | - Samuel Pichardo
- 5Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta; and
- 6Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Adam C Waspe
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- Departments of3Medical Imaging
| | - James M Drake
- 1Posluns Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario
- 2The Institute of Biomedical Engineering, University of Toronto, Ontario
- 4Mechanical Engineering, and
- 7Neurosurgery, University of Toronto, Ontario
| |
Collapse
|
20
|
Stocker GE, Lundt JE, Sukovich JR, Miller RM, Duryea AP, Hall TL, Xu Z. A Modular, Kerf-Minimizing Approach for Therapeutic Ultrasound Phased Array Construction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2766-2775. [PMID: 35617178 PMCID: PMC9594968 DOI: 10.1109/tuffc.2022.3178291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel method for fabricating a modular, kerf-minimizing histotripsy phased array was developed and tested. The method utilizes arbitrarily shaped elements, 3-D printing, water jet cutting, and a thin, 125- [Formula: see text] electrically insulating epoxy coating to maximize aperture utilization while allowing for replacement of individual transducer modules. The method was used to fabricate a 750-kHz truncated circular aperture array (165 mm ×234 mm) transducer with a focal length of 142 mm. The aperture was segmented into 260 arc-shaped modular elements, each approximately 11.5 mm ×11.5 mm, arranged in concentric rings. The resulting aperture utilization was 92%. The full-width-half-maximum (FWHM) focal zone of the array was measured to be 1.6 mm ×1.1 mm ×4.5 mm, and the FWHM electrical steering range was measured to be 38.5 mm ×33 mm 40 mm. The array was estimated to be capable of generating approximately 120-MPa peak negative pressure at the geometric focus. In addition, the array was used to ablate a 5-cm3 volume of tissue with electric focal steering.
Collapse
Affiliation(s)
- Greyson E. Stocker
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | - Jonathan R. Sukovich
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | | | - Timothy L. Hall
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | - Zhen Xu
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
21
|
Guo S, Ya Z, Wu P, Zhang L, Wan M. Enhanced Sonothrombolysis Induced by High-Intensity Focused Acoustic Vortex. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1907-1917. [PMID: 35764456 DOI: 10.1016/j.ultrasmedbio.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
High-intensity focused ultrasound (HIFU) thrombolysis provides a targeted and non-invasive therapy for thrombosis-related diseases. Rapid thrombolysis and restoration of blood flow are vital to reduce the disability and death rate. The objective of this study was to explore the feasibility of using a high-intensity focused acoustic vortex (HIFAV) to enhance sonothrombolysis. The in vitro clots were treated with HIFU with a peak negative pressure (PNP) of 2.86 MPa (HIFU A) or 3.27 MPa (HIFU B) or HIFAV with a PNP of 2.14 MPa. The results revealed that HIFAV thrombolysis could achieve a significantly higher efficiency than HIFU (HIFAV: 65.4%, HIFU A: 24.1%, HIFU B: 31.6%, p < 0.01), even at a lower intensity. The average size of the debris particles generated in HIFAV thrombolysis was similar to that in HIFU. Additionally, the cavitation activities were found to be more intense in HIFAV thrombolysis. Although the efficiency of HIFAV thrombolysis was higher when the pulse repetition frequency increased from 100 to 500 Hz (41.4% vs. 65.4%, p < 0.05), it decreased when the PRF reached 1000 Hz (29.9%). Lastly, it was found that increasing the duty cycle from 5% to 15% led to a higher efficiency in HIFAV thrombolysis (40.3% vs. 75.2%, p < 0.001). This study illustrated that HIFAV provided enhanced thrombolysis and that its efficiency could be further increased by optimizing the ultrasound parameters.
Collapse
Affiliation(s)
- Shifang Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Ya
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
22
|
Glickstein B, Levron M, Shitrit S, Aronovich R, Feng Y, Ilovitsh T. Nanodroplet-Mediated Low-Energy Mechanical Ultrasound Surgery. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1229-1239. [PMID: 35351316 DOI: 10.1016/j.ultrasmedbio.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Mechanical ultrasound surgery methods use short, high-intensity pulses to fractionate tissues. This study reports the development of a two-step technology for low-energy mechanical ultrasound surgery of tissues using nanodroplets to reduce the pressure threshold. Step 1 consists of vaporizing the nanodroplets into gaseous microbubbles via megahertz ultrasound excitation. Then, low-frequency ultrasound is applied to the microbubbles, which turns them into therapeutic warheads that trigger potent mechanical effects in the surrounding tissue. The use of nanoscale nanodroplets coupled with low-frequency ultrasound reduces the pressure threshold required for mechanical ultrasound surgery by an order of magnitude. In addition, their average diameter of 300 nm can overcome challenges associated with the size of microbubbles. Optimization experiments were performed to determine the ultrasound parameters for nanodroplet vaporization and the subsequent microbubble implosion processes. Optimal vaporization was obtained when transmitting a 2-cycle excitation pulse at a center frequency of 5 MHz and a peak negative pressure of 4.1 MPa (mechanical index = 1.8). Low-frequency insonation of the generated microbubbles at a center frequency of 850, 250 or 80 kHz caused enhanced contrast reduction at a center frequency of 80 kHz, compared with the other frequencies, while operating at the same mechanical index of 0.9. Nanodroplet-mediated insonation of ex vivo chicken liver samples generated mechanical damage. Low-frequency treatment at a mechanical index of 0.9 and a center frequency of 80 kHz induced the largest lesion area (average of 0.59 mm2) compared with 250- and 850-kHz treatments with the same mechanical index (average lesions areas of 0.29 and 0.19 mm2, respectively, p < 0.001). The two-step approach makes it possible to conduct both the vaporization and implosion stages at mechanical indices below 1.9, thus avoiding undesired mechanical damage. The findings indicate that coupled with low-frequency ultrasound, nanodroplets can be used for low-energy mechanical ultrasound surgery.
