1
|
Rasouli H, Sohrabi N, Mohammadi R. Design and synthesis of a new recyclable nanohydrogel based on chitosan for Deltamethrin removal from aqueous solutions: Optimization and modeling by RSM-ANN. Int J Biol Macromol 2024; 283:137921. [PMID: 39577533 DOI: 10.1016/j.ijbiomac.2024.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/23/2023] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
In this study, a new magnetic biocompatible hydrogel was synthesized as an adsorbent for Deltamethrin pesticide removal. The optimal conditions and adsorption process of Deltamethrin by chitosan/polyacrylic acid/Fe3O4 nanocomposite hydrogel was studied by Response Surface Methodology by Central Composite Design (RSM-CCD) and Artificial Neural Network (ANN). This adsorbents were synthesized, and then characterized and investigated using FT-IR, XRD, FE-SEM, EDX, Map, VSM, and TGA methods. The results of these analyses showed that the nanocomposite hydrogel was well synthesized and has the ability to adsorb the Deltamethrin pesticide. The results obtained through analysis using response surface methodology showed that the maximum amount of adsorption was 99.79 % at 26 °C, while pH, initial concentration, contact time, and adsorbent dose were 7, 22 ppm, 90 min, and 1.3 g/L respectively. Comparison between results obtained from CCD modeling and artificial neural network proved that both methods had high ability to predict the adsorption process but the CCD method had higher coefficient of determination and lower error. The equilibrium and kinetic study of the process showed that the Toth isotherm model, pseudo-second-order is all suitable for expressing the adsorption process. In addition, the adsorption mechanism followed double-exponential model that combines external and internal diffusions. Results of Thermodynamic study suggested that the Deltamethrin adsorption on CS/PAA/Fe3O4 was a spontaneous and exothermic process. The results of the equilibrium process study revealed that the adsorption process was physical and desirable, therefore, the adsorption-desorption process was performed which showed that the composite was reusable up to 10 cycles.
Collapse
Affiliation(s)
- Hossien Rasouli
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Negin Sohrabi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Biosystem Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Zandi-Darehgharibi F, Haddadi H, Asfaram A. A new tannin-based adsorbent synthesized for rapid and selective recovery of palladium and gold: Optimization using central composite design. Heliyon 2024; 10:e24639. [PMID: 38314278 PMCID: PMC10837505 DOI: 10.1016/j.heliyon.2024.e24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
A tannin-based adsorbent was synthesized by pomegranate peel tannin powder modified with ethylenediamine (PT-ED) for the rapid and selective recovery of palladium and gold. To characterize PT-ED, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS-Mapping), and Fourier transform infrared spectroscopy (FT-IR) were used. Central composite design (CCD) was used for optimization. The kinetic, isotherm, interference of coexisting metal ions, and thermodynamics were studied. The optimal conditions, including Au (III) concentration = 30 m g L - 1 , Pd (II) concentration = 30 m g L - 1 , adsorbent mass = 26 mg, pH = 2, and time = 26 min with the sorption percent more than 99 %, were anticipated for both metals using CCD. Freundlich model and pseudo-second-order expressed the isotherm and kinetic adsorption of the both metals. The inhomogeneity of the adsorbent surface and the multi-layer adsorption of gold and palladium ions on the PT-ED surface are depicted by the Freundlich model. The thermodynamic investigation showed that P d 2 + and A u 3 + ions adsorption via PT-ED was an endothermic, spontaneous, and feasible process. The maximum adsorption capacity of P d 2 + and A u 3 + ions on PT-ED was 261.189 m g g - 1 and 220.277 m g g - 1 , respectively. The probable adsorption mechanism of P d 2 + and A u 3 + ions can be ion exchange and chelation. PT-ED (26 mg) recovered gold and palladium rapidly from the co-existing metals in the printed circuit board (PCB) scrap, including Ca, Zn, Si, Cr, Pb, Ni, Cu, Ba, W, Co, Mn, and Mg with supreme selectivity toward gold and palladium. The results of this work suggest the use of PT-ED with high selectivity and efficiency to recover palladium and gold from secondary sources such as PCB scrap.
Collapse
Affiliation(s)
| | - Hedayat Haddadi
- Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
3
|
Eissa ME, Sakr AK, Hanfi MY, Sayyed MI, Al-Otaibi JS, Abdel-Lateef AM, Cheira MF, Abdelmonem HA. Physicochemical investigation of mercury sorption on mesoporous thioacetamide/chitosan from wastewater. CHEMOSPHERE 2023; 341:140062. [PMID: 37689155 DOI: 10.1016/j.chemosphere.2023.140062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Mercury is a toxic environmental element, so it was necessary to prepare a new, highly efficient, cheap sorbent to remove it. A mesoporous thioacetamide/chitosan (MTA/CS) was manufactured via a simplistic strategy; the chitin deacetylation to gain chitosan (CS) and the addition of thioacetamide. The as-prepared MTA/CS was characterized using X-ray diffraction, EDX, SEM, FTIR, and BET surface analysis. According to the findings, the MTA/CS was effectively synthesized. The removal behaviors of Hg2+ onto MTA/CS composite were inspected, which suggested that the MTA/CS composite exhibited great sorption properties for Hg2+ in liquid solutions. The maximal Hg2+ sorption capacity was 195 mg/g. The effects of temperature, Hg2+ concentration, contacting time, and MTA/CS concentration on sorption were analyzed. The 2nd-order model and Langmuir isotherm were suitable for the physicochemical adsorption processes. Thermodynamic analysis showed that the Hg2+ adsorption process onto the MTA/CS composite is exothermic and occurred spontaneously. The desorption condition of Hg2+ from its loaded MTA/CS was also gained. Likewise, the MTA/CS sorbent was undoubtedly regenerated by 0.8 M NaNO3 80 min contacting and 1:50 S:L ratio. The versatility and durability of MTA/CS sorbent were investigated via nine sorption-extraction cycles. The optimum parameters were applied to wastewater. Based on the result, the as-prepared MTA/CS might be a potential sorbent for removing Hg2+ from liquid solutions.
Collapse
Affiliation(s)
- Mohamed E Eissa
- College of Science, Chemistry Department, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Kingdom of Saudi Arabia
| | - Ahmed K Sakr
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, 48202, USA.
| | - Mohamed Y Hanfi
- Ural Federal University, St. Mira, 19, 620002, Yekaterinburg, Russia; Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
| | - M I Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman, 11622, Jordan; Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ashraf M Abdel-Lateef
- Accelerations and Ion Sources Department, Central Laboratory for Elemental and Isotopic Analysis, NRC, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed F Cheira
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt.
