1
|
Mucosal Immune Response to Feline Enteric Coronavirus Infection. Viruses 2019; 11:v11100906. [PMID: 31569783 PMCID: PMC6832150 DOI: 10.3390/v11100906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Feline infectious peritonitis is a devastating, fatal disease of domestic cats caused by a pathogenic mutant virus derived from the ubiquitous feline enteric coronavirus (FECV). Infection by FECV is generally subclinical, and little is known about the mucosal immune response that controls and eliminates the virus. We investigated the mucosal immune response against FECV in an endemically infected breeding colony over a seven-month period. Thirty-three cats were grouped according to FECV seropositivity and fecal virus shedding into naïve/immunologically quiescent, convalescent and actively infected groups. Blood, fecal samples and colon biopsies were collected to assess the mucosal and systemic immunologic and virologic profile. Results showed that cats with active FECV infections have strong systemic IgG and mucosal IgA responses that wane after virus clearance. Significant FECV-specific mucosal T cell IFNγ responses were not detected in any of the three groups. A shift toward an inflammatory state in the mucosa was suggested by increased IL17:FoxP3 expression. However, no histologic abnormalities were observed, and no shifts in lymphocyte subpopulation phenotype or proliferation were noted. Together, the results suggest that control of FECV is mediated by humoral mucosal and systemic responses and that perturbations in the primary reservoir organ (colon) are minimal.
Collapse
|
2
|
Xu A, Freywald A, Xie Y, Li Z, Xiang J. CD8 + memory T-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy. Immunotargets Ther 2017; 6:39-49. [PMID: 28670575 PMCID: PMC5479263 DOI: 10.2147/itt.s131662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whether inflation of CD8+ memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8+ T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8+ T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8+ T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8+ T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4+ T cell-independent and CD4+ T-cell-dependent CD8+ T-cell responses, respectively, and assessed Ova-specific CD8+ T-cell responses by flow cytometry. We found that Ova-specific CD8+ T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8+ mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8+ T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8+ mT-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8+ mT-cell inflation.
Collapse
Affiliation(s)
- Aizhang Xu
- Cancer Research Cluster, Saskatchewan Cancer Agency.,Department of Oncology
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yufeng Xie
- Department of Oncology, First Affiliated Hospital, Soochow University, Suzhou
| | - Zejun Li
- Shanghai Veterinary Research Institute, Shanghai, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency.,Department of Oncology
| |
Collapse
|
3
|
da Silva AJ, Zangirolami TC, Novo-Mansur MTM, Giordano RDC, Martins EAL. Live bacterial vaccine vectors: an overview. Braz J Microbiol 2015; 45:1117-29. [PMID: 25763014 PMCID: PMC4323283 DOI: 10.1590/s1517-83822014000400001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
Genetically attenuated microorganisms, pathogens, and some commensal bacteria can be engineered to deliver recombinant heterologous antigens to stimulate the host immune system, while still offering good levels of safety. A key feature of these live vectors is their capacity to stimulate mucosal as well as humoral and/or cellular systemic immunity. This enables the use of different forms of vaccination to prevent pathogen colonization of mucosal tissues, the front door for many infectious agents. Furthermore, delivery of DNA vaccines and immune system stimulatory molecules, such as cytokines, can be achieved using these special carriers, whose adjuvant properties and, sometimes, invasive capacities enhance the immune response. More recently, the unique features and versatility of these vectors have also been exploited to develop anti-cancer vaccines, where tumor-associated antigens, cytokines, and DNA or RNA molecules are delivered. Different strategies and genetic tools are constantly being developed, increasing the antigenic potential of agents delivered by these systems, opening fresh perspectives for the deployment of vehicles for new purposes. Here we summarize the main characteristics of the different types of live bacterial vectors and discuss new applications of these delivery systems in the field of vaccinology.
Collapse
Affiliation(s)
- Adilson José da Silva
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Teresa Cristina Zangirolami
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Departamento de Genética e Evolução Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Roberto de Campos Giordano
- Departamento de Engenharia Química Universidade Federal de São Carlos São CarlosSP Brazil Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Elizabeth Angélica Leme Martins
- Centro de Biotecnologia Instituto Butantan São PauloSP Brazil Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Miller EA, Spadaccia MR, Norton T, Demmler M, Gopal R, O'Brien M, Landau N, Dubensky TW, Lauer P, Brockstedt DG, Bhardwaj N. Attenuated Listeria monocytogenes vectors overcome suppressive plasma factors during HIV infection to stimulate myeloid dendritic cells to promote adaptive immunity and reactivation of latent virus. AIDS Res Hum Retroviruses 2015; 31:127-36. [PMID: 25376024 PMCID: PMC4287309 DOI: 10.1089/aid.2014.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
HIV-1 infection is characterized by myeloid dendritic cell (DC) dysfunction, which blunts the responsiveness to vaccine adjuvants. We previously showed that nonviral factors in HIV-seropositive plasma are partially responsible for mediating this immune suppression. In this study we investigated recombinant Listeria monocytogenes (Lm) vectors, which naturally infect and potently activate DCs from seronegative donors, as a means to overcome DC dysfunction associated with HIV infection. Monocyte-derived DCs were cocultured with plasma from HIV-infected donors (HIV-moDCs) to induce a dysregulated state and infected with an attenuated, nonreplicative vaccine strain of Lm expressing full length clade B consensus gag (KBMA Lm-gag). Lm infection stimulated cytokine secretion [interleukin (IL)-12p70, tumor necrosis factor (TNF)-α, and IL-6] and Th-1 skewing of allogeneic naive CD4 T cells by HIV-moDCs, in contrast to the suppressive effects observed by HIV plasma on moDCs on toll-like receptor ligand stimulation. Upon coculture of "killed" but metabolically active (KBMA) Lm-gag-infected moDCs from HIV-infected donors with autologous cells, expansion of polyfunctional, gag-specific CD8(+) T cells was observed. Reactivation of latent proviruses by moDCs following Lm infection was also observed in models of HIV latency in a TNF-α-dependent manner. These findings reveal the unique ability of Lm vectors to contend with dysregulation of HIV-moDCs, while simultaneously possessing the capacity to activate latent virus. Concurrent stimulation of innate and adaptive immunity and disruption of latency may be an approach to reduce the pool of latently infected cells during HIV infection. Further study of Lm vectors as part of therapeutic vaccination and eradication strategies may advance this evolving field.
