1
|
Pucci C, De Pasquale D, Degl'Innocenti A, Montorsi M, Desii A, Pero M, Martinelli C, Bartolucci M, Petretto A, Ciofani G. Chlorin e6-Loaded Nanostructured Lipid Carriers Targeted by Angiopep-2: Advancing Photodynamic Therapy in Glioblastoma. Adv Healthc Mater 2024:e2402823. [PMID: 39344523 DOI: 10.1002/adhm.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor known for its resistance to standard treatments. Despite surgery being a primary option, it often leads to incomplete removal and high recurrence rates. Photodynamic therapy (PDT) holds promise as an adjunctive treatment, but safety concerns and the need for high-power lasers have limited its widespread use. This research addresses these challenges by introducing a novel PDT approach, using chlorin e6 (Ce6) enclosed in nanostructured lipid carriers (Ang-Ce6-NLCs) and targeted to GBM with the angiopep-2 peptide. Remarkably, a single 5-min irradiation session with LEDs at 660 nm and low power density (10 mW cm- 2) proves effective against GBM, while reducing safety risks associated with high-power lasers. Encapsulation improves Ce6 stability and performance in physiological environments, while angiopep-2 targeting enhances delivery to GBM cells, maximizing treatment efficacy and minimizing off-target effects. The findings demonstrate that Ang-Ce6-NLCs-mediated PDT brings about a significant reduction in GBM cell viability, increases oxidative stress, reduces tumor migration, and enhances apoptosis. Overall, such treatment holds potential as a safe and efficient intraoperative removal of GBM infiltrating cells that cannot be reached by surgery, using low-power LED light to minimize harm to surrounding healthy tissue while maximizing tumor treatment.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Marta Pero
- Politecnico di Torino, DIMEAS, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
2
|
Caliskan M, Ilikci-Sagkan R, Bayrak G, Ozlem-Caliskan S. Monitoring Apoptosis and Myeloid Differentiation of Acridine Orange-Mediated Sonodynamic Therapy-Induced Human Promyelocytic Leukemia HL60 Cells. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024. [PMID: 39257135 DOI: 10.1002/jum.16575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVES In the treatment of acute myeloid leukemia (AML), conventional therapies can lead to severe side effects and drug resistance. There is a need for alternative treatments that do not cause treatment resistance and have minimal or no side effects. Sonodynamic therapy (SDT), due to its noninvasive, multiple repeatability, localized treatment feature and do not cause treatment resistance, emerges as an alternative treatment option. However, it has not received sufficient attention in the treatment of AML especially acute promyelocytic leukemia (APL). The aim of the study was to investigate the potential differentiation and antileukemic effects of acridine orange (AO)-mediated SDT on HL60 cells. METHODS Cell viability was determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method in the control, ultrasound, AO concentrations, and ultrasound-exposed AO concentrations groups. Transmission electron microscopy (TEM) was used to determine morphology, and flow cytometry was used to determine apoptosis, DNA cycle, cell volume, mitochondria membrane potential (Δψm), reactive oxygen species (ROS) production, and differentiation markers (CD11b and CD15) expressions. Additionally, toluidine blue staining for semithin sections was used to determine differentiation. RESULTS The cytotoxicity of AO-mediated SDT on HL60 cells was significantly higher than other groups, and TEM images showed that it caused various morphological changes typical for apoptosis. Flow cytometry results showed the presence of early apoptosis, subG1 arrest, loss of Δψm, increase of intracellular ROS production, decreased cell volume, and increased expression of CD11b (1.3-fold) antigen and CD15 (1.2-fold) antigen. CONCLUSION Data showed that AO-mediated SDT significantly induced apoptosis in HL60 cells. Increased expression of CD11b and CD15 antigens and morphological findings demonstrated that AO-mediated SDT contributes to granulocytic differentiation in HL60 cells. AO-mediated SDT has potential as an alternative treatment of APL.