Collapse
Affiliation(s)
- Bar Glickstein
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mika Levron
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Shitrit
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
23
|
Morihara R, Yamashita T, Osakada Y, Feng T, Hu X, Fukui Y, Tadokoro K, Takemoto M, Abe K. Efficacy and safety of spot heating and ultrasound irradiation on in vitro and in vivo thrombolysis models. J Cereb Blood Flow Metab 2022; 42:1322-1334. [PMID: 35130767 PMCID: PMC9207486 DOI: 10.1177/0271678x221079127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The feasibility of transcranial sonothrombolysis has been demonstrated, although little is known about the relationships between thermal or mechanical mechanisms and thrombolytic outcomes. Therefore, the present study aims to reveal the effect and safety of temperature and ultrasound through in vitro and in vivo thrombolysis models. Artificial clots in microtubes were heated in a water bath or sonicated by ultrasound irradiation, and then clots weight decrease with rising temperature and sonication time was confirmed. In the in vitro thrombotic occlusion model, based on spot heating, clot volume was reduced and clots moved to the distal side, followed by recanalization of the occlusion. In the in vivo study, the common carotid artery of rats was exposed to a spot heater or to sonication. No brain infarct or brain blood barrier disruption was shown, but endothelial junctional dysintegrity and an inflammatory response in the carotid artery were detected. The present spot heating and ultrasound irradiation models seem to be effective for disintegrating clots in vitro, but the safety of the in vivo model was not fully supported by the data. However, the data indicates that a shorter time exposure could be less invasive than a longer exposure.
Collapse
Affiliation(s)
- Ryuta Morihara
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Osakada
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
24
|
Wu H, Zhang B, Huang CC, Peng C, Zhou Q, Jiang X. Ultrasound-Guided Intravascular Sonothrombolysis With a Dual Mode Ultrasound Catheter: In Vitro Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1917-1925. [PMID: 35201986 PMCID: PMC9702596 DOI: 10.1109/tuffc.2022.3153929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thromboembolism in vessels often leads to stroke or heart attack and even sudden death unless brought under control. Sonothrombolysis based on ultrasound contrast agents has shown promising outcome in effective treatment of thromboembolism. Intravascular sonothrombolysis transducer was reported recently for unprecedented sonothrombolysis in vitro. However, it is necessary to provide an imaging guide during thrombolysis in clinical applications for optimal treatment efficiency. In this article, a dual mode ultrasound catheter was developed by combining a 16-MHz high-frequency element (imaging transducer) and a 220-kHz low-frequency element (treatment transducer) for sonothrombolysis in vitro. The treatment transducer was designed with a 20-layer PZT-5A stack with the aperture size of 1.2×1.2 mm2, and the imaging transducer with the aperture size of 1.2×1.2 mm2 was attached in front of the treatment transducer. Both transducers were assembled into a customized 2-lm 10-Fr catheter. In vitro experiment was carried out using a bovine blood clot. Imaging tests were conducted, showing that the backscattering signals can be obtained with a high signal-to-noise ratio (SNR) for the 16-MHz imaging transducer. Sonothrombolysis was performed successfully that the volume of clot was reduced significantly after the 30-min treatment. The size changes of clot were observed clearly using the 16-MHz M-mode imaging during the thrombolysis. The findings suggest that the proposed ultrasound-guided intravascular sonothrombolysis can be enhanced since the position of treatment transducer can be adjusted with the target at the clot due to the imaging guide.
Collapse
|
25
|
Perra E, Hayward N, Pritzker KPH, Nieminen HJ. An ultrasonically actuated fine-needle creates cavitation in bovine liver. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3690. [PMID: 35778205 DOI: 10.1121/10.0010534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ultrasonic cavitation is being used in medical applications as a way to influence matter, such as tissue or drug vehicles, on a micro-scale. Oscillating or collapsing cavitation bubbles provide transient mechanical force fields, which can, e.g., fractionate soft tissue or even disintegrate solid objects, such as calculi. Our recent study demonstrates that an ultrasonically actuated medical needle can create cavitation phenomena inside water. However, the presence and behavior of cavitation and related bioeffects in diagnostic and therapeutic applications with ultrasonically actuated needles are not known. Using simulations, we demonstrate numerically and experimentally the cavitation phenomena near ultrasonically actuated needles. We define the cavitation onset within a liver tissue model with different total acoustic power levels. We directly visualize and quantitatively characterize cavitation events generated by the ultrasonic needle in thin fresh bovine liver sections enabled by high-speed imaging. On a qualitative basis, the numerical and experimental results show a close resemblance in threshold and spatial distribution of cavitation. These findings are crucial for developing new methods and technologies employing ultrasonically actuated fine needles, such as ultrasound-enhanced fine-needle biopsy, drug delivery, and histotripsy.
Collapse
Affiliation(s)
- Emanuele Perra
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| | - Nick Hayward
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| | - Kenneth P H Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Heikki J Nieminen
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
26
|
Abu-Nab AK, Mohamed KG, Abu-Bakr AF. Microcavitation dynamics in viscoelastic tissue during histotripsy process. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:304005. [PMID: 35533648 DOI: 10.1088/1361-648x/ac6e20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 05/29/2023]
Abstract
Monitoring bubble cavitations and bubble dynamics are essential in enhancing non-invasive ultrasonic ablation methods like histotripsy that mechanically fractionates tissue into acellular debris using microcavitation. Histotripsy can totally fractionate tissue into a liquid-appearing homogenate with no cellular features with enough pulses. In this paper, we present the analysis of the dynamics of cavitation bubbles in a viscoelastic medium subjected to a histotripsy pulse using different fidelities in depicting compressibility and viscoelasticity effects. The mathematical formulation is described based on the Keller-Miksis equation in two models for cavitation bubbles in viscoelastic tissue through histotripsy process; the first model is in neo-Hookean, and the second is in quadratic law Kelvin-Voigt model. The governing model is solved analytically based on the modified Plesset-Zwick method. Analysis of the results reveals that the parameters of Young modulus, viscosity effects and stiffening parameter reduce the growth of cavitation microbubbles through the histotripsy process. The cavitation bubble growth increases when the gel concentration decreases during the histotripsy process.