Collapse
Affiliation(s)
- Elizabeth A. Miller
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Thomas Norton
- Division of Infectious Diseases, New York University School of Medicine, New York, New York
| | - Morgan Demmler
- Cancer Institute, New York University School of Medicine, New York, New York
| | - Ramya Gopal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meagan O'Brien
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nathaniel Landau
- Department of Microbiology, New York University School of Medicine, New York, New York
| | | | | | | | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
6
|
Sustained delivery of commensal bacteria from pod-intravaginal rings. Antimicrob Agents Chemother 2014; 58:2262-7. [PMID: 24492360 DOI: 10.1128/aac.02542-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Topical administration of live commensal bacteria to the vaginal tract holds significant potential as a cost-effective strategy for the treatment of sexually transmitted infections and the delivery of mucosal vaccines. Probiotic-releasing intravaginal rings (IVRs) embody significant theoretical advantages over traditional daily-dosage forms, such as sustained and controlled delivery leading to improved adherence to therapy compared to that of frequent dosing. The conventional IVR designs, however, are not amenable to the delivery of live bacteria. We have developed a novel pod-IVR technology where polymer-coated tablets ("pods") of Lactobacillus gasseri strain ATCC 33323, a commensal microorganism of human origin, are embedded in silicone IVRs. The release rate of bacterial cells is controlled by the diameter of a delivery channel that exposes a portion of the pod to external fluids. In vitro studies demonstrated that the prototype devices released between 1.1×10(7) and 14×10(7) cells per day for up to 21 days in a controlled sustained fashion with stable burst-free release kinetics. The daily release rates were correlated with the cross-sectional area of the delivery channel. Bacteria in the IVR pods remained viable throughout the in vitro studies and formed biofilms on the surfaces of the devices. This proof-of-principle study represents the first demonstration of a prolonged, sustained release of bacteria from an intravaginal device and warrants further investigation of this device as a nonchemotherapeutic agent for the restoration and maintenance of normal urogenital flora.
Collapse
|
7
|
McLaughlin HP, Bahey-El-Din M, Casey PG, Hill C, Gahan CGM. A mutant in the Listeria monocytogenes Fur-regulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice. J Med Microbiol 2013; 62:185-190. [DOI: 10.1099/jmm.0.049114-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Heather P. McLaughlin
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Mohammed Bahey-El-Din
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Pat G. Casey
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Saxena M, Van TTH, Baird FJ, Coloe PJ, Smooker PM. Pre-existing immunity against vaccine vectors--friend or foe? MICROBIOLOGY-SGM 2012; 159:1-11. [PMID: 23175507 PMCID: PMC3542731 DOI: 10.1099/mic.0.049601-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Over the last century, the successful attenuation of multiple bacterial and viral pathogens has led to an effective, robust and safe form of vaccination. Recently, these vaccines have been evaluated as delivery vectors for heterologous antigens, as a means of simultaneous vaccination against two pathogens. The general consensus from published studies is that these vaccine vectors have the potential to be both safe and efficacious. However, some of the commonly employed vectors, for example Salmonella and adenovirus, often have pre-existing immune responses in the host and this has the potential to modify the subsequent immune response to a vectored antigen. This review examines the literature on this topic, and concludes that for bacterial vectors there can in fact, in some cases, be an enhancement in immunogenicity, typically humoral, while for viral vectors pre-existing immunity is a hindrance for subsequent induction of cell-mediated responses.
Collapse
Affiliation(s)
- Manvendra Saxena
- Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Fiona J Baird
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Peter J Coloe
- School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
9
|
Martin MD, Wirth TC, Lauer P, Harty JT, Badovinac VP. The impact of pre-existing memory on differentiation of newly recruited naive CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2923-31. [PMID: 21832161 DOI: 10.4049/jimmunol.1100698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One goal of immunization is to generate memory CD8 T cells of sufficient quality and quantity to confer protection against infection. It has been shown that memory CD8 T cell differentiation in vivo is controlled, at least in part, by the amount and duration of infection, Ag, and inflammatory cytokines present early after the initiation of the response. In this study, we used models of anti-vectorial immunity to investigate the impact of pre-existing immunity on the development and differentiation of vector-induced primary CD8 T cell responses. We showed that existing CD8 T cell memory influences the magnitude of naive CD8 T cell responses. However, the differentiation of newly recruited (either TCR-transgenic or endogenous) primary CD8 T cells into populations with the phenotype (CD62L(hi), CD27(hi), KLRG-1(low)) and function (tissue distribution, Ag-driven proliferation, cytokine production) of long-term memory was facilitated when they were primed in the presence of vector-specific memory CD8 T cells of the same or unrelated specificity. Therefore, these data suggested that the presence of anti-vectorial immunity impacts the rate of differentiation of vector-induced naive CD8 T cells, a notion with important implications for the design of future vaccination strategies.