Collapse
Affiliation(s)
- Metin Caliskan
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey
| | - Rahsan Ilikci-Sagkan
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey
| | - Gulsen Bayrak
- Department of Histology and Embryology, Faculty of Medicine, Usak University, Usak, Turkey
| | | |
Collapse
|
3
|
Yang Y, Wang N, Yan F, Shi Z, Feng S. Metal-organic frameworks as candidates for tumor sonodynamic therapy: Designable structures for targeted multifunctional transformation. Acta Biomater 2024; 181:67-97. [PMID: 38697383 DOI: 10.1016/j.actbio.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Sonodynamic therapy (SDT), utilizing ultrasound (US) as the trigger, has gained popularity recently as a therapeutic approach with significant potential for treating various diseases. Metal-organic frameworks (MOFs), characterized by structural flexibility, are prominently emerging in the SDT realm as an innovative type of sonosensitizer, offering functional tunability and biocompatibility. However, due to the inherent limitations of MOFs, such as low reactivity to reactive oxygen species and challenges posed by the complex tumor microenvironment, MOF-based sonosensitizers with singular functions are unable to demonstrate the desired therapeutic efficacy and may pose risks of toxicity, limiting their biological applications to superficial tissues. MOFs generally possess distinctive crystalline structures and properties, and their controlled coordination environments provide a flexible platform for exploring structure-effect relationships and guiding the design and development of MOF-based nanomaterials to unlock their broader potential in biological fields. The primary focus of this paper is to summarize cases involving the modification of different MOF materials and the innovative strategies developed for various complex conditions. The paper outlines the diverse application areas of functionalized MOF-based sonosensitizers in tumor synergistic therapies, highlighting the extensive prospects of SDT. Additionally, challenges confronting SDT are briefly summarized to stimulate increased scientific interest in the practical application of MOFs and the successful clinical translation of SDT. Through these discussions, we strive to foster advancements that lead to early-stage clinical benefits for patients. STATEMENT OF SIGNIFICANCE: 1. An overview for the progresses in SDT explored from a novel and fundamental perspective. 2. Different modification strategies to improve the MOFs-mediated SDT efficacy are provided. 3. Guidelines for the design of multifunctional MOFs-based sonosensitizers are offered. 4. Powerful tumor ablation potential is reflected in SDT-led synergistic therapies. 5. Future challenges in the field of MOFs-based SDT in clinical translation are suggested.
Collapse
Affiliation(s)
- Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Dissecting the Interactions between Chlorin e6 and Human Serum Albumin. Molecules 2023; 28:molecules28052348. [PMID: 36903592 PMCID: PMC10005744 DOI: 10.3390/molecules28052348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Chlorin e6 (Ce6) is among the most used sensitizers in photodynamic (PDT) and sonodynamic (SDT) therapy; its low solubility in water, however, hampers its clinical exploitation. Ce6 has a strong tendency to aggregate in physiological environments, reducing its performance as a photo/sono-sensitizer, as well as yielding poor pharmacokinetic and pharmacodynamic properties. The interaction of Ce6 with human serum albumin (HSA) (i) governs its biodistribution and (ii) can be used to improve its water solubility by encapsulation. Here, using ensemble docking and microsecond molecular dynamics simulations, we identified the two Ce6 binding pockets in HSA, i.e., the Sudlow I site and the heme binding pocket, providing an atomistic description of the binding. Comparing the photophysical and photosensitizing properties of Ce6@HSA with respect to the same properties regarding the free Ce6, it was observed that (i) a red-shift occurred in both the absorption and emission spectra, (ii) a maintaining of the fluorescence quantum yield and an increase of the excited state lifetime was detected, and (iii) a switch from the type II to the type I mechanism in a reactive oxygen species (ROS) production, upon irradiation, took place.
Collapse
|
5
|
Recent Clinical and Preclinical Advances in External Stimuli-Responsive Therapies for Head and Neck Squamous Cell Carcinoma. J Clin Med 2022; 12:jcm12010173. [PMID: 36614974 PMCID: PMC9821160 DOI: 10.3390/jcm12010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has long been one of the most prevalent cancers worldwide; even though treatments such as surgery, chemotherapy, radiotherapy and immunotherapy have been proven to benefit the patients and prolong their survival time, the overall five-year survival rate is still below 50%. Hence, the development of new therapies for better patient management is an urgent need. External stimuli-responsive therapies are emerging therapies with promising antitumor effects; therapies such as photodynamic (PDT) and photothermal therapies (PTT) have been tested clinically in late-stage HNSCC patients and have achieved promising outcomes, while the clinical translation of sonodynamic therapy (SDT), radiodynamic therapy (RDT), microwave dynamic/thermodynamic therapy, and magnetothermal/magnetodynamic therapy (MDT/MTT) still lag behind. In terms of preclinical studies, PDT and PTT are also the most extensively studied therapies. The designing of nanoparticles and combinatorial therapies of PDT and PTT can be referenced in designing other stimuli-responsive therapies in order to achieve better antitumor effects as well as less toxicity. In this review, we consolidate the advancements and limitations of various external stimuli-responsive therapies, as well as critically discuss the prospects of this type of therapies in HNSCC treatments.
Collapse
|
6
|
Gradova MA, Gradov OV, Lobanov AV, Bychkova AV, Nikolskaya ED, Yabbarov NG, Mollaeva MR, Egorov AE, Kostyukov AA, Kuzmin VA, Khudyaeva IS, Belykh DV. Characterization of a Novel Amphiphilic Cationic Chlorin Photosensitizer for Photodynamic Applications. Int J Mol Sci 2022; 24:ijms24010345. [PMID: 36613788 PMCID: PMC9820311 DOI: 10.3390/ijms24010345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.
