1
|
Cheng Y, Lonial BF, Sista S, Meer DJ, Hofert A, Weeks ER, Shattuck MD, O'Hern CS. Flow and clogging of capillary droplets. SOFT MATTER 2024; 20:8036-8051. [PMID: 39291504 DOI: 10.1039/d4sm00752b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Capillary droplets form due to surface tension when two immiscible fluids are mixed. We describe the motion of gravity-driven capillary droplets flowing through narrow constrictions and obstacle arrays in both simulations and experiments. Our new capillary deformable particle model recapitulates the shape and velocity of single oil droplets in water as they pass through narrow constrictions in microfluidic chambers. Using this experimentally validated model, we simulate the flow and clogging of single capillary droplets in narrow channels and obstacle arrays and find several important results. First, the capillary droplet speed profile is nonmonotonic as the droplet exits the narrow orifice, and we can tune the droplet properties so that the speed overshoots the terminal speed far from the constriction. Second, in obstacle arrays, we find that extremely deformable droplets can wrap around obstacles, which leads to decreased average droplet speed in the continuous flow regime and increased probability for clogging in the regime where permanent clogs form. Third, the wrapping mechanism causes the clogging probability in obstacle arrays to become nonmonotonic with surface tension Γ. At large Γ, the droplets are nearly rigid and the clogging probability is large since the droplets can not squeeze through the gaps between obstacles. With decreasing Γ, the clogging probability decreases as the droplets become more deformable. However, in the small-Γ limit, the clogging probability increases since the droplets are extremely deformable and wrap around the obstacles. The results from these studies are important for developing a predictive understanding of capillary droplet flows through complex and confined geometries.
Collapse
Affiliation(s)
- Yuxuan Cheng
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA.
| | | | - Shivnag Sista
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA.
| | - David J Meer
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Anisa Hofert
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA.
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
2
|
Hessel V, Escribà-Gelonch M, Schmidt S, Tran NN, Davey K, Al-Ani LA, Muhd Julkapli N, Abdul Wahab Y, Khalil I, Woo MW, Gras S. Nanofood Process Technology: Insights on How Sustainability Informs Process Design. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11437-11458. [PMID: 37564955 PMCID: PMC10410668 DOI: 10.1021/acssuschemeng.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Nanostructured products are an actively growing area for food research, but there is little information on the sustainability of processes used to make these products. In this Review, we advocate for selection of sustainable process technologies during initial stages of laboratory-scale developments of nanofoods. We show that selection is assisted by predictive sustainability assessment(s) based on conventional technologies, including exploratory ex ante and "anticipatory" life-cycle assessment. We demonstrate that sustainability assessments for conventional food process technologies can be leveraged to design nanofood process concepts and technologies. We critically review emerging nanostructured food products including encapsulated bioactive molecules and processes used to structure these foods at laboratory, pilot, and industrial scales. We apply a rational method via learning lessons from sustainability of unit operations in conventional food processing and critically apportioned lessons between emerging and conventional approaches. We conclude that this method provides a quantitative means to incorporate sustainability during process design for nanostructured foods. Findings will be of interest and benefit to a range of food researchers, engineers, and manufacturers of process equipment.
Collapse
Affiliation(s)
- Volker Hessel
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | | | - Svenja Schmidt
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Nam Nghiep Tran
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Kenneth Davey
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Lina A. Al-Ani
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ibrahim Khalil
- Healthcare
Pharmaceuticals Limited, Rajendrapur, Gazipur 1741, Bangladesh
| | - Meng Wai Woo
- Department
of Chemical & Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Sally Gras
- Department
of Chemical Engineering and Bio21 Molecular Science and Biotechnology
Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
3
|
Udepurkar AP, Clasen C, Kuhn S. Emulsification mechanism in an ultrasonic microreactor: Influence of surface roughness and ultrasound frequency. ULTRASONICS SONOCHEMISTRY 2023; 94:106323. [PMID: 36774674 PMCID: PMC9945801 DOI: 10.1016/j.ultsonch.2023.106323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
An ultrasonic microreactor with rough microchannels is presented in this study for oil-in-water (O/W) emulsion generation. Previous accounts have shown that surface pits or imperfections localize and enhance cavitation activity. In this study cavitation bubbles are localized on the rough microchannels of a borosilicate glass microreactor. The cavitation bubbles in the microchannel are primarily responsible for emulsification in the ultrasonic microreactor. We investigate the emulsification mechanism in the rough microchannels employing high-speed imaging to reveal the different emulsification modes influenced by the size and oscillation intensity of the cavitation bubbles. The effect of emulsification modes on the O/W emulsion droplet size distribution for different surface roughness and frequency is demonstrated. The positive effect of the frequency on minimizing the droplet size utilizing a reactor with large pits is presented. We also demonstrate microreactor systems for a successful generation of miniemulsions with high dispersed phase volume fractions up to 20%. The observed emulsification mechanism in the rough microchannel offers new insights into the utility and scale-up of ultrasonic microreactors for emulsification.
