1
|
Wang Y, McClements DJ, Zhang Z, Zhang R, He K, Lin Z, Peng X, Xu Z, Meng M, Ji H, Zhao J, Jin Z, Chen L. High water resistance starch based intelligent label for the freshness monitoring of beverages. Food Chem 2024; 459:140383. [PMID: 39003857 DOI: 10.1016/j.foodchem.2024.140383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The traditional starch-based intelligent freshness labels struggle to maintain long-term structural stability when exposed to moisture. To solve this problem, we prepared composite crosslinked labels using phytic acid for double crosslinking of corn starch and soybean isolate proteins, with anthocyanin serving as the chromogenic dye. The mechanical properties, hydrophobic characteristics, and pH responsivity of these crosslinked labels were assessed in this study. The prepared double-crosslinked labels showed reduced moisture content (15.96%), diminished swelling (147.21%), decreased solubility (28.55%), and minimized water permeability, which suggested that they have enhanced hydrophobicity and densification. The crosslinked labels demonstrated the ability to maintain morphological stability when immersed in water for 12 h. Additionally, the mechanical properties of the crosslinked labels were enhanced without compromising their pH-sensing capabilities, demonstrated a color response visible to the naked eye for milk and coconut water freshness monitoring, suggesting great potential for application in beverages freshness monitoring.
Collapse
Affiliation(s)
- Yun Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | | | - Zipei Zhang
- Food Science Program, University of Missouri, Columbia, MO, 65211, USA
| | - Ruojie Zhang
- Food Science Program, University of Missouri, Columbia, MO, 65211, USA
| | - Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ziqiang Lin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan, 528400, China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Li X, Xiao S, Lao Y, Li D, Wei Q, Ye L, Lu S. A nanocellulose-based flexible multilayer sensor with high sensitivity to humidity and strain response for detecting human motion and respiration. Int J Biol Macromol 2024; 266:131004. [PMID: 38521327 DOI: 10.1016/j.ijbiomac.2024.131004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Biomass-based flexible sensors with excellent mechanical and sensing properties have attracted significant attention. In this study, based on the excellent dispersibility and degradability of nanocellulose crystals, we designed a polyvinyl alcohol/nanocellulose crystals/phytic acid (PCP) composite film with good flexibility and high sensitivity to humidity. A layer of multiwalled carbon nanotubes (MWCNT) and nanocellulose crystals (CNC) was further sandwiched between two PCP layers as a flexible multifunctional sensor (PCPW) to detect human movement and respiration. Phytic acid contains abundant phosphate groups that enhance proton conduction, allowing the PCPW composite film to change its electrical resistance in a sensitive and repeatable manner when the relative humidity was varied between 35 %-93 %. Meanwhile, CNC derived from sisal fibers enhanced the PCPW sensor's conductivity (3.3 S/m) and mechanical properties (elongation at break: 99 %) by improving the dispersion and connectivity of MWCNT. The PCPW sensor displayed a high sensitivity to strain (gauge factor: 49.5) and could monitor both facial expressions (smiling and winking) and the bending of joints. The sensor also generated stable electrical responses during breathing and blowing due to the change in humidity. Therefore, this biodegradable and multifunctional sensor has good application prospects.
Collapse
Affiliation(s)
- Xing Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Suijun Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yufei Lao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Dacheng Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Liangdong Ye
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
3
|
Ning Y, Liu R, Chi W, An X, Zhu Q, Xu S, Wang L. A chitosan derivative/phytic acid polyelectrolyte complex endowing polyvinyl alcohol film with high barrier, flame-retardant, and antibacterial effects. Int J Biol Macromol 2024; 259:129240. [PMID: 38191105 DOI: 10.1016/j.ijbiomac.2024.129240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Films with high barrier, flame-retardant, and antibacterial properties are beneficial in terms of food and logistics safety. Herein, a polyelectrolyte complex (PEC) of N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride (HTCC, chitosan derivative) and phytic acid (PA) was successfully prepared and then incorporated into a polyvinyl alcohol (PVA) matrix to fabricate a composite film with satisfactory barrier, fire-retardant, and antibacterial properties. The influence of HTCC/PA (HTPA) on the structural, physical and functional properties of the PVA matrix was investigated. Compared with the PVA film, PVA-HTPA6 film exhibited 3.38 times of flexibility and 83.33 % and 80.64 % of water vapor permeability and oxygen permeability, respectively. Benefiting from HTPA, the PVA-HTPA6 film exhibited outstanding flame-retardant capacity, with a high LOI value (33.30 %) and immediate self-extinguishing behaviour. Furthermore, the HTPA endowed the films with excellent antibacterial properties. Compared with other films, the PVA-HTPA6 film effectively maintained the quality of pork during storage at 4 °C for 9 days. Our findings indicate that the films are promising for packaging and logistics safety with oil-containing foods.