Collapse
Affiliation(s)
- Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Anton V. Lobanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena D. Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G. Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariia R. Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton E. Egorov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexey A. Kostyukov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir A. Kuzmin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina S. Khudyaeva
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Dmitry V. Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
7
|
Sofuni A, Itoi T. Current status and future perspective of sonodynamic therapy for cancer. J Med Ultrason (2001) 2022:10.1007/s10396-022-01263-x. [PMID: 36224458 DOI: 10.1007/s10396-022-01263-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 12/07/2022]
Abstract
There is a tremendous need for prevention and effective treatment of cancer due to the associated morbidity and mortality. In this study, we introduce sonodynamic therapy (SDT), which is expected to be a new cancer treatment modality. SDT is a promising option for minimally invasive treatment of solid tumors and comprises three different components: sonosensitizers, ultrasound, and molecular oxygen. These components are harmless individually, but in combination they generate cytotoxic reactive oxygen species (ROS). We will explore the molecular mechanism by which SDT kills cancer cells, the class of sonosensitizers, drug delivery methods, and in vitro and in vivo studies. At the same time, we will highlight clinical applications for cancer treatment. The progress of SDT research suggests that it has the potential to become an advanced field of cancer treatment in clinical application. In this article, we will focus on the mechanism of action of SDT and its application to cancer treatment, and explain key factors to aid in developing strategies for future SDT development.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
8
|
Nowak KM, Schwartz MR, Breza VR, Price RJ. Sonodynamic therapy: Rapid progress and new opportunities for non-invasive tumor cell killing with sound. Cancer Lett 2022; 532:215592. [PMID: 35151824 PMCID: PMC8918024 DOI: 10.1016/j.canlet.2022.215592] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
Abstract
Solid tumor treatment relies heavily upon chemotherapies, radiation, surgical resection, and/or immunotherapies. Although many alternative non-invasive solid tumor therapies have been proposed through the years and continue to be tested in various contexts, tumor cell eradication remains a daunting task for the current cancer armamentarium. Indeed, solid tumors exhibit physically and biochemically heterogenous microenvironments, allowing them to easily acquire resistance mechanisms. Progress in sonodynamic therapy (SDT), a treatment modality capable of controlling tumor growth while limiting off-target effects and toxicities, has accelerated in recent years. SDT combines "sonosensitizing" agents with the non-invasive application of focused acoustic energy [i.e. focused ultrasound (FUS)] to drive highly localized formation of tumor cell-killing reactive oxygen species (ROS). Sonosensitizers selectively accumulate in tumor cells, after which FUS radiation eliminates the tumor by forcing the tumor cells to undergo cell death. In this article, we comprehensively review recent studies wherein SDT has been applied to treat primary and metastatic tumors. We discuss sonosensitizers, combination therapies with SDT, developments in defining the mechanism of SDT-induced cell cytotoxicity, and the promise SDT offers as a modulator of anti-tumor immunity.
Collapse
Affiliation(s)
- Katherine M Nowak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Victoria R Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Radiology & Medical Imaging, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Araújo Martins Y, Zeferino Pavan T, Fonseca Vianna Lopez R. Sonodynamic therapy: Ultrasound parameters and in vitro experimental configurations. Int J Pharm 2021; 610:121243. [PMID: 34743959 DOI: 10.1016/j.ijpharm.2021.121243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Sonodynamic therapy (SDT) is a new therapeutic modality for noninvasive cancer treatment based on the association of ultrasound and sonosensitizer drugs. Up to date, there is not a consensus on the standardization of the experimental conditions for the in vitro studies to correctly assess cell viability during SDT. Therefore, this review article mainly describes how the main ultrasound parameters and experimental setups of ultrasound application in vitro studies can influence the SDT bioeffects/response. The sonodynamic action is impacted by the combination of frequency, intensity, duty cycle, and ultrasound application time. The variation of experimental setups in cell culture, such as the transducer position, cell-transducer distance, coupling medium thickness, or type of culture, also influences the sonodynamic response. The intensity, duty cycle, and sonication duration increase cytotoxicity and reactive oxygen species production. For similar ultrasound parameters, differences in the experimental configuration impact cell death in vitro. Four main experimental setups are used to assess for SDT in cell culture (i) a planar transducer placed directly in contact with the bottom of the culture microplate; (ii) microplate positioned in the transducer's far-field using a water tank; (iii) sealed cell culture tubes immersed in water away from the transducer; and (iv) transducer dipped directly into the well with cell culture. Because of the significant variations in the experimental setups, sonodynamic response can significantly vary, and the translation of these results for in vivo experimentation is difficult. Therefore, a well-designed and detailed in vitro experimental setup is vital for understanding the interactions among the biological medium, the sonosensitizer, and the ultrasound for the in vitro to in vivo translation in SDT.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Theo Zeferino Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP-USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Fonseca Vianna Lopez