| | - Haeam A Abdelmonem
- Chemistry Department, Faculty of Women for Art, Science, And Education, Ain Shams University, Heliopolis, Cairo, 11757, Egypt
| |
Collapse
|
4
|
Hashmi S, Ahmed R, Rehman AU, García-Peñas A, Zahoor A, Khan F, Vatankhah-Varnosfaderani M, Alshahrani T, Stadler FJ. Study of the synergistic influence of zwitterionic interactions and graphene oxide on water diffusion mechanism and mechanical properties in hybrid hydrogel network. CHEMOSPHERE 2023; 314:137710. [PMID: 36592834 DOI: 10.1016/j.chemosphere.2022.137710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Hybrid hydrogels based on n-isopropylacrylamide, zwitterionic comonomer, and graphene oxide were synthesized to study their physical and mechanical properties. The compositional variation largely influenced the swelling characteristics of the hybrid hydrogels compared to mechanical properties, i.e., elongation and compression. Additionally, Rheometric swelling measurements on the swollen hydrogels were performed until they reached equilibrium showed a very low phase angle δ indicating strong covalent network, which intrun increases with increasing content of zwitterions and GO. Swelling kinetics were studied and found to follow Fickian dynamics, albeit zwitterion-containing gels showed a peculiar 2-step swelling pattern. Interestingly, differences in the swelling mechanism are also clear for the hydrogels with 2D GO (Graphene oxide) nano-fillers from its 1D nano-filler CNTs (Carbon nanotubes). In elongation, the samples break in a brittle fashion at Hencky strains εmax around 0.4-0.65 with the maximum stress being observed for samples with high Zw-content and 0.2% GO, which can be explained by the stress-rising properties of sharp edges of GO. In contrast, the data in compression profits from higher GO-contents as crack growth is less important in this deformation mode. This work will contribute to future composite gel applications.
Collapse
Affiliation(s)
- Saud Hashmi
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518055, PR China; Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology, Pakistan
| | - Rafiq Ahmed
- Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology, Pakistan
| | - Adeel Ur Rehman
- Department of Chemical Engineering, University of Karachi, Pakistan
| | - Alberto García-Peñas
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518055, PR China; Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911, Leganés, Madrid, Spain
| | - Awan Zahoor
- Department of Polymer & Petrochemical Engineering NED University of Engineering & Technology, Pakistan
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | | | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518055, PR China.
| |
Collapse
|
5
|
Sun Y, Gu Y, Li X, Singh RP. Synthesis of novel thiol-modified lysozyme coated magnetic nanoparticles for the high selective adsorption of Hg(II). REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Karabörk M, Muhammed BA, Tümer M, Uruş S. Organosilane-functionalized graphene oxide hybrid material: Efficient adsorbent for heavy metal ions in drinking water. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.2012676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muharrem Karabörk
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Ban Abdullelah Muhammed
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Mehmet Tümer
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Serhan Uruş
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
7
|
|
8
|
Mosavi SH, Zare‐Dorabei R, Bereyhi M. Rapid and Effective Ultrasonic‐Assisted Adsorptive Removal of Congo Red onto MOF‐5 Modified by CuCl
2
in Ambient Conditions: Adsorption Isotherms and Kinetics Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202100540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seyed Hossein Mosavi
- Research Laboratory of Spectrometry & Micro and Nano Extraction Department of Chemistry Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Rouholah Zare‐Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction Department of Chemistry Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Bereyhi
- Research Laboratory of Spectrometry & Micro and Nano Extraction Department of Chemistry Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
9
|
Zhu Y, Lin H, Feng Q, Zhao B, Lan W, Li T, Xue B, Li M, Zhang Z. Sulfhydryl-modified SiO2 cryogel: A pH-insensitive and selective adsorbent for efficient removal of mercury in waters. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Moradi M, Vasseghian Y, Khataee A, Harati M, Arfaeinia H. Ultrasound‐assisted synthesis of FeTiO3/GO nanocomposite for photocatalytic degradation of phenol under visible light irradiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118274] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Li Z, Zhuang T, Dong J, Wang L, Xia J, Wang H, Cui X, Wang Z. Sonochemical fabrication of inorganic nanoparticles for applications in catalysis. ULTRASONICS SONOCHEMISTRY 2021; 71:105384. [PMID: 33221623 PMCID: PMC7786602 DOI: 10.1016/j.ultsonch.2020.105384] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 05/04/2023]
Abstract
Catalysis covers almost all the chemical reactions or processes aiming for many applications. Sonochemistry has emerged in designing and developing the synthesis of nano-structured materials, and the latest progress mainly focuses on the synthetic strategies, product properties as well as catalytic applications. This current review simply presents the sonochemical effects under ultrasound irradiation, roughly describes the ultrasound-synthesized inorganic nano-materials, and highlights the sonochemistry applications in the inorganics-based catalysis processes including reduction, oxidation, degradation, polymerization, etc. Or all in all, the review hopes to provide an integrated understanding of sonochemistry, emphasize the great significance of ultrasound-assisted synthesis in structured materials as a unique strategy, and broaden the updated applications of ultrasound irradiation in the catalysis fields.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Tingting Zhuang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Jun Dong
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Lun Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Huiqi Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, 130012 Changchun, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China.
| |
Collapse
|
12
|
Huang J, Cui W, Liang R, Zhang L, Qiu J. Porous BMTTPA-CS-GO nanocomposite for the efficient removal of heavy metal ions from aqueous solutions. RSC Adv 2021; 11:3725-3731. [PMID: 35424284 PMCID: PMC8694123 DOI: 10.1039/d0ra07836k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/24/2020] [Indexed: 11/26/2022] Open
Abstract
In this study, a stable, cost-effective and environmentally friendly porous 2,5-bis(methylthio)terephthalaldehyde-chitosan-grafted graphene oxide (BMTTPA-CS-GO) nanocomposite was synthesized by covalently grafting BMTTPA-CS onto the surfaces of graphene oxide and used for removing heavy metal ions from polluted water. According to well-established Hg2+-thioether coordination chemistry, the newly designed covalently linked stable porous BMTTPA-CS-GO nanocomposite with thioether units on the pore walls greatly increases the adsorption capacity of Hg2+ and does not cause secondary pollution to the environment. The results of sorption experiments and inductively coupled plasma mass spectrometry measurements demonstrate that the maximum adsorption capacity of Hg2+ on BMTTPA-CS-GO at pH 7 is 306.8 mg g-1, indicating that BMTTPA-CS-GO has excellent adsorption performance for Hg2+. The experimental results show that this stable, environmentally friendly, cost-effective and excellent adsorption performance of BMTTPA-CS-GO makes it a potential nanocomposite for removing Hg2+ and other heavy metal ions from polluted water, and even drinking water. This study suggests that covalently linked crucial groups on the surface of carbon-based materials are essential for improving the adsorption capacity of adsorbents for heavy metal ions.
Collapse
Affiliation(s)
- Juan Huang
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
| | - Weirong Cui
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
| | - Ruping Liang
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University Nanchang 330031 China
| | - Li Zhang
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
| | - Jianding Qiu
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
- College of Materials and Chemical Engineering, Pingxiang University Pingxiang 337055 China
| |
Collapse
|
13
|
Mahmoudi E, Azizkhani S, Mohammad AW, Ng LY, Benamor A, Ang WL, Ba-Abbad M. Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide-silica composite as a multifunctional adsorbent. J Environ Sci (China) 2020; 98:151-160. [PMID: 33097147 DOI: 10.1016/j.jes.2020.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Sepehr Azizkhani
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Law Yong Ng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | | | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Muneer Ba-Abbad
- Gas Processing Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
14
|
Mrózek O, Melounková L, Smržová D, Machálková A, Vinklárek J, Němečková Z, Komárková B, Ecorchard P. Salt-washed graphene oxide and its cytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123114. [PMID: 32768843 DOI: 10.1016/j.jhazmat.2020.123114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The carbon nanomaterials and congeners, e.g., graphene or graphene oxide (GO), dispose of numerous unique properties, which are not necessarily intrinsic but might be related to a content of impurities. The oxidation step of GO synthesis introduces a considerable amount of metallic species. Therefore, large-scale purification is an actual scientific challenge. Here we describe new purification technique (salt‑washing), which is based on three consecutive steps: (a) aggregation of GO sheets with NaCl (b) washing of the aggregates and (c) removing of the salt to afford purified GO (swGO). The considerably improved purity of swGO was demonstrated by ICP and EPR spectroscopy. The microscopic methods (TEM with SEAD, AFM) proved that the salt-washing does not affect the morphology or concentration of defects, showing the aggregation of GO with NaCl is fully reversible. The eligibility of swGO for biomedical applications was tested using fibroblastic cell cultures. The determined IC50 values clearly show a strong correlation between the purity of samples and cytotoxicity. Although the purification decreases cytotoxicity of GO, the IC50 values are still low proving that cytotoxic effect is not only impurities-related but also an intrinsic property. These findings may represent a serious limitation for usage of GO in biomedical applications.