Collapse
Affiliation(s)
- Yuping Ning
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Ruoting Liu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Wenrui Chi
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Xinyu An
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Qihao Zhu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Shiyu Xu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
4
|
Jin T, Luo Q, Yu H, Huang B, Liu Z, Qian Y. Synergistic effects between phytic acid (PA) and urea on the extraction of uranium with porous polyvinyl alcohol (PVA) xerogel films. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Sun W, Liu X, Li X, Wang S, Li Q, Sun Z. A method for the treatment of black tea waste: Converting it into liquid mulching film and solid mulching film. J Appl Polym Sci 2022. [DOI: 10.1002/app.53481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Wei Sun
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Xin Liu
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Xiang Li
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Shujie Wang
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Qing Li
- College of Engineering Qufu Normal University Rizhao Shandong China
| | - Zhonghua Sun
- College of Chemistry and Chemical Engineering Taishan University Taian Shandong China
| |
Collapse
|
6
|
Pérez-Nava A, Espino-Saldaña AE, Pereida-Jaramillo E, Hernández-Vargas J, Martinez-Torres A, Vázquez-Lepe MO, Mota-Morales JD, Frontana Uribe BA, Betzabe González-Campos J. Surface collagen functionalization of electrospun poly(vinyl alcohol) scaffold for tissue engineering. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Liu M, Cheng G, Tang Z, Zhou L, Wan X, Ding G. Flame retardancy performance and mechanism of polyvinyl alcohol films grafted amino acid ionic liquids with high transparency and excellent flexibility. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Hakke VS, Landge VK, Sonawane SH, Uday Bhaskar Babu G, Ashokkumar M, M M Flores E. The physical, mechanical, thermal and barrier properties of starch nanoparticle (SNP)/polyurethane (PU) nanocomposite films synthesised by an ultrasound-assisted process. ULTRASONICS SONOCHEMISTRY 2022; 88:106069. [PMID: 35751937 PMCID: PMC9240861 DOI: 10.1016/j.ultsonch.2022.106069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L-1 H2SO4 was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film.
Collapse
Affiliation(s)
- Vikas S Hakke
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India
| | - Vividha K Landge
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India.
| | - G Uday Bhaskar Babu
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana State, India
| | | | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
9
|
Esterification modification and characterization of polyvinyl alcohol anion exchange membrane for direct methanol fuel cell. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02958-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Othayoth AK, Paul S, Muralidharan K. Polyvinyl alcohol-phytic acid polymer films as promising gas/vapor sorption materials. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02603-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Nita LE, Chiriac AP, Ghilan A, Rusu AG, Tudorachi N, Timpu D. Alginate enriched with phytic acid for hydrogels preparation. Int J Biol Macromol 2021; 181:561-571. [PMID: 33798571 DOI: 10.1016/j.ijbiomac.2021.03.164] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022]
Abstract
Alginate hydrogels are extremely versatile and flexible biomaterials, with an enormous potential for bio-applications use. Their similarity with extracellular matrix is a key factor in their performance for cell and tissue regeneration. In this study superabsorbent high porous hydrogels based on sodium alginate physical crosslinked with a natural crosslinker compound namely phytic acid were prepared and evaluated from the viewpoint of their specific properties. The resulting hydrogels obtained with different ratios between alginate and phytic acid were characterized by Fourier transform infrared spectroscopy technique, scanning electron microscopy, XRD measurements, swelling tests in physiological environment, and thermal analysis by using a simultaneous TG/FT-IR/MS system. There are put into evidence the differences in physico-chemical properties of the hydrogels in relation with their composition, which endows them tunable properties and versatility.