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
Mollaeva MR, Nikolskaya E, Beganovskaya V, Sokol M, Chirkina M, Obydennyi S, Belykh D, Startseva O, Mollaev MD, Yabbarov N. Oxidative Damage Induced by Phototoxic Pheophorbide a 17-Diethylene Glycol Ester Encapsulated in PLGA Nanoparticles. Antioxidants (Basel) 2021; 10:1985. [PMID: 34943088 PMCID: PMC8750000 DOI: 10.3390/antiox10121985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023] Open
Abstract
Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Veronika Beganovskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
- Department of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Sergey Obydennyi
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Dmitry Belykh
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Murad D. Mollaev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| |
Collapse
|
11
|
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Yang
- Department of Cardiovascular, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
12
|
A highly potent ruthenium(II)-sonosensitizer and sonocatalyst for in vivo sonotherapy. Nat Commun 2021; 12:5001. [PMID: 34408151 PMCID: PMC8373944 DOI: 10.1038/s41467-021-25303-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
As a basic structure of most polypyridinal metal complexes, [Ru(bpy)3]2+, has the advantages of simple structure, facile synthesis and high yield, which has great potential for scientific research and application. However, sonodynamic therapy (SDT) performance of [Ru(bpy)3]2+ has not been investigated so far. SDT can overcome the tissue-penetration and phototoxicity problems compared to photodynamic therapy. Here, we report that [Ru(bpy)3]2+ is a highly potent sonosensitizer and sonocatalyst for sonotherapy in vitro and in vivo. [Ru(bpy)3]2+ can produce singlet oxygen (1O2) and sono-oxidize endogenous 1,4-dihydronicotinamide adenine dinucleotide (NADH) under ultrasound (US) stimulation in cancer cells. Furthermore, [Ru(bpy)3]2+ enables effective destruction of mice tumors, and the therapeutic effect can reach deep tissues over 10 cm under US irradiation. This work paves a way for polypyridinal metal complexes to be applied to the noninvasive precise sonotherapy of cancer. Sonodynamic therapy has therapeutic promise due to its safety and good tissue penetration, but is currently bottlenecked due to a lack of efficient and safe sonosensitizers. Here the authors show that [Ru(bpy)3]2+ can produce singlet oxygen and sonooxidize NADH in deep tissue, and destroy mouse tumors effectively.
Collapse
|
13
|
Lee HR, Kim DW, Jones VO, Choi Y, Ferry VE, Geller MA, Azarin SM. Sonosensitizer-Functionalized Graphene Nanoribbons for Adhesion Blocking and Sonodynamic Ablation of Ovarian Cancer Spheroids. Adv Healthc Mater 2021; 10:e2001368. [PMID: 34050609 PMCID: PMC8550295 DOI: 10.1002/adhm.202001368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/18/2021] [Indexed: 11/05/2022]
Abstract
Advanced stage ovarian cancer is challenging to treat due to widespread seeding of tumor spheroids throughout the mesothelial lining of the peritoneal cavity. In this work, a therapeutic strategy using graphene nanoribbons (GNR) functionalized with 4-arm polyethylene glycol (PEG) and chlorin e6 (Ce6), a sonosensitizer, to target metastatic ovarian cancer spheroids is reported. GNR-PEG-Ce6 adsorbs onto the spheroids and disrupts their adhesion to extracellular matrix proteins or LP-9 mesothelial cells. Furthermore, for spheroids that do adhere, GNR-PEG-Ce6 delays spheroid disaggregation and spreading as well as mesothelial clearance, key metastatic processes following adhesion. Owing to the sonodynamic effects of Ce6 and its localized delivery via the biomaterial, GNR-PEG-Ce6 can kill ovarian cancer spheroids adhered to LP-9 cell monolayers when combined with mild ultrasound irradiation. The interaction with GNR-PEG-Ce6 also loosens cell-cell adhesions within the spheroids, rendering them more susceptible to treatment with the chemotherapeutic agents cisplatin and paclitaxel, which typically have difficulty in penetrating ovarian cancer spheroids. Thus, this material can facilitate effective chemotherapeutic and sonodynamic combination therapies. Finally, the adhesion inhibiting and sonodynamic effects of GNR-PEG-Ce6 are also validated with tumor spheroids derived from the ascites fluid of ovarian cancer patients, providing evidence of the translational potential of this biomaterial approach.
Collapse
Affiliation(s)
- Hak Rae Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Victoria O Jones
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yunkyu Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
14
|
Canaparo R, Foglietta F, Giuntini F, Francovich A, Serpe L. The bright side of sound: perspectives on the biomedical application of sonoluminescence. Photochem Photobiol Sci 2021; 19:1114-1121. [PMID: 32685951 DOI: 10.1039/d0pp00133c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Light is a physical phenomenon that is very important to human life, and has been investigated in its nature, behaviour and properties throughout human history although the most impressive improvements in the use of light in human activities, and of course in medicine, began just two centuries ago. However, despite the enormous progress in diagnosis, therapy and surgery to assess health and treat diseases, the delivery of light sources in vivo remains a challenge. In this regard, several strategies have been developed to overcome this drawback, the most interesting of which is the involvement of ultrasound. In this review, the authors examine how ultrasound may improve light delivery in vivo with a special emphasis on one of the most intriguing ultrasound-mediated phenomena called sonoluminescence, which is the conversion of mechanical ultrasound energy into light.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125, Torino, Italy.