Collapse
Affiliation(s)
- Ahmed K Abu-Nab
- Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511, Egypt
- Phystech School of Applied Mathematics and Informatics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow 141700, Russia
| | - Khaled G Mohamed
- Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
| | - Ali F Abu-Bakr
- Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511, Egypt
- Theoretical and Mathematical Physics Department, Ural Federal University, Ekaterinburg, 620083, Russia
| |
Collapse
|
27
|
Dadgar MM, Hynynen K. High-Pressure Low-Frequency Lateral Mode Phased-Array Transducer System for the Treatment of Deep Vein Thrombosis: An In Vitro Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1088-1099. [PMID: 35020593 DOI: 10.1109/tuffc.2022.3141871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep vein thrombosis (DVT) can lead to a fatal disease known as pulmonary embolism. Application of high-power ultrasound has been successful in studies to mechanically fragment the clots. Single-element ultrasound transducers were used in most of the studies. Challenges associated with phased arrays, such as high electrical impedance and element breakdown at high voltages, were addressed in the previous study, and a high-power 64-element transducer module was designed and fabricated. In this study, a cylindrical array of 16 modules with the frequency of 260 kHz was modeled and constructed for DVT thrombolysis. The maximum pressure, focal size, and steering ability of the array were examined. In vitro experiments were conducted to assess the performance of the array. The simulated pressure amplitude of 34 MPa at the depth of 55 mm (average femoral vein (FV) distance from the inner surface of the thigh) was in consistent with the experiments and satisfied the purpose of this study. Moreover, the employed module distribution resulted in a focal spot dimension of 2.4×2.8×7.3 mm3 (at the 75% pressure amplitude level) that can be confined in a human FV with the average diameter of 12 mm. In vitro experiments manifested a partial and complete clot breakdown at 11.5- and 15-MPa pressure at the focus. The design and engineering of the array system was succeeded in maintaining the desired pressure and focal size even when steered. The results presented in this study suggest the potential of the designed array system for clinical applications.
Collapse
|
28
|
Liu WW, Ko HC, Li PC. Sonoporation based on repeated vaporization of gold nanodroplets. Med Phys 2022; 49:2761-2773. [PMID: 35172015 PMCID: PMC9450513 DOI: 10.1002/mp.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Background Gold nanodroplets (AuNDs) have been proposed as agents for photothermal therapy and photoacoustic imaging. Previously, we demonstrated that the sonoporation can be more effectively achieved with synchronized optical and acoustic droplet vaporization. By applying a laser pulse at the rarefactional phase of the ultrasound (US) pulse, the vaporization threshold can be reached at a considerably lower laser average power. However, a large loading quantity of the AuNDs may increase the risk of air embolism. The destruction of phase‐shifted AuNDs at the inertial cavitation stage leads to a reduced drug delivery performance. And it also causes instability of echogenicity during therapeutic monitoring. Purpose In this study, we propose to further improve the sonoporation effectiveness with repeated vaporization. In other words, the AuNDs repeatedly undergo vaporization and recondensation so that sonoporation effects are accumulated over time at lower energy requirements. Previously, repeated vaporization has been demonstrated as an imaging contrast agent. In this study, we aim to adopt this repeated vaporization scheme for sonoporation. Methods Perfluoropentane NDs with a shell made of human serum albumin were used as the US contrast agents. Laser pulses at 808 nm and US pulses of 1 MHz were delivered for triggering vaporization and inertial cavitation of NDs. We detected the vaporization and cavitation effects under different activation firings, US peak negative pressures (PNPs), and laser fluences using 5‐ and 10‐MHz focused US receivers. Numbers of calcein‐AM and propidium iodide signals uptake by BNL hepatocarcinoma cancer cells were used to evaluate the sonoporation and cell death rate of the cells. Results We demonstrate that sonoporation can be realized based on repeatable vaporization instead of the commonly adopted inertial cavitation effects. In addition, it is found that the laser fluence and the acoustic pressure can be reduced. As an example, we demonstrate that the acoustic and optical energy for achieving a similar level of sonoporation rate can be as low as 0.44 MPa for the US PNP and 4.01 mJ/cm2 for the laser fluence, which are lower than those with our previous approach (0.53 MPa and 4.95 mJ/cm2, respectively). Conclusion We demonstrated the feasibility of vaporization‐based sonoporation at a lower optical and acoustic energy. It is an advantageous method that can enhance drug delivery efficiency, therapeutic safety and potentially deliver an upgraded gene therapy strategy for improved theragnosis.