Collapse
Affiliation(s)
- Loredana Elena Nita
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania.
| | - Aurica P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Alina Ghilan
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Alina Gabriela Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Nita Tudorachi
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Daniel Timpu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| |
Collapse
|
12
|
Wang R, Guo S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr Rev Food Sci Food Saf 2021; 20:2081-2105. [DOI: 10.1111/1541-4337.12714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Ruican Wang
- Department of Food Science University of Wisconsin‐Madison Madison Wisconsin USA
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science & Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|
13
|
Qu C, Tang Y, Wang D, Fan X, Li H, Liu C, Su K, Zhao D, Jing J, Zhang X. Improved processability of
PA66‐polyimide
copolymers with different polyimide contents. J Appl Polym Sci 2021. [DOI: 10.1002/app.49640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chunyan Qu
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| | - Yao Tang
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| | - Dezhi Wang
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| | - XuPeng Fan
- School of Materials Science and Engineering Harbin University of Science and Technology Harbin China
| | - Hongfeng Li
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| | - Changwei Liu
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| | - Kai Su
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| | - Daoxiang Zhao
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| | - Jiaqi Jing
- School of Materials Science and Engineering Harbin University of Science and Technology Harbin China
| | - Xiao Zhang
- Institute of Petrochemistry Heilongjiang Academy of Science Harbin China
| |
Collapse
|
14
|
Sonosynthesis of Iron-Supported Clay for Heavy Metal Removal via Sonoassisted Adsorption Process. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04754-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Zhou Y, Zheng H, Wang Y, Zhao R, Liu H, Ding W, An Y. Enhanced municipal sludge dewaterability using an amphiphilic microblocked cationic polyacrylamide synthesized through ultrasonic-initiation: Copolymerization and flocculation mechanisms. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Rezk AR, Ahmed H, Ramesan S, Yeo LY. High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001983. [PMID: 33437572 PMCID: PMC7788597 DOI: 10.1002/advs.202001983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Indexed: 04/14/2023]
Abstract
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
Collapse
Affiliation(s)
- Amgad R. Rezk
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Heba Ahmed
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
17
|
Zhang Z, Li X, Ma Z, Ning H, Zhang D, Wang Y. A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid. Dalton Trans 2020; 49:11226-11237. [DOI: 10.1039/d0dt02019b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There are still some key problems in the process of the flame retardant treatment of poly vinyl alcohol (PVA): poor compatibility, deteriorating mechanical properties and potential toxicity to human health and environment.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Material Science
- School of Physical Science and Technology
- Lanzhou University
- Lanzhou
- China
| | - Xinjuan Li
- Department of Materials
- Royal School of Mines
- Imperial College London
- London SW7 2AZ
- UK
| | - Zhongying Ma
- Department of Material Science
- School of Physical Science and Technology
- Lanzhou University
- Lanzhou
- China
| | - Haozhe Ning
- Department of Material Science
- School of Physical Science and Technology
- Lanzhou University
- Lanzhou
- China
| | - Dan Zhang
- Department of Material Science
- School of Physical Science and Technology
- Lanzhou University
- Lanzhou
- China
| | - Yuhua Wang
- Department of Material Science
- School of Physical Science and Technology
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
18
|
Mohammadinezhad A, Marandi GB, Farsadrooh M, Javadian H. Synthesis of poly(acrylamide-co-itaconic acid)/MWCNTs superabsorbent hydrogel nanocomposite by ultrasound-assisted technique: Swelling behavior and Pb (II) adsorption capacity. ULTRASONICS SONOCHEMISTRY 2018; 49:1-12. [PMID: 30082252 DOI: 10.1016/j.ultsonch.2017.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
In this research, the poly (acrylamide-co-itaconic acid)/multi-walled carbon nanotubes (P(AAm-co-IA)/MWCNTs) as a novel superabsorbent hydrogel nanocomposite was synthesized by graft copolymerization of acrylamide (AAm) and itaconic acid (IA) mixture in the presence of the MWCNTs using ammonium persulfate (APS) as a free radical initiator and methylenebisacrylamide (MBA) as a crosslinker under ultrasound-assisted condition. The blank P(AAm-co-IA) hydrogel and its composite with the MWCNTs were characterized by means of SEM, FTIR, XRD and TGA methods. The effects of different parameters such as pH, time, the MWCNTs content and salt solutions on swelling behavior were investigated. The stability of the hydrogel increased by any increase in the MWCNTs content, which might be attributed to the hydrophobic nature of the MWCNTs as well as the increase of the crosslinker density. The water retention capacity (WRC) of the P(AAm-co-IA) hydrogel increased in the presence of the MWCNT (10 wt%). The synthesized hydrogel nanocomposite was studied for Pb (II) adsorption from aqueous solution. The effects of different parameters such as contact time (5-90 min), Pb (II) initial concentration (25-175 mg/L) and initial pH (1.5-4.5) of solution on Pb (II) adsorption were investigated by batch method. In comparison to P(AAm-co-IA) hydrogel, the P(AAm-co-IA)/MWCNTs hydrogel nanocompoite showed better adsorption behavior toward Pb (II). One of the most important aspects of this research was to investigate the effects of ultrasonic waves on polymer matrix and its ability.