Collapse
Affiliation(s)
- Ondřej Mrózek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec, Řež, Czech Republic; Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| | - Lucie Melounková
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01, Hradec Králové, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Darina Smržová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec, Řež, Czech Republic
| | - Aneta Machálková
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec, Řež, Czech Republic
| | - Jaromír Vinklárek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Zuzana Němečková
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec, Řež, Czech Republic
| | - Bára Komárková
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec, Řež, Czech Republic; Faculty of Science, University of Ostrava, 30. dubna 22, 701 30, Ostrava, Czech Republic
| | - Petra Ecorchard
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec, Řež, Czech Republic
| |
Collapse
|
15
|
Xu JC, Ma Q, Chen C, Wu QT, Long XX. Cadmium adsorption behavior of porous and reduced graphene oxide and its potential for promoting cadmium migration during soil electrokinetic remediation. CHEMOSPHERE 2020; 259:127441. [PMID: 32593826 DOI: 10.1016/j.chemosphere.2020.127441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, a porous reduced graphene oxide (PRGO) carbon nanomaterial was successfully obtained by activation of natural graphite with KOH at high temperature and was applied as an auxiliary electrode in soil electrokinetic remediation to investigate the promoting effect on Cd migration. We found that PRGO contained a large amount of oxygen-containing groups (hydroxyl and carboxyl groups) and exhibited high Cd2+ adsorption efficiency at pH values above 4, achieving a maximum adsorption capacity of 434.78 mg/g for Cd. In addition, PRGO could selectively adsorb Cd, Pb, Cu, and Zn but not K, Na, or Mg from soil solution. The electrokinetic remediation experiment showed that the PRGO auxiliary electrode promoted the migration of Cd and effectively controlled the increase in soil pH near the cathode, possibly due to ion exchange between the surface functional groups on the auxiliary electrode and Cd2+. In addition, the location of the PRGO auxiliary electrode strongly influenced the migration of Cd. For instance, the soil Cd concentration of treatment H-5 was 57.86% lower than that of H-0 at a distance of 5-10 cm from the electrode; however, the soil Cd concentration measured at 0-5 cm for treatment H-5 was 34.84% higher than that of treatment H-0. Our study demonstrated that PRGO could be applied as an auxiliary electrode to promote Cd migration during electrokinetic remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Jia-Cheng Xu
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qiang Ma
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Chengyu Chen
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Qi-Tang Wu
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xin-Xian Long
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
16
|
Jin JU, Yeo H, Hahn JR, Yu J, Ku BC, You NH. Multifunctional aminoethylpiperazine-modified graphene oxide with high dispersion stability in polar solvents for mercury ion adsorption. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Huang Z, Zhao M, Wang C, Wang S, Dai L, Zhang L. Preparation of a Novel Zn(II)-Imidazole Framework as an Efficient and Regenerative Adsorbent for Pb, Hg, and As Ion Removal From Water. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41294-41302. [PMID: 32812736 DOI: 10.1021/acsami.0c10298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An outstanding metal-organic framework sorbent (Zn-MOF) was prepared using Zn2+ and 3-amino-5-mercapto-1,2,4-triazole to eliminate toxic metal ions from water. Zn-MOF was detected via using Fourier-transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) analysis, and X-ray photoelectron spectroscopy (XPS). Zn-MOF is stable and has a very large surface area. The uptake properties of Zn-MOF were investigated. The maximum uptake capacity of Zn-MOF for Pb, Hg, and As ions was 1097, 32, and 718 mg/g, respectively. This was obtained at pH = 4, 5, and 6, respectively. The adsorption data is in good agreement with the Langmuir and pseudo-second-order rate models, indicating that the uptake process of Zn-MOF for toxic metal ions was a single layer uptake on a uniform surface via exchange of valence electrons. Thermodynamics shows that the uptake process is autogenic and endothermic. Zn-MOF can be reused at least 6 times. Mercury and lead strongly coordinated with Zn-MOF. The interaction between arsenic and Zn-MOF is weak chemical coordination and ion exchange. Zn-MOF has wide application prospects for toxic metal ion elimination.
Collapse
Affiliation(s)
- Zhen Huang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, P. R. China
| | - Minghu Zhao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, P. R. China
| | - Chen Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, P. R. China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, P. R. China
| | - Linqing Dai
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, P. R. China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, P. R. China
| |
Collapse
|
18
|
Nasimi S, Baghdadi M, Dorosti M. Surface functionalization of recycled polyacrylonitrile fibers with ethylenediamine for highly effective adsorption of Hg(II) from contaminated waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110883. [PMID: 32721322 DOI: 10.1016/j.jenvman.2020.110883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
In this research, recycled polyacrylonitrile fibers (PANFs) acquired from the textile recycling process were amino-functionalized in one simple step by means of ethylenediamine (EDA). The amino-functionalized polyacrylonitrile fibers (AF-PANFs) were utilized for adsorption of Hg(II) ions from aquatic media. Temperature and contact time during the synthesis were optimized by the Central Composite Design (CCD) method. FE-SEM, EDS, BET, and FT-IR analysis, and pHZPC measurement were conducted to characterize the features of the AF-PANFs. The average diameter of raw fiber was 20 μm, which increased 20 percent after functionalizing. The impact of independent parameters on the adsorption process was investigated using the Box-Behnken Design (BBD) method during the batch experiments. The column tests were conducted in a semi-continuous system with the removal efficiency of over 99% for various initial concentrations after specific cycles. Freundlich, Langmuir, UT, Redlich-Peterson, and Temkin isotherm models were employed to analyze the relation between the final concentration of Hg(II) (Co) and the equilibrium adsorption capacity (qe) of the AF-PANFs. According to the isotherm models and experimental results, the maximum qe of the AF-PANFs was 1116 mg g-1 at initial Hg(II) concentration of 850 mg L-1, contact time of 120 min, solution pH of 6, and at 40 °C. Kinetic and thermodynamic studies illustrated the approximate equilibrium time and endothermicity or exothermicity of the process. Regeneration of the AF-PANFs was accomplished for seven times without efficiency drop. The superb performance of the AF-PANFs in the presence of co-existing ions did not decline.
