1
|
Wang S, Wang H, Huang X, Wu Z, Xue H, Zhao C. A novel magnetic adsorption and capacitive deionization coupled technology for industrial saline wastewater recycling. WATER RESEARCH 2025; 281:123559. [PMID: 40174564 DOI: 10.1016/j.watres.2025.123559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The cost-effective desalination technologies were urgent needed to recycle industrial saline wastewater, desalinate seawater and brackish water. Deionisation techniques based on the adsorption principle usually suffer from low adsorption capacity of the adsorbent, susceptibility to contamination, regeneration difficulties and secondary contamination. In this paper, the magnetic reduced graphene oxide (mrGO) was successfully prepared as magnetic media, and a novel magnetic adsorption deionization and capacitive deionization coupled system (MDI-CDI) was constructed, in which a superposition magnetic field with consistent direction was formed by the internal additional magnetic field of magnetic media and the external magnetic field. The relationship between various salt solutions, initial concentration, operation patterner and deionization effect were investigated by KCl solution to optimize the MDI system. The actual petrochemical circulating wastewater (0.933 mS/cm), were adopted to investigate the magneto-electric coupling effect of MDI-CDI system, the average desalination rate and COD removal were 96.9 % and 84.8 %, respectively. In addition, the three-stage tandem MDI system was adopted to investigate the enhanced magnetic adsorption deionization effect, which was 79.3 % of catalytic cracking wastewater (37.4 mS/cm) and 84.0 % of petrochemical wastewater (3.68 mS/cm), respectively. The results indicate that the main deionization mechanisms of MDI system were enhanced by a superimposed magnetic field, including physical adsorption, magnetic attraction, electrostatic attraction, and surface complexation/deposition effects. The MDI-CDI coupled deionisation system can mitigate membrane contamination, regenerate online without secondary pollution under low-consumption, high-efficiency and stable state, providing a new technological idea for the regeneration and utilization of saline wastewater.
Collapse
Affiliation(s)
- Shuo Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China.
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
| | - Xinyuan Huang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China.
| | - Zefeng Wu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China.
| | - Hongyang Xue
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China.
| | - Chunxia Zhao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
| |
Collapse
|
2
|
Nie L, Li S, Gao X, Yuan S, Dong G, Tang G, Song D, Bu L, Zhou Q. Sensitive visual detection of norfloxacin in water by smartphone assisted colorimetric method based on peroxidase-like active cobalt-doped Fe 3O 4 nanozyme. J Environ Sci (China) 2025; 148:198-209. [PMID: 39095157 DOI: 10.1016/j.jes.2023.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 08/04/2024]
Abstract
Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.
Collapse
Affiliation(s)
- Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaozhong Gao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuai Yuan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guojin Tang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Lutong Bu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
3
|
Arshad A, Ding L, Akram R, Zhu W, Long L, Wang K. Construction of a novel Au@Os mediated TMB-H 2O 2 platform with dual-signal output for rapid and accurate detection of ziram in food. Food Chem 2025; 462:140988. [PMID: 39216370 DOI: 10.1016/j.foodchem.2024.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The 3,3',5,5'-tetramethylbenzidine-H2O2 (TMB-H2O2) platform has gained widespread use for rapid detection of various analytes in foods. However, the existing TMB-H2O2 platforms suffer from limited accuracy, as their signal output is confined to the visible region, which is prone to interference from various food colorants in real samples. To address this challenge, a novel Au@Os-mediated TMB-H2O2 platform is developed for both rapid and accurate detection of analytes in foods. The prepared Au@Os NPs exhibit remarkable peroxidase-like activity, making the platform display dual absorption peaks in visible and near-infrared (NIR) regions, respectively. This Au@Os-mediated TMB-H2O2 platform exhibited three linear ranges across different concentrations of ziram from 1-100, 150-600, and 800-2000 nM with limit of detection (LOD) 7.9 nM and limit of quantification (LOQ) 24.15 nM respectively. Further, the Au@Os-mediated TMB-H2O2 platform was also used for rapid and accurate detection of ziram in real food samples like apple, tomato, and black tea.
Collapse
Affiliation(s)
- Anila Arshad
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Raheel Akram
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weiren Zhu
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kun Wang
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Laboratory of Optic-Electric sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
4
|
He K, Sun C, Yang S, Liu H, Fu H, Qu X. Peroxidase-like activity of widely-used commercial inorganic pigments induces oxidative stress and antibiotic degradation: Implications for health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177979. [PMID: 39662395 DOI: 10.1016/j.scitotenv.2024.177979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Inorganic pigments, which often contain significant amounts of nanoparticles, are crucial chemicals for human life. They are produced in massive quantities and widely used in consumer products, food, and pharmaceuticals. Herein, we reported that a variety of commonly used commercial inorganic pigments possess peroxidase-like activity, catalyzing hydrogen peroxide (H2O2) decomposition into reactive oxygen species, primarily hydroxyl radical (OH) and superoxide radical anion (O2-). The catalytic activity of inorganic pigments exhibits saturation kinetics as described by the Michaelis-Menten model, with optimal pH and temperature conditions that can be found in the human body. The enzyme-mimicking activity is strongly correlated with the formation of OH (R2 = 0.98), indicating the radical-mediated reaction pathway. The peroxidase-like activity of inorganic pigments can induce significant oxidative stress at health-relevant H2O2 concentrations (3-30 μM), as demonstrated by the ascorbic acid assay. Additionally, the peroxidase-like activity of inorganic pigments is able to mediate the oxidation of tetracycline, with oxidation rate constants positively correlated with the pigments' peroxidase-like activity. The discovery of peroxidase-like activity of commercial inorganic pigments sheds light on the reported oxidative stress exerted by these pigments and has important implications for the health risk assessment of inorganic food and pharmaceutical colorants, as well as colored consumer products.
Collapse
Affiliation(s)
- Kexin He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Chenxi Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Shuxue Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Huiting Liu
- School of Environmental and Chemical Engineering, Shenyang Ligong University, Liaoning 110159, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
5
|
Yang X, Feng J, Li Y, Zhu W, Pan Y, Han Y, Li Z, Xie H, Wang J, Ping J, Tang W. PdMoPtCoNi High Entropy Nanoalloy with d Electron Self-Complementation-Induced Multisite Synergistic Effect for Efficient Nanozyme Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406149. [PMID: 39120124 PMCID: PMC11481210 DOI: 10.1002/advs.202406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Engineering multimetallic nanocatalysts with the entropy-mediated strategy to reduce reaction activation energy is regarded as an innovative and effective approach to facilitate efficient heterogeneous catalysis. Accordingly, conformational entropy-driven high-entropy alloys (HEAs) are emerging as a promising candidate to settle the catalytic efficiency limitations of nanozymes, attributed to their versatile active site compositions and synergistic effects. As proof of the high-entropy nanozymes (HEzymes) concept, elaborate PdMoPtCoNi HEA nanowires (NWs) with abundant active sites and tuned electronic structures, exhibiting peroxidase-mimicking activity comparable to that of natural horseradish peroxidase are reported. Density functional theory calculations demonstrate that the enhanced electron abundance of HEA NWs near the Fermi level (EF) is facilitated via the self-complementation effect among the diverse transition metal sites, thereby boosting the electron transfer efficiency at the catalytic interface through the cocktail effect. Subsequently, the HEzymes are integrated with a portable electronic device that utilizes Internet of Things-driven signal conversion and wireless transmission functions for point-of-care diagnosis to validate their applicability in digital biosensing of urinary biomarkers. The proposed HEzymes underscore significant potential in enhancing nanozymes catalysis through tunable electronic structures and synergistic effects, paving the way for reformative advancements in nano-bio analysis.