Collapse
Affiliation(s)
- Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Hung-Chih Ko
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
29
|
Kim J, Bautista KJB, Deruiter RM, Goel L, Jiang X, Xu Z, Dayton PA. An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:711-719. [PMID: 34932475 PMCID: PMC9134349 DOI: 10.1109/tuffc.2021.3137125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The thrombolysis potential of low-boiling-point (-2 °C) perfluorocarbon phase-change nanodroplets (NDs) has previously been demonstrated on aged clots, and we hypothesized that this efficacy would extend to retracted clots. We tested this hypothesis by comparing sonothrombolysis of both unretracted and retracted clots using ND-mediated ultrasound (US+ND) and microbubble-mediated ultrasound (US+MB), respectively. Assessment data included clot mass reduction, cavitation detection, and cavitation cloud imaging in vitro. Acoustic parameters included a 7.9-MPa peak negative pressure and 180-cycle bursts with 5-Hz repetition (the corresponding duty cycle and time-averaged intensity of 0.09% and 1.87 W/cm2, respectively) based on prior studies. With these parameters, we observed a significantly reduced efficacy of US+MB in the retracted versus unretracted model (the averaged mass reduction rate from 1.83%/min to 0.54%/min). Unlike US+MB, US+ND exhibited less reduction of efficacy in the retracted model (from 2.15%/min to 1.04%/min on average). The cavitation detection results correlate with the sonothrombolysis efficacy results showing that both stable and inertial cavitation generated in a retracted clot by US+ND is higher than that by US+MB. We observed that ND-mediated cavitation shows a tendency to occur inside a clot, whereas MB-mediated cavitation occurs near the surface of a retracted clot, and this difference is more significant with retracted clots compared to unretracted clots. We conclude that ND-mediated sonothrombolysis outperforms MB-mediated therapy regardless of clot retraction, and this advantage of ND-mediated cavitation is emphasized for retracted clots. The primary mechanisms are hypothesized to be sustained cavitation level and cavitation clouds in the proximity of a retracted clot by US+ND.
Collapse
|
30
|
Maxwell AD, Haworth KJ, Holland CK, Hendley SA, Kreider W, Bader KB. Design and Characterization of an Ultrasound Transducer for Combined Histotripsy-Thrombolytic Therapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:156-165. [PMID: 34534078 PMCID: PMC8802531 DOI: 10.1109/tuffc.2021.3113635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic thrombi of the deep veins of the leg are resistant to dissolution or removal by current interventions and can act as thrombogenic sources. Histotripsy, a focused ultrasound therapy, uses the mechanical activity of bubble clouds to liquefy target tissues. In vitro experiments have shown that histotripsy enhances thrombolytic agent recombinant tissue plasminogen activator in a highly retracted clot model resistant to lytic therapy alone. Although these results are promising, further refinement of the acoustic source is necessary for in vivo studies and clinical translation. The source parameters for use in vivo were defined, and a transducer was fabricated for transcutaneous exposure of porcine and human iliofemoral deep-vein thrombosis (DVT) as the target. Based on the design criteria, a 1.5-MHz elliptical source with a 6-cm focal length and a focal gain of 60 was selected. The source was characterized by fiber-optic hydrophone and holography. High-speed photography showed that the cavitation cloud could be confined to dimensions smaller than the specified vessel lumen. The source was also demonstrated in vitro to create confined lesions within clots. The results support that this design offers an appropriate clinical prototype for combined histotripsy-thrombolytic therapy.
Collapse
|
31
|
Masood U, Riaz R, Shah SU, Majeed AI, Abbas SR. Contrast enhanced sonothrombolysis using streptokinase loaded phase change nano-droplets for potential treatment of deep venous thrombosis. RSC Adv 2022; 12:26665-26672. [PMID: 36275167 PMCID: PMC9488110 DOI: 10.1039/d2ra04467f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Current thrombolytic therapies for deep venous thrombosis are limited due to the wide side effect profile. Contrast mediated sonothrombolysis is a promising approach for thrombus treatment. The current study examines the effectiveness of in vitro streptokinase (SK) loaded phase-change nanodroplet (PCND) mediated sonothrombolysis at 7 MHz for the diagnosis of deep venous thrombosis. Lecithin shell and perfluorohexane core nanodroplets were prepared via the thin-film hydration method and morphologically characterized. Sonothrombolysis was performed at 7 MHz at different mechanical indexes of samples i.e., only sonothrombolysis, PCND mediated sonothrombolysis, sonothrombolysis with SK and SK loaded PCND mediated sonothrombolysis. Thrombolysis efficacy was assessed by measuring clot weight changes during 30 min US exposure, recording the mean gray intensity from the US images of the clot by computer software ImageJ, and spectrophotometric quantification of the hemoglobin in the clot lysate. In 15 minutes of sonothrombolysis performed at high mechanical index (0.9 and 1.2), SK loaded PCNDs showed a 48.61% and 74.29% reduction of mean gray intensity. At 0.9 and 1.2 MI, 86% and 92% weight loss was noted for SK-loaded PCNDs in confidence with spectrophotometric results. A significant difference (P < 0.05) was noted for SK-loaded PCND mediated sonothrombolysis compared to other groups. Loading of SK inside the PCNDs enhanced the efficacy of sonothrombolysis. An increase in MI and time also increased the efficacy of sonothrombolysis. This in vitro study showed the potential use of SK-loaded perfluorohexane core PCNDs as sonothrombolytic agents for deep venous thrombosis. Contrast enhanced sonothrombolysis using streptokinase loaded phase change nano-droplets.![]()
Collapse
Affiliation(s)
- Usama Masood
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Ramish Riaz
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saeed Ullah Shah
- Department of Cardiology, Shifa International Hospitals Ltd., Islamabad, Pakistan
| | - Ayesha Isani Majeed
- Department of Radiology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
32
|
Sawaguchi Y, Wang Z, Yamamoto H, Nakata N. <i>In vitro</i> study about prevention of vascular reocclusion by low intensity ultrasonic irradiation. Drug Discov Ther 2022; 16:233-239. [DOI: 10.5582/ddt.2022.01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yoshikazu Sawaguchi
- Department of Medical Technology, Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Zuojun Wang
- Division of Artificial Intelligence in Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yamamoto
- Department of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Norio Nakata
- Division of Artificial Intelligence in Medicine, the Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, Ti Tey B, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 80:105805. [PMID: 34706321 PMCID: PMC8555278 DOI: 10.1016/j.ultsonch.2021.105805] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
Collapse
Affiliation(s)
- Sze Shin Low
- Continental-NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
34
|
Stocker GE, Shi J, Ives K, Maxwell AD, Dayton PA, Jiang X, Xu Z, Owens GE. In Vivo Porcine Aged Deep Vein Thrombosis Model for Testing Ultrasound-based Thrombolysis Techniques. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3447-3457. [PMID: 34593277 PMCID: PMC8578380 DOI: 10.1016/j.ultrasmedbio.2021.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
As blood clots age, many thrombolytic techniques become less effective. To fully evaluate these techniques for potential clinical use, a large animal aged-clot model is needed. Previous minimally invasive attempts to allow clots to age in an in vivo large animal model were unsuccessful because of the clot clearance associated with relatively high level of cardiac health of readily available research pigs. Prior models have thus subsequently used invasive surgical techniques with the associated morbidity, animal stress and cost. We propose a method for forming sub-acute venous blood clots in an in-vivo porcine model. The age of the clots can be controlled and varied. By using an intravenous scaffold to anchor the clot to the vessel wall during the aging process, we can show that sub-acute clots can consistently be formed with a minimally invasive, percutaneous approach. The clot formed in this study remained intact for at least 1 wk in all subjects. Therefore, we established a new minimally invasive, large animal aged-clot model for evaluation of thrombolytic techniques.