Collapse
Affiliation(s)
- Sorour Nasimi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Majid Baghdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mostafa Dorosti
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
19
|
Li Y, Cui R, Huang H, Dong J, Liu B, Zhao D, Wang J, Wang D, Yuan H, Guo X, Sun B. High performance determination of Pb2+ in water by 2,4-dithiobiuret-Reduced graphene oxide composite with wide linear range and low detection limit. Anal Chim Acta 2020; 1125:76-85. [DOI: 10.1016/j.aca.2020.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
|
20
|
Sricharoen P, Limchoowong N, Nuengmatcha P, Chanthai S. Ultrasonic-assisted recycling of Nile tilapia fish scale biowaste into low-cost nano-hydroxyapatite: Ultrasonic-assisted adsorption for Hg 2+ removal from aqueous solution followed by "turn-off" fluorescent sensor based on Hg 2+-graphene quantum dots. ULTRASONICS SONOCHEMISTRY 2020; 63:104966. [PMID: 31972376 DOI: 10.1016/j.ultsonch.2020.104966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 05/25/2023]
Abstract
This study was planned to recycle calcium and the phosphorus-rich Nile tilapia fish scale biowaste into nano-hydroxyapatite (FHAP), using ultrasonic-assisted extraction of calcium and phosphorus from fish scales, which was optimized in term of extraction time, acid concentration, extraction temperature, and ultrasonic power. These two elements were determined simultaneously by inductively coupled plasma atomic emission spectrometry and the FHAP phase was formed upon addition of the extracted element solution in alkaline medium using homogenous precipitation assisted with ultrasound energy. The FHAP adsorbent was characterized by x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller. A combination of FHAP and the ultrasonic method was then used to remove Hg2+ from aqueous solution. Four significant variables affecting Hg2+ removal, namely, adsorbent dosage, pH, ultrasonic power, and adsorption time, were studied. The results exhibited that the optimal conditions for maximizing the removal of Hg2+ were 0.02 g adsorbent dosage, pH 8, 0.4 kW ultrasonic power, 20 min adsorption time, and 30 °C adsorption temperature. The sorption mechanism of Hg2+ was revealed by isotherm modeling, indicating that FHAP adsorbent has a potential for Hg2+ removal in aqueous media with the maximum adsorption capacity being 227.27 mg g-1. This adsorption behavior is in agreement with the Langmuir model as reflected by a satisfactory R2 value of 0.9967, when the kinetics data were fitted with pseudo-second-order. Therefore, the FHAP could be an alternative adsorbent for the ultrasonic-assisted removal of Hg2+ at very high efficiency and within a very short period of time.
Collapse
Affiliation(s)
- Phitchan Sricharoen
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand.
| | - Prawit Nuengmatcha
- Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Saksit Chanthai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
21
|
Jeon C, Solis KL, An HR, Hong Y, Igalavithana AD, Ok YS. Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122048. [PMID: 31955026 DOI: 10.1016/j.jhazmat.2020.122048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Sulfur-modified pine-needle biochar (BC-S) was produced for the removal of Hg(II) in aqueous media via post-pyrolysis S stream exposure. Fourier-transform infrared spectroscopy, elemental analysis, and X-ray photoelectron spectroscopy confirmed the addition of S(0) groups on the surface of BC-S. Hg(II) adsorption on BC-S was best described by the Freundlich isotherm with a KF of 21.0 mg L g-1 and a pseudo-second-order adsorption kinetics model with a rate of 0.35 g mg-1 min-1. Hg(II) removal on BC-S was found to be an endothermic process that relied on C-Hg and S-Hg interactions rather than reduction by S(0) groups. The adsorption increased with increasing solution pH and decreased with increasing dissolved organic matter concentration, but was unaffected by increasing salt concentrations. BC-S showed a maximum of 3 % S leaching in aqueous media after 28-d exposure time, and exposure to aqueous media did not convert Hg(II) to elemental Hg. Overall, BC-S exhibited superior Hg(II) removal performance over unmodified BC, thus having potential applications in natural water and wastewater treatment with no significant threat of secondary pollution.
Collapse
Affiliation(s)
- Cheolho Jeon
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Kurt Louis Solis
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Ha-Rim An
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong City, Republic of Korea.
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Dastkhoon M, Ghaedi M, Asfaram A, Alipanahpour Dil E. Comparative study of ability of sonochemistry combined ZnS:Ni nanoparticles-loaded activated carbon in reductive of organic pollutants from environmental water samples. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Abu-Nada A, McKay G, Abdala A. Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E595. [PMID: 32214007 PMCID: PMC7153373 DOI: 10.3390/nano10030595] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/21/2022]
Abstract
The presence of traces of heavy metals in wastewater causes adverse health effects on humans and the ecosystem. Adsorption is a low cost and eco-friendly method for the removal of low concentrations of heavy metals from wastewater streams. Over the past several years, graphene-based materials have been researched as exceptional adsorbents. In this review, the applications of graphene oxide (GO), reduce graphene oxide (rGO), and graphene-based nanocomposites (GNCs) for the removal of various metals are analyzed. Firstly, the common synthesis routes for GO, rGO, and GNCs are discussed. Secondly, the available literature on the adsorption of heavy metals including arsenic, lead, cadmium, nickel, mercury, chromium and copper using graphene-based materials are reviewed and analyzed. The adsorption isotherms, kinetics, capacity, and removal efficiency for each metal on different graphene materials, as well as the effects of the synthesis method and the adsorption process conditions on the recyclability of the graphene materials, are discussed. Finally, future perspectives and trends in the field are also highlighted.
Collapse
Affiliation(s)
- Abdulrahman Abu-Nada
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, PO Box 34110, Doha, Qatar;
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, PO Box 34110, Doha, Qatar;
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, POB 23874, Doha, Qatar
| |
Collapse
|
24
|
Reynosa-Martínez AC, Tovar GN, Gallegos WR, Rodríguez-Meléndez H, Torres-Cadena R, Mondragón-Solórzano G, Barroso-Flores J, Alvarez-Lemus MA, Montalvo VG, López-Honorato E. Effect of the degree of oxidation of graphene oxide on As(III) adsorption. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121440. [PMID: 31776081 DOI: 10.1016/j.jhazmat.2019.121440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 05/21/2023]
Abstract
The study of the interaction between graphene oxide (GO) and arsenic is of great relevance not only in the design of adsorbent materials to remove this contaminant but also in the understanding of its combined nanotoxicity. In this work, we show that As(III) adsorption, primarily H3AsO3, by graphene oxide is affected by its degree of oxidation. Three types of GO with C/O ratios between 1.35 and 1.98 were produced, resulting in important variations in the concentration of COH and COC functional groups. The less oxidized material reached a maximum As(III) adsorption capacity of 123 mg/g, whereas the GO with the highest degree of oxidation reached a value of 288 mg/g at pH 7, the highest reported in the literature. We also show that sulfates and carbonates present in water strongly inhibit As(III) adsorption. The interaction between graphene oxide and As(III) was also studied by Density Functional Theory (DFT) computer models showing that graphene oxide interacts with As(III) primarily through hydrogen bonds, having interaction energies with the hydroxyl and epoxide groups of 1508.6 and 1583.6 kJ/mol, respectively. Finally, cytotoxicity tests showed that the graphene oxide maintained cellular viability of 57% with 50 μg/ml, regardless of its degree of oxidation.