Collapse
Affiliation(s)
- Aniket Pradip Udepurkar
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
4
|
Ali HSM, Ahmed SA, Alqurshi AA, Alalawi AM, Shehata AM, Alahmadi YM. Boosting Tadalafil Bioavailability via Sono-Assisted Nano-Emulsion-Based Oral Jellies: Box-Behnken Optimization and Assessment. Pharmaceutics 2022; 14:pharmaceutics14122592. [PMID: 36559086 PMCID: PMC9781150 DOI: 10.3390/pharmaceutics14122592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Tadalafil (TAD) is a poorly soluble, phosphodiesterase inhibitor used to treat erectile dysfunction. The primary goal of this project was to prepare nano-emulsions using ultrasonic technology to address TAD bioavailability concerns. The Box−Behnken design was employed to find prominent correlations between factors impacting the sono-emulsification process. The emulsifier concentration, amplitude level, and ultrasonication time were the independent factors, whereas the average droplet size (ADS) and polydispersity index (PDI) were designated as the response variables. TAD-loaded nano-emulsions (93−289 nm) were generated and the emulsifier concentration showed a crucial role in directing emulsion droplet size. The model desirability function was utilized to optimize a nano-emulsion with a small ADS (99.67 ± 7.55 nm) and PDI (0.45 ± 0.04) by adjusting the emulsifiers concentration, amplitude level, and ultrasonication time at 9.85%, 33%, 49 s, respectively. The optimized nano-emulsions did not demonstrate any precipitation or phase separation after stability stress tests. TAD jellies were formulated based on the optimized nano-emulsion and subjected to in vitro evaluation for physical characteristics; TAD content, pH, spreadability, viscosity, syneresis, and taste-masking ability. An optimized nano-emulsion-based jelly (NEJ) formulation showed more than 96% drug dissolution in 30 min relative to 14% for the unprocessed TAD. In vivo assessment of NEJ in experimental rats demonstrated a significant enhancement (p < 0.05) of TAD bioavailability with an AUC0−24h of 2045 ± 70.2 vs. 259.9 ± 17.7 ng·h·mL−1 for the unprocessed TAD. Storage stability results revealed that NEJ remained stable with unremarkable changes in properties for 3 months. Overall, NEJ can be regarded as a successful therapeutic option for TAD administration with immediate-release properties and improved bioavailability.
Collapse
Affiliation(s)
- Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-50-286-4018; Fax: +966-4-847-5027
| | - Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulmalik A. Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| |
Collapse
|
5
|
Yao C, Zhao S, Liu L, Liu Z, Chen G. Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Yin Y, Chen W, Wu C, Zhang X, Fu T, Zhu C, Ma Y. Bubble dynamics and mass transfer enhancement in split–and–recombine (SAR) microreactor with rapid chemical reaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Operti MC, Bernhardt A, Sincari V, Jager E, Grimm S, Engel A, Hruby M, Figdor CG, Tagit O. Industrial Scale Manufacturing and Downstream Processing of PLGA-Based Nanomedicines Suitable for Fully Continuous Operation. Pharmaceutics 2022; 14:pharmaceutics14020276. [PMID: 35214009 PMCID: PMC8878443 DOI: 10.3390/pharmaceutics14020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable. Downstream processes for purification, concentration, and storage of the nanomedicine formulations are equally indispensable. Here, we develop an inline sonication process for the production of polymeric PLGA nanomedicines at the industrial scale. The process and formulation parameters are optimized to obtain PLGA nanoparticles with a mean diameter of 150 ± 50 nm and a small polydispersity index (PDI < 0.2). Downstream processes based on tangential flow filtration (TFF) technology and lyophilization for the washing, concentration, and storage of formulations are also established and discussed. Using the developed manufacturing and downstream processing technologies, production of two PLGA nanoformulations encasing ritonavir and celecoxib was achieved at 84 g/h rate. As a measure of actual drug content, encapsulation efficiencies of 49.5 ± 3.2% and 80.3 ± 0.9% were achieved for ritonavir and celecoxib, respectively. When operated in-series, inline sonication and TFF can be adapted for fully continuous, industrial-scale processing of PLGA-based nanomedicines.
Collapse
Affiliation(s)
- Maria Camilla Operti
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (C.G.F.)
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany; (A.B.); (S.G.)
| | - Alexander Bernhardt
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany; (A.B.); (S.G.)
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague, Czech Republic; (V.S.); (E.J.); (M.H.)
| | - Eliezer Jager
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague, Czech Republic; (V.S.); (E.J.); (M.H.)
| | - Silko Grimm
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany; (A.B.); (S.G.)
| | - Andrea Engel
- Evonik Corporation, Birmingham Laboratories, Birmingham, AL 35211, USA;
| | - Martin Hruby
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague, Czech Republic; (V.S.); (E.J.); (M.H.)
| | - Carl Gustav Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (C.G.F.)
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.C.O.); (C.G.F.)
- Correspondence:
| |
Collapse
|
8
|
Ouyang N, Ma H, Ding Y, Lu F, Guo L, Zhang X, Gu C. Effect of slit dual-frequency ultrasonic emulsification technology on the stability of walnut emulsions. ULTRASONICS SONOCHEMISTRY 2022; 82:105876. [PMID: 34942470 PMCID: PMC8799610 DOI: 10.1016/j.ultsonch.2021.105876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
A highly hygienic walnut emulsion beverage was prepared by using a slit dual-frequency emulsification technique. The optimal ultrasonic parameters were studied as a model system: the ultrasonic time of 50 min, the ultrasonic power density of 260 W/L, and a dual-frequency ultrasonic combination of 28/68 kHz. Walnut emulsion with an average mean volume diameter of 2.05 µm, a Zeta potential absolute value of 40 mV was obtained after ultrasonic treatment, and the emulsion stability could be maintained for more than 14 days without phase separation. At the lowest ultrasonic energy input, the vibrating emulsion could promote droplet aggregation. However, excessive energy input could result in sample overtreatment and reduced emulsion activity. The laser scanning confocal microscope (LSCM) and transmission electron microscope (TEM) confirmed that walnut emulsion processed by slit dual-frequency ultrasonic had pretty high stability. Therefore, the slit dual-frequency ultrasonic emulsification technique was found to be well suited for the preparation of complex and fine oil-in-water food emulsions.
Collapse
Affiliation(s)
- Ningning Ouyang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yanhua Ding
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Feng Lu
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Lina Guo
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xueli Zhang
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Chen Gu
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Meroni D, Djellabi R, Ashokkumar M, Bianchi CL, Boffito DC. Sonoprocessing: From Concepts to Large-Scale Reactors. Chem Rev 2021; 122:3219-3258. [PMID: 34818504 DOI: 10.1021/acs.chemrev.1c00438] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.