Collapse
Affiliation(s)
- Matthew D Martin
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
10
|
Mikkelsen SR, Long JM, Zhang L, Galemore ER, VandeWoude S, Dean GA. Partial regulatory T cell depletion prior to acute feline immunodeficiency virus infection does not alter disease pathogenesis. PLoS One 2011; 6:e17183. [PMID: 21364928 PMCID: PMC3045403 DOI: 10.1371/journal.pone.0017183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/23/2011] [Indexed: 11/18/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.
Collapse
Affiliation(s)
- S. Rochelle Mikkelsen
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Julie M. Long
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lin Zhang
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Erin R. Galemore
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregg A. Dean
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Whitney JB, Mirshahidi S, Lim SY, Goins L, Ibegbu CC, Anderson DC, Raybourne RB, Frankel FR, Lieberman J, Ruprecht RM. Prior exposure to an attenuated Listeria vaccine does not reduce immunogenicity: pre-clinical assessment of the efficacy of a Listeria vaccine in the induction of immune responses against HIV. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2011; 9:2. [PMID: 21244649 PMCID: PMC3033796 DOI: 10.1186/1476-8518-9-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/18/2011] [Indexed: 11/23/2022]
Abstract
Background We have evaluated an attenuated Listeria monocytogenes (Lm) candidate vaccine vector in nonhuman primates using a delivery regimen relying solely on oral vaccination. We sought to determine the impact of prior Lm vector exposure on the development of new immune responses against HIV antigens. Findings Two groups of rhesus macaques one Lm naive, the other having documented prior Lm vector exposures, were evaluated in response to oral inoculations of the same vector expressing recombinant HIV-1 Gag protein. The efficacy of the Lm vector was determined by ELISA to assess the generation of anti-Listerial antibodies; cellular responses were measured by HIV-Gag specific ELISpot assay. Our results show that prior Lm exposures did not diminish the generation of de novo cellular responses against HIV, as compared to Listeria-naïve monkeys. Moreover, empty vector exposures did not elicit potent antibody responses, consistent with the intracellular nature of Lm. Conclusions The present study demonstrates in a pre-clinical vaccine model, that prior oral immunization with an empty Lm vector does not diminish immunogenicity to Lm-expressed HIV genes. This work underscores the need for the continued development of attenuated Lm as an orally deliverable vaccine.
Collapse
Affiliation(s)
- James B Whitney
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sciaranghella G, Lakhashe SK, Ayash-Rashkovsky M, Mirshahidi S, Siddappa NB, Novembre FJ, Velu V, Amara RR, Zhou C, Li S, Li Z, Frankel FR, Ruprecht RM. A live attenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe and immunogenic in macaques and can be administered repeatedly. Vaccine 2010; 29:476-86. [PMID: 21070847 DOI: 10.1016/j.vaccine.2010.10.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 02/05/2023]
Abstract
Listeria monocytogenes (Lm) is known to induce strong cellular immune responses. We constructed a live-attenuated Lm vector, Lmdd-BdopSIVgag, which encodes SIVmac239 gag. Intragastric (i.g.) administration of 3 × 10(12) bacteria to rhesus macaques was safe and induced anti-Gag cellular but no humoral immune responses. Boosting of Gag-specific cellular responses was observed after i.g. administration of Lmdd-BdopSIVgag to previously vaccinated RM despite preexisting anti-Lm immunity shown by lymphoproliferative responses. Surprisingly, anti-Lm cellular responses were also detected in non-vaccinated controls, which may reflect the fact that Lm is a ubiquitous bacterium. The novel, live-attenuated Lmdd-BdopSIVgag may be an attractive platform for oral vaccine delivery.
Collapse
Affiliation(s)
- Gaia Sciaranghella
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gu R, Shampang A, Nashar T, Patil M, Fuller DH, Ramsingh AI. Oral immunization with a live coxsackievirus/HIV recombinant induces gag p24-specific T cell responses. PLoS One 2010; 5. [PMID: 20824074 PMCID: PMC2932689 DOI: 10.1371/journal.pone.0012499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/06/2010] [Indexed: 11/18/2022] Open
Abstract
Background The development of an HIV/AIDS vaccine has proven to be elusive. Because human vaccine trials have not yet demonstrated efficacy, new vaccine strategies are needed for the HIV vaccine pipeline. We have been developing a new HIV vaccine platform using a live enterovirus, coxsackievirus B4 (CVB4) vector. Enteroviruses are ideal candidates for development as a vaccine vector for oral delivery, because these viruses normally enter the body via the oral route and survive the acidic environment of the stomach. Methodology/Principal Findings We constructed a live coxsackievirus B4 recombinant, CVB4/p24(733), that expresses seventy-three amino acids of the gag p24 sequence (HXB2) and assessed T cell responses after immunization of mice. The CVB4 recombinant was physically stable, replication-competent, and genetically stable. Oral or intraperitoneal immunization with the recombinant resulted in strong systemic gag p24-specific T cell responses as determined by the IFN-γ ELISPOT assay and by multiparameter flow cytometry. Oral immunization with CVB4/p24(733) resulted in a short-lived, localized infection of the gut without systemic spread. Because coxsackieviruses are ubiquitous in the human population, we also evaluated whether the recombinant was able to induce gag p24-specific T cell responses in mice pre-immunized with the CVB4 vector. We showed that oral immunization with CVB4/p24(733) induced gag p24-specific immune responses in vector-immune mice. Conclusions/Significance The CVB4/p24(733) recombinant retained the physical and biological characteristics of the parental CVB4 vector. Oral immunization with the CVB4 recombinant was safe and resulted in the induction of systemic HIV-specific T cell responses. Furthermore, pre-existing vector immunity did not preclude the development of gag p24-specific T cell responses. As the search continues for new vaccine strategies, the present study suggests that live CVB4/HIV recombinants are potential new vaccine candidates for HIV.