Collapse
Affiliation(s)
- A C Reynosa-Martínez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo. Av. Industria Metalúrgica, 1062, Parque Industrial, Ramos Arizpe, Coahuila, 25900, Mexico
| | - G Navarro Tovar
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo. Av. Industria Metalúrgica, 1062, Parque Industrial, Ramos Arizpe, Coahuila, 25900, Mexico
| | - W R Gallegos
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo. Av. Industria Metalúrgica, 1062, Parque Industrial, Ramos Arizpe, Coahuila, 25900, Mexico
| | - H Rodríguez-Meléndez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo. Av. Industria Metalúrgica, 1062, Parque Industrial, Ramos Arizpe, Coahuila, 25900, Mexico
| | - R Torres-Cadena
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México, 50200 Mexico
| | - G Mondragón-Solórzano
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México, 50200 Mexico
| | - J Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México, 50200 Mexico
| | - M A Alvarez-Lemus
- Universidad Juárez Autónoma de Tabasco, Av. Universidad s/n, Magisterial, Villahermosa, Tabasco, 86040, Mexico
| | - V García Montalvo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CD. MX., 04510, Mexico
| | - E López-Honorato
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo. Av. Industria Metalúrgica, 1062, Parque Industrial, Ramos Arizpe, Coahuila, 25900, Mexico.
| |
Collapse
|
25
|
Awad FS, AbouZied KM, Abou El-Maaty WM, El-Wakil AM, Samy El-Shall M. Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
26
|
Liu C, Yang L, Zhang J, Sun J. Facile fabrication of a heterogeneous Co-modified pyridinecarboxaldehyde-polyethylenimine catalyst for efficient CO 2 conversion under mild conditions. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01401b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogeneous Co-modified pyridinecarboxaldehyde-polyethylenimine catalyst with active metal sites and amine groups exhibited high catalytic activity for CO2 conversion under mild conditions, even at ambient temperature.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Li Yang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jiaxu Zhang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
27
|
Lei Y, Zhang F, Guan P, Guo P, Wang G. Rapid and selective detection of Hg(ii) in water using AuNP in situ-modified filter paper by a head-space solid phase extraction Zeeman atomic absorption spectroscopy method. NEW J CHEM 2020. [DOI: 10.1039/d0nj02294b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuNPs modified filter paper as sensitive mercury sensor was applied in the head-space solid phase extraction (HS-SPE) of Hg(ii). With negative pressure sampling, it can achieve in situ sampling and detection rapidly in a complex environment.
Collapse
Affiliation(s)
- Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Fang Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Peng Guan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Guanhua Wang
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
28
|
Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O'Connor D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. ENVIRONMENT INTERNATIONAL 2020; 134:105281. [PMID: 31726360 DOI: 10.1016/j.envint.2019.105281] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 05/24/2023]
Abstract
Mercury contamination in soil, water and air is associated with potential toxicity to humans and ecosystems. Industrial activities such as coal combustion have led to increased mercury (Hg) concentrations in different environmental media. This review critically evaluates recent developments in technological approaches for the remediation of Hg contaminated soil, water and air, with a focus on emerging materials and innovative technologies. Extensive research on various nanomaterials, such as carbon nanotubes (CNTs), nanosheets and magnetic nanocomposites, for mercury removal are investigated. This paper also examines other emerging materials and their characteristics, including graphene, biochar, metal organic frameworks (MOFs), covalent organic frameworks (COFs), layered double hydroxides (LDHs) as well as other materials such as clay minerals and manganese oxides. Based on approaches including adsorption/desorption, oxidation/reduction and stabilization/containment, the performances of innovative technologies with the aid of these materials were examined. In addition, technologies involving organisms, such as phytoremediation, algae-based mercury removal, microbial reduction and constructed wetlands, were also reviewed, and the role of organisms, especially microorganisms, in these techniques are illustrated.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yining Cao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Zhao M, Huang Z, Wang S, Zhang L, Zhou Y. Design of l-Cysteine Functionalized UiO-66 MOFs for Selective Adsorption of Hg(II) in Aqueous Medium. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46973-46983. [PMID: 31746183 DOI: 10.1021/acsami.9b17508] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mercury ions can cause a series of hazards to humans and the environment, even in trace amounts. Here, we designed a novel adsorbent (Cys-UiO-66) by functionalizing NH2-UiO-66 with l-cysteine for selective removal of Hg(II) from solution. The Cys-UiO-66 was characterized by different instruments. The adsorption property of Cys-UiO-66 was evaluated by batch methods. The maximum adsorption capacity was 350.14 mg/g at pH 5.0. Furthermore, the adsorption isotherm and kinetics models were in accord with the Langmuir and pseudo-second-order models, respectively, evidencing that the adsorption behavior was dominated by monolayer chemisorption. The Cys-UiO-66 had better affinity for Hg(II) than other coexisting ions in wastewater and could be regenerated for at least five cycles. The results prove that Cys-UiO-66 is a talented and efficient sorbent for mercury ions.
Collapse
Affiliation(s)
- Minghu Zhao
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology , Kunming 650093 , China
| | - Zhen Huang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology , Kunming 650093 , China
| | - Shixing Wang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology , Kunming 650093 , China
| | - Libo Zhang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology , Kunming 650093 , China
| | - Yang Zhou
- School of Textile Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
| |
Collapse
|
30
|
Magnetism-reinforced in-tube solid phase microextraction for the online determination of trace heavy metal ions in complex samples. Anal Chim Acta 2019; 1090:82-90. [DOI: 10.1016/j.aca.2019.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022]
|
31
|
Yap PL, Kabiri S, Auyoong YL, Tran DNH, Losic D. Tuning the Multifunctional Surface Chemistry of Reduced Graphene Oxide via Combined Elemental Doping and Chemical Modifications. ACS OMEGA 2019; 4:19787-19798. [PMID: 31788611 PMCID: PMC6882126 DOI: 10.1021/acsomega.9b02642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 06/02/2023]
Abstract
The synthesis of graphene materials with multiple surface chemistries and functionalities is critical for further improving their properties and broadening their emerging applications. We present a simple chemical approach to obtain bulk quantities of multifunctionalized reduced graphene oxide (rGO) that combines chemical doping and functionalization using the thiol-ene click reaction. Controllable modulation of chemical multifunctionality was achieved by simultaneous nitrogen doping and gradual chemical reduction of graphene oxide (GO) using ammonia and hydrazine, followed by covalent attachment of amino-terminated thiol molecules using the thiol-ene click reaction. A series of N-doped rGO (N-rGO) precursors with different levels of oxygen groups were synthesized by adjusting the amount of reducing agent (hydrazine), followed by subsequent covalent attachment of cysteamine via the thermal thiol-ene click reaction to yield different ratios of mixed functional groups including N (pyrrolic N, graphitic N, and aminic N), S (thioether S, thiophene S, and S oxides), and O (hydroxyl O, carbonyl O, and carboxyl O) on the reduced GO surface. Detailed XPS analysis confirmed the disappearance of unstable pyridinic N in cys-N-rGO and the reduction degree threshold of N-rGO for effective cysteamine modification to take place. Our study establishes a strong correlation between different reduction degrees of N-rGO with several existing oxygen functional groups and addition of new tunable functionalities including covalently attached nitrogen (amino) and sulfur (C-S-C, C=S, and S-O). This simple and versatile approach provides a valuable contribution for practical designing and synthesis of a broad range of functionalized graphene materials with tailorable functionalities, doping levels, and interfacial properties for potential applications such as polymer composites, supercapacitors, electrocatalysis, adsorption, and sensors.