Collapse
Affiliation(s)
- Greyson E Stocker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jiaqi Shi
- Department of Pathology and Clinical Laboraties, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly Ives
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabe E Owens
- Department of Pediatric Cardiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Wu H, Goel LD, Kim H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Dual-Frequency Intravascular Sonothrombolysis: An In Vitro Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3599-3607. [PMID: 34370663 PMCID: PMC8645157 DOI: 10.1109/tuffc.2021.3103409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thrombo-occlusive disease is one of the leading causes of death worldwide. There has been active research on safe and effective thrombolysis in preclinical and clinical studies. Recently, the dual-frequency transcutaneous sonothrombolysis with contrast agents [microbubbles (MBs)] has been reported to be more efficient in trigging the acoustic cavitation, which leads to a higher lysis rate. Therefore, there is increasing interest in applying dual-frequency technique for more significant efficacy improvement in intravascular sonothrombolysis since a miniaturized intravascular ultrasound transducer typically has a limited power output to fully harness cavitation effects. In this work, we demonstrated this efficacy enhancement by developing a new broadband intravascular transducer and testing dual-frequency sonothromblysis in vitro. A broadband intravascular transducer with a center frequency of 750 kHz and a footprint size of 1.4 mm was designed, fabricated, and characterized. The measured -6-dB fractional bandwidth is 68.1%, and the peak negative pressure is 1.5 MPa under the driving voltage of 80 Vpp. By keeping one frequency component at 750 kHz, the second frequency component was selected from 450 to 650 kHz with an interval of 50 kHz. The in vitro sonothrombolysis tests were conducted with a flow model and the results indicated that the MB-mediated, dual-frequency (750+500 kHz) sonothrombolysis yields an 85% higher lysis rate compared with the single-frequency treatment, and the lysis rate of dual-frequency sonothrombolysis increases with the difference between the two frequency components. These findings suggest a dual-frequency excitation technique for more efficient intravascular sonothrombolysis than conventional single-frequency excitation.
Collapse
|
36
|
Goel L, Wu H, Zhang B, Kim J, Dayton PA, Xu Z, Jiang X. Safety Evaluation of a Forward-Viewing Intravascular Transducer for Sonothrombolysis: An in Vitro and ex Vivo Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3231-3239. [PMID: 34446331 PMCID: PMC8487993 DOI: 10.1016/j.ultrasmedbio.2021.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Recent in vitro work has revealed that a forward-viewing intravascular (FVI) transducer has sonothrombolysis applications. However, the safety of this device has yet to be evaluated. In this study, we evaluated the safety of this device in terms of tissue heating, vessel damage and particle debris size during sonothrombolysis using microbubbles or nanodroplets with tissue plasminogen activator, in both retracted and unretracted blood clots. The in vitro and ex vivo sonothrombolysis tests using FVI transducers revealed a temperature rise of less than 1°C, no vessel damage as assessed by histology and no downstream clot particles >500 µm. These in vitro and ex vivo results indicate that the FVI transducer poses minimal risk for sonothrombolysis applications and should be further evaluated in animal models.
Collapse
Affiliation(s)
- Leela Goel
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
37
|
Sang PG, Biswas D, Lee SJ, Won SM, Son D, Ok JG, Park HJ, Baac HW. Experimental Demonstration of a Stacked Hybrid Optoacoustic-Piezoelectric Transducer for Localized Heating and Enhanced Cavitation. MICROMACHINES 2021; 12:mi12101268. [PMID: 34683319 PMCID: PMC8540735 DOI: 10.3390/mi12101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Laser-generated focused ultrasound (LGFU) is an emerging modality for cavitation-based therapy. However, focal pressure amplitudes by LGFU alone to achieve pulsed cavitation are often lacking as a treatment depth increases. This requires a higher pressure from a transmitter surface and more laser energies that even approach to a damage threshold of transmitter. To mitigate the requirement for LGFU-induced cavitation, we propose LGFU configurations with a locally heated focal zone using an additional high-intensity focused ultrasound (HIFU) transmitter. After confirming heat-induced cavitation enhancement using two separate transmitters, we then developed a stacked hybrid optoacoustic-piezoelectric transmitter, which is a unique configuration made by coating an optoacoustic layer directly onto a piezoelectric substrate. This shared curvature design has great practical advantage without requiring the complex alignment of two focal zones. Moreover, this enabled the amplification of cavitation bubble density by 18.5-fold compared to the LGFU operation alone. Finally, the feasibility of tissue fragmentation was confirmed through a tissue-mimicking gel, using the combination of LGFU and HIFU (not via a stacked structure). We expect that the stacked transmitter can be effectively used for stronger and faster tissue fragmentation than the LGFU transmitter alone.