Collapse
Affiliation(s)
- Rui Gu
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | | | | | | | | | | |
Collapse
|
14
|
In vivo depletion of CD4(+)CD25(hi) regulatory T cells is associated with improved antiviral responses in cats chronically infected with feline immunodeficiency virus. Virology 2010; 403:163-72. [PMID: 20471053 DOI: 10.1016/j.virol.2010.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/22/2010] [Accepted: 04/19/2010] [Indexed: 11/22/2022]
Abstract
Regulatory T (Treg) cells are activated and suppress immune responses during infection, and are characterized as CD4(+)CD25(hi)FOXP3(+). Ex vivo studies demonstrate that Treg cells potentially suppress anti-HIV-1 T cell responses. Lentivirus-induced CD4(+)CD25(hi) Treg cells were first described in feline immunodeficiency virus (FIV)-infected cats. In the present study we demonstrate that anti-feline CD25 monoclonal antibody (mAb) therapy depletes Treg cells in FIV-infected cats for 4 weeks and does not exacerbate viral replication or proinflammatory cytokine production. Significant FIV-specific immune responses are revealed in Treg cell-depleted cats. These anti-FIV effector cells exist prior to Treg cell depletion and are not expanded while Treg cells are depleted. Importantly, cats receiving the Treg cell-depleting mAb are able to produce a robust humoral response to new antigen. We propose that short-term in vivo Treg cell depletion during chronic HIV-1 infection could provide a window of opportunity for therapeutic vaccination in individuals with controlled viral replication.
Collapse
|
15
|
Impact of preexisting vector-specific immunity on vaccine potency: characterization of listeria monocytogenes-specific humoral and cellular immunity in humans and modeling studies using recombinant vaccines in mice. Infect Immun 2009; 77:3958-68. [PMID: 19528221 DOI: 10.1128/iai.01274-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinant live-attenuated Listeria monocytogenes is currently being developed as a vaccine platform for treatment or prevention of malignant and infectious diseases. The effectiveness of complex biologic vaccines, such as recombinant viral and bacterial vectors, can be limited by either preexisting or vaccine-induced vector-specific immunity. We characterized the level of L. monocytogenes-specific cellular and humoral immunity present in more than 70 healthy adult subjects as a first step to understanding its possible impact on the efficacy of L. monocytogenes-based vaccines being evaluated in early-phase clinical trials. Significant L. monocytogenes-specific humoral immunity was not measured in humans, consistent with a lack of antibodies in mice immunized with wild-type L. monocytogenes. Cellular immune responses specific for listeriolysin O, a secreted bacterial protein required for potency of L. monocytogenes-derived vaccines, were detected in approximately 60% of human donors tested. In mice, while wild-type L. monocytogenes did not induce significant humoral immunity, attenuated L. monocytogenes vaccine strains induced high-titer L. monocytogenes-specific antibodies when given at high doses used for immunization. Passive transfer of L. monocytogenes-specific antiserum to naïve mice had no impact on priming antigen-specific immunity in mice immunized with a recombinant L. monocytogenes vaccine. In mice with preexisting L. monocytogenes-specific immunity, priming of naïve T cells was not prevented, and antigen-specific responses could be boosted by additional vaccinations. For the first time, our findings establish the level of L. monocytogenes-specific cellular immunity in healthy adults, and, together with modeling studies performed with mice, they support the scientific rationale for repeated L. monocytogenes vaccine immunization regimens to elicit a desired therapeutic effect.
Collapse
|
16
|
Kuo CY, Sinha S, Jazayeri JA, Pouton CW. A Stably Engineered, Suicidal Strain of Listeria monocytogenes Delivers Protein and/or DNA to Fully Differentiated Intestinal Epithelial Monolayers. Mol Pharm 2009; 6:1052-61. [DOI: 10.1021/mp800153u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng-Yi Kuo
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Shubhra Sinha
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Jalal A. Jazayeri
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Colin W. Pouton
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| |
Collapse
|
17
|
Loeffler DIM, Smolen K, Aplin L, Cai B, Kollmann TR. Fine-tuning the safety and immunogenicity of Listeria monocytogenes-based neonatal vaccine platforms. Vaccine 2008; 27:919-27. [PMID: 19059297 DOI: 10.1016/j.vaccine.2008.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
We have developed virulence-attenuated strains of Listeria monocytogenes (Lm) that can be used as safe yet effective vaccine carriers for neonatal vaccination. Here we compare the vaccine efficacy of Lm based vaccine carrier candidates after only a single immunization in murine neonates and adults: Lm Delta(trpS actA) based strains that express and secrete multiple copies of the model antigen ovalbumin (OVA) either under the control of a phagosomal (P(hly)) or cytosolic (P(actA))-driven listerial promoter. While both strains induced high levels of antigen-specific primary and secondary CD8 and CD4 T cell responses, both neonatal and adult mice immunized with the phagosomal driven strain were significantly better protected against wildtype Lm challenge as compared to the naïve control group than mice immunized with the cytosolic driven strains. Interestingly, only neonatal mice immunized with the phagosomal driven strains generated high IgG antibody responses against OVA. Our phagosomal driven Lm-based vaccine platform presents the broadest (cellular & humoral response) and most efficient (highly protective) vaccine platform for neonatal vaccination yet described.