Collapse
Affiliation(s)
- Daniela Meroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Ridha Djellabi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | | | - Claudia L Bianchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daria C Boffito
- Département de Génie Chimique, C.P. 6079, Polytechnique Montréal, Montréal H3C 3A7, Canada.,Canada Research Chair in Intensified Mechanochemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec Canada
| |
Collapse
|
10
|
Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int J Pharm 2021; 605:120807. [PMID: 34144133 DOI: 10.1016/j.ijpharm.2021.120807] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Nanomedicines based on poly(lactic-co-glycolic acid) (PLGA) carriers offer tremendous opportunities for biomedical research. Although several PLGA-based systems have already been approved by both the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), and are widely used in the clinics for the treatment or diagnosis of diseases, no PLGA nanomedicine formulation is currently available on the global market. One of the most impeding barriers is the development of a manufacturing technique that allows for the transfer of nanomedicine production from the laboratory to an industrial scale with proper characterization and quality control methods. This review provides a comprehensive overview of the technologies currently available for the manufacturing and analysis of polymeric nanomedicines based on PLGA nanoparticles, the scale-up challenges that hinder their industrial applicability, and the issues associated with their successful translation into clinical practice.
Collapse
Affiliation(s)
- Maria Camilla Operti
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Alexander Bernhardt
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Silko Grimm
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Andrea Engel
- Evonik Corporation, Birmingham Laboratories, Birmingham, AL 35211, United States.
| | - Carl Gustav Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Nieves E, Vite G, Kozina A, Olguin LF. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow. ULTRASONICS SONOCHEMISTRY 2021; 74:105556. [PMID: 33915482 PMCID: PMC8093933 DOI: 10.1016/j.ultsonch.2021.105556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 05/10/2023]
Abstract
The use of ultrasound to generate mini-emulsions (50 nm to 1 μm in diameter) and nanoemulsions (mean droplet diameter < 200 nm) is of great relevance in drug delivery, particle synthesis and cosmetic and food industries. Therefore, it is desirable to develop new strategies to obtain new formulations faster and with less reagent consumption. Here, we present a polydimethylsiloxane (PDMS)-based microfluidic device that generates oil-in-water or water-in-oil mini-emulsions in continuous flow employing ultrasound as the driving force. A Langevin piezoelectric attached to the same glass slide as the microdevice provides enough power to create mini-emulsions in a single cycle and without reagents pre-homogenization. By introducing independently four different fluids into the microfluidic platform, it is possible to gradually modify the composition of oil, water and two different surfactants, to determine the most favorable formulation for minimizing droplet diameter and polydispersity, employing less than 500 µL of reagents. It was found that cavitation bubbles are the most important mechanism underlying emulsions formation in the microchannels and that degassing of the aqueous phase before its introduction to the device can be an important factor for reduction of droplet polydispersity. This idea is demonstrated by synthetizing solid polymeric particles with a narrow size distribution starting from a mini-emulsion produced by the device.
Collapse
Affiliation(s)
- Erick Nieves
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Giselle Vite
- Instituto de Química, Universidad Nacional Autónoma de México, P. O. Box 70-213, Mexico City, Mexico
| | - Anna Kozina
- Instituto de Química, Universidad Nacional Autónoma de México, P. O. Box 70-213, Mexico City, Mexico
| | - Luis F Olguin
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
12
|
Singla M, Sit N. Application of ultrasound in combination with other technologies in food processing: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105506. [PMID: 33714087 PMCID: PMC7960546 DOI: 10.1016/j.ultsonch.2021.105506] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.
Collapse
Affiliation(s)
- Mohit Singla
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
13
|
Carrillo-Lopez LM, Garcia-Galicia IA, Tirado-Gallegos JM, Sanchez-Vega R, Huerta-Jimenez M, Ashokkumar M, Alarcon-Rojo AD. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. ULTRASONICS SONOCHEMISTRY 2021; 73:105467. [PMID: 33508590 PMCID: PMC7840480 DOI: 10.1016/j.ultsonch.2021.105467] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Alternative methods for improving traditional food processing have increased in the last decades. Additionally, the development of novel dairy products is gaining importance due to an increased consumer demand for palatable, healthy, and minimally processed products. Ultrasonic processing or sonication is a promising alternative technology in the food industry as it has potential to improve the technological and functional properties of milk and dairy products. This review presents a detailed summary of the latest research on the impact of high-intensity ultrasound techniques in dairy processing. It explores the ways in which ultrasound has been employed to enhance milk properties and processes of interest to the dairy industry, such as homogenization, emulsification, yogurt and fermented beverages production, and food safety. Special emphasis has been given to ultrasonic effects on milk components; fermentation and spoilage by microorganisms; and the technological, functional, and sensory properties of dairy foods. Several current and potential applications of ultrasound as a processing technique in milk applications are also discussed in this review.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico
| | - Ivan A Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Juan M Tirado-Gallegos
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Rogelio Sanchez-Vega
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | | | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| |
Collapse
|
14
|
Yang M, Gao Y, Liu Y, Yang G, Zhao CX, Wu KJ. Integration of microfluidic systems with external fields for multiphase process intensification. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Yamamoto T, Matsutaka R, Komarov SV. High-speed imaging of ultrasonic emulsification using a water-gallium system. ULTRASONICS SONOCHEMISTRY 2021; 71:105387. [PMID: 33246315 PMCID: PMC7786586 DOI: 10.1016/j.ultsonch.2020.105387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 06/06/2023]
Abstract
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Graduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, Japan; Department of Metallurgy, Tohoku University, Miyagi 980-8579, Japan.