Collapse
Affiliation(s)
- Pei Lay Yap
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Shervin Kabiri
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
- School
of Agriculture, Food and Wine, The University
of Adelaide, PMB 1, Waite
Campus, Glen Osmond, SA 5064, Australia
| | - Yow Loo Auyoong
- Research
& Business Partnerships, Research Services, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Diana N. H. Tran
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School
of Chemical Engineering and Advanced Materials and ARC Hub for Graphene
Enabled Industry Transformation, The University
of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
32
|
Habibi A, Sadat Shandiz SA, Salehzadeh A, Moradi-Shoeili Z. Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells. J Biol Inorg Chem 2019; 25:13-22. [PMID: 31630253 DOI: 10.1007/s00775-019-01728-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
The present study highlights the apoptotic activity of magnetic Fe3O4 nanoparticulates functionalized by glutamic acid and 2-pyridinecarboxaldehyde thiosemicarbazone (PTSC) toward human lung epithelial carcinoma A549 cell line. To this aim, the Fe3O4 nanoparticulates were prepared using co-precipitation method. Then, the glutamic acid and Fe3O4 nanoparticulates were conjugated to each other. The product was further functionalized with bio-reactive PTSC moiety. In addition, the synthesized Fe3O4@Glu/PTSC nanoparticulates were characterized by physico-chemical techniques including scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and zeta potential analysis. The effects of in vitro cell viability in Fe3O4@Glu/PTSC nanoparticulate indicated the anti-proliferative properties in a dose-dependent manner (IC50 = 135.6 µM/mL). The high selectivity for tumor cells and far below of activity in HEK293 non-tumorigenic cells is considered as an important feature for this complex (SI, 3.48). Based on the results, PTSC failed to reveal any activity against A549 cells alone. However, Fe3O4 nanoparticulates had some effects in inhibiting the growth of lung cancer cell. Furthermore, Bax and Bcl-2 gene expressions were quantified by real-time PCR method. The expression of Bax increased 1.62-fold, while the expression of Bcl-2 decreased 0.76-fold at 135.6 µM/mL concentration of Fe3O4@Glu/PTSC compared to untreated A549 cells. Furthermore, the Fe3O4@Glu/PTSC nanoparticulate-inducing apoptosis properties were evaluated by Hoechst 33258 staining, Caspase-3 activation assay and Annexin V/propidium iodide staining. The results of the present study suggest that Fe3O4@Glu/PTSC nanoparticulates exhibit effective anti-cancer activity against lung cancer cells.
Collapse
Affiliation(s)
- Alireza Habibi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| |
Collapse
|
33
|
Baştürk E, Alver A. Modeling azo dye removal by sono-fenton processes using response surface methodology and artificial neural network approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109300. [PMID: 31351408 DOI: 10.1016/j.jenvman.2019.109300] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/16/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Textile industry wastewaters, which cause serious problems in the environment and human health, include synthetic dyes, complex organic pollutants, surfactants, and other toxic chemicals and therefore must be removed by advanced treatment methods. Determination of appropriate treatment conditions for efficient use of advanced treatment methods is an important and necessary step. In the last thirty years, the Artificial Neural Network-Genetic Algorithm (ANN-GA) and Response Surface Methodology (RSM) have emerged as the most effective empirical modeling and optimization methods especially for nonlinear systems. Reactive Red 195 azo dyestuff was chosen as the target pollutant. The color removal efficiency was modeled and optimized as a function of Sono-Fenton conditions such as H2O2 dosage, Fe2+ dosage, initial pH value, ultrasound power, and ultrasound frequency, using ANN-GA and RSM. The generalization and predictive ability of these methods were compared using the results of the 46 experimental sets generated by the Box-Behnken design. The mean square errors for these models are 3.01612 and 0.00295, and the regression coefficients showing the superiority of ANN in determining nonlinear behavior are 0.9856 and 0.9164, respectively. In optimal conditions, the prediction errors with hybrid ANN-GA and RSM models are 0.002% and 3.225%, respectively.
Collapse
Affiliation(s)
- Emine Baştürk
- Department of Environmental Engineering, Engineering Faculty, Aksaray University, Aksaray, Turkey.
| | - Alper Alver
- Department of Environmental Engineering, Engineering Faculty, Aksaray University, Aksaray, Turkey.
| |
Collapse
|
34
|
Tarahomi M, Alinezhad H, Maleki B. Immobilizing Pd nanoparticles on the ternary hybrid system of graphene oxide, Fe
3
O
4
nanoparticles, and PAMAM dendrimer as an efficient support for catalyzing sonogashira coupling reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5203] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehrasa Tarahomi
- Faculty of ChemistryUniversity of Mazandaran P.O. Box 47416‐95447 Babolsar Iran
| | | | - Behrooz Maleki
- Department of Chemistry, Faculty of SciencesHakim Sabzevari University 96179‐76487 Sabzevar Iran
| |
Collapse
|
35
|
Saini S, Chawla J, Kumar R, Kaur I. Response surface methodology (RSM) for optimization of cadmium ions adsorption using C16-6-16 incorporated mesoporous MCM-41. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0922-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
36
|
Fu CC, Hsieh CT, Juang RS, Yang JW, Gu S, Gandomi YA. Highly efficient carbon quantum dot suspensions and membranes for sensitive/selective detection and adsorption/recovery of mercury ions from aqueous solutions. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Amiri-Yazani T, Zare-Dorabei R, Rabbani M, Mollahosseini A. Highly efficient ultrasonic-assisted pre-concentration and simultaneous determination of trace amounts of Pb (II) and Cd (II) ions using modified magnetic natural clinoptilolite zeolite: Response surface methodology. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Samaddar P, Kumar S, Kim KH. Polymer Hydrogels and Their Applications Toward Sorptive Removal of Potential Aqueous Pollutants. POLYM REV 2019. [DOI: 10.1080/15583724.2018.1548477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pallabi Samaddar
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Yap PL, Kabiri S, Tran DNH, Losic D. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6350-6362. [PMID: 30507147 DOI: 10.1021/acsami.8b17131] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineering of multifunctional binding chemistry on graphene composites using thiol-ene click reaction for selective and highly efficient adsorption of mercury(II) is demonstrated. Graphene oxide (GO) is used as an initial material for covalent attachment of cysteamine molecules by thiol-ene click reaction on C═C groups to achieve a partially reduced graphene surface with multiple binding chemistry such as O, S, and N. Batch adsorption studies showed remarkable adsorption rate with only 1 mg L-1 dosage of adsorbent used to remove 95% Hg (II) (∼1.5 mg L-1) within 90 min. The high adsorption capacity of 169 ± 19 mg g-1, high selectivity toward Hg in the presence of 30 times higher concentration of competing ions (Cd, Cu, Pb) and high regeneration ability (>97%) for five consecutive adsorption-desorption cycles were achieved. Comparative study with commercial activated carbon using spiked Hg (II) river water confirmed the high performance and potential of this adsorbent for real mercury remediation of environmental and drinking waters.