Collapse
Affiliation(s)
- Daniela I M Loeffler
- Department of Paediatrics, Child and Family Research Institute, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
18
|
Brockstedt DG, Dubensky TW. Promises and challenges for the development of Listeria monocytogenes-based immunotherapies. Expert Rev Vaccines 2008; 7:1069-84. [PMID: 18767955 DOI: 10.1586/14760584.7.7.1069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Active immunotherapy has shown great promise in preclinical models for the treatment of infectious and malignant disease. Yet, these promising results have not translated into approved therapies. One of the major deficits of active immunotherapies tested to date in advanced clinical studies has been their inability to stimulate both arms of the immune system appropriately. The interest in using recombinant bacteria as vaccine vectors for active immunotherapy derives in part from their ability to stimulate multiple innate immune pathways and, at the same time, to deliver antigen for presentation to the adaptive immune system. This review will focus on the development of live-attenuated and killed strains of the intracellular bacterium Listeria monocytogenes for treatment of chronic infections and cancer. Early clinical trials intended to demonstrate safety as well as proof of concept have recently been initiated in several indications. Advances in molecular engineering as well as successes and challenges for clinical development of L. monocytogenes-based vaccines will be discussed.
Collapse
Affiliation(s)
- Dirk G Brockstedt
- Anza Therapeutics, Inc., 2550 Stanwell Drive, Concord, CA 94520, USA.
| | | |
Collapse
|
19
|
Smithey MJ, Brandt S, Freitag NE, Higgins DE, Bouwer HGA. Stimulation of enhanced CD8 T cell responses following immunization with a hyper-antigen secreting intracytosolic bacterial pathogen. THE JOURNAL OF IMMUNOLOGY 2008; 180:3406-16. [PMID: 18292567 DOI: 10.4049/jimmunol.180.5.3406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intracytosolic niche for replication of Listeria monocytogenes (Lm) facilitates delivery of bacteria-derived Ags into the MHC class I pathway for subsequent stimulation of CD8 effector T cells. Using Lm strains that are equivalent for in vivo virulence yet express marked differences in the level of secretion of a protective target Ag, we have evaluated how these specific differences in secretion levels influences the magnitude and effector function of Ag-specific CD8 T cell responses following Lm injection. Immunization with low doses of a hyperantigen-secreting Lm strain stimulated enhanced target-Ag specific CD8 T cell responses compared with the magnitude stimulated following immunization with the same dose of wild-type Lm. The enhanced determinant-specific response was also evident by in vivo CTL activity, increased numbers of memory cells 4 wk following immunization, and enhanced antilisterial protection following a challenge infection. Initiation of antibiotic treatment 24 h following infection with wild-type Lm markedly reduced the magnitude of the effector CD8 T cell response. In contrast, antibiotic treatment initiated 24 h following immunization with the hyperantigen secreting strain of Lm did not impact the frequency of the target-Ag specific CD8 T cells. Thus, immunization with a low dose of a hyperantigen secreting Lm strain, followed by antibiotic treatment to limit the extent of the infection, may represent a safe strategy for the stimulation of enhanced effector CD8 T cell responses to specific Ag by a rLm vaccine.
Collapse
|
20
|
Constitutive Activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains. Infect Immun 2008; 76:3742-53. [PMID: 18541651 DOI: 10.1128/iai.00390-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant vaccines derived from the facultative intracellular bacterium Listeria monocytogenes are presently undergoing early-stage clinical evaluation in oncology treatment settings. This effort has been stimulated in part due to preclinical results that illustrate potent activation of innate and adaptive immune effectors by L. monocytogenes vaccines, combined with efficacy in rigorous animal models of malignant and infectious disease. Here, we evaluated the immunologic potency of a panel of isogenic vaccine strains that varied only in prfA. PrfA is an intracellularly activated transcription factor that induces expression of virulence genes and encoded heterologous antigens (Ags) in appropriately engineered vaccine strains. Mutant strains with PrfA locked into a constitutively active state are known as PrfA* mutants. We assessed the impacts of three PrfA* mutants, G145S, G155S, and Y63C, on the immunologic potencies of live-attenuated and photochemically inactivated nucleotide excision repair mutant (killed but metabolically active [KBMA]) vaccines. While PrfA* substantially increased Ag expression in strains grown in broth culture, Ag expression levels were equivalent in infected macrophage and dendritic cell lines, conditions that more closely parallel those in the immunized host. However, only the prfA(G155S) allele conferred significantly enhanced vaccine potency to KBMA vaccines. In the KBMA vaccine background, we show that PrfA*(G155S) enhanced functional cellular immunity following an intravenous or intramuscular prime-boost immunization regimen. These results form the basis of a rationale for including the prfA(G155S) allele in future live-attenuated or KBMA L. monocytogenes vaccines advanced to the clinical setting.