| | - Ryo Matsutaka
- Graduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, Japan
| | - Sergey V Komarov
- Graduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, Japan; Department of Metallurgy, Tohoku University, Miyagi 980-8579, Japan
| |
Collapse
|
16
|
Movahhed MK, Mohebbi M, Koocheki A, Milani E, Ansarifar E. Application of TOPSIS to evaluate the effects of different conditions of sonication on eggless cake properties, structure, and mass transfer. J Food Sci 2020; 85:1479-1488. [PMID: 32395876 DOI: 10.1111/1750-3841.15117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/01/2022]
Abstract
The technique for order performance by similarity to ideal solution (TOPSIS) method was used to select the optimum point of power and time of ultrasound and baking temperature of eggless cake production. The effect of ultrasound power and baking time on the mass-transfer parameters such as moisture diffusion and the activation energy was assessed. The sonication treatment increased the viscosity of the eggless cake batter (25% in consistency coefficient and 24% in apparent viscosity). The minimum batter density was observed at 60% intensity for 30 or 60 s of sonication (1.0253 and 1.027 g/cm3 ). This condition also increased the eggless cake volume and springiness. In contrast, the crumb fractal dimension, hardness, gumminess, cohesiveness, and chewiness of the eggless cake decreased (1.65, 29, 39, 39, and 33%, respectively). The moisture diffusion during baking at 160, 180, and 200 °C and different ultrasound intensities were studied. The baking temperature of 200 °C and the intensity of 60% had the maximum effect on increasing the moisture diffusivity. Arrhenius equation showed the activation energy varied from 21.38 to 22.95 kJ/mol. The optimum quality of the eggless cake resulted from a combination of 60% intensity and 60 s of sonication and the baking temperature of 180 °C. PRACTICAL APPLICATION: Some vegetarians do not consume eggs and egg-based products; therefore it is important to produce egg-free food options. Also, considering that eggs are one of the most expensive raw materials in the production of various types of cakes and have a low shelf-life, in this study, the effects of sonication on the quality characteristics of an eggless cake has been studied.
Collapse
Affiliation(s)
- Mohammad Khalilian Movahhed
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elnaz Milani
- Department of Food Processing, Iranian Academic Center for Education Culture and Research, Mashhad, Iran
| | - Elham Ansarifar
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Public Health, Faculty of Health, Birjand University of Medical Science, Birjand, Iran
| |
Collapse
|
17
|
Mohan MS, O'Callaghan TF, Kelly P, Hogan SA. Milk fat: opportunities, challenges and innovation. Crit Rev Food Sci Nutr 2020; 61:2411-2443. [PMID: 32649226 DOI: 10.1080/10408398.2020.1778631] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk fat is a high-value milk component that is processed mainly as butter, cheese, cream and whole milk powder. It is projected that approximately 35 million tonnes of milk fat will be produced globally by 2025. This surplus, enhances the need for diversification of milk fat products and the milk pool in general. Infant milk formula producers, for instance, have incorporated enzyme modified ("humanised") milk fat and fat globule phospholipids to better mimic human milk fat structures. Minor components like mono- and di-glycerides from milk fat are increasingly utilized as emulsifiers, replacing palm esters in premium-priced food products. This review examines the chemistry of milk fat and the technologies employed for its modification, fractionation and enrichment. Emerging processing technologies such as ultrasound, high pressure processing, supercritical fluid extraction and fractionation, can be employed to improve the nutritional and functional attributes of milk fat. The potential of recent developments in biological intervention, through dietary manipulation of milk fatty acid profiles in cattle also offers significant promise. Finally, this review provides evidence to help redress the imbalance in reported associations between milk fat consumption and human health, and elucidates the health benefits associated with consumption of milk fat and dairy products.
Collapse
Affiliation(s)
- Maneesha S Mohan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Tom F O'Callaghan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Phil Kelly
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Sean A Hogan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
18
|
Dong Z, Delacour C, Mc Carogher K, Udepurkar AP, Kuhn S. Continuous Ultrasonic Reactors: Design, Mechanism and Application. MATERIALS 2020; 13:ma13020344. [PMID: 31940863 PMCID: PMC7014228 DOI: 10.3390/ma13020344] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Ultrasonic small scale flow reactors have found increasing popularity among researchers as they serve as a very useful platform for studying and controlling ultrasound mechanisms and effects. This has led to the use of these reactors for not only research purposes, but also various applications in biological, pharmaceutical and chemical processes mostly on laboratory and, in some cases, pilot scale. This review summarizes the state of the art of ultrasonic flow reactors and provides a guideline towards their design, characterization and application. Particular examples for ultrasound enhanced multiphase processes, spanning from immiscible fluid-fluid to fluid-solid systems, are provided. To conclude, challenges such as reactor efficiency and scalability are addressed.