Collapse
Affiliation(s)
- Pei Lay Yap
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Shervin Kabiri
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Diana N H Tran
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Dusan Losic
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
40
|
Mensah A, Lv P, Narh C, Huang J, Wang D, Wei Q. Sequestration of Pb(II) Ions from Aqueous Systems with Novel Green Bacterial Cellulose Graphene Oxide Composite. MATERIALS 2019; 12:ma12020218. [PMID: 30634615 PMCID: PMC6357055 DOI: 10.3390/ma12020218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
In this study, a novel green adsorbent material prepared by the esterification of bacterial cellulose (BC) and graphene oxide (GO), richly containing hydroxyl, alkyl, and carboxylate groups was characterised by FTIR (Fourier Transform infrared spectroscopy), XRD (X-ray diffraction), SEM (Scanning electron microscopy) and TGA (Thermo-graphimetric analysis). The specific surface area (SSA) and pore size distribution (PSD) analysis of materials were also analysed. Batch experiments–adsorption studies confirmed the material to have a very high Pb2+ removal efficiency of over 90% at pH 6–8. Kinetic studies showed that the uptake of metal ions was rapid with equilibrium attained after 30 min and fitted well with the pseudo-second-order rate model (PSO). Isotherm results with a maximum adsorption capacity (Qmax) of 303.03 mg/g were well described by Langmuir’s model compared to Freundlich. Desorption and re-adsorption experiments realised that both adsorbent and adsorbates could be over 90–95% efficiently recovered and reused using 0.1 M HNO3 and 0.1 M HCl.
Collapse
Affiliation(s)
- Alfred Mensah
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Christopher Narh
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Jieyu Huang
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Di Wang
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
41
|
Mirzajani R, Karimi S. Ultrasonic assisted synthesis of magnetic Ni-Ag bimetallic nanoparticles supported on reduced graphene oxide for sonochemical simultaneous removal of sunset yellow and tartrazine dyes by response surface optimization: Application of derivative spectrophotometry. ULTRASONICS SONOCHEMISTRY 2019; 50:239-250. [PMID: 30274892 DOI: 10.1016/j.ultsonch.2018.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The magnetic Ni-Ag bimetallic nanoparticles supported on reduced graphene oxide (Ni-Ag NPs/rGO) was synthesized and characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM). Subsequently, this magnetic hybrid material as a novel adsorbent was applied for the sonochemical simultaneous removal of sunset yellow and tartrazine dyes in combination with first-order derivative spectrophotometric method to resolve the overlap between the spectra of these dyes. With magnetic properties, the adsorbent could easily be collected from aqueous solution using an external magnetic field. The parameters including initial concentration of each dye, adsorbent dosage and sonication time were studied by Box-Behnken design (BBD) and response surface methodology (RSM), while pH was studied by one-at-a-time approach. According to Box-Behnken design based on desirability function (DF), the best experimental conditions was set as initial sunset yellow concentration 10 mgL-1, initial tartrazine concentration 8.5 mgL-1, adsorbent dosage 0.045 g and sonication time of 15 min. The equilibrium data was fitted to different isotherm models and the results revealed the suitability of the Langmuir model. The maximum sorption capacity calculated from the Langmuir model was 28.57 and 26.31 mg g-1 for sunset yellow and tartrazine, respectively. Kinetic data revealed that the adsorption process followed a pseudo-second-order model. The reusability of the magnetite nanoparticles revealed about 8% decrease in the removal efficiency within four consecutive runs.
Collapse
Affiliation(s)
- Roya Mirzajani
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Somayeh Karimi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
42
|
$$\hbox {SnO}_{x}$$
SnO
x
-Impregnated Clinoptilolite for Efficient Mercury Removal from Liquid Hydrocarbon. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-018-3386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Masoudian N, Rajabi M, Ghaedi M, Asghari A. Highly efficient adsorption of Naphthol Green B and Phenol Red dye by Combination of Ultrasound wave and Copper-Doped Zinc Sulfide Nanoparticles Loaded on Pistachio-Nut Shell. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Navid Masoudian
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Mehrorang Ghaedi
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Alireza Asghari
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| |
Collapse
|
44
|
Tang Q, Duan T, Li P, Zhang P, Wu D. Enhanced Defluoridation Capacity From Aqueous Media via Hydroxyapatite Decorated With Carbon Nanotube. Front Chem 2018; 6:104. [PMID: 29696138 PMCID: PMC5904275 DOI: 10.3389/fchem.2018.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022] Open
Abstract
In this work, the potential of a novel hydroxyapatite decorated with carbon nanotube composite (CNT-HAP) for fluoride removal was investigated. The synthesized CNT-HAP composite was systematically characterized by X-ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM) and Brunauer–Emmett–Teller(BET). Batch adsorption experiments were conducted to investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has a maximum adsorption capacity of 11.05 mg·g−1 for fluoride, and the isothermal adsorption data were fitted by the Freundlich model to calculate the thermodynamic parameters. Thermodynamic analysis implies that the adsorption of fluoride on CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows pseudo-second-order model. The effects of solution pH, co-existing anions and reaction temperature on defluorination efficiency were examined to optimize the operation conditions for fluoride adsorption. It is found that the optimized pH-value for fluoride removal by CNT-HAP composite is 6. In addition, among five common anions studied in this work, the presence of HCO3- and PO43- could considerably affect the fluoride removal by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal by CNT-HAP is analyzed, and an anion exchange process is proposed.
Collapse
Affiliation(s)
- Qingzi Tang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Tongdan Duan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Dastkhoon M, Ghaedi M, Asfaram A, Javadian H. Synthesis of CuS nanoparticles loaded on activated carbon composite for ultrasound-assisted adsorption removal of dye pollutants: Process optimization using CCD-RSM, equilibrium and kinetic studies. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mehdi Dastkhoon
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Mehrorang Ghaedi
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Arash Asfaram
- Medicinal Plants Research Center; Yasuj University of Medical Sciences; Yasuj Iran
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
| |
Collapse
|
46
|
Ahmadizadegan H, Esmaielzadeh S, Ranjbar M, Marzban Z, Ghavas F. Synthesis and characterization of polyester bionanocomposite membrane with ultrasonic irradiation process for gas permeation and antibacterial activity. ULTRASONICS SONOCHEMISTRY 2018; 41:538-550. [PMID: 29137785 DOI: 10.1016/j.ultsonch.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/21/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Optically active bionanocomposite membranes composed of polyester (PE) and cellulose/silica bionanocomposite (BNCs) prepared with simple, green and inexpensive ultrasonic irradiation process. It is a novel method to enhance the gas separation performance. The novel optically active diol containing functional trifluoromethyl groups was prepared in four steps reaction and it was fully characterized by different techniques. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composites were well dispersed in the polymer matrix on a nanometer scale. The mechanical properties nanocomposite films were improved by the addition of cellulose/silica. Thermo gravimetric analysis (TGA) data indicated an increase thermal stability of the PE/BNCs in compared to the pure polymer. The results obtained from gas permeation experiments showed that adding cellulose/silica to the PE membrane structure increased the permeability of the membranes. The increase in the permeability of the gases was as follows: PCH4 (38%) <PN2 (58%) <PCO2 (88%) <PO2 (98%) Adding silica nanoparticles into the PE matrix, improved the separation performance of carbon dioxide/methane and carbon dioxide/nitrogen gases. Increasing the cellulose/silica mass fraction in the membrane increased the diffusion coefficients of gases considered in the current study. Further, antimicrobial test against pathogenic bacteria was carried out.