Collapse
Affiliation(s)
- Xuewei Yang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianxing Feng
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuechun Li
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Wenxin Zhu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yifan Pan
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yaru Han
- Department of Chemical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhonghong Li
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., LtdHangzhouZhejiang310000China
| | - Jianlong Wang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| | - Wenzhi Tang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
6
|
Sun J, Li S, Wang H, Zhu L, Chen Y, Zhu J, Ma H, Xiao X, Liu T. Nitro-functionalization on MIL-53(Fe) for PCMX degradation: Elevating Fenton-like catalytic propelled by abundant reaction sites and iron cycle. CHEMOSPHERE 2024; 362:142707. [PMID: 38942245 DOI: 10.1016/j.chemosphere.2024.142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
To address the issue of excessive residues of 4-chloro-3,5-dimethylphenol (PCMX) in the water environment. In a one-step solvothermal process, iron-based metal-organic frameworks (Fe-MOFs) material MIL-53(Fe) undergoes a synthetic modification strategy. 2-Nitroterephthalic acid as an organic ligand reacted with Fe3+ in a solvothermal process lasting 18 h to yield the nitro-functionalized MIL-53(Fe)-NO2(18h). The objective was to augment the abundance of Fe central unsaturated coordination sites (Fe CUCs) and expedite the Fe(III)/Fe(II) redox cycle, thereby enhancing the heterogeneous Fenton-like treatment capability of pollutants. MIL-53(Fe)-NO2(18h) has excellent hydrogen peroxide (H2O2) catalytic activity and PCMX degradation across a broad pH spectrum (4.0∼8.0). Almost complete removal of PCMX was achieved within 30 min, while pseudo-first-order kinetic rate constants (kobs) increased 4.37 times over MIL-53(Fe). The confirmation of increased Fe CUCs abundance in MIL-53(Fe)-NO2(18h) was achieved through Lewis acidity, oxygen vacancies (OVs) signals, and Fe-O coordination characterization results. Density functional theory (DFT) calculations revealed that Fe CUCs in MIL-53(Fe)-NO2(18h) exhibits heightened affinity for H2O2 adsorption, showcasing stronger charge transfer and enhanced H2O2 dissociation ability. The Fe(III)/Fe(II) redox cycle, a driving force of Fenton-like reactions, was notably improved in the nitro-modified materials. These enhancements significantly expedited the Fenton-like process, resulting in the generation of increased amounts of reactive oxygen species (ROSs), with hydroxyl radicals (OH·) being pivotal components in degradation. The MIL-53(Fe)-NO2(18h)/H2O2 system has demonstrated versatility in treating a variety of emerging contaminants, achieving removal efficiencies exceeding 99.7% for other antibiotics and endocrine disruptors within 60 min. Furthermore, MIL-53(Fe)-NO2(18h) demonstrated outstanding reusability and adaptability in actual water environments. This study introduces a straightforward and environmentally friendly strategy for remediating environmental pollution using Fe-MOF-catalysed heterogeneous Fenton-like technology.
Collapse
Affiliation(s)
- Jian Sun
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Shaofeng Li
- Shenzhen Polytechnic University, Shenzhen, 518055, PR China.
| | - Huan Wang
- Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Lijun Zhu
- Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xiong Xiao
- Shenzhen Xiaping Environmental Park, Shenzhen, 518047, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Qin J, Guo N, Yang J, Wei J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem 2024; 447:139019. [PMID: 38520903 DOI: 10.1016/j.foodchem.2024.139019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Metal oxide nanozymes are emerging as promising materials for food safety detection, offering several advantages over natural enzymes, including superior stability, cost-effectiveness, large-scale production capability, customisable functionality, design options, and ease of modification. Optical biosensors based on metal oxide nanozymes have significantly accelerated the advancement of analytical research, facilitating the rapid, effortless, efficient, and precise detection and characterisation of contaminants in food. However, few reviews have focused on the application of optical biosensors based on metal oxide nanozymes for food safety detection. In this review, the catalytic mechanisms of the catalase, oxidase, peroxidase, and superoxide dismutase activities of metal oxide nanozymes are characterized. Research developments in optical biosensors based on metal oxide nanozymes, including colorimetric, fluorescent, chemiluminescent, and surface-enhanced Raman scattering biosensors, are comprehensively summarized. The application of metal oxide nanozyme-based biosensors for the detection of nitrites, sulphites, metal ions, pesticides, antibiotics, antioxidants, foodborne pathogens, toxins, and other food contaminants has been highlighted. Furthermore, the challenges and future development prospects of metal oxide nanozymes for sensing applications are discussed. This review offers insights and inspiration for further investigations on optical biosensors based on metal oxide nanozymes for food safety detection.
Collapse
Affiliation(s)
- Jing Qin
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China.
| | - Ningning Guo
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jia Yang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
8
|
Li Y, Fan Y, Wang Y, Zhu Y, Zhu Z, Mo S, Zhou X, Zhang Y. Performance and Mechanism of Co and Mn Loaded on Fe-Metal-Organic Framework Catalysts with Different Morphologies for Simultaneous Degradation of Acetone and NO by Photothermal Coupling. TOXICS 2024; 12:524. [PMID: 39058176 PMCID: PMC11281022 DOI: 10.3390/toxics12070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
VOCs can be used instead of ammonia as a reducing agent to remove NO, achieving the effect of removing VOCs and NO simultaneously. Due to the high energy consumption and low photocatalytic efficiency required for conventional thermocatalytic purification, photothermal coupled catalytic purification can integrate the advantages of photocatalysis and thermocatalysis in order to achieve the effect of pollutants being treated efficiently with a low energy consumption. In this study, samples loaded with Co and Mn catalysts were prepared using the hydrothermal method on Fe-MOF with various morphologies. The catalytic performance of each catalyst was analyzed by studying the effects of their physicochemical properties through various characterizations, including XRD, SEM, BET, XPS, H2-TPR, TEM and O2-TPD. The characterization results demonstrated that the specific surface area, pore volume, high valence Co and Mn atoms, surface adsorbed oxygen and the abundance of oxygen lattice defects in the catalysts were the most critical factors affecting the performance of the catalysts. Based on the results of the performance tests, the catalysts prepared with an octahedral-shaped Fe-MOF loaded with Co and Mn showed a better performance than those loaded with Co and Mn on a rod-shaped Fe-MOF. The conversions of acetone and NO reached 50% and 64%, respectively, at 240 °C. The results showed that the catalysts were capable of removing acetone and NO at the same time. Compared with the pure Fe-MOF without Co and Mn, the loaded catalysts showed a significantly higher ability to remove acetone and NO simultaneously under the combination of various factors. The key reaction steps for the catalytic conversion of acetone and NO on the catalyst surface were investigated according to the Mars-van Krevelen (MvK) mechanism, and a possible mechanism was proposed. This study presents a new idea for the simultaneous removal of acetone and NOx by photothermal coupling.