Collapse
Affiliation(s)
- Pil Gyu Sang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Deblina Biswas
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Seung Jin Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Korea;
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
- Correspondence:
| |
Collapse
|
38
|
Hendricks-Wenger A, Sereno J, Gannon J, Zeher A, Brock RM, Beitel-White N, Simon A, Davalos RV, Coutermarsh-Ott S, Vlaisavljevich E, Allen IC. Histotripsy Ablation Alters the Tumor Microenvironment and Promotes Immune System Activation in a Subcutaneous Model of Pancreatic Cancer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2987-3000. [PMID: 33956631 PMCID: PMC9295194 DOI: 10.1109/tuffc.2021.3078094] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pancreatic cancer is a significant cause of cancer-related deaths in the United States with an abysmal five-year overall survival rate that is under 9%. Reasons for this mortality include the lack of late-stage treatment options and the immunosuppressive tumor microenvironment. Histotripsy is an ultrasound-guided, noninvasive, nonthermal tumor ablation therapy that mechanically lyses targeted cells. To study the effects of histotripsy on pancreatic cancer, we utilized an in vitro model of pancreatic adenocarcinoma and compared the release of potential antigens following histotripsy treatment to other ablation modalities. Histotripsy was found to release immune-stimulating molecules at magnitudes similar to other nonthermal ablation modalities and superior to thermal ablation modalities, which corresponded to increased innate immune system activation in vivo. In subsequent in vivo studies, murine Pan02 tumors were grown in mice and treated with histotripsy. Flow cytometry and rtPCR were used to determine changes in the tumor microenvironment over time compared to untreated animals. In mice with pancreatic tumors, we observed significantly increased tumor-progression-free and general survival, with increased activation of the innate immune system 24 h posttreatment and decreased tumor-associated immune cell populations within 14 days of treatment. This study demonstrates the feasibility of using histotripsy for pancreatic cancer ablation and provides mechanistic insight into the initial innate immune system activation following treatment. Further work is needed to establish the mechanisms behind the immunomodulation of the tumor microenvironment and immune effects.
Collapse
|
39
|
Stocker GE, Zhang M, Xu Z, Hall TL. Endocavity Histotripsy for Efficient Tissue Ablation-Transducer Design and Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2896-2905. [PMID: 33507869 PMCID: PMC8451243 DOI: 10.1109/tuffc.2021.3055138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A 34-mm aperture transducer was designed and tested for proof of concept to ablate tissues using an endocavity histotripsy device. Several materials and two drivers were modeled and tested to determine an effective piezoelectric-matching layer combination and driver design. The resulting transducer was fabricated using 1.5 MHz porous PZT and PerFORM 3-D printed acoustic lenses and was driven with a multicycle class-D amplifier. The lower frequency, compared to previously developed small form factor histotripsy transducers, was selected to allow for more efficient volume ablation of tissue. The transducer was characterized and tested by measuring pressure field maps in the axial and lateral planes and pressure output as a function of driving voltage. The axial and lateral full-width-half-maximums of the focus were found to be 6.1 and 1.1 mm, respectively. The transducer was estimated to generate 34.5-MPa peak negative focal pressure with a peak-to-peak driving voltage of 1345 V. Performance testing was done by ablating volumes of bovine liver tissues ( n = 3 ). The transducer was found to be capable of ablating tissues at its full working distance of 17 mm.
Collapse
|
40
|
Zhang M, Rodrigues A, Zhou Q, Li G. Focused ultrasound: growth potential and future directions in neurosurgery. J Neurooncol 2021; 156:23-32. [PMID: 34410576 DOI: 10.1007/s11060-021-03820-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/31/2021] [Indexed: 12/18/2022]
Abstract
Over the past two decades, vast improvements in focused ultrasound (FUS) technology have made the therapy an exciting addition to the neurosurgical armamentarium. In this time period, FUS has gained US Food and Drug Administration (FDA) approval for the treatment of two neurological disorders, and ongoing efforts seek to expand the lesion profile that is amenable to ultrasonic intervention. In the following review, we highlight future applications for FUS therapy and compare its potential role against established technologies, including deep brain stimulation and stereotactic radiosurgery. Particular attention is paid to tissue ablation, blood-brain-barrier opening, and gene therapy. We also address technical and infrastructural challenges involved with FUS use and summarize the hurdles that must be overcome before FUS becomes widely accepted in the neurosurgical community.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA. .,Center for Academic Medicine, Neurosurgery, Stanford University School of Medicine, MC 5327, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Adrian Rodrigues
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.,Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
41
|
Daood U, Aati S, Akram Z, Yee J, Yong C, Parolia A, Lin Seow L, Fawzy AS. Characterization of multiscale interactions between high intensity focused ultrasound (HIFU) and tooth dentin: the effect on matrix-metalloproteinases, bacterial biofilms and biological properties. Biomater Sci 2021; 9:5344-5358. [PMID: 34190236 DOI: 10.1039/d1bm00555c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.