Collapse
|
21
|
Selected prfA* mutations in recombinant attenuated Listeria monocytogenes strains augment expression of foreign immunogens and enhance vaccine-elicited humoral and cellular immune responses. Infect Immun 2008; 76:3439-50. [PMID: 18474644 DOI: 10.1128/iai.00245-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While recombinant Listeria monocytogenes strains can be explored as vaccine candidates, it is important to develop attenuated but highly immunogenic L. monocytogenes vaccine vectors. Here, prfA* mutations selected on the basis of upregulated expression of L. monocytogenes PrfA-dependent genes and proteins were assessed to determine their abilities to augment expression of foreign immunogens in recombinant L. monocytogenes vectors and therefore enhance vaccine-elicited immune responses (a prfA* mutation is a mutation that results in constitutive overexpression of PrfA and PrfA-dependent virulence genes; the asterisk distinguishes the mutation from inactivation or stop mutations). A total of 63 recombinant L. monocytogenes vaccine vectors expressing seven individual viral or bacterial immunogens each in nine different L. monocytogenes strains carrying wild-type prfA or having prfA* mutations were constructed and investigated. Mutations selected on the basis of increased PrfA activation in recombinant L. monocytogenes prfA* vaccine vectors augmented expression of seven individual protein immunogens remarkably. Consistently, prime and boost vaccination studies with mice indicated that the prfA(G155S) mutation in recombinant L. monocytogenes DeltaactA prfA* strains enhanced vaccine-elicited cellular immune responses. Surprisingly, the prfA(G155S) mutation was found to enhance vaccine-elicited humoral immune responses as well. The highly immunogenic recombinant L. monocytogenes DeltaactA prfA* vaccine strains were as attenuated as the recombinant parent L. monocytogenes DeltaactA vaccine vector. Thus, recombinant attenuated L. monocytogenes DeltaactA prfA* vaccine vectors potentially are better antimicrobial and anticancer vaccines.
Collapse
|
22
|
Adaptation of IFN-gamma ELISA and ELISPOT tests for feline tuberculosis. Vet Immunol Immunopathol 2008; 124:379-84. [PMID: 18486239 DOI: 10.1016/j.vetimm.2008.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/25/2008] [Accepted: 04/09/2008] [Indexed: 11/23/2022]
Abstract
There are currently no reliable immunodiagnostic tests for feline tuberculosis. Infection of domestic cats in the UK is thought to occur via their contact with the relevant reservoir of infection, e.g. cattle and badgers for Mycobacterium bovis, and rodents for M. microti. In the African National Parks, where M. bovis infection of Bovidae is an increasing problem, transmission to big cats is occurring via their ingestion of infected carcasses. We have adapted feline ELISA and ELISPOT assays to potentially provide the first cell-based diagnostic test for the detection of tuberculosis in cats. We tested peripheral blood mononuclear cell antigen-specific IFN-gamma responses of 18 cats suspected of mycobacterial infection for which biopsy material was co-submitted to the Veterinary Laboratories Agency for mycobacterial culture and identification. Seventeen cats were tested by ELISA while seven cats were tested by ELISPOT (six cats were tested by both ELISA and ELISPOT). Six healthy control cats provided baseline data for these tests. Responses to bovine and avian tuberculins (PPDB and PPDA) and a protein cocktail of ESAT6 and CFP10 were measured, together with positive mitogen (PMA and calcium ionophore) and negative (medium) controls. Overall, both ELISPOT and ELISA tests were found to be suitable for generating rapid results (2 and 4 days, respectively), which provided good predictive information for M. bovis and M. microti infections, but were unable to reliably discern M. avium infection.
Collapse
|
23
|
Rhodes SG, Gruffydd-Jones T, Gunn-Moore D, Jahans K. Interferon-γ test for feline tuberculosis. Vet Rec 2008; 162:453-5. [DOI: 10.1136/vr.162.14.453] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- S. G. Rhodes
- TB Research Group; Veterinary Laboratories Agency - Weybridge; Addlestone Surrey KT15 3NB
| | | | - D. Gunn-Moore
- Royal (Dick) School of Veterinary Studies; Easter Bush Veterinary Centre; Roslin Midlothian EH25 9RG
| | - K. Jahans
- TB Research Group; Veterinary Laboratories Agency - Weybridge; Addlestone Surrey KT15 3NB
| |
Collapse
|
24
|
Schoen C, Loeffler DI, Frentzen A, Pilgrim S, Goebel W, Stritzker J. Listeria monocytogenes as novel carrier system for the development of live vaccines. Int J Med Microbiol 2008; 298:45-58. [DOI: 10.1016/j.ijmm.2007.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Jiang S, Rasmussen RA, McGeehan K, Frankel FR, Lieberman J, McClure HM, Williams KM, Babu US, Raybourne RB, Strobert E, Ruprecht RM. Live attenuated Listeria monocytogenes expressing HIV Gag: immunogenicity in rhesus monkeys. Vaccine 2007; 25:7470-9. [PMID: 17854955 PMCID: PMC2518091 DOI: 10.1016/j.vaccine.2007.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/26/2007] [Accepted: 08/02/2007] [Indexed: 11/20/2022]
Abstract
Induction of strong cellular immunity will be important for AIDS vaccine candidates. Natural infection with wild-type Listeria monocytogenes (Lm), an orally transmitted organism, is known to generate strong cellular immunity, thus raising the possibility that live attenuated Lm could serve as a vaccine vector. We sought to examine the potential of live attenuated Lm to induce cellular immune responses to HIV Gag. Rhesus macaques were immunized with Lmdd-gag that expresses HIV gag and lacks two genes in the D-alanine (D-ala) synthesis pathway. Without this key component of the bacterial cell wall, vaccine vector replication critically depends on exogenous D-ala. Lmdd-gag was given to animals either solely orally or by oral priming followed by intramuscular (i.m.) boosting; D-ala was co-administered with all vaccinations. Lmdd-gag and D-ala were well tolerated. Oral priming/oral boosting induced Gag-specific cellular immune responses, whereas oral priming/i.m. boosting induced systemic as well as mucosal anti-Gag antibodies. These results suggest that the route of vaccination may bias anti-Gag immune responses either towards T-helper type 1 (Th1) or Th2 responses; overall, our data show that live attenuated, recombinant Lmdd-gag is safe and immunogenic in primates.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Oral