Collapse
Affiliation(s)
- Yuanzhen Li
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
| | - Yinming Fan
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541000, China
| | - Yanhong Wang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
| | - Yinian Zhu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
| | - Zongqiang Zhu
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541000, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541000, China
| | - Shengpeng Mo
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
| | - Xiaobin Zhou
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
| | - Yanping Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541000, China; (Y.L.); (Y.W.); (Y.Z.); (Z.Z.); (S.M.); (X.Z.)
| |
Collapse
|
9
|
Núñez-Serrano A, García-Reyes RB, Solís-Pereira S, García-González A. Production and immobilization of pectinases from Penicillium crustosum in magnetic core-shell nanostructures for juice clarification. Int J Biol Macromol 2024; 263:130268. [PMID: 38387627 DOI: 10.1016/j.ijbiomac.2024.130268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Global market of food enzymes is held by pectinases, mostly sourced from filamentous fungi via submerged fermentation. Given the one-time use nature of enzymes to clarify juices and wines, there is a crucial need to explore alternatives for enzyme immobilization, enabling their reuse in food applications. In this research, an isolated fungal strain (Penicillium crustosum OR889307) was evaluated as a new potential pectinase producer in submerged fermentation. Additionally, the enzyme was immobilized in magnetic core-shell nanostructures for juice clarification. Findings revealed that Penicillium crustosum exhibited enzymatic activities higher than other Penicillium species, and pectinase production was enhanced with lemon peel as a cosubstrate in submerged fermentation. The enzyme production (548.93 U/mL) was optimized by response surface methodology, determining the optimal conditions at 35 °C and pH 6.0. Subsequently, the enzyme was covalently immobilized on synthesized magnetic core-shell nanoparticles. The immobilized enzyme exhibited superior stability at higher temperatures (50 °C) and acidic conditions (pH 4.5). Finally, the immobilized pectinases decreased 30 % the orange juice turbidity and maintained 84 % of the enzymatic activity after five consecutive cycles. In conclusion, Penicillium crustosum is a proven pectinase producer and these enzymes immobilized on functionalized nanoparticles improve the stability and reusability of pectinase for juice clarification.
Collapse
Affiliation(s)
- Arely Núñez-Serrano
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Refugio Bernardo García-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Sara Solís-Pereira
- Tecnológico Nacional de México/I.T.Mérida. Unidad de Posgrado e Investigación. Av. Tecnológico Km 5 S/N C.P. 97118, Mérida, Yucatán, México
| | - Alcione García-González
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
10
|
Sun F, Lu T, Feng J, Kang Y. Dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped Fe 3O 4@FeOOH for cyanide-containing wastewater treatment: Preparation, performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123523. [PMID: 38331238 DOI: 10.1016/j.envpol.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
The dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped iron-based Fenton catalyst (Cu/Ti -Fe3O4@FeOOH, FCT) were successfully prepared by precipitation oxidation method and characterized by XRD, XPS and XAFS. The prepared Cu/Ti co-doped Fe3O4@FeOOH nanoparticles consisted of goethite nanorods and magnetite rod octahedral particles, with Cu and Ti replacing Fe in the catalyst crystal structure, leading to the formation of the goethite structure. The heterogeneous Fenton catalyst FCT exhibited excellent degradation activity for cyanide in wastewater and showed different reaction mechanisms at varying pH levels. When treating 100 mL of 12 mg L-1 NaCN solution, complete degradation occurred within 40 min at 30 °C and pH ranging from 6.5 to 12.5 without external energy. Compared to Fe3O4, FCT shows superior degradation activity for cyanide. The surface Cu(Ⅰ) facilitated the electron transfer and significantly improved the catalytic activity of the catalyst. Additionally, the magnetic properties of the Ti-doped catalyst samples were greatly enhanced compared to the Cu@FeOOH catalyst doped with Cu, making them favorable for recycling and reuse. FCT maintains 100% degradation of cyanogen after three cycles, indicating its excellent stability. Furthermore, electron spin resonance spectroscopy, free radical quenching experiments and fluorescence probe techniques using terephthalic acid (TA) and benzoic acid (BA) confirmed that the presence of •OH and FeⅣ=O reactive species was responsible for the catalysts exhibiting different mechanisms at different pH conditions. Compared with other heterogeneous Fenton catalysts, FCT exhibits intentional degradation activity for cyanide-containing wastewater under different acid-base conditions, which greatly broadened the pH range of the heterogeneous Fenton reaction.
Collapse
Affiliation(s)
- Fangkuan Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tangzheng Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jiayi Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
12
|
Wang C, Wang N, Zhang G, Wen D, Song F, Zhu L, Lei M, Huang S, Tang H. Magnetically separable Pd-iron-oxides composites as highly efficient and recyclable catalysts for ultra-rapid degradation and debromination of polybrominated diphenyl ethers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169717. [PMID: 38163606 DOI: 10.1016/j.scitotenv.2023.169717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
When precious nano-metals are used as environmental catalysts, it is important to tune the particle sizes and the reusability of the nano-metals for achieving their highly efficient catalytic performance at a low cost. In the present work, magnetic iron oxides (FeOx-Y) nanoparticles were pre-prepared as supports of nano-metals, where Y represented the mole percentage of Fe(III) in the total iron (Y ≥ 50 %). FeOx-Y (support), PdCl42- (Pd source) and NaBH4 (reducing agent) were added into the organic pollutant solution containing 2,2',4,4'-tetrabromodiphenyl ether (BDE47). After the NaBH4 was added, the followed reaction realized not only the rapid in-situ preparation of a Pd-loaded FeOx-Y composite catalyst (Pd-FeOx-Y), but also the ultra-fast and complete debromination of BDE47 within 30 s. Comparing the case without adding FeOx-Y, the debromination efficiency of BDE47 was much promoted in the presence of FeOx-Y. The support-induced enhancing effect on the catalytic ability of Pd nanoparticles was improved by increasing the Fe(III) content in the support, being attributed to the much more hydroxyl groups on the support surface. Considering both the catalytic and recovery abilities of Pd-FeOx-Y, Pd-FeOx-75 was the optimal choice because it could be magnetically recovered and re-used for multiple cycles with high catalytic activities. The presently developed "catalyst preparation-pollutant degradation" one-pot system could be applied to conduct complete debromination of all the PBDEs.
Collapse
Affiliation(s)
- Cuicui Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guihua Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dongxiao Wen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fangfang Song
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Ming Lei
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| | - Shuangshuang Huang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, PR China
| | - Heqing Tang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| |
Collapse
|
13
|
Neal CJ, Kolanthai E, Wei F, Coathup M, Seal S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211261. [PMID: 37000888 DOI: 10.1002/adma.202211261] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.
