1
|
Nastasa V, Minea B, Pasca AS, Bostanaru-Iliescu AC, Stefan AE, Gologan D, Capota R, Foia LG, Mares M. Long-Term Oral Administration of Hyperimmune Egg-Based IgY-Rich Formulations Induces Mucosal Immune Response and Systemic Increases of Cytokines Involved in Th2- and Th17-Type Immune Responses in C57BL/6 Mice. Int J Mol Sci 2024; 25:8701. [PMID: 39201385 PMCID: PMC11354499 DOI: 10.3390/ijms25168701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Three hyperimmune egg-based formulations rich in immunoglobulin Y (IgY) were orally administered (daily, for up to 90 days) to C57BL/6 mice that were not microbially challenged. The serum levels of 32 cytokines were quantified every 30 days. Histopathology, hematology, and serum biochemistry investigations were also performed. As a sign of increased immune activity, lymphohistiocytic infiltrates were detected in the digestive tract and the liver after 30, 60, and 90 days of treatment. These infiltrates were also present in the lungs after 30 and 60 days, but not at 90 days. Blood analysis indicated systemic inflammation after 30 days of treatment: increases in pro-inflammatory cytokines, glycemia, total serum proteins, ALT, and ALP. After 60 and 90 days of treatment, the analyzed blood parameters showed mixed signs of both increased and decreased inflammation. The increased cytokines, which varied with formulation and time of exposure, indicated a combination of mostly Th17- and Th2-type immune responses. As the mice were healthy and housed in standardized sanitary conditions, and were not microbially challenged, the data were consistent with an interaction of IgY with the gut-associated lymphoid tissue as the main mechanism of action. This interaction generated a local immune response, which subsequently induced a systemic response.
Collapse
Affiliation(s)
- Valentin Nastasa
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Bogdan Minea
- Department of Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Aurelian-Sorin Pasca
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Andra-Cristina Bostanaru-Iliescu
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Alina-Elena Stefan
- Doctoral School, Department of Pathology, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 59 Mărăşti Boulevard, 011464 Bucharest, Romania;
- Department of Research and Development, Themis Pathology SRL, 56F 1 Decembrie 1918 Boulevard, 032468 Bucharest, Romania;
| | - Daniela Gologan
- Department of Research and Development, Themis Pathology SRL, 56F 1 Decembrie 1918 Boulevard, 032468 Bucharest, Romania;
- Doctoral School, Department of Organic Chemistry, Faculty of Chemical Engineering and Biotechnologies, Politehnica University, 313 Splaiul Independenţei, 060042 Bucharest, Romania
| | - Robert Capota
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| | - Liliana-Georgeta Foia
- Department of Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (V.N.); (A.-S.P.); (A.-C.B.-I.); (R.C.); (M.M.)
| |
Collapse
|
2
|
McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J Control Release 2023; 353:1107-1126. [PMID: 36528195 DOI: 10.1016/j.jconrel.2022.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/26/2022]
Abstract
Colonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design. This review provides a modern insight into the key parameters determining the effective design and development of colon-targeted medicines. Influential physiological features governing the release, dissolution, stability, and absorption of drugs in the colon are first discussed, followed by an overview of the most reliable colon-targeted formulation strategies. Finally, the most appropriate in vitro, in vivo, and in silico preclinical investigations are presented, with the goal of inspiring strategic development of new colon-targeted therapeutics.
Collapse
Affiliation(s)
- Laura E McCoubrey
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alessia Favaron
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Atheer Awad
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Mine Orlu
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Simon Gaisford
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Abdul W Basit
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
3
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
4
|
Fan Q, Wu Y, Li M, An F, Yao L, Wang M, Wang X, Yuan J, Jiang K, Li W, Li M. Lactobacillus spp. create a protective micro-ecological environment through regulating the core fucosylation of vaginal epithelial cells against cervical cancer. Cell Death Dis 2021; 12:1094. [PMID: 34799549 PMCID: PMC8604912 DOI: 10.1038/s41419-021-04388-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Vaginal dysbiosis often occurs in patients with cervical cancer. The fucosylation of mucosal epithelial cells is closely related to microbial colonization, and play an important role in protecting the vaginal mucosal epithelial cells. However, no reports on the relationship between vaginal dysbiosis and abnormal mucosal epithelial cell fucosylation, and their roles in the occurrence and development of cervical cancer are unavailable. Here we report that core fucosylation levels were significantly lower in the serum, exfoliated cervical cells and tumor tissue of cervical cancer patients. Core fucosyltransferase gene (Fut8) knockout promoted the proliferation and migration of cervical cancer cells. In patients with cervical cancer, the vaginal dysbiosis, and the abundance of Lactobacillus, especially L. iners, was significantly reduced. Meanwhile, the abundance of L.iners was positively correlated with core fucosylation levels. The L. iners metabolite lactate can activate the Wnt pathway through the lactate-Gpr81 complex, which increases the level of core fucosylation in epidermal cells, inhibiting the proliferation and migration of cervical cancer cells, and have application prospects in regulating the vaginal microecology and preventing cervical cancer.