| | - Federica Foglietta
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, L3 2AJ, Liverpool, UK
| | - Andrea Francovich
- Institut de Physiologie, Université de Fribourg, Chemin du Musee 5, 1770, Fribourg, Switzerland
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125, Torino, Italy
| |
Collapse
|
15
|
Zheng Y, Liu Y, Wei F, Xiao H, Mou J, Wu H, Yang S. Functionalized g-C 3N 4 nanosheets for potential use in magnetic resonance imaging-guided sonodynamic and nitric oxide combination therapy. Acta Biomater 2021; 121:592-604. [PMID: 33316398 DOI: 10.1016/j.actbio.2020.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
The oxygen consumption-induced hypoxia and the high concentration of glutathione in tumor microenvironment limit the treatment outcomes of sonodynamic therapy (SDT). SDT needs to be combined with other treatment modalities to achieve the desired therapeutic efficiency. In this study, an oxidized g-C3N4 (OCN) nanosheet-based theranostic nanoplatform is developed for sonodynamic and nitric oxide (NO) combination therapy of cancer. The OCN nanosheets are successively modified with amino-terminated 6-armed polyethylene glycol, chlorin e6, and Gd3+ ions, and then the as-prepared OCN-PEG-(Ce6-Gd3+) nanosheets are loaded with the NO donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6). Upon ultrasound (US) irradiation, the OCN-PEG-(Ce6-Gd3+)/BNN6 nanocomposite can induce the generation of reactive oxygen species (ROS) and simultaneously release NO molecules to effectively kill the cancer cells, thereby significantly suppressing the tumor growth. Moreover, a good in vivo T1-weighted magnetic resonance imaging (MRI) contrast effect is achieved after intravenous injection of OCN-PEG-(Ce6-Gd3+)/BNN6 due to remarkably enhanced contrast performance of the nanocomposite. Therefore, the OCN-PEG-(Ce6-Gd3+)/BNN6 formulation can serve as a promising theranostic agent for MRI-guided sonodynamic-NO combination therapy.
Collapse
|
16
|
Shen Y, Chen Y, Huang Y, Zeng X, Huang L, Diao X, Chen S, Chen X. An in vitro study on the antitumor effect of sonodynamic therapy using sinoporphyrin sodium on human glioblastoma cells. ULTRASONICS 2021; 110:106272. [PMID: 33065465 DOI: 10.1016/j.ultras.2020.106272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Sonodynamic therapy (SDT) is a promising modality for cancer treatment. Sinoporphyrin sodium (DVDMS), purified from Photofrin II, shows great potential in SDT evidenced by growing studies. The purpose of the current study was to investigate the antitumor effect of SDT combined with DVDMS on human glioblastoma (U87 MG) cell line in vitro. The cellular uptake of DVDMS was investigated by confocal microscopy and IVIS spectrum imaging system. In addition, DVDMS toxicity and anti-tumor effect of SDT were assessed by flow cytometry. The generation of intracellular reactive oxygen species (ROS) was determined using DCFH-DA staining. Simultaneously, fluorescence microscopy was performed to access the destabilization of mitochondrial membrane potential (MMP). The results showed that DVDMS could easily enter the cells and accumulated in the cytoplasm, especially the mitochondria. And the intracellular DVDMS increased with incubation time or concentrations. The results also showed remarkable cytotoxicity of DVDMS-mediated SDT (center frequency: 0.970 MHz; peak-rarefactional pressure: 0.52-MPa; acoustic power: 0.32 W; pulse repetition frequency: 1 Hz; duty cycle: 1-30%; duration: 3 min) on U87 MG cells, while DVDMS alone was non-toxic to the cells. In comparison with the control group, the SDT-treated group showed significant generation of intracellular ROS and loss of MMP at 1 h post-treatment. These results indicated that DVDMS-mediated SDT could induce great cytotoxicity in U87 MG cells via the production of ROS and showed potentials in the treatment for glioblastoma.
Collapse
Affiliation(s)
- Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Yiling Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Yongpeng Huang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Xiaojun Zeng
- Shenzhen Second People's Hospital, Shenzhen, People's Republic of China
| | - Lanhui Huang
- Shenzhen Second People's Hospital, Shenzhen, People's Republic of China
| | - Xianfen Diao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.
| |
Collapse
|
17
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
18
|
Wang R, Xing Z, Wang M, Gui Y, Yang M. Biosynthesis of AgNPs and their synergistic effect in combination with ultrasound waves on breast cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Liu Y, Bai H, Guo K, Wang P. Hypocrellin B triggered sonodynamic therapy reverses multidrug resistance of doxorubicin-resistant SGC7901/ADR cells via down-regulation of P-gp expression. J Chemother 2020; 32:385-393. [DOI: 10.1080/1120009x.2020.1778242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yichen Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Hong Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
- Medical College, Xi’an Peihua University, Xi’an, Shaanxi, China
| | - Kaili Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Hou R, Liang X, Li X, Zhang X, Ma X, Wang F. In situconversion of rose bengal microbubbles into nanoparticles for ultrasound imaging guided sonodynamic therapy with enhanced antitumor efficacy. Biomater Sci 2020; 8:2526-2536. [DOI: 10.1039/c9bm02046b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonosensitizer microbubbles enhance drug accumulation and the antitumor efficacy of sonodynamic therapy by ultrasound mediated micro to nano conversion.