Collapse
Affiliation(s)
- Craig J Neal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
14
|
Chen T, Yang J, Zhao H, Li D, Luo X, Fan Z, Ren B, Cai Y, Dong R. Ultrasound-propelled nanomotors for efficient cancer cell ferroptosis. J Mater Chem B 2024; 12:667-677. [PMID: 38063821 DOI: 10.1039/d3tb02041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Ferroptosis is a non-apoptotic form of cell death that is dependent on the accumulation of intracellular iron that causes elevation of toxic lipid peroxides. Therefore, it is crucial to improve the levels of intracellular iron and reactive oxygen species (ROS) in a short time. Here, we first propose ultrasound (US)-propelled Janus nanomotors (Au-FeOx/PEI/ICG, AFPI NMs) to accelerate cellular internalization and induce cancer cell ferroptosis. This nanomotor consists of a gold-iron oxide rod-like Janus nanomotor (Au-FeOx, AF NMs) and a photoactive indocyanine green (ICG) dye on the surface. It not only exhibits accelerating cellular internalization (∼4-fold) caused by its attractive US-driven propulsion but also shows good intracellular motion behavior. In addition, this Janus nanomotor shows excellent intracellular ROS generation performance due to the synergistic effect of the "Fenton or Fenton-like reaction" and the "photochemical reaction". As a result, the killing efficiency of actively moving nanomotors on cancer cells is 88% higher than that of stationary nanomotors. Unlike previous passive strategies, this work is a significant step toward accelerating cellular internalization and inducing cancer-cell ferroptosis in an active way. These novel US-propelled Janus nanomotors with strong propulsion, efficient cellular internalization and excellent ROS generation are suitable as a novel cell biology research tool.
Collapse
Affiliation(s)
- Ting Chen
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jie Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - He Zhao
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Dajian Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Xiaoyong Luo
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Zhiyu Fan
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Li Y, Wei C, Yan J, Li F, Chen B, Sun Y, Luo K, He B, Liang Y. The application of nanoparticles based on ferroptosis in cancer therapy. J Mater Chem B 2024; 12:413-435. [PMID: 38112639 DOI: 10.1039/d3tb02308g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
16
|
Zhou R, Tu X, Zheng P, Zhang L, Zeng Z. In Situ Synthesis of Bi 2S 3/BiFeO 3 Nanoflower Hybrid Photocatalyst for Enhanced Photocatalytic Degradation of Organic Pollutants. Molecules 2023; 28:8007. [PMID: 38138497 PMCID: PMC10745832 DOI: 10.3390/molecules28248007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Photocatalytic degradation of Malachite Green oxalate (MG) in a water body is of significant importance to our health protection, as it could cause various serious diseases. However the photocatalytic activity of most catalysts is still unsatisfactory, due to the poor reactive oxygen species production as a result of sluggish charge separation. Here, innovative nanoflower-shaped Bi2S3/BiFeO3 heterojunctions are prepared via a facile sol-gel method, exhibiting an enhanced reactive oxygen species generation, which leads to the excellent photocatalytic performance toward MG degradation. We verify that interfacing BiFeO3 with Bi2S3 could form a fine junction and offers a built-in field to speed up charge separation at the junction area; as a result, this shows much higher charge separation efficiency. By virtue of the aforementioned advantages, the as-prepared Bi2S3/BiFeO3 heterojunctions exhibit excellent photocatalytic performance toward MG degradation, where more than 99% of MG is removed within 2 h of photocatalysis. The innovative design of nanoflower-like Bi2S3/BiFeO3 heterojunctions may offer new viewpoints in designing highly efficient photocatalysts for environmentally related applications.
Collapse
Affiliation(s)
- Rentao Zhou
- College of Environment Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xinman Tu
- College of Environment Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (P.Z.)
| | - Peng Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (P.Z.)
| | - Li Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (P.Z.)
| | - Zhenxing Zeng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
18
|
Abstract
Nanozymes constitute an emerging class of nanomaterials with enzyme-like characteristics. Over the past 15 years, more than 1200 nanozymes have been developed, and they have demonstrated promising potentials in broad applications. With the diversification and complexity of its applications, traditional empirical and trial-and-error design strategies no longer meet the requirements for efficient nanozyme design. Thanks to the rapid development of computational chemistry and artificial intelligence technologies, first-principles methods and machine-learning algorithms are gradually being adopted as a more efficient and easier means to assist nanozyme design. This review focuses on the potential elementary reaction mechanisms in the rational design of nanozymes, including peroxidase (POD)-, oxidase (OXD)-, catalase (CAT)-, superoxide dismutase (SOD)-, and hydrolase (HYL)-like nanozymes. The activity descriptors are introduced, with the aim of providing further guidelines for nanozyme active material screening. The computing- and data-driven approaches are thoroughly reviewed to give a proposal on how to proceed with the next-generation paradigm rational design. At the end of this review, personal perspectives on the prospects and challenges of the rational design of nanozymes are put forward, hoping to promote the further development of nanozymes toward superior application performance in the future.
Collapse
Affiliation(s)
- Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, People's Republic of China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, People's Republic of China
| | - Yonghui Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, People's Republic of China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, People's Republic of China
| |
Collapse
|
19
|
Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
Collapse
|
20
|
Co-Immobilization of Lipases with Different Specificities for Efficient and Recyclable Biodiesel Production from Waste Oils: Optimization Using Response Surface Methodology. Int J Mol Sci 2023; 24:ijms24054726. [PMID: 36902155 PMCID: PMC10003242 DOI: 10.3390/ijms24054726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Lipase-catalyzed transesterification is a promising and sustainable approach to producing biodiesel. To achieve highly efficient conversion of heterogeneous oils, combining the specificities and advantages of different lipases is an attractive strategy. To this end, highly active Thermomyces lanuginosus lipase (1,3-specific) and stable Burkholderia cepacia lipase (non-specific) were covalently co-immobilized on 3-glycidyloxypropyltrimethoxysilane (3-GPTMS) modified Fe3O4 magnetic nanoparticles (co-BCL-TLL@Fe3O4). The co-immobilization process was optimized using response surface methodology (RSM). The obtained co-BCL-TLL@Fe3O4 exhibited a significant improvement in activity and reaction rate compared with mono and combined-use lipases, achieving 92.9% yield after 6 h under optimal conditions, while individually immobilized TLL, immobilized BCL and their combinations exhibited yields of 63.3%, 74.2% and 70.6%, respectively. Notably, co-BCL-TLL@Fe3O4 achieved 90-98% biodiesel yields after 12 h using six different feedstocks, demonstrating the perfect synergistic effect of BCL and TLL remarkably motivated in co-immobilization. Furthermore, co-BCL-TLL@Fe3O4 could maintain 77% of initial activity after nine cycles by removing methanol and glycerol from catalyst surface, accomplished by washing with t-butanol. The high catalytic efficiency, wide substrate adaptability and favorable reusability of co-BCL-TLL@Fe3O4 suggest that it will be an economical and effective biocatalyst for further applications.