Collapse
Affiliation(s)
- Alireza Mohammadinezhad
- Department of Chemistry, College of Basic Sciences, Karaj Branch, Islamic Azad University, P.O. Box 31485-313, Karaj, Iran.
| | - Gholam Bagheri Marandi
- Department of Chemistry, College of Basic Sciences, Karaj Branch, Islamic Azad University, P.O. Box 31485-313, Karaj, Iran
| | - Majid Farsadrooh
- Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
Koudehi MF, Pourmortazavi SM. Polyvinyl Alcohol/Polypyrrole/Molecularly Imprinted Polymer Nanocomposite as Highly Selective Chemiresistor Sensor for 2,4-DNT Vapor Recognition. ELECTROANAL 2018. [DOI: 10.1002/elan.201700751] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Masoumeh Foroutan Koudehi
- Faculty of Chemistry and Chemical Engineering; Malek Ashtar University of Technology; P.O.Box 16765-3454 Tehran Iran
| | - Seied Mahdi Pourmortazavi
- Faculty of Chemistry and Chemical Engineering; Malek Ashtar University of Technology; P.O.Box 16765-3454 Tehran Iran
| |
Collapse
|
20
|
Kisomi AS, Khorrami AR, Alizadeh T, Farsadrooh M, Javadian H, Asfaram A, AsliPashaki SN, Rafiei P. Nanopowder synthesis of novel Sn(II)-imprinted poly(dimethyl vinylphosphonate) by ultrasound-assisted technique: Adsorption and pre-concentration of Sn(II) from aqueous media and real samples. ULTRASONICS SONOCHEMISTRY 2018; 44:129-136. [PMID: 29680594 DOI: 10.1016/j.ultsonch.2018.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
In this research, a novel Sn(II)-imprinted poly(dimethyl vinylphosphonate) nanopowder (Sn(II)-IPDMVPN) was prepared using Sn2+, dimethyl vinylphosphonate, azobis isobutyronitril and ethylene glycol dimethacrylate as the template, ligand, initiator and cross linker, respectively. The non-imprinted poly(dimethyl vinylphosphonate) nanopowder (NIPDMVPN) was also synthesized utilizing the same procedure without using SnCl2·2H2O in order to compare the results with the Sn(II)-IPDMVPN. The structure, morphology and composition of the products were characterized by XRD, SEM, EDX, XRF, BET, FT-IR and NMR techniques. Some experimental conditions including pH, eluent concentration and sample volume were optimized to maximize Sn(II) adsorption by the Sn(II)-IPDMVPN. It was found that the optimum conditions are pH = 5, 1.00 M of HNO3 as eluent and sample volume up to 50 mL. The results obtained by ICP-MS indicated that the Sn(II)-IPDMVPN had much higher adsorption capacity for Sn(II) ions (about threefold) than the NIPDMVPN. The applicability of the Sn(II)-IPDMVPN was also investigated in three different real samples. Under the best experimental conditions, the calibration graphs were linear in the range of 0.19-90 μg L-1 with a coefficient of determination (R2) of 0.990. The detection limit was calculated to be 0.06 μg L-1. The relative standard deviation (RSD) for six replicate measurements of Sn(II) at 1.00 ng mL-1 was determined to be 1.8%. The results showed that the Sn(II)-IPDMVPN-ICP-MS is a very simple, rapid, sensitive and efficient method for the determination of Sn(II) ions in water samples.
Collapse
Affiliation(s)
- Amir Shafiee Kisomi
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Afshin Rajabi Khorrami
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Majid Farsadrooh
- Department of Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran
| | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain; Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran.