- Animals
- Gene Deletion
- Genes, Bacterial
- Genes, gag
- HIV Antibodies/biosynthesis
- HIV Antibodies/blood
- Immunity, Cellular
- Immunity, Mucosal
- Immunization, Secondary
- Injections, Intramuscular
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Lymphocyte Activation
- Macaca mulatta
- Safety
- T-Lymphocytes/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Shisong Jiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
| | - Robert A. Rasmussen
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
| | - Katrina McGeehan
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Fred R. Frankel
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Judy Lieberman
- CBR Institute for Biomedical Research, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Harold M. McClure
- Division of Research Resources and Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Kristina M. Williams
- Immunobiology Branch, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708
| | - Uma S. Babu
- Immunobiology Branch, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708
| | - Richard B. Raybourne
- Immunobiology Branch, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708
| | - Elizabeth Strobert
- Division of Research Resources and Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Ruth M. Ruprecht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
- *Corresponding author. Tel: +1-617-632-3719; fax: +1-617-632-3112. E-mail address:
| |
Collapse
|
26
|
Abstract
The immunostimulatory characteristics and intracellular niche of Listeria monocytogenes make it uniquely suitable for use as a live bacterial vaccine vector. Preclinical results supporting this idea, and current strategies to induce beneficial cell-mediated immunity to both infectious diseases and cancer with this vector, are discussed in this review.
Collapse
Affiliation(s)
- Kevin W Bruhn
- Department of Medicine, Division of Dermatology, Los Angeles Biomedical Research Institute at Harbor/UCLA Medical Center, 1124 W. Carson St., Torrance, CA 90502, USA.
| | | | | |
Collapse
|
27
|
Orr MT, Orgun NN, Wilson CB, Way SS. Cutting edge: recombinant Listeria monocytogenes expressing a single immune-dominant peptide confers protective immunity to herpes simplex virus-1 infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:4731-5. [PMID: 17404252 PMCID: PMC2626165 DOI: 10.4049/jimmunol.178.8.4731] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vast majority of the world's population is infected with HSV. Although antiviral therapy can reduce the incidence of reactivation and asymptomatic viral shedding, and limit morbidity and mortality from active disease, it cannot cure infection. Therefore, the development of an effective vaccine is an important global health priority. In this study, we demonstrate that recombinant Listeria monocytogenes (Lm) expressing the H-2K(b) glycoprotein B (gB)(498-505) peptide from HSV-1 triggers a robust CD8 T cell response to this Ag resulting in protective immunity to HSV infection. Following challenge with HSV-1, immune-competent mice primed with recombinant Lm-expressing gB(498-505) Ag were protected from HSV-induced paralysis. Protection was associated with dramatic reductions in recoverable virus, and early expansion of HSV-1-specific CD8 T cells in the regional lymph nodes. Thus, recombinant Lm-expressing Ag from HSV represents a promising new class of vaccines against HSV infection.
Collapse
Affiliation(s)
- Mark T. Orr
- Department of Immunology, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Nural N. Orgun
- Department of Immunology, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Christopher B. Wilson
- Department of Immunology, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
- Department of Pediatrics, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Sing Sing Way
- Department of Pediatrics, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| |
Collapse
|
28
|
Abstract
AbstractListeria monocytogenesis amongst the most intriguing and well studied of the pathogenic bacteria. However, the understanding and perspective one has ofL. monocytogenesdepends to a large extent on the microbiological issues with which one is faced as a part of your professional duties. The focus of the veterinary clinician or investigator is likely to be foremost on the neurologic (circling disease) and reproductive diseasesL. monocytogenescauses. To the food microbiologist, the principal concern is to prevent introduction ofL. monocytogenesinto food products, or to identify its presence and prevent its multiplication to numbers of organisms that are likely to pose a substantial risk to humans who ingest the product. To the cellular immunologist, listeriosis represents a robust murine model that helped to elucidate many important concepts in innate and adaptive immunity, andL. monocytogenesis a potential vector for delivery of novel vaccines. To the student of molecular pathogenesis,L. monocytogenesis a powerful and well-characterized model organism for studying the cellular microbiology of an intracellular pathogen. In this brief overview, I will attempt to highlight some of the classical observations, and contemporary insights, onL. monocytogenesand listeriosis, and integrate these perspectives into a common framework. By so doing, I hope to provide those with one perspective on listeriosis with an appreciation of the broad array of problems and issues faced by those who focus on some other aspect ofL. monocytogenesand its pathogenesis.