Collapse
|
21
|
A comparative study of the catalytic activity of Mn-porphyrins anchored onto magnetic nanoparticles: a clue to the effect of linker length. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
22
|
Singh R, Umapathi A, Patel G, Patra C, Malik U, Bhargava SK, Daima HK. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158771. [PMID: 36108853 DOI: 10.1016/j.scitotenv.2022.158771] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively. Additionally, within the natural environment, nanozymes can be employed for the degradation of organic and persistent pollutants such as antibiotics, phenols, and textile dyes. Further, the potential sphere of applications for nanozymes traverses from indoor air purification to anti-biofouling agents, and even they show promise in combatting pathogenic bacteria. However, nanozymes may have inherent toxicity, which can restrict their widespread utility. Thus, it is important to evaluate and monitor the interaction and transformation of nanozymes towards biosphere damage when employed within the natural environment in a cradle-to-grave manner, to assure their utmost safety. In this context, various studies have concluded that the green synthesis of nanozymes can efficiently overcome the toxicity limitations in real life applications, and nanozymes can be well utilized in the sensing and degradation of several toxic pollutants including metal ions, pesticides, and chemical warfare agents. In this seminal review, we have explored the great potential of nanozymes, whilst addressing a range of concerns, which have often been overlooked and currently restrict widespread applications and commercialization of nanozymes.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, 252059, Shandong, China
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Gaurang Patel
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Chayan Patra
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India.
| |
Collapse
|
23
|
Jung J, Kim J, Yoon S, Kumar Reddy PA, Hwang Y, Bae S. The role of Fe dissolution in olivine-hydroxylamine-induced Fenton reaction for enhanced oxidative degradation of organic pollutant. CHEMOSPHERE 2022; 306:135557. [PMID: 35780991 DOI: 10.1016/j.chemosphere.2022.135557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, a dye pollutant (methyl orange, MO) was effectively oxidized in a hydroxylamine (HA)-assisted Fenton system using various Al/Si/Fe- and Fe-containing minerals. The fastest degradation kinetics of MO were observed in the olivine-HA Fenton system, whereas other Al/Si/Fe and Fe-rich minerals (magnetite and lepidocrocite) demonstrated much slower degradation kinetics. The degradation rate constants were proportional to dissolved Fe(II) quantities in mineral suspensions (R2 = 0.98), indicating the crucial role of dissolved Fe(II) quantity in HA-assisted Fenton reactions. Radical scavenging and electron spin resonance results revealed that MO was dominantly oxidized by ·HO produced in the olivine-HA Fenton system. The continuous production of aqueous Fe(II) via direct Fe(II) dissolution at a pH of 3 and further Fe dissolution from the reductive dissolution of surface Fe(III) by HA was the main driving force for efficient MO degradation. Furthermore, lowering the pH by the addition of hydroxylamine hydrochloride resulted in the effective removal of MO under various pH conditions (3-9), indicating the additional advantage of HA use in Fenton reactions. Liquid chromatography-mass spectroscopy analysis revealed that the cleavage of C-N and C-C bonds, demethylation, hydroxylation, and dehydroxylation were the main processes for MO oxidation in the olivine-HA Fenton system.
Collapse
Affiliation(s)
- Jueun Jung
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joohyun Kim
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - P Anil Kumar Reddy
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811, Seoul, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
24
|
Iqbal J, Rasool K, Howari F, Nazzal Y, Sarkar T, Shahzad A. A Hydrofluoric Acid-Free Green Synthesis of Magnetic M.Ti 2CT x Nanostructures for the Sequestration of Cesium and Strontium Radionuclide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3253. [PMID: 36145041 PMCID: PMC9502560 DOI: 10.3390/nano12183253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
MAX phases are the parent materials used for the formation of MXenes, and are generally obtained by etching using the highly corrosive acid HF. To develop a more environmentally friendly approach for the synthesis of MXenes, in this work, titanium aluminum carbide MAX phase (Ti2AlC) was fabricated and etched using NaOH. Further, magnetic properties were induced during the etching process in a single-step etching process that led to the formation of a magnetic composite. By carefully controlling etching conditions such as etching agent concentration and time, different structures could be produced (denoted as M.Ti2CTx). Magnetic nanostructures with unique physico-chemical characteristics, including a large number of binding sites, were utilized to adsorb radionuclide Sr2+ and Cs+ cations from different matrices, including deionized, tap, and seawater. The produced adsorbents were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The synthesized materials were found to be very stable in the aqueous phase, compared with corrosive acid-etched MXenes, acquiring a distinctive structure with oxygen-containing functional moieties. Sr2+ and Cs+ removal efficiencies of M.Ti2CTx were assessed via conventional batch adsorption experiments. M.Ti2CTx-AIII showed the highest adsorption performance among other M.Ti2CTx phases, with maximum adsorption capacities of 376.05 and 142.88 mg/g for Sr2+ and Cs+, respectively, which are among the highest adsorption capacities reported for comparable adsorbents such as graphene oxide and MXenes. Moreover, in seawater, the removal efficiencies for Sr2+ and Cs+ were greater than 93% and 31%, respectively. Analysis of the removal mechanism validates the electrostatic interactions between M.Ti2C-AIII and radionuclides.
Collapse
Affiliation(s)
- Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5824, Qatar
| | - Fares Howari
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Yousef Nazzal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Tapati Sarkar
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
| | - Asif Shahzad
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
| |
Collapse
|
25
|
Dong H, Du W, Dong J, Che R, Kong F, Cheng W, Ma M, Gu N, Zhang Y. Depletable peroxidase-like activity of Fe 3O 4 nanozymes accompanied with separate migration of electrons and iron ions. Nat Commun 2022; 13:5365. [PMID: 36097172 PMCID: PMC9467987 DOI: 10.1038/s41467-022-33098-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe2+-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe2+ within Fe3O4 can transfer electrons to the surface via the Fe2+-O-Fe3+ chain, regenerating the surface Fe2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe3O4 nanozymes suffer the phase transformation to γ-Fe2O3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.
Collapse
Affiliation(s)
- Haijiao Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Wei Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Fei Kong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
- The Melbourne Centre for Nanofabrication, Clayton, VIC, Australia
| | - Ming Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
26
|
Yamanaka T, Hayashi Y, Takizawa H. Sonochemical synthesis of supersaturated Ga-Al liquid-alloy fine particles and Al 3+-doped γ-Ga 2O 3 nanoparticles by direct oxidation at near room temperature. ULTRASONICS SONOCHEMISTRY 2022; 89:106114. [PMID: 35987105 PMCID: PMC9403562 DOI: 10.1016/j.ultsonch.2022.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the fabrication of supersaturated gallium (Ga)-aluminum (Al) liquid alloy and Al3+-doped γ-Ga2O3 nanoparticles (NPs) at near room temperature (60 °C) using sonochemical and sonophysical effects. Supersaturated Ga-Al liquid alloy microparticles (Dav = 1.72 µm) were formed and stabilized at 60 °C by the thermal nonequilibrium field provided by sonochemical hot spots. Compared with liquid Ga, supersaturated Ga-Al liquid alloy was rapidly oxidized to a uniform oxide without Al2O3 or Al deposition. Thus, ultrafine Al3+-doped γ-Ga2O3 NPs were obtained after only 1 h of ultrasonic irradiation at 60 °C. The oxidation of liquid Ga was remarkably accelerated by alloying with metallic Al and ultrasonic irradiation, and the time was shortened. The average diameter and surface area of the γ-Ga2O3-based NPs were 59 nm and 181 m2/g, respectively. Compared with γ-Ga2O3, the optical bandgap of the Al3+-doped γ-Ga2O3 NPs was broadened, and the thermal stability improved, indicating Al3+-doping into the γ-Ga2O3 lattice. However, the lattice constant of γ-Ga2O3 was almost unchanged with or without Al3+-doping. Al3+ was introduced into the defect sites of Ga3+, which were massively induced in the defective spinel structure during ultrasonic processing. Therefore, sonochemical processing, which provides nonequilibrium reaction fields, is suitable for the synthesis of supersaturated and metastable materials in metals and ceramics fields.