Collapse
Affiliation(s)
- Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Sultan Aati
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Zohaib Akram
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Joyce Yee
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Celine Yong
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Abhishek Parolia
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Liang Lin Seow
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Kuala Lumpur, Wilayah Persekutuan, Malaysia.
| | - Amr S Fawzy
- UWA Dental School, University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
42
|
Li M, Gu J, Vu T, Sankin G, Zhong P, Yao J, Jing Y. Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2361-2369. [PMID: 33635787 PMCID: PMC8269954 DOI: 10.1109/tuffc.2021.3062357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Passive cavitation mapping (PCM), which generates images using bubble acoustic emission signals, has been increasingly used for monitoring and guiding focused ultrasound surgery (FUS). PCM can be used as an adjunct to magnetic resonance imaging to provide crucial information on the safety and efficacy of FUS. The most widely used algorithm for PCM is delay-and-sum (DAS). One of the major limitations of DAS is its suboptimal computational efficiency. Although frequency-domain DAS can partially resolve this issue, such an algorithm is not suitable for imaging the evolution of bubble activity in real time and for cases in which cavitation events occur asynchronously. This study investigates a transient angular spectrum (AS) approach for PCM. The working principle of this approach is to backpropagate the received signal to the domain of interest and reconstruct the spatial-temporal wavefield encoded with the bubble location and collapse time. The transient AS approach is validated using an in silico model and water bath experiments. It is found that the transient AS approach yields similar results to DAS, but it is one order of magnitude faster. The results obtained by this study suggest that the transient AS approach is promising for fast and accurate PCM.
Collapse
|
43
|
Spratt JS, Rodriguez M, Schmidmayer K, Bryngelson SH, Yang J, Franck C, Colonius T. Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2021; 152:104455. [PMID: 34092810 PMCID: PMC8177475 DOI: 10.1016/j.jmps.2021.104455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic high-strain-rate rheometry by using least-squares shooting to minimize the difference between simulated and experimental bubble radius histories. We generalize their technique to account for additional uncertainties in the model, initial conditions, and material properties needed to uniquely simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational expense associated with the bubble cavitation model, providing a more efficient and scalable numerical framework for bubble-collapse rheometry. We test an ensemble Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D-Var method (En4D-Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a Kelvin-Voigt material. Results show that En4D-Var and IEnKS provide better moduli estimates than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields similar material property estimates to those they obtained, but provides additional information about uncertainties. In particular, the En4D-Var yields lower viscosity estimates for some experiments, and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model, whereby the apparent viscosity is reduced in some cases due to inelastic behavior, possibly in the form of material damage occurring at bubble collapse.
Collapse
Affiliation(s)
- Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mauro Rodriguez
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kevin Schmidmayer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer H. Bryngelson
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021; 28:49. [PMID: 34154581 PMCID: PMC8215828 DOI: 10.1186/s12929-021-00744-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Microbubbles are typically 0.5-10 μm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Masomi-Bornwasser J, Fabrig O, Krenzlin H, König J, Tanyildizi Y, Kempski O, Ringel F, Keric N. Systematic Analysis of Combined Thrombolysis Using Ultrasound and Different Fibrinolytic Drugs in an in Vitro Clot Model of Intracerebral Hemorrhage. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1334-1342. [PMID: 33549380 DOI: 10.1016/j.ultrasmedbio.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Adequate removal of blood clots by minimally invasive surgery seems to correlate with a better clinical outcome in patients with intracerebral hemorrhages (ICHs). Moreover, neurotoxic effects of recombinant tissue plasminogen activator have been reported. The aim of this study was to improve fibrinolysis using an intra-clot ultrasound application with tenecteplase and urokinase in our established ICH clot model. One hundred thirty clots were produced from 25 or 50 mL of human blood, incubated for different periods and equipped with drainage, through which an ultrasound catheter was placed in 65 treatment clots for 1 h, randomly allocated into three groups: administration of ultrasound, administration of 60 IU of tenecteplase or administration of 30,000 IU urokinase. Relative end weights were compared. This study found a significant increase in thrombolysis caused by a combination of ultrasound and fibrinolytic drugs, whereas ultrasound and tenecteplase are significantly more effective in the treatment of larger and aged clots.
Collapse
Affiliation(s)
- Julia Masomi-Bornwasser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Oliver Fabrig
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Yasemin Tanyildizi
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Oliver Kempski
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
46
|
Bader KB, Hendley SA, Bollen V. Assessment of Collaborative Robot (Cobot)-Assisted Histotripsy for Venous Clot Ablation. IEEE Trans Biomed Eng 2021; 68:1220-1228. [PMID: 32915723 PMCID: PMC8018710 DOI: 10.1109/tbme.2020.3023630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The application of bubble-based ablation with the focus ultrasound therapy histotripsy is gaining traction for the treatment of venous thrombosis, among other pathologies. For extensive clot burden, the histotripsy source must be translated to ensure uniform bubble activity throughout the vascular obstruction. The purpose of this study was to evaluate the targeting accuracy of a histotripsy system comprised of a focused source, ultrasound image guidance, and a collaborative robot (cobot) positioner. The system was designed with a primary emphasis for treating deep vein thrombosis. METHODS Studies to test treatment planning and targeting bubble activity with the histotripsy-cobot system were conducted in an in vitro clot model. A tissue-mimicking phantom was also targeted with the system, and the predicted and actual areas of liquefaction were compared to gauge the spatial accuracy of ablation. RESULTS The system provided submillimeter accuracy for both tracking along an intended path (within 0.6 mm of a model vessel) and targeting bubble activity within the venous clot model (0.7 mm from the center of the clot). Good correlation was observed between the planned and actual liquefaction locations in the tissue phantom, with an average Dice similarity coefficient of 77.8%, and average Hausdorff distance of 1.6 mm. CONCLUSION Cobots provide an effective means to apply histotripsy pulses over a treatment volume, with the ablation precision contingent on the quality of image guidance. SIGNIFICANCE Overall, these results demonstrate cobots can be used to guide histotripsy ablation for targets that extend beyond the natural focus of the transducer.