Collapse
Affiliation(s)
- Qingjie Fan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yuanhang Wu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mechou Li
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan An
- The Cancer Stem Cell Research Institute of Dalian Medical University, Dalian, China
| | - Lulu Yao
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meixian Wang
- The Reproductive and Genetics Center of Dalian Women and Children's Medical Center (Group), Dalian, China
| | - Xiuying Wang
- The Gynecology and Oncology Ward of Dalian Maternal and Child Health Hospital, Dalian, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Kui Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Yadav V, Mai Y, McCoubrey LE, Wada Y, Tomioka M, Kawata S, Charde S, Basit AW. 5-Aminolevulinic Acid as a Novel Therapeutic for Inflammatory Bowel Disease. Biomedicines 2021; 9:biomedicines9050578. [PMID: 34065300 PMCID: PMC8160866 DOI: 10.3390/biomedicines9050578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a naturally occurring nonprotein amino acid licensed as an optical imaging agent for the treatment of gliomas. In recent years, 5-ALA has been shown to possess anti-inflammatory and immunoregulatory properties through upregulation of heme oxygenase-1 via enhancement of porphyrin, indicating that it may be beneficial for the treatment of inflammatory conditions. This study systematically examines 5-ALA for use in inflammatory bowel disease (IBD). Firstly, the ex vivo colonic stability and permeability of 5-ALA was assessed using human and mouse fluid and tissue. Secondly, the in vivo efficacy of 5-ALA, in the presence of sodium ferrous citrate, was investigated via the oral and intracolonic route in an acute DSS colitis mouse model of IBD. Results showed that 5-ALA was stable in mouse and human colon fluid, as well as in colon tissue. 5-ALA showed more tissue restricted pharmacokinetics when exposed to human colonic tissue. In vivo dosing demonstrated significantly improved colonic inflammation, increased local heme oxygenase-1 levels, and decreased concentrations of proinflammatory cytokines TNF-α, IL-6, and IL-1β in both plasma and colonic tissue. These effects were superior to that measured concurrently with established anti-inflammatory treatments, ciclosporin and 5-aminosalicylic acid (mesalazine). As such, 5-ALA represents a promising addition to the IBD armamentarium, with potential for targeted colonic delivery.
Collapse
Affiliation(s)
- Vipul Yadav
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Correspondence: (V.Y.); (A.W.B.)
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-sen University, Guangzhou 510275, China;
| | - Laura E. McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
| | - Yasufumi Wada
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Motoyasu Tomioka
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Satofumi Kawata
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Shrikant Charde
- Neopharma Japan, Iidabashi Grand Bloom 4th Floor, 2-10-2 Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan; (Y.W.); (M.T.); (S.K.); (S.C.)
| | - Abdul W. Basit
- Intract Pharma Limited, London Bioscience Innovation Centre, London NW1 0NH, UK
- Department of Pharmaceutics, UCL School of Pharmacy, University College, London WC1N 1AX, UK;
- Correspondence: (V.Y.); (A.W.B.)