Collapse
Affiliation(s)
- Toshiki Yamanaka
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| | - Yamato Hayashi
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan.
| | - Hirotsugu Takizawa
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| |
Collapse
|
27
|
Zn/Co-ZIFs@MIL-101(Fe) metal–organic frameworks are effective photo-Fenton catalysts for RhB removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Enzyme-Mimetic nano-immunosensors for amplified detection of food hazards: Recent advances and future trends. Biosens Bioelectron 2022; 217:114577. [DOI: 10.1016/j.bios.2022.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
|
29
|
Qiu S, Xu SY, Wang YJ, Zheng YG. Chemoenzymatic Catalysis of tert-Butyl 6-Cyano-(3R,5R)-dihydroxyhexanoate by Aldo-keto Reductase Coupled with Composite Fe3O4 Nanozyme Scaffold. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Xu Q, Li Z, You H, Wang S, Li H. Magnetically separable Fe-base deposited on different carbon sources for ultrasound/persulfate-like heterogeneous activation: Optimized synthesis and field driving process. CHEMOSPHERE 2022; 298:134270. [PMID: 35278452 DOI: 10.1016/j.chemosphere.2022.134270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The eco-friendly composite materials, micro-nano Fe-base/glucose-derived hydro-chars (Feb/HCs), were prepared, whose magnetic separation can be achieved in both preparation and water treatment stages. The performances of Feb/HCs after N2 heat-treatment to activate persulfate, chlorite, hydrogen peroxide, etc., in ultrasound field, obtained great improvement by extracting "O". For comparison, other different sized and magnetic iron-carbon based composites based on different carbon sources of activated carbons, cornstalk-derived bio-chars, and glucose-derived pyrolytic carbons were prepared and applied to systematically compare the performance of activation. The Feb/HCs with optimizing preparation were utilized as activators to well treat different structures (triphenylmethane-, azo-, and xanthene-) contaminants. The detected p-Benzoquinone and 2-chloro-p-Benzoquinone could be considered as transitional and characteristic intermediates from carbocyclic compounds to chain compounds. The degradation mechanisms were evoked by pH and absorption to trigger via free/non-free radicals processes: high valence iron-oxo species, sulfate radicals, hydroxyl radicals, Cl-based substances, etc. The findings contrastively provided the potential applications of magnetically separable iron-carbon based composites for heterogeneous activation in environmental remediation.
Collapse
Affiliation(s)
- Qihui Xu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Haoyang Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| |
Collapse
|
31
|
Jiang Y, Ran J, Mao K, Yang X, Zhong L, Yang C, Feng X, Zhang H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113464. [PMID: 35395600 DOI: 10.1016/j.ecoenv.2022.113464] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The frequent use of antibiotics allows them to enter aqueous environments via wastewater, and many types of antibiotics accumulate in the environment due to difficult degradation, causing a threat to environmental health. It is crucial to adopt effective technical means to remove antibiotics in aqueous environments. The Fenton reaction, as an effective organic pollution treatment technology, is particularly suitable for the treatment of antibiotics, and at present, it is one of the most promising advanced oxidation technologies. Specifically, rapid Fenton oxidation, which features high removal efficiency, thorough reactions, negligible secondary pollution, etc., has led to many studies on using the Fenton reaction to degrade antibiotics. This paper summarizes recent progress on the removal of antibiotics in aqueous environments by Fenton and Fenton-like reactions. First, the applications of various Fenton and Fenton-like oxidation technologies to the removal of antibiotics are summarized; then, the advantages and disadvantages of these technologies are further summarized. Compared with Fenton oxidation, Fenton-like oxidations exhibit milder reaction conditions, wider application ranges, great reduction in economic costs, and great improved cycle times, in addition to simple and easy recycling of the catalyst. Finally, based on the above analysis, we discuss the potential for the removal of antibiotics under different application scenarios. This review will enable the selection of a suitable Fenton system to treat antibiotics according to practical conditions and will also aid the development of more advanced Fenton technologies for removing antibiotics and other organic pollutants.
Collapse
Affiliation(s)
- Yu Jiang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Li Zhong
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
32
|
Xu J, Sun F, Li Q, Yuan H, Ma F, Wen D, Shang L. Ultrasmall Gold Nanoclusters-Enabled Fabrication of Ultrafine Gold Aerogels as Novel Self-Supported Nanozymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200525. [PMID: 35491512 DOI: 10.1002/smll.202200525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Metal aerogels represent an emerging type of functional porous materials with promising applications in diverse fields, but the fabrication of metal aerogels with specific structure and property still remains a challenge. Here, the authors report a new approach to fabricate metal aerogels by using ultrasmall metal nanoclusters (NCs) as functional building blocks. By taking D-penicillamine-stabilized gold NCs (AuNCs) with a diameter of 1.4 nm as an example, Au aerogels with ultrafine ligament size (3.5 nm) and good enzyme-mimic properties are synthesized. Detailed characterization shows that the obtained Au aerogels possess typical 3D self-supported porous network structure with high gold purity and surface area. Time-lapse spectroscopic and microscopic monitoring of the gelation process reveal that these ultrasmall AuNCs first grow into large nanoparticles before fusion into nanowire networks, during which both pH and the precursor concentration are identified to be the determining factor. Owing to their highly porous structure and abundant metal nodes, these self-supported Au aerogels display excellent peroxidase-like properties. This work provides a strategy for fabricating advanced metal aerogels by taking ultrasmall-sized metal NCs as building blocks, which also opens new avenues for engineering the structure and properties of metal aerogels for further advancing their applications.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Fangying Sun
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Hongxing Yuan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Fangyuan Ma
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
33
|
Fang Y, Wu W, Qin Y, Liu H, Lu K, Wang L, Zhang M. Recent development in antibacterial activity and application of nanozymes in food preservation. Crit Rev Food Sci Nutr 2022; 63:9330-9348. [PMID: 35452320 DOI: 10.1080/10408398.2022.2065660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanozymes with excellent broad-spectrum antibacterial properties offers an alternative strategy for food preservation. This review comprehensively summarized the antibacterial mechanisms of nanozymes, including the generation of reactive oxygen species (ROS) and the destruction of biofilms. Besides, the primary factors (size, morphology, hybridization, light, etc.) regulating the antibacterial activity of different types of nanozymes were highlighted in detail, which provided effective guidance on how to design highly efficient antibacterial nanozymes. Moreover, this review presented elaborated viewpoints on the unique applications of nanozymes in food preservation, including the selection of nanozymes loading matrix, fabrication techniques of nanozymes-based antibacterial films/coatings, and the recent advances in the application of nanozymes-based antibacterial films/coatings in food preservation. In the end, the safety issues of nanozymes have also been mentioned. Overall, this review provided new avenues in the field of food preservation and displayed great prospects.