Collapse
Affiliation(s)
- Hashem Ahmadizadegan
- Department of Chemistry, Darab Branch, Islamic Azad University, Darab 7481783143-196, Islamic Republic of Iran.
| | - Sheida Esmaielzadeh
- Department of Chemistry, Darab Branch, Islamic Azad University, Darab 7481783143-196, Islamic Republic of Iran; Young Researchers and Elite Club, Darab Branch, Islamic Azad University, Darab, Islamic Republic of Iran
| | - Mahdi Ranjbar
- Department of Chemistry, Darab Branch, Islamic Azad University, Darab 7481783143-196, Islamic Republic of Iran; Young Researchers and Elite Club, Darab Branch, Islamic Azad University, Darab, Islamic Republic of Iran
| | - Zahra Marzban
- Department of Nursing, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Islamic Republic of Iran
| | - Fatemeh Ghavas
- Department of Nursing, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Islamic Republic of Iran
| |
Collapse
|
47
|
Dinari M, Salehi E, Abdolmaleki A. Thermal and morphological properties of nanocomposite materials based on graphene oxide and l-leucine containing poly(benzimidazole-amide) prepared by ultrasonic irradiation. ULTRASONICS SONOCHEMISTRY 2018; 41:59-66. [PMID: 29137790 DOI: 10.1016/j.ultsonch.2017.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
A new poly(benzimidazole-amide) (PBIA) was fabricated by polycondensation of 1,3-bis(5-amino-1H-benzimidazole-2-yl)benzene with chiral diacid under green media by using tetra-n-butylammonium bromide as a cheap commercially available molten ionic salt at 120°C. The affection of reaction time on the polymer yield and viscosity was tested and optimized for PBIA. Inherent viscosity value of the prepared PBIA under optimized conditions is 0.31dL/g. Then to acquire a uniformly dispersion of graphene oxide (GO) in the PBIA matrix, GO was prepared through strong oxidation procedure. After that, GO/PBIA nanocomposites (NCs) with different loading of GO were synthesized through solution mixing method under ultrasonic irradiation and the resulting NCs were characterized by different techniques. Through FE-SEM micrographs and TEM results of NC samples it can be found that the individual GO sheets were good dispersed in the polymer matrix. Also, the thermal properties of the obtained NCs were investigated and the obtained results illustrate high thermal stability with LOI values around 39-41%.
Collapse
Affiliation(s)
- Mohammad Dinari
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elahe Salehi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Amir Abdolmaleki
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| |
Collapse
|
48
|
Esmaielzadeh S, Ahmadizadegan H. Construction of proton exchange membranes under ultrasonic irradiation based on novel fluorine functionalizing sulfonated polybenzimidazole/cellulose/silica bionanocomposite. ULTRASONICS SONOCHEMISTRY 2018; 41:641-650. [PMID: 29137796 DOI: 10.1016/j.ultsonch.2017.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Novel sulfonated polybenzimidazole (s-PBI)/cellulose/silica bionanocomposite membranes were prepared from fluorine-containing s-PBI copolymer with a cellulose/silica precursor and a bonding agent. The introduction of the bonding agent results in the reinforcing interfacial interaction between s-PBI chains and the cellulose/silica nanoparticles. Commercially available silica nanoparticles were modified with biodegradable nanocellolose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composites were well dispersed in the s-PBI matrix on a nanometer scale. The mechanical properties and the methanol barrier ability of the s-PBI films were improved by the addition of cellulose/silica. The modulus of the s-PBI/10 wt% cellulose/silica nanocomposite membranes had a 45% increase compared to the pure s-PBI films, and the methanol permeability decreased by 62% with respect to the pure s-PBI membranes. The conductivities of the s-PBI/cellulose/silica nanocomposites were slightly lower than the pure s-PBI. The antibacterial activity of (s-PBI)/cellulose/silica was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7 and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of cellulose/silica. All of the synthesized (s-PBI)/cellulose/silica were found to have high antibacterial activity.
Collapse
Affiliation(s)
- Sheida Esmaielzadeh
- Department of Chemistry, Darab Branch, Islamic Azad University, Darab 7481783143-196, Islamic Republic of Iran; Young Researchers and Elite Club, Darab Branch, Islamic Azad University, Islamic Republic of Iran
| | - Hashem Ahmadizadegan
- Department of Chemistry, Darab Branch, Islamic Azad University, Darab 7481783143-196, Islamic Republic of Iran.
| |
Collapse
|
49
|
Sherlala AIA, Raman AAA, Bello MM, Asghar A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. CHEMOSPHERE 2018; 193:1004-1017. [PMID: 29874727 DOI: 10.1016/j.chemosphere.2017.11.093] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/06/2017] [Accepted: 11/18/2017] [Indexed: 05/28/2023]
Abstract
Graphene-based adsorbents have attracted wide interests as effective adsorbents for heavy metals removal from the environment. Due to their excellent electrical, mechanical, optical and transport properties, graphene and its derivatives such as graphene oxide (GO) have found various applications. However, in many applications, surface modification is necessary as pristine graphene/GO may be ineffective in some specific applications such as adsorption of heavy metal ions. Consequently, the modification of graphene/GO using various metals and non-metals is an ongoing research effort in the carbon-material realm. The use of organic materials represents an economical and environmentally friendly approach in modifying GO for environmental applications such as heavy metal adsorption. This review discusses the applications of organo-functionalized GO composites for the adsorption of heavy metals. The aspects reviewed include the commonly used organic materials for modifying GO, the performance of the modified composites in heavy metals adsorption, effects of operational parameters, adsorption mechanisms and kinetic, as well as the stability of the adsorbents. Despite the significant research efforts on GO modification, many aspects such as the interaction between the functional groups and the heavy metal ions, and the quantitative effect of the functional groups are yet to be fully understood. The review, therefore, offers some perspectives on the future research needs.
Collapse
Affiliation(s)
- A I A Sherlala
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemical Engineering, College of Engineering Technology-Janzour, Libya.
| | - A A A Raman
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - M M Bello
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - A Asghar
- Department of Chemical Engineering, University of Engineering & Technology, G.T. Road, 54890, Lahore, Pakistan.
| |
Collapse
|
50
|
Pooralhossini J, Zanjanchi MA, Ghaedi M, Asfaram A, Azqhandi MHA. Statistical optimization and modeling approach for azo dye decolorization: Combined effects of ultrasound waves and nanomaterial‐based adsorbent. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaleh Pooralhossini
- Department of ChemistryUniversity of Guilan University Campus 2, Mellat Street Rasht Iran
| | - Mohammad Ali Zanjanchi
- Department of ChemistryUniversity of Guilan University Campus 2, Mellat Street Rasht Iran
- Department of Chemistry, Faculty of ScienceUniversity of Guilan Rasht 41335‐1914 Iran
| | | | - Arash Asfaram
- Medicinal Plants Research CenterYasuj University of Medical Sciences Yasuj Iran
| | | |
Collapse
|