Collapse
|
19
|
Wang JZ, Yan CH, Zhang XR, Tu QB, Xu Y, Sheng S, Wu FA, Wang J. A novel nanoparticle loaded with methyl caffeate and caffeic acid phenethyl ester against Ralstonia solanacearum—a plant pathogenic bacteria. RSC Adv 2020; 10:3978-3990. [PMID: 35492651 PMCID: PMC9049244 DOI: 10.1039/c9ra09441e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/24/2019] [Indexed: 11/23/2022] Open
Abstract
Developing a novel agent and understanding the interaction model between multipolymer nanoparticles and bacteria could be worthwhile to induce the protection of crops with the prevalence of frequent hazards because of the use of pesticides and chemical resistance. Unlike metal nanoparticles, multipolymer nanoparticles have bacteriostatic properties against Ralstonia solanacearum that can trigger bacterial wilt by infecting the plant. Therefore, a novel poly(lactic-co-glycolic acid) nanoparticle containing caffeic acid phenethyl ester (CAPE) and methyl caffeate (MC) was prepared with the sustained-release property (for 10 d at pH 6.5); here, 50% of the cumulative release rate was achieved. It was observed that the cytomembrane of R. solanacearum was jeopardized by the nanoparticle by the creation of large holes on the bacterial surface. The nanoparticle has an approximate EC50 value of 0.285 mg mL−1 with active pharmaceutical ingredients (APIs), while the drug dosage could be reduced by 2/3. Furthermore, to reveal the possible mechanism of interaction between the multipolymer nanoparticles and bacteria, a formidable inhibition effect was observed; the pathogenicity-related genes, namely, phcA, phcB, pehC, egl, pilT, and polA, of R. solanacearum were downregulated by 1/2, 1/42, 1/13, 1/6, 1/2, and 1/8, respectively, showing significant effects on the major virulence-related genes. Hence, a novel nanoparticle with excellent antibacterial and sustained-release properties has been prepared, possessing the potential to replace chemical pesticides and serve as a new control strategy for mulberry blight disease. Developing a novel agent and understanding an interaction model between multipolymer nanoparticles and bacteria could be worthwhile to induce the protection of crops with the prevalence of frequent hazards because of the use of chemical pesticides.![]()
Collapse
Affiliation(s)
- Jin-Zheng Wang
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Cheng-Hai Yan
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Xiao-Rui Zhang
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Qing-Bo Tu
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
| | - Yan Xu
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| | - Sheng Sheng
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| | - Fu-An Wu
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| | - Jun Wang
- School of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212018
- PR China
- Sericultural Research Institute
| |
Collapse
|
20
|
Liu Q, Huang H, Chen H, Lin J, Wang Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules 2019; 24:E4242. [PMID: 31766473 PMCID: PMC6930561 DOI: 10.3390/molecules24234242] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 01/19/2023] Open
Abstract
Nanoemulsions have attracted significant attention in food fields and can increase the functionality of the bioactive compounds contained within them. In this paper, the preparation methods, including low-energy and high-energy methods, were first reviewed. Second, the physical and chemical destabilization mechanisms of nanoemulsions, such as gravitational separation (creaming or sedimentation), flocculation, coalescence, Ostwald ripening, lipid oxidation and so on, were reviewed. Then, the impact of different stabilizers, including emulsifiers, weighting agents, texture modifiers (thickening agents and gelling agents), ripening inhibitors, antioxidants and chelating agents, on the physicochemical stability of nanoemulsions were discussed. Finally, the applications of nanoemulsions for the delivery of functional ingredients, including bioactive lipids, essential oil, flavor compounds, vitamins, phenolic compounds and carotenoids, were summarized. This review can provide some reference for the selection of preparation methods and stabilizers that will improve performance in nanoemulsion-based products and expand their usage.
Collapse
Affiliation(s)
- Qingqing Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - He Huang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - Honghong Chen
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - Junfan Lin
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
| | - Qin Wang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Q.L.)
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
21
|
Chen Z, Pulsipher KW, Chattaraj R, Hammer DA, Sehgal CM, Lee D. Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10079-10086. [PMID: 30768278 PMCID: PMC6698903 DOI: 10.1021/acs.langmuir.8b03882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbubbles are used as ultrasound contrast agents in medical diagnosis and also have shown great promise in ultrasound-mediated therapy. However, short lifetime and broad size distribution of microbubbles limit their applications in therapy and imaging. Moreover, it is challenging to tailor the echogenic response of microbubbles to make them suitable for specific applications. To overcome these challenges, we use microfluidic flow-focusing to prepare monodisperse microbubbles with a mixture of a recombinant amphiphilic protein, oleosin, and a synthetic amphiphilic copolymer, Pluronic. We show that these microbubbles have superior uniformity and stability under ultrasonic stimulation compared to commercial agents. We also demonstrate that by using different Pluronics, the echogenic response of the microbubbles can be tailored. Our work shows the versatility of using the combination of microfluidics and protein/copolymer mixtures as a method of engineering microbubbles. This tunability could potentially be important and powerful in producing microbubble agents for theranostic applications.
Collapse
Affiliation(s)
- Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine W. Pulsipher
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chandra M. Sehgal
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019; 270:123-146. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/30/2022]
Abstract
Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp and Paper Research Centre, McGill University, Montreìal, Queìbec H3A 0B8, Canada; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
23
|
Klapcsik K, Hegedűs F. Study of non-spherical bubble oscillations under acoustic irradiation in viscous liquid. ULTRASONICS SONOCHEMISTRY 2019; 54:256-273. [PMID: 30718178 DOI: 10.1016/j.ultsonch.2019.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/21/2018] [Accepted: 01/22/2019] [Indexed: 05/25/2023]
Abstract
The effect of dissipation on the shape stability of a harmonically excited bubble is investigated. The employed liquid is the highly viscous glycerine. The rate of the dissipation is controlled through the alteration of viscosity of the liquid by varying its temperature. The mean radius of the bubble during its radial oscillation is described by the Keller-Miksis equation. Two approaches are used to describe the surface oscillations. The first model solves the surface dynamics equations of each mode together with the transport equation of the vorticity in the liquid domain. The second model approximates the transport equation, which is a partial differential equation, with a boundary layer approximation reducing the required computational resources significantly. The comparison of the surface models shows qualitative agreement at low dissipation rate; however, at high viscosity the application of the full transport equation is mandatory. The results show that an increasing rate of dissipation can significantly extend the shape stable domains in the excitation frequency-pressure amplitude parameter plane. Nevertheless, the collapse strength is decreasing due to the highly damped oscillations. It has been found that an optimal range of dissipation rate in terms of temperature can be defined expressing a good compromise between the collapse strength and surface stability. The computations are carried out by an in-house GPU accelerated initial value problem solver.