Collapse
Affiliation(s)
- Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Haoqiang Liu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Kang Lu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Liang Wang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
34
|
Wang Q, Zhu S, Xi C, Zhang F. A Review: Adsorption and Removal of Heavy Metals Based on Polyamide-amines Composites. Front Chem 2022; 10:814643. [PMID: 35308790 PMCID: PMC8931339 DOI: 10.3389/fchem.2022.814643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the problem of heavy metal pollution has become increasingly prominent, so it is urgent to develop new heavy metal adsorption materials. Compared with many adsorbents, the polyamide-amine dendrimers (PAMAMs) have attracted extensive attention of researchers due to its advantages of macro-molecular cavity, abundant surface functional groups, non-toxicity, high efficiency and easy modification. But in fact, it is not very suitable as an adsorbent because of its solubility and difficulty in separation, which also limits its application in environmental remediation. Therefore, in order to make up for the shortcomings of this material to a certain extent, the synthesis and development of polymer composite materials based on PAMAMs are increasingly prominent in the direction of solving heavy metal pollution. In this paper, the application of composites based on PAMAMs and inorganic or organic components in the adsorption of heavy metal ions is reviewed. Finally, the prospects and challenges of PAMAMs composites for removal of heavy metal ions in water environment are discussed.
Collapse
|
35
|
Shirokikh SA, Klevtsova EO, Savchenko AG, Koroleva MY. Stability of Highly Concentrated Water-in-Oil Emulsions with Magnetic Nanoparticles and the Structure of Highly Porous Polymers Formed on Their Basis. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x21060120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Humic Acid-Modified Magnetite Nanoparticles for Removing [AuCl4]− in Aqueous Solutions. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.1.27-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Humic acid-modified magnetite nanoparticle (MnP-HA) has been synthesized using the co-precipitation method and applied for removal of [AuCl4]−. Modifying of MnP-HA was prepared with the mass ratio of MnP-HA=10:1 and 10:3. The HA was extracted from peat soil of Sambutan Village, East Kalimantan, Indonesia, by the recommended procedure of the International Humic Substances Society (IHSS). The saturation magnetization of MnP-HA was decreased compared to unmodified MnP. The interaction between MnP and HA was occurred due to the chemical bond between Fe from MnP with the carboxylic group from HA. The coating HA on the surface of MnP unchanged the formation of the crystal structure of MnP and increased the particle size. The optimum removal of [AuCl4]− on MnP and MnP-HA materials was optimum at pH 3.0. The Langmuir isotherm model with sorption capacity was 0.23, 4.85, and 4.65 mol g–1 for MnP, MnP-HA=10:1, and 10:3, respectively. Using a pseudo-second-order equation, the degradation of the kinetics model of [AuCl4]− on MnP, MnP-HA=10:1 and 10:3 with adsorption rate constant (k) were 0.02, 0.07, and 0.06 g.mol min–1.
Collapse
|
37
|
Zhu W, Chen C, Wen Z, Ding L, Wei J, Qian J, Hao N, Wang K. Simulation design of natural enzyme binding pocket structure in MOFs for enhanced catalytic activity. Chem Commun (Camb) 2022; 58:6745-6748. [DOI: 10.1039/d2cc01634f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study confirms the activity gap between MOFs (Fe) and horseradish peroxidase can be bridged by simulating the binding pocket structure and adding active center. The customized structure promoted the...
Collapse
|
38
|
Colorimetric determination of radical scavenging activity of antioxidants using Fe3O4 magnetic nanoparticles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Kim YE, Kim J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2021; 14:23002-23021. [PMID: 34962774 DOI: 10.1021/acsami.1c18261] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although reactive oxygen species (ROS) are essential for cellular processes, excessive ROS could be a major cause of various inflammatory diseases because of the oxidation of proteins, DNA, and membrane lipids. It has recently been suggested that the amount of ROS could thus be regulated to treat such physiological disorders. A ROS-scavenging hydrogel is a promising candidate for therapeutic applications because of its high biocompatibility, 3D matrix, and ability to be modified. Approaches to conferring antioxidant properties to normal hydrogels include embedding ROS-scavenging catalytic nanoparticles, modifying hydrogel polymer chains with ROS-adsorbing organic moieties, and incorporating ROS-labile linkers in polymer backbones. Such therapeutic hydrogels can be used for wound healing, cardiovascular diseases, bone repair, ocular diseases, and neurodegenerative disorders. ROS-scavenging hydrogels could eliminate oxidative stress, accelerate the regeneration process, and show synergetic effects with other drugs or therapeutic molecules. In this review, the mechanisms by which ROS are generated and scavenged in the body are outlined, and the effects of high levels of ROS and the resulting oxidative stress on inflammatory diseases are described. Next, the mechanism of ROS scavenging by hydrogels is explained depending on the ROS-scavenging agents embedded within the hydrogel. Lastly, the recent achievements in the development of ROS-scavenging hydrogels to treat various inflammation-associated diseases are presented.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
40
|
Nguyen MD, Tran HV, Xu S, Lee TR. Fe 3O 4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11:11301. [PMID: 35844268 PMCID: PMC9285867 DOI: 10.3390/app112311301] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.
Collapse
Affiliation(s)
- Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - Shoujun Xu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| |
Collapse
|
41
|
Hua Y, Wang C, Wang S, Xiao J. Poly(catechol) modified Fe 3O 4 magnetic nanocomposites with continuous high Fenton activity for organic degradation at neutral pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62690-62702. [PMID: 34215976 DOI: 10.1007/s11356-021-15088-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) have been widely used as a recyclable catalyst in Fenton reaction for organic degradation. However, the pristine MNPs suffer from the drawbacks of iron leaching in acidic conditions as well as the decreasing catalytic activity of organic degradation at a pH higher than 3.0. To solve the problems, Fe3O4 MNPs were modified by poly(catechol) (Fe3O4/PCC MNPs) using a facile chemical co-precipitation method. The poly(catechol) modification improved both the dispersity and the surface negative charges of Fe3O4/PCC MNPs, which are beneficial to the catalytic activity of MNPs for organic degradation. Moreover, the poly(catechol) modification enhanced the efficiency of Fe(II) regeneration during Fenton reaction due to the acceleration of Fe(III) reduction by the phenolic/quinonoid redox pair. As a result, the Fenton reaction with Fe3O4/PCC MNPs could efficiently degrade organic molecules, exampled by methylene blue (MB), in an expanded pH range between 3.0 and 10.0. In addition, Fe3O4/PCC MNPs could be reused up to 8 cycles for the MB degradation with negligible iron leaching of lower than 1.5 mg L-1. This study demonstrated Fe3O4/PCC MNPs are a promising heterogeneous Fenton catalysts for organic degradation.