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Parisa Rafiei
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
21
|
Feng L, Liu S, Zheng H, Liang J, Sun Y, Zhang S, Chen X. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering. ULTRASONICS SONOCHEMISTRY 2018; 44:53-63. [PMID: 29680628 DOI: 10.1016/j.ultsonch.2018.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance spectroscopy (1H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (MK) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, mAM:mDMDAAC and nNaPAA:nDMDAAC. The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d50) and fractal dimension (Df). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 1012 m kg-1, FCMC of 73.1%, d50 of 439.156 µm and Df of 1.490 were obtained at pH of 7.0, dosage of 40 mg L-1 and the molecular weight of 5.0 × 106 Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shuang Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jianjun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Shixin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
22
|
Song Y, Li Y, Li J, Li Y, Niu S, Li N. Ultrasonic-microwave assisted synthesis of three-dimensional polyvinyl alcohol carbonate/graphene oxide sponge and studies of surface resistivity and thermal stability. ULTRASONICS SONOCHEMISTRY 2018; 42:665-671. [PMID: 29429715 DOI: 10.1016/j.ultsonch.2017.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
In the article, graphene oxide (GO) was prepared by flake graphite, nitric acid and peroxyacetic acid via the sonochemical method and characterized, and polyvinyl alcohol carbonate/GO composite (PVAC/GO composite) was synthesized by polyvinyl alcohol (PVA), dimethyl carbonate (DMC) and GO via the approach of transesterification in the case of ultrasonic-microwave synergistic effects and characterized, and three-dimensional PVAC/GO sponge (3D PVAC/GO sponge) was manufactured by PVAC/GO composite via the foaming approach and characterized, and the thermal stability and surface resistivity of 3D PVAC/GO sponge were investigated. Based on those, it had been attested that PVAC polymer was structured by DMC and PVA and had the six-membered lactone rings and the ether bonds, and PVAC/GO composite was constituted by 2D GO lattice and PVAC polymer, and 3D PVAC/GO sponge was constructed by PVAC/GO composite, and the surface resistivity of 3D PVAC/GO sponge with 0.00, 0.60, 1.20, 1.80 and 2.40 g of GO were 9.07 × 107, 6.02 × 107, 4.65 × 107, 2.47 × 107 and 1.06 × 107 O/sq, and the thermal stability of 3D PVAC/GO sponge had improved.
Collapse
Affiliation(s)
- Yunna Song
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, Shijiazhuang 050024, China
| | - Yuehai Li
- Department of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000,China
| | - Jihui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, Shijiazhuang 050024, China
| | - Yongshen Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, Shijiazhuang 050024, China.
| | - Shuai Niu
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, Shijiazhuang 050024, China
| | - Ning Li
- The Real Estate CO., LTD. of CSCEC, Beijing 100070, China
| |
Collapse
|
23
|
Feng L, Zheng H, Tang X, Zheng X, Liu S, Sun Q, Wang M. The investigation of the specific behavior of a cationic block structure and its excellent flocculation performance in high-turbidity water treatment. RSC Adv 2018; 8:15119-15133. [PMID: 35541323 PMCID: PMC9079996 DOI: 10.1039/c8ra02006j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 11/21/2022] Open
Abstract
The fabrication of a cationic polyacrylamide (CPAM) with high efficiency and economy has been highly desired in the field of high-turbidity water treatment. This study introduced an ultrasound (US)-initiated template polymerization (UTP) method to develop a novel cationic templated polyacrylamide (TPAA) with a microblock structure. TPAA was prepared using acrylamide (AM) and sodium (3-acrylamidopropyl)trimethylammonium chloride (ATAC) as the monomers and sodium polyacrylate (NaPAA) as the template. Factors that affected polymerization such as the ultrasound power, ultrasound time, initiator concentration, pH, and mAM : mATAC and nNaPAA : nATAC values were investigated. The properties of the polymers were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectroscopy (1H NMR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results indicated the successful formation of a cationic microblock structure in TPAA. In addition, TPAA displayed favorable thermal decomposition properties and a rough and coarse surface morphology, as shown by analyses using TGA and SEM, respectively. Moreover, a zip (type I) template polymerization mechanism was identified via analyses of the association constant (KM), conversion (Cv) and polymerization rate (Rp). The flocculation performance of the templated copolymer TPAA was evaluated by treating high-turbidity water. According to the results for the zeta potentials and FTIR spectra of the generated flocs, it was indicated that the cationic microblocks in the templated copolymer could greatly enhance its charge neutralization, patching and bridging ability, and therefore excellent flocculation performance (residual turbidity: 5.8 NTU, Df: 1.89, floc size d50: 608.404 μm and floc kinetic: 15.86 × 10−4 s−1) for treating high-turbidity water was achieved. The fabrication of a cationic polyacrylamide (CPAM) with high efficiency and economy has been highly desired in the field of high-turbidity water treatment.![]()
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
| | - Xiaomin Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Xinyu Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Shuang Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
| | - Qiang Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Moxi Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| |
Collapse
|