Collapse
Affiliation(s)
- Kálmán Klapcsik
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Hydrodynamic Systems, P.O. Box 91, 1521 Budapest, Hungary.
| | - Ferenc Hegedűs
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Hydrodynamic Systems, P.O. Box 91, 1521 Budapest, Hungary.
| |
Collapse
|
24
|
Pal S, Kulkarni AA. Quantitative comparison of strategies to delay clogging in straight capillaries. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Gharehbeglou P, Jafari SM, Homayouni A, Hamishekar H, Mirzaei H. Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Modarres-Gheisari SMM, Gavagsaz-Ghoachani R, Malaki M, Safarpour P, Zandi M. Ultrasonic nano-emulsification - A review. ULTRASONICS SONOCHEMISTRY 2019; 52:88-105. [PMID: 30482437 DOI: 10.1016/j.ultsonch.2018.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 05/11/2023]
Abstract
The emulsions with nano-sized dispersed phase is called nanoemulsions having a wide variety of applications ranging from food, dairy, pharmaceutics to paint and oil industries. As one of the high energy consumer methods, ultrasonic emulsification (UE) are being utilized in many processes providing unique benefits and advantages. In the present review, ultrasonic nano-emulsification is critically reviewed and assessed by focusing on the main parameters such pre-emulsion processes, multi-frequency or multi-step irradiations and also surfactant-free parameters. Furthermore, categorizing aposematic data of experimental researches such as frequency, irradiation power and time, oil phase and surfactant concentration and also droplet size and stability duration are analyzed and conceded in tables being beneficial to indicate uncovered fields. It is believed that the UE with optimized parameters and stimulated conditions is a developing method with various advantages.
Collapse
Affiliation(s)
| | | | - Massoud Malaki
- Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran
| | - Pedram Safarpour
- Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran
| | - Majid Zandi
- Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
27
|
Sumitomo S, Ueta M, Uddin MA, Kato Y. Comparison of Oil-in-Water Emulsion between Ultrasonic Irradiation and Mechanical Stirring. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201800139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Syunsuke Sumitomo
- Okayama University; Graduate School of Environmental and Life Science; 1-1 Tsushima-naka, 3-chome, Kita-ku 700-8530 Okayama Japan
| | - Miharu Ueta
- Okayama University; Graduate School of Environmental and Life Science; 1-1 Tsushima-naka, 3-chome, Kita-ku 700-8530 Okayama Japan
| | - M. Azhar Uddin
- Okayama University; Graduate School of Environmental and Life Science; 1-1 Tsushima-naka, 3-chome, Kita-ku 700-8530 Okayama Japan
| | - Yoshiei Kato
- Okayama University; Graduate School of Environmental and Life Science; 1-1 Tsushima-naka, 3-chome, Kita-ku 700-8530 Okayama Japan
| |
Collapse
|
28
|
Espitia PJP, Fuenmayor CA, Otoni CG. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr Rev Food Sci Food Saf 2018; 18:264-285. [DOI: 10.1111/1541-4337.12405] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Paula J. P. Espitia
- Nutrition and Dietetics School; Univ. del Atlántico - Carrera 30 Número 8- 49; Puerto Colombia Atlántico Zip code 081007 Colombia
| | - Carlos A. Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA); Univ. Nacional de Colombia - Avenida Carrera 30 #45-03, Ciudad Universitaria; Bogotá D.C. Zip code 111321 Colombia
| | - Caio G. Otoni
- Nanotechnology National Laboratory for Agriculture (LNNA); Embrapa Instrumentation - Rua XV de Novembro, 1452; São Carlos SP Zip code 13560-979 Brazil
| |
Collapse
|
29
|
Gallo M, Ferrara L, Naviglio D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018; 7:foods7100164. [PMID: 30287795 PMCID: PMC6210518 DOI: 10.3390/foods7100164] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023] Open
Abstract
Ultrasound is composed of mechanical sound waves that originate from molecular movements that oscillate in a propagation medium. The waves have a very high frequency, equal to approximately 20 kHz, are divided into two categories (i.e., low-intensity and high-intensity waves) and cannot be perceived by the human ear. Nature has created the first ultrasound applications. Bats use ultrasound to navigate in the dark, and many cetaceans use echolocation to detect prey or obstacles using ultrasound produced by their vocal system. Ultrasound is commonly associated with the biomedical field. Today, ultrasound-based methods and equipment are available to detect organs, motion, tumour masses, and pre/post-natal handicaps, and for kidney stone removal, physiotherapy, and aesthetic cures. However, ultrasound has found multiple applications in many other fields as well. In particular, ultrasound has recently been used in the food industry to develop various effective and reliable food processing applications. Therefore, this review summarizes the major applications of ultrasound in the food industry. The most common applications in the food industry include cell destruction and extraction of intracellular material. Depending on its intensity, ultrasound is used for the activation or deactivation of enzymes, mixing and homogenization, emulsification, dispersion, preservation, stabilization, dissolution and crystallization, hydrogenation, tenderization of meat, ripening, ageing and oxidation, and as an adjuvant for solid-liquid extraction for maceration to accelerate and to improve the extraction of active ingredients from different matrices, as well as the degassing and atomization of food preparations.
Collapse
Affiliation(s)
- Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy.
| | - Lydia Ferrara
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| |
Collapse
|
30
|
Zhao S, Yao C, Dong Z, Liu Y, Chen G, Yuan Q. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Mohd Khairi MT, Ibrahim S, Md Yunus MA, Faramarzi M. Noninvasive techniques for detection of foreign bodies in food: A review. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohd Taufiq Mohd Khairi
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering; Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Sallehuddin Ibrahim
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering; Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Mohd Amri Md Yunus
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering; Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Mahdi Faramarzi
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering; Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| |
Collapse
|
32
|
Sommerling JH, de Matos MBC, Hildebrandt E, Dessy A, Kok RJ, Nirschl H, Leneweit G. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:572-584. [PMID: 29220188 DOI: 10.1021/acs.langmuir.7b02852] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.