Collapse
Affiliation(s)
- Yani Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chuan Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| | - Sha Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Juan Xiao
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
42
|
Synthesis and Characterization of Magnetically Retrievable Fe3O4/Polyvinylpyrrolidone/Polystyrene Nanocomposite Catalyst for Efficient Catalytic Oxidation Degradation of Dyes Pollutants. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02138-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Statistical modeling and interpretation of Sono-assisted adsorption mechanism of Crystal Violet dye on FeTiPbO Nanocomposite. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Zhao W, Zhang G, Du Y, Chen S, Fu Y, Xu F, Xiao X, Jiang W, Ji Q. Sensitive colorimetric glucose sensor by iron-based nanozymes with controllable Fe valence. J Mater Chem B 2021; 9:4726-4734. [PMID: 34095946 DOI: 10.1039/d1tb00370d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The proportion of Fe2+ and Fe3+ in Fe-based nanozymes is a key point in determining their catalytic activity. However, it is hard to adjust the Fe2+/Fe3+ ratio in nanozyme systems to achieve the best catalytic performance. In this work, we successfully regulate Fe2+/Fe3+ ratios in a wide range of 0.81-1.45 based on a novel porous platform of Fe doped silica hollow spheres. The homogeneous distribution and stable fixation of Fe components in Fe doped silica hollow spheres facilitate the valence regulation of Fe in the reduction heating in H2/Ar. When the Fe doped spheres (FeOx@SHSs) were used as nanozymes, different Fe2+/Fe3+ ratios have shown to influence the peroxidase-like catalytic activity greatly. The highest activity at the ratio of 1.41 should be due to the combined effects of the accelerated reaction rate by Fe2+ and the enhanced catalytic cycle efficiency by Fe3+. The FeOx@SHSs-based nanozyme is further applied to construct a facile colorimetric biosensing system, which exhibited extremely sensitive determination of glucose. This work presents an effective platform for controlling Fe valences and optimizing the peroxidase-like activity for catalytic processes or sensing systems.
Collapse
Affiliation(s)
- Wenli Zhao
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China.
| | - Guangpu Zhang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Yang Du
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China
| | - Shuangqin Chen
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China.
| | - You Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China
| | - Fan Xu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China.
| | - Xiangyun Xiao
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China.
| | - Wei Jiang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China.
| |
Collapse
|
45
|
Kumar A, Nandwana V, Ryoo SR, Ravishankar S, Sharma B, Pervushin K, Dravid VP, Lim S. Magnetoferritin enhances T 2 contrast in magnetic resonance imaging of macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112282. [PMID: 34474835 DOI: 10.1016/j.msec.2021.112282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/15/2023]
Abstract
Imaging of immune cells has wide implications in understanding disease progression and staging. While optical imaging is limited in penetration depth due to light properties, magnetic resonance (MR) imaging provides a more powerful tool for the imaging of deep tissues where immune cells reside. Due to poor MR signal to noise ratio, tracking of such cells typically requires contrast agents. This report presents an in-depth physical characterization and application of archaeal magnetoferritin for MR imaging of macrophages - an important component of the innate immune system that is the first line of defense and first responder in acute inflammation. Magnetoferritin is synthesized by loading iron in apoferritin in anaerobic condition at 65 °C. The loading method results in one order of magnitude enhancement of r1 and r2 relaxivities compared to standard ferritin synthesized by aerobic loading of iron at room temperature. Detailed characterizations of the magnetoferritin revealed a crystalline core structure that is distinct from previously reported ones indicating magnetite form. The magnetite core is more stable in the presence of reducing agents and has higher peroxidase-like activities compared to the core in standard loading. Co-incubation of macrophage cells with magnetoferritin in-vitro shows significantly higher enhancement in T2-MRI contrast of the immune cells compared to standard ferritin.
Collapse
Affiliation(s)
- Ambrish Kumar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553
| | - Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Soo-Ryoon Ryoo
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA
| | - Samyukta Ravishankar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore
| | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Konstantin Pervushin
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA; International Institute for Nanotechnology (IIN), Evanston, IL 60208, USA; Applied Physics Program, Norhtwestern University, Evanston, IL 60208, USA
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Dr., Block N1.3, Singapore 637457, Singapore; NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, Singapore 637553.
| |
Collapse
|
46
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
47
|
Imide modification coupling with NH2-MIL-53(Fe) boosts the photocatalytic performance of graphitic carbon nitride for efficient water remediation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Cui M, Zhang HR, Ouyang F, Guo YQ, Li RF, Duan SF, Xiong TD, Wang YL, Wang XQ. Dual Enzyme-Like Performances of PLGA Grafted Maghemite Nanocrystals and Their Synergistic Chemo/Chemodynamic Treatment for Human Lung Adenocarcinoma A549 Cells. J Biomed Nanotechnol 2021; 17:1007-1019. [PMID: 34167616 DOI: 10.1166/jbn.2021.3062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the emergence of non-toxic but catalytically active inorganic nanoparticles has attracted great attention for cancer treatment, but the therapeutic effect has been affected by the limited reactive oxygen species in tumors. Therefore, the combination of chemotherapy and chemodynamic therapy is regarded as a promising therapeutic strategy. In this paper, we reported the preparation and bioactivity evaluation of poly(lactic acid-co-glycolic acid) (PLGA) grafted-γ-Fe₂O₃ nanoparticles with dual response of endogenous peroxidase and catalase like activities. Our hypothesis is that PLGAgrafted γ-Fe₂O₃ nanoparticles could be used as a drug delivery system for the anti-tumor drug doxorubicin to inhibit the growth of lung adenocarcinoma A549 cells; meanwhile, based on its mimic enzyme properties, this kind of nanoparticles could be combined with doxorubicin in the treatment of A549 cells. Our experimental results showed that the PLGAgrafted γ-Fe₂O₃ nanoparticles could simulate the activity of catalase and decompose hydrogen peroxide into H₂O and oxygen in neutral tumor microenvironment, thus reducing the oxidative damage caused by hydrogenperoxide to lung adenocarcinoma A549 cells. In acidic microenvironment, PLGA grafted γ-Fe₂O₃ nanoparticles could simulate the activity of peroxidase and effectively catalyze the decomposition of hydrogen peroxide to generate highly toxic hydroxyl radicals, which could cause the death of A549 cells. Furthermore, the synergistic effect of peroxidase-like activity of PLGA-grafted γ-Fe₂O₃ nanoparticles and doxorubicin could accelerate the apoptosisand destruction of A549 cells, thus enhancing the antitumor effect of doxorubicin-loaded PLGA-grafted γ-Fe₂O₃ nanoparticles. Therefore, this study provides an effective nanoplatform based on dual inorganic biomimetic nanozymes for the treatment of lung cancer.
Collapse
Affiliation(s)
- Miao Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Hui-Ru Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Fan Ouyang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yu-Qi Guo
- Henan Provincial People's Hospital, Zhengzhou 450003, P. R. China
| | - Rui-Fang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Shao-Feng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Tian-Di Xiong
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yun-Long Wang
- Henan Bioengineering Research Center, Zhengzhou 450046, P. R. China
| | - Xue-Qin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
49
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
50
|
|