Collapse
Affiliation(s)
- Rui Hou
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing
- China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| | - Xu Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals
- CAS Center for Excellence in Biomacromolecules
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University
- Beijing
- China
| |
Collapse
|
21
|
Wu P, Sun Y, Dong W, Zhou H, Guo S, Zhang L, Wang X, Wan M, Zong Y. Enhanced anti-tumor efficacy of hyaluronic acid modified nanocomposites combined with sonochemotherapy against subcutaneous and metastatic breast tumors. NANOSCALE 2019; 11:11470-11483. [PMID: 31124554 DOI: 10.1039/c9nr01691k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sonochemotherapy is a promising strategy for inhibiting tumor growth. However, achieving highly targeted and effective sonochemotherapy is still an enormous challenge. In this study, a novel chemotherapeutic-carrying nanocomposite (HPCID) was developed, which can effectively target metastatic cancer cells and provide an enhanced therapeutic effect. In detail, HPCID was composed of hyaluronic acid (HA), carboxyl-terminated PAMAM dendrimer, fluorochrome indocyanine green (ICG), and doxorubicin hydrochloride (Dox). The efficacy of this drug delivery system (DDS) in sonochemotherapy was assessed on the CD44-overexpressing metastatic breast cancer cell line 4T1 both in vitro and in vivo. The HA modification significantly improved the cellular internalization of HPCID, and the degradation of the HA shell by hyaluronidase that is abundant in the 4T1 cells resulted in enzyme-responsive drug release. Under ultrasound (US) stimulation, HPCID produced a high amount of reactive oxidant species (ROS), which induced significant cell apoptosis when combined with chemotherapy. In addition, the administration of HPCID in 4T1 xenograft-bearing mice combined with ultrasonic exposure significantly inhibited tumor growth and pulmonary metastasis, with no systemic toxicity. Taken together, the proposed HPCID-mediated sonodynamic therapy (SDT) is a novel strategy against breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sun Y, Wang H, Zhang K, Liu J, Wang P, Wang X, Liu Q. Sonodynamic therapy induces oxidative stress, DNA damage and apoptosis in glioma cells. RSC Adv 2018; 8:36245-36256. [PMID: 35558463 PMCID: PMC9088833 DOI: 10.1039/c8ra07099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 06/01/2021] [Accepted: 10/15/2018] [Indexed: 02/05/2023] Open
Abstract
Malignant glioma remains one of the most challenging diseases to treat because of the invasive growth of glioma cells and the existence of the blood-brain barrier (BBB), which blocks drug delivery to the brain. New strategies are urgently needed to overcome these shortcomings and improve the outcomes. Ultrasound represents a promising noninvasive and reversible BBB opening approach and the related sonodynamic therapy (SDT) is rapidly emerging. This study aims to explore the ultrasound parameters for BBB opening and the cell killing effect of SDT in human glioma U373 cells by using a recently reported sonosensitizer, sinoporphyrin sodium (DVDMS). The in vitro BBB model indicated that SDT caused a time-dependent permeability increase, which peaked at 2 h post treatment and then recovered gradually. The results of toxicology tests showed significant U373 cell viability loss and apoptosis increase after DVDMS-SDT, accompanied by enhanced cleaved-caspase-3 level and DNA fragmentation, in which reactive oxygen species (ROS) were a major triggering intermediate during DVDMS-SDT. Furthermore, DVDMS-SDT produced DNA damage and the underlying mechanisms were evaluated, in order to provide a fundamental basis for DVDMS-SDT application in glioma therapy. The findings indicated that the DNA molecules could be temporarily regulated by SDT and DNA double-strand breaks (DSBs), which increased the difficulty of cellular self-repair, thus aggravating cell apoptosis and inhibiting glioma cell invasive growth. Therefore, this study supports the use of SDT as an alternative approach for glioma therapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 People's Republic of China +86-029-85310275
| | - Haiping Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 People's Republic of China +86-029-85310275
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 People's Republic of China +86-029-85310275
| | - Jingfei Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 People's Republic of China +86-029-85310275
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 People's Republic of China +86-029-85310275
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 People's Republic of China +86-029-85310275
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi 710119 People's Republic of China +86-029-85310275
| |
Collapse
|
23
|
Liu Y, Bai H, Wang H, Wang X, Liu Q, Zhang K, Wang P. Comparison of hypocrellin B-mediated sonodynamic responsiveness between sensitive and multidrug-resistant human gastric cancer cell lines. J Med Ultrason (2001) 2018; 46:15-26. [DOI: 10.1007/s10396-018-0899-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
|
24
|
Jia Y, Wang X, Liu Q, Leung AW, Wang P, Xu C. Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway. ULTRASONICS 2017; 73:154-161. [PMID: 27657480 DOI: 10.1016/j.ultras.2016.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/23/2016] [Accepted: 09/11/2016] [Indexed: 05/27/2023]
Abstract