Collapse
Affiliation(s)
- Jan-Hendrik Sommerling
- Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology , Straße am Forum 8, 76131 Karlsruhe, Germany
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
| | - Maria B C de Matos
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University , 3512 JE Utrecht, The Netherlands
| | - Ellen Hildebrandt
- Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology , Straße am Forum 8, 76131 Karlsruhe, Germany
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
| | - Alberto Dessy
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
| | - Robbert Jan Kok
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University , 3512 JE Utrecht, The Netherlands
| | - Hermann Nirschl
- Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology , Straße am Forum 8, 76131 Karlsruhe, Germany
| | - Gero Leneweit
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
- Carl Gustav Carus-Institute, Association for the Advancement of Cancer Therapy , Am Eichhof 30, 75223 Niefern-Öschelbronn, Germany
| |
Collapse
|
33
|
Zhao S, Dong Z, Yao C, Wen Z, Chen G, Yuan Q. Liquid-liquid two-phase flow in ultrasonic microreactors: Cavitation, emulsification, and mass transfer enhancement. AIChE J 2017. [DOI: 10.1002/aic.16010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shuainan Zhao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhengya Dong
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Chaoqun Yao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Zhenghui Wen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Guangwen Chen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Quan Yuan
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
34
|
O’Sullivan JJ, Park M, Beevers J, Greenwood RW, Norton IT. Applications of ultrasound for the functional modification of proteins and nanoemulsion formation: A review. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Anandan S, Keerthiga M, Vijaya S, Asiri AM, Bogush V, Krasulyaa O. Physicochemical characterization of black seed oil-milk emulsions through ultrasonication. ULTRASONICS SONOCHEMISTRY 2017; 38:766-771. [PMID: 27838219 DOI: 10.1016/j.ultsonch.2016.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 05/28/2023]
Abstract
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8min at an applied acoustic power of 100W was sufficient to produce emulsion droplets stable for at least 8days upon storage at 4±2°C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.
Collapse
Affiliation(s)
- S Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015, India.
| | - M Keerthiga
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015, India
| | - S Vijaya
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015, India
| | - A M Asiri
- The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21413, Saudi Arabia
| | - V Bogush
- Moscow State University of Technology and Management, Moscow, Russia
| | - O Krasulyaa
- Moscow State University of Technology and Management, Moscow, Russia
| |
Collapse
|
36
|
Fioramonti SA, Rubiolo AC, Santiago LG. Characterisation of freeze-dried flaxseed oil microcapsules obtained by multilayer emulsions. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.06.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Sharif HR, Williams PA, Sharif MK, Khan MA, Majeed H, Safdar W, Shamoon M, Shoaib M, Haider J, Zhong F. Influence of OSA-starch on the physico chemical characteristics of flax seed oil-eugenol nanoemulsions. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Phytoglycogen improves the water solubility and Caco-2 monolayer permeation of quercetin. Food Chem 2017; 221:248-257. [DOI: 10.1016/j.foodchem.2016.10.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
|
39
|
Leong TSH, Martin GJO, Ashokkumar M. Ultrasonic encapsulation - A review. ULTRASONICS SONOCHEMISTRY 2017; 35:605-614. [PMID: 27053430 DOI: 10.1016/j.ultsonch.2016.03.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/12/2016] [Accepted: 03/18/2016] [Indexed: 05/23/2023]
Abstract
Encapsulation of materials in particles dispersed in water has many applications in nutritional foods, imaging, energy production and therapeutic/diagnostic medicine. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. Examples include highly stable emulsions, functional polymeric particles with environmental sensitivity, and microspheres for encapsulating drugs for targeted delivery. This article provides an overview of the primary mechanisms arising from ultrasonics responsible for the formation of these materials, highlighting examples that show promise particularly in the development of foods and bioproducts.
Collapse
Affiliation(s)
- Thomas S H Leong
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia; ARC Dairy Innovation Hub, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia; ARC Dairy Innovation Hub, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Muthupandian Ashokkumar
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia; ARC Dairy Innovation Hub, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
40
|
Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, McClements DJ, Martín-Belloso O. Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annu Rev Food Sci Technol 2017; 8:439-466. [PMID: 28125342 DOI: 10.1146/annurev-food-030216-025908] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has been growing interest in the use of edible nanoemulsions as delivery systems for lipophilic active substances, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, because of their unique physicochemical properties. Oil-in-water nanoemulsions consist of oil droplets with diameters typically between approximately 30 and 200 nm that are dispersed within an aqueous medium. The small droplet size usually leads to an improvement in stability, gravitational separation, and aggregation. Moreover, the high droplet surface area associated with the small droplet size often leads to a high reactivity with biological cells and macromolecules. As a result, lipid digestibility and bioactive bioavailability are usually higher in nanoemulsions than conventional emulsions, which is an advantage for the development of bioactive delivery systems. In this review, the most important factors affecting nanoemulsion formation and stability are highlighted, and a critical analysis of the potential benefits of using nanoemulsions in food systems is presented.
Collapse
Affiliation(s)
- Laura Salvia-Trujillo
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| | - Robert Soliva-Fortuny
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| | - M Alejandra Rojas-Graü
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| | - D Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - Olga Martín-Belloso
- Department of Food Technology, Agrotecnio Center, University of Lleida, Lleida, Spain 25198;
| |
Collapse
|
41
|
Preparation and Characterization of Novel Perfluorooctyl Bromide Nanoparticle as Ultrasound Contrast Agent via Layer-by-Layer Self-Assembly for Folate-Receptor-Mediated Tumor Imaging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6381464. [PMID: 27652265 PMCID: PMC5019893 DOI: 10.1155/2016/6381464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/27/2016] [Indexed: 12/04/2022]
Abstract
A folate-polyethylene glycol-chitosan derivative was synthesized and its structure was characterized. An optimal perfluorooctyl bromide nanocore template was obtained via utilizing the ultrasonic emulsification method combining with orthogonal design. The targeted nanoparticles containing targeted shell of folate-polyethylene glycol-chitosan derivative and perfluorooctyl bromide nanocore template of ultrasound imaging were prepared successfully by exploiting layer-by-layer self-assembly as contrast agent for ultrasound. Properties of the novel perfluorooctyl bromide nanoparticle were extensively studied by Dynamic Light Scattering and Transmission Electron Microscopy. The targeted nanoparticle diameter, polydispersity, and zeta potential are around 229.5 nm, 0.205, and 44.7 ± 0.6 mV, respectively. The study revealed that spherical core-shell morphology was preserved. Excellent stability of targeted nanoparticle is evidenced by two weeks of room temperature stability tests. The results of the cell viability assay and the hemolysis test confirmed that the targeted nanoparticle has an excellent biocompatibility for using in cell studies and ultrasound imaging in vivo. Most importantly, in vitro cell experiments demonstrated that an increased amount of targeted nanoparticles was accumulated in hepatocellular carcinoma cell line Bel7402 relative to hepatoma cell line L02. And targeted nanoparticles had also shown better ultrasound imaging abilities in vitro. The data suggest that the novel targeted nanoparticle may be applicable to ultrasonic molecular imaging of folate-receptor overexpressed tumor.