Collapse
Affiliation(s)
- Charles J Czuprynski
- Department of Pathobiological Sciences and the Food Research Institute, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
29
|
Li Z, Zhao X, Zhou C, Gu B, Frankel FR. A truncated Bacillus subtilis dal gene with a 3' ssrA gene tag regulates the growth and virulence of racemase-deficient Listeria monocytogenes. MICROBIOLOGY-SGM 2007; 152:3091-3102. [PMID: 17005988 DOI: 10.1099/mic.0.28994-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes (Lm) is a Gram-positive intracellular pathogen that can elicit strong cellular immunity. An attenuated strain (Lmdd) with deletions in two genes (dal and dat) required for d-alanine synthesis and viability has been shown to induce long-lived protective systemic and mucosal immune responses in mice when administered in the presence of the required amino acid. To bypass the necessity for exogenous d-alanine without compromising the safety of the original strain, the defect of Lmdd was complemented with a heterologous Bacillus subtilis dal gene, and the effects of truncating the upstream region of the gene on its transcription efficiency and of modifying its protein product with an ssrA tag at the 3'-terminus were examined. The strains with 551 bp and 80 bp upstream regions showed high levels of transcription and grew without d-alanine. The strains with the shortest upstream regions, 48 bp and 18 bp, showed greatly decreased levels of transcription and failed to grow in the absence of d-alanine. Addition of an ssrA tag to the longer genes resulted in a somewhat altered growth pattern in media and a reduced plaque size on L2 fibroblasts. These bacteria contained low levels of racemase protein and reduced free pools of d-alanine. One of the strains tested further, Lmdd/pA80S, was rapidly cleared from the spleens of infected mice but nevertheless induced a strong immune response that protected mice against challenge by wild-type L. monocytogenes. These bacteria can thus induce immune responses in mice comparable to the original Lmdd strain, but without the need for exogenous d-alanine, and may have use as a live vaccine vector against infectious diseases and cancers.
Collapse
Affiliation(s)
- Zhongxia Li
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xinyan Zhao
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenghui Zhou
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baiyan Gu
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fred R Frankel
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Jiang L, Ke C, Xu J, Chen J, Chen X, Chen N, Shuai J, Fang W. Listeria monocytogenes mutants carrying Newcastle disease virus F gene fused to its actA and plcB: in vitro expression and immunogenicity in chickens. Acta Biochim Biophys Sin (Shanghai) 2007; 39:57-66. [PMID: 17213959 DOI: 10.1111/j.1745-7270.2007.00248.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recombinant Listeria monocytogenes mutants carrying Newcastle disease virus (NDV) fusion protein gene F were constructed by homologous recombination. NDV F or its truncated fragment Fa was used as the model heterologous gene to be integrated into actA or plcB downstream of their signal sequences. Correct orientation of the inserted genes was verified by polymerase chain reaction amplification of F or Fa. The inserted F and Fa were expressed in the two recombinants Lm-DeltaactA-F and Lm-DeltaplcB-Fa as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot. Both recombinants exhibited reduced virulence to embryonated eggs and mice by about 1.5-2.5 logs as compared with the parent wild strain 10403S. They were also less invasive than strain 10403S (P<0.05). Chickens receiving the recombinant strains orally or intraperitoneally were partially protected from virulent NDV challenge possibly due to enhancement of non-specific immunity because the antibody titers against the homologous virus strain or the recombinant truncated fusion protein were marginal. Further research is needed in other animal models to see if the low antibody response results from insufficient expression of the heterologous genes as a result of failure of L. monocytogenes or its recombinants to persist or replicate in chickens.
Collapse
Affiliation(s)
- Lingli Jiang
- Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory for Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Loeffler DIM, Schoen CU, Goebel W, Pilgrim S. Comparison of different live vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA by virulence-attenuated Listeria monocytogenes. Infect Immun 2006; 74:3946-57. [PMID: 16790768 PMCID: PMC1489688 DOI: 10.1128/iai.00112-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes can be used to deliver protein antigens or DNA and mRNA encoding such antigens directly into the cytosol of host cells because of its intracellular lifestyle. In this study, we compare the in vivo efficiencies of activation of antigen-specific CD8 and CD4 T cells when the antigen is secreted by L. monocytogenes or when antigen-encoding plasmid DNA or mRNA is released by self-destructing strains of L. monocytogenes. Infection of mice with self-destructing L. monocytogenes carriers delivering mRNA that encodes a nonsecreted form of ovalbumin (OVA) resulted in a significant OVA-specific CD8 T-cell response. In contrast, infection with L. monocytogenes delivering OVA-encoding DNA failed to generate specific T cells. Secretion of OVA by the carrier bacteria yielded the strongest immune response involving OVA-specific CD8 and CD4 T cells. In addition, we investigated the antigen delivery capacity of a self-destructing, virulence-attenuated L. monocytogenes aroA/B mutant. In contrast to the wild-type strain, this mutant exhibited only marginal liver toxicity when high doses (5 x 10(7) CFU per animal administered intravenously) were used, and it was also able to deliver sufficient amounts of secreted OVA into mice. Therefore, the results presented here could lay the groundwork for a rational combination of L. monocytogenes as an attenuated carrier for the delivery of protein and nucleic acid vaccines in novel vaccination strategies.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Cell Line, Tumor
- DNA, Bacterial/administration & dosage
- DNA, Bacterial/immunology
- Drug Delivery Systems
- Female
- Leukemia P388
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Listeria monocytogenes/pathogenicity
- Listeriosis/immunology
- Listeriosis/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Ovalbumin/metabolism
- RNA, Bacterial/administration & dosage
- RNA, Bacterial/immunology
- RNA, Messenger/administration & dosage
- RNA, Messenger/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Virulence
Collapse
|