OBJECTIVES The aim of the present study is to investigate the effects of sonodynamic action of hypocrellin B on human breast cancer cells and further explore its underlying mechanisms. METHODS The cell viability of breast cancer MDA-MB-231 cells was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Alterations on cell apoptosis, intracellular reactive oxygen species generation (ROS), mitochondrial membrane potential, and DNA fragmentation was analyzed by flow cytometer. The subcellular localization of hypocrellin B was assessed by a confocal laser scanning microscope. Mitochondria damage and nuclear morphological changes were observed under a fluorescence microscope. To further explore whether caspase pathway was involved in cell apoptotic induction of sonodynamic action of hypocrellin B, the pan-caspase inhibitor Z-Val-Ala-DL-Asp (ome)-Fluoromethylketone (z-VAD-fmk) was added to the cells one hour prior to loading the sonosensitizer, and then cell viability and apoptosis were analyzed after hypocrellin B treatment. RESULTS Sonodynamic treatment of hypocrellin B HB significantly suppressed cell viability of MDA-MB-231 cells. Sonodynamic action of hypocrellin B caused excessive ROS accumulation, mitochondrial dysfunction, cell apoptosis, DNA fragmentation and nuclear morphological damage. Moreover, the cytotoxicity and cell apoptosis induced by sonodynamic action of hypocrellin B were remarkably rescued by the caspase spectrum inhibitor z-VAD-fmk. CONCLUSIONS These results demonstrated that hypocrellin B had significant sonodynamic killing and apoptotic induction effect on breast cancer cells. And cell apoptosis induced by sonodynamic action of hypocrellin B was partly dependent on caspase pathway.
Collapse
Affiliation(s)
- Yali Jia
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaobing Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pan Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
25
|
Li Y, Wang P, Chen X, Hu J, Liu Y, Wang X, Liu Q. Activation of microbubbles by low-intensity pulsed ultrasound enhances the cytotoxicity of curcumin involving apoptosis induction and cell motility inhibition in human breast cancer MDA-MB-231 cells. ULTRASONICS SONOCHEMISTRY 2016; 33:26-36. [PMID: 27245953 DOI: 10.1016/j.ultsonch.2016.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 05/15/2023]
Abstract
Ultrasound and microbubbles-mediated drug delivery has become a promising strategy to promote drug delivery and its therapeutic efficacy. The aim of this research was to assess the effects of microbubbles (MBs)-combined low-intensity pulsed ultrasound (LPUS) on the delivery and cytotoxicity of curcumin (Cur) to human breast cancer MDA-MB-231 cells. Under the experimental condition, MBs raised the level of acoustic cavitation and enhanced plasma membrane permeability; and cellular uptake of Cur was notably improved by LPUS-MBs treatment, aggravating Cur-induced MDA-MB-231 cells death. The combined treatment markedly caused more obvious changes of cell morphology, F-actin cytoskeleton damage and cell migration inhibition. Our results demonstrated that combination of MBs and LPUS may be an efficient strategy for improving anti-tumor effect of Cur, suggesting a potential effective method for antineoplastic therapy.
Collapse
Affiliation(s)
- Yixiang Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, China
| | - Xiyang Chen
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, China
| | - Jianmin Hu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, China
| | - Yichen Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, China.
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, China.
| |
Collapse
|
26
|
Abstract
Sonodynamic therapy (SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.
Collapse
Affiliation(s)
- Guo-Yun Wan
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yang Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bo-Wei Chen
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yuan-Yuan Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yin-Song Wang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Ning Zhang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
27
|
McHale AP, Callan JF, Nomikou N, Fowley C, Callan B. Sonodynamic Therapy: Concept, Mechanism and Application to Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:429-50. [PMID: 26486350 DOI: 10.1007/978-3-319-22536-4_22] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sonodynamic therapy (SDT) represents an emerging approach that offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. It involves the sensitization of target tissues with a non-toxic sensitizing chemical agent and subsequent exposure of the sensitized tissues to relatively low-intensity ultrasound. Essentially, both aspects (the sensitization and ultrasound exposure) are harmless, and cytotoxic events occur when both are combined. Due to the significant depth that ultrasound penetrates tissue, the approach provides an advantage over similar alternative approaches, such as photodynamic therapy (PDT), in which less penetrating light is employed to provide the cytotoxic effect in sensitized tissues. This suggests that sonodynamic therapy may find wider clinical application, particularly for the non-invasive treatment of less accessible lesions. Early SDT-based approaches employed many of the sensitizers used in PDT, although the manner in which ultrasound activates the sensitizer differs from activation events in PDT. Here we will review the currently accepted mechanisms by which ultrasound activates sensitizers to elicit cytotoxic effects. In addition, we will explore the breath of evidence from in-vitro and in-vivo SDT-based studies, providing the reader with an insight into the therapeutic potential offered by SDT in the treatment of cancer.