Collapse
|
42
|
Ortiz de Solorzano I, Uson L, Larrea A, Miana M, Sebastian V, Arruebo M. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: effect of passive mixing. Int J Nanomedicine 2016; 11:3397-416. [PMID: 27524896 PMCID: PMC4966691 DOI: 10.2147/ijn.s108812] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification-evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates.
Collapse
Affiliation(s)
- Isabel Ortiz de Solorzano
- Department of Chemical Engineering and Environmental Technologies, Institute of Nanoscience of Aragon (INA), University of Zaragoza; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red, Madrid
| | - Laura Uson
- Department of Chemical Engineering and Environmental Technologies, Institute of Nanoscience of Aragon (INA), University of Zaragoza; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red, Madrid
| | - Ane Larrea
- Department of Chemical Engineering and Environmental Technologies, Institute of Nanoscience of Aragon (INA), University of Zaragoza; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red, Madrid
| | - Mario Miana
- ITAINNOVA, Instituto Tecnológico de Aragón, Materials & Components, Zaragoza, Spain
| | - Victor Sebastian
- Department of Chemical Engineering and Environmental Technologies, Institute of Nanoscience of Aragon (INA), University of Zaragoza; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red, Madrid
| | - Manuel Arruebo
- Department of Chemical Engineering and Environmental Technologies, Institute of Nanoscience of Aragon (INA), University of Zaragoza; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red, Madrid
| |
Collapse
|
43
|
Mesquite seed gum and palm fruit oil emulsion edible films: Influence of oil content and sonication. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
|
45
|
Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE J 2015. [DOI: 10.1002/aic.15091] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Hegedűs F, Klapcsik K. The effect of high viscosity on the collapse-like chaotic and regular periodic oscillations of a harmonically excited gas bubble. ULTRASONICS SONOCHEMISTRY 2015; 27:153-164. [PMID: 26186832 DOI: 10.1016/j.ultsonch.2015.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
In the last decade many industrial applications have emerged based on the rapidly developing ultrasonic technology such as ultrasonic pasteurization, alteration of the viscosity of food systems, and mixing immiscible liquids. The fundamental physical basis of these applications is the prevailing extreme conditions (high temperature, pressure and even shock waves) during the collapse of acoustically excited bubbles. By applying the sophisticated numerical techniques of modern bifurcation theory, the present study intends to reveal the regions in the excitation pressure amplitude-ambient temperature parameter plane where collapse-like motion of an acoustically driven gas bubble in highly viscous glycerine exists. We report evidence that below a threshold temperature the bubble model, the Keller-Miksis equation, becomes an overdamped oscillator suppressing collapse-like behaviour. In addition, we have found periodic windows interspersed with chaotic regions indicating the presence of transient chaos, which is important from application point of view if predictability is required.
Collapse
Affiliation(s)
- Ferenc Hegedűs
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Hydrodynamic Systems, P.O. Box 91, 1521 Budapest, Hungary.
| | - Kálmán Klapcsik
- Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Hydrodynamic Systems, P.O. Box 91, 1521 Budapest, Hungary.
| |
Collapse
|
47
|
Esmaeili A, Ebrahimzadeh M. Preparation of polyamide nanocapsules of Aloe vera L. delivery with in vivo studies. AAPS PharmSciTech 2015; 16:242-9. [PMID: 25273024 DOI: 10.1208/s12249-014-0203-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022] Open
Abstract
Aloe vera is the oldest medicinal plant ever known and the most applied medicinal plant worldwide. The purpose of this study was to prepare polyamide nanocapsules containing A. vera L. by an emulsion diffusion technique with in vivo studies. Diethyletriamine (DETA) was used as the encapsulating polymer with acetone ethyl acetate and dimethyl sulfoxide (DMSO) as the organic solvents and Tween and gelatin in water as the stabilizers. Sebacoyl chloride (SC) monomer, A. vera L. extract, and olive oil were mixed with the acetone and then water containing DETA monomer was added to the solution using a magnetic stirrer. Finally, the acetone was removed under vacuum, and nanocapsules were obtained using a freeze drier. This study showed that the size of the nanocapsule depends on a variety of factors such as the ratio of polymer to oil, the concentration of polymers, and the plant extract. The first sample is without surfactant and the size of nanocapsules in the sample is 115 nm. By adding surfactant, nanocapsules size was reduced to 96 nm. Nanocapsules containing A. vera were administered to rats and the effects were compared with a normal control group. The results showed that in the A. vera group, the effect is higher. The nanocapsules were identified by scanning electron microscopy (SEM), zeta potential sizer (ZPS), and Fourier-transform infrared spectroscopy (FT-IR).
Collapse
|
48
|
Xu M, Xin F, Li X, Huai X, Liu H. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump. ULTRASONICS SONOCHEMISTRY 2015; 23:66-74. [PMID: 25246094 DOI: 10.1016/j.ultsonch.2014.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost.
Collapse
Affiliation(s)
- Min Xu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fang Xin
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunfeng Li
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiulan Huai
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
49
|
Nanoemulsions produced by rotor–stator high speed stirring. Int J Pharm 2015; 482:110-7. [DOI: 10.1016/j.ijpharm.2014.12.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/15/2022]
|
50
|
Chandrapala J, Leong T. Ultrasonic Processing for Dairy Applications: Recent Advances. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9105-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|