Collapse
|
47
|
Matula TJ, Wang YN, Khokhlova T, Leotta DF, Kucewicz J, Brayman AA, Bruce M, Maxwell AD, MacConaghy BE, Thomas G, Chernikov VP, Buravkov SV, Khokhlova VA, Richmond K, Chan K, Monsky W. Treating Porcine Abscesses with Histotripsy: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:603-619. [PMID: 33250219 PMCID: PMC7855811 DOI: 10.1016/j.ultrasmedbio.2020.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Infected abscesses are walled-off collections of pus and bacteria. They are a common sequela of complications in the setting of surgery, trauma, systemic infections and other disease states. Current treatment is typically limited to antibiotics with long-term catheter drainage, or surgical washout when inaccessible to percutaneous drainage or unresponsive to initial care efforts. Antibiotic resistance is also a growing concern. Although bacteria can develop drug resistance, they remain susceptible to thermal and mechanical damage. In particular, short pulses of focused ultrasound (i.e., histotripsy) generate mechanical damage through localized cavitation, representing a potential new paradigm for treating abscesses non-invasively, without the need for long-term catheterization and antibiotics. In this pilot study, boiling and cavitation histotripsy treatments were applied to subcutaneous and intramuscular abscesses developed in a novel porcine model. Ultrasound imaging was used to evaluate abscess maturity for treatment monitoring and assessment of post-treatment outcomes. Disinfection was quantified by counting bacteria colonies from samples aspirated before and after treatment. Histopathological evaluation of the abscesses was performed to identify changes resulting from histotripsy treatment and potential collateral damage. Cavitation histotripsy was more successful in reducing the bacterial load while having a smaller treatment volume compared with boiling histotripsy. The results of this pilot study suggest focused ultrasound may lead to a technology for in situ treatment of acoustically accessible abscesses.
Collapse
Affiliation(s)
- Thomas J Matula
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Tatiana Khokhlova
- Department of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Daniel F Leotta
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - John Kucewicz
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Andrew A Brayman
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Matthew Bruce
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Brian E MacConaghy
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Gilles Thomas
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Valery P Chernikov
- Research Institute of Human Morphology, Laboratory of Cell Pathology, Moscow, Russia
| | - Sergey V Buravkov
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Vera A Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; Department of Acoustics, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Keith Chan
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Wayne Monsky
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Estrada JB, Cramer HC, Scimone MT, Buyukozturk S, Franck C. Neural cell injury pathology due to high-rate mechanical loading. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
49
|
Xu Z, Hall TL, Vlaisavljevich E, Lee FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38:561-575. [PMID: 33827375 PMCID: PMC9404673 DOI: 10.1080/02656736.2021.1905189] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technology guided by real-time imaging. Using focused ultrasound delivered from outside the body, histotripsy mechanically destroys tissue through cavitation, rendering the target into acellular debris. The material in the histotripsy ablation zone is absorbed by the body within 1-2 months, leaving a minimal remnant scar. Histotripsy has also been shown to stimulate an immune response and induce abscopal effects in animal models, which may have positive implications for future cancer treatment. Histotripsy has been investigated for a wide range of applications in preclinical studies, including the treatment of cancer, neurological diseases, and cardiovascular diseases. Three human clinical trials have been undertaken using histotripsy for the treatment of benign prostatic hyperplasia, liver cancer, and calcified valve stenosis. This review provides a comprehensive overview of histotripsy covering the origin, mechanism, bioeffects, parameters, instruments, and the latest results on preclinical and human studies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fred T. Lee
- Departments of Radiology, Biomedical Engineering, and Urology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
50
|
Jo J, Forrest ML, Yang X. Ultrasound-assisted laser thrombolysis with endovascular laser and high-intensity focused ultrasound. Med Phys 2020; 48:579-586. [PMID: 33280145 DOI: 10.1002/mp.14636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/15/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The combination of laser and ultrasound can significantly improve the efficiency of thrombolysis through an enhanced cavitation effect. We developed a fiber optics-based laser-ultrasound thrombolysis device and tested the feasibility and efficiency of this technology for restoring blood flow in an in vitro blood clot model. METHODS An in vitro blood flow-clot model was setup, and then an endovascular laser thrombolysis system was combined with high-intensity focused ultrasound to remove the clot. The laser and ultrasound pulses were synchronized and delivered to the blood clot concurrently. The laser pulses of 532 nm were delivered to the blood clot endovascularly through an optical fiber, whereas the ultrasound pulses of 0.5 MHz were applied noninvasively to the same region. Effectiveness of thrombolysis was evaluated by the ability to restore blood flow, which was monitored by ultrasound Doppler. RESULTS As laser powers increased, the ultrasound threshold pressures for effective thrombolysis decreased. For laser fluence levels of 0, 2, and 4 mJ/cm2 , the average negative ultrasound threshold pressures were 1.26 ± 0.114, 1.05 ± 0.181, and 0.59 ± 0.074 MPa, respectively. The periods of time needed to achieve effective thrombolysis were measured at 0.8, 2, and 4 mJ/cm2 laser fluence levels and 0.42, 0.70, and 0.98 MPa negative ultrasound pressures. In general, thrombolysis could be achieved more rapidly with higher laser powers or ultrasound pressures. CONCLUSIONS Effective thrombolysis can be achieved by combining endovascular laser with noninvasive ultrasound at relatively low power and pressure levels, which can potentially improve both the treatment efficiency and safety.
Collapse
Affiliation(s)
- Janggun Jo
- Vesarex LLC, Lawrence, KS, 66047, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, the University of Kansas, Lawrence, Kansas, 66045, USA
| | - Xinmai Yang
- Institute for Bioengineering Research and Department of Mechanical Engineering, the University of Kansas, Lawrence, Kansas, 66045, USA
| |
Collapse
|