Collapse
Affiliation(s)
- Anthony P McHale
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK
| | - John F Callan
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK.
| | - Nikolitsa Nomikou
- Division of Surgery and Interventional Science, University College London, 4th Floor, 67-73 Riding House St, London, W1W 7EJ, England, UK
| | - Colin Fowley
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK
| | - Bridgeen Callan
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK
| |
Collapse
|
28
|
Xu C, Dong J, Ip M, Wang X, Leung AW. Sonodynamic action of chlorin e6 on Staphylococcus aureus and Escherichia coli. ULTRASONICS 2016; 64:54-7. [PMID: 26235353 DOI: 10.1016/j.ultras.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 05/19/2023]
Abstract
Bacteria remain a great threat to human health. In the present study, we examined whether sonodynamic action of chlorin e6 had antibacterial activity on gram-positive bacterial strain Staphylococcus aureus (S. aureus) and gram-negative bacterial strain Escherichia coli (E. coli). Colony forming unit (CFU) assay showed that sonodynamic treatment of chlorin e6 induced a 2-log reduction in CFU of E. coli cells, 7-log reduction in CFU of S. aureus. Fluorescent microscopy observed that dead cells remarkably increased whereas live cells decreased after sonodynamic treatment of chlorin e6 on S. aureus cells. We first demonstrated that sonodynamic action of chlorin e6 has antibacterial effect on both gram-positive and negative bacteria, more powerful on gram-positive bacteria.
Collapse
Affiliation(s)
- Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jinghui Dong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xinna Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
29
|
A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy. Sci Rep 2015; 5:17485. [PMID: 26631871 PMCID: PMC4668354 DOI: 10.1038/srep17485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sonodynamic therapy (SDT) was developed as a promising noninvasive approach. The present study investigated the antitumor effect of a new sensitizer (sinoporphyrin sodium, referred to as DVDMS) combined with multiple ultrasound treatments on sarcoma 180 both in vitro and in vivo. The combined treatment significantly suppressed cell viability, potentiated apoptosis, and markedly inhibited angiogenesis in vivo. In vivo, the tumor weight inhibition ratio reached 89.82% fifteen days after three sonication treatments plus DVDMS. This effect was stronger than one ultrasound alone (32.56%) and than one round of sonication plus DVDMS (59.33%). DVDMS combined with multiple focused ultrasound treatments initiated tumor tissue destruction, induced cancer cell apoptosis, inhibited tumor angiogenesis, suppressed cancer cell proliferation, and decreased VEGF and PCNA expression levels. Moreover, the treatment did not show obvious signs of side effects or induce a drop in body weight. These results indicated that DVDMS combined with multiple focused ultrasounds may be a promising strategy against solid tumor.
Collapse
|
30
|
Liu XH, Li S, Wang M, Dai ZJ. Current Status and Future Perspectives of Sonodynamic Therapy and Sonosensitiers. Asian Pac J Cancer Prev 2015; 16:4489-92. [DOI: 10.7314/apjcp.2015.16.11.4489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Wang P, Li C, Wang X, Xiong W, Feng X, Liu Q, Leung AW, Xu C. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. ULTRASONICS SONOCHEMISTRY 2015; 23:116-27. [PMID: 25465095 DOI: 10.1016/j.ultsonch.2014.10.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 05/10/2023]
Abstract
Sono-Photodynamic therapy (SPDT), a new modality for cancer treatment, is aimed at enhancing anticancer effects by the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT). In this study, we investigated the antitumor effect and possible mechanisms of Chlorin e6 (Ce6) mediated SPDT (Ce6-SPDT) on breast cancer both in vitro and in vivo. MTT assay revealed that the combined therapy markedly enhanced cell viability loss of breast cancer cell lines (MDA-MB-231, MCF-7 and 4T1) compared with SDT and PDT alone. Propidium iodide/hoechst33342 double staining reflected that 4T1 cells with apoptotic morphological characteristics were significantly increased in groups given combined therapy. Besides, the combined therapy caused obvious mitochondrial membrane potential (MMP) loss at early 1 h post SPDT treatment. The generation of intracellular reactive oxygen species (ROS) detected by flow cytometry was greatly increased in 4T1 cells treated with the combination therapy, and the loss of cell viability and MMP could be effectively rescued by pre-treatment with the ROS scavenger N-acetylcysteine (NAC). Further, Ce6-SPDT markedly inhibited the tumor growth (volume and weight) and lung metastasis in 4T1 tumor-bearing mice, but had no effect on the body weight. Hematoxylin and eosin staining revealed obvious tissue destruction with large spaces in the Ce6-SPDT groups, and TUNEL staining indicated tumor cell apoptosis after treatment. Immunohistochemistry analysis showed that the expression level of VEGF and MMP were significantly decreased in the combined groups. These results indicated that Ce6-mediated SPDT enhanced the antitumor efficacy on 4T1 cells compared with SDT and PDT alone, loss of MMP and generation of ROS might be involved. In addition, Ce6-mediated SPDT significantly inhibited tumor growth and metastasis in mouse breast cancer 4T1 xenograft model, in which MMP-9 and VEGF may play a crucial role.
Collapse
|