| |
Collapse
|
6
|
Pal S, Cruz-Fisher MI, Cheng C, Carmichael JR, Tifrea DF, Tatarenkova O, de la Maza LM. Vaccination with the recombinant major outer membrane protein elicits long-term protection in mice against vaginal shedding and infertility following a Chlamydia muridarum genital challenge. NPJ Vaccines 2020; 5:90. [PMID: 33083025 PMCID: PMC7530680 DOI: 10.1038/s41541-020-00239-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Implementation of a vaccine is likely the best approach to curtail Chlamydia trachomatis infections. The aim of this study was to determine the ability of a vaccine formulated with the recombinant major outer membrane protein (MOMP) and Th1 and Th2 adjuvants, delivered by combinations of systemic and mucosal routes, to elicit long-term protection in mice against a genital challenge with Chlamydia muridarum. As a negative control, mice were vaccinated with the recombinant Neisseria gonorrhoeae porinB, and the positive control group was immunized with C. muridarum live elementary bodies (EB). The four vaccines formulated with MOMP, as determined by the titers of IgG and neutralizing antibodies in serum, proliferative responses of T-cells stimulated with EB and levels of IFN-γ in the supernatants, elicited robust humoral and cellular immune responses over a 6-month period. Groups of mice were challenged genitally at 60, 120, or 180 days postimmunization. Based on the number of mice with positive vaginal cultures, number of positive cultures, length of time of shedding, and number of inclusion forming units recovered, MOMP vaccinated groups were significantly protected. To assess fertility, when the vaginal cultures became negative, female mice were caged with male mice and the outcome of the pregnancy evaluated. As determined by the number of pregnant mice and the number of embryos, two of the vaccine formulations protected mice up to 180 days postimmunization. To our knowledge this is the first subunit of Chlamydia vaccine that has elicited in mice significant long-term protection against a genital challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Maria I. Cruz-Fisher
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Jennifer R. Carmichael
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Olga Tatarenkova
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800 USA
| |
Collapse
|
7
|
Varum F, Freire AC, Fadda HM, Bravo R, Basit AW. A dual pH and microbiota-triggered coating (Phloral™) for fail-safe colonic drug release. Int J Pharm 2020; 583:119379. [PMID: 32360546 DOI: 10.1016/j.ijpharm.2020.119379] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Enteric-coated dosage forms are widely used for targeting the ileo-colonic region of the gastrointestinal (GI) tract. However, accurate targeting is challenging due to intra- and inter-individual variability in intestinal paramaters such as fluid pH and transit times, which occasionally lead to enteric coating failure. As such, a unique coating technology (Phloral™), which combines two independent release mechanisms - a pH trigger (Eudragit® S; dissolving at pH 7) and a microbiota-trigger (resistant starch), has been developed, offering a fail-safe approach to colonic targeting. Here, we demonstrate that the inclusion of resistant starch in the coating does not affect the pH mediated drug release mechanism or the robustness of the coating in the upper GI tract. In order to make the resistant starch more digestible by bacterial enzymes, heat treatment of the starch in the presence of butanol was required to allow disruption of the crystalline structure of the starch granules. Under challenging conditions of limited exposure to high pH in the distal small intestine fluid and rapid transit through the colon, often observed in patients with inflammatory bowel disease, particularly in ulcerative colitis, this dual-trigger pH-enzymatic coating offers a revolutionary approach for site specific drug delivery to the large intestine.
Collapse
Affiliation(s)
- Felipe Varum
- Tillotts Pharma AG, Rheinfelden, Switzerland; UCL School of Pharmacy, University College London, London, United Kingdom
| | | | - Hala M Fadda
- UCL School of Pharmacy, University College London, London, United Kingdom
| | | | - Abdul W Basit
- UCL School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
8
|
Tifrea DF, Pal S, de la Maza LM. A Recombinant Chlamydia trachomatis MOMP Vaccine Elicits Cross-serogroup Protection in Mice Against Vaginal Shedding and Infertility. J Infect Dis 2020; 221:191-200. [PMID: 31504647 PMCID: PMC6935996 DOI: 10.1093/infdis/jiz438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Here, we determined the ability of a C. trachomatis recombinant major outer membrane protein (rMOMP) vaccine to elicit cross-serogroup protection. METHODS Female C3H/HeN mice were vaccinated by mucosal and systemic routes with C. trachomatis serovar D (UW-3/Cx) rMOMP and challenged in the ovarian bursa with serovars D (UW-3/Cx), D (UCI-96/Cx), E (IOL-43), or F (N.I.1). CpG-1826 and Montanide ISA 720 were used as adjuvants. RESULTS Immune responses following vaccination were more robust against the most closely related serovars. Following a genital challenge (as determined by number of mice with positive vaginal cultures, number of positive cultures, number of inclusion forming units recovered, and number of days with positive cultures) mice challenged with C. trachomatis serovars of the same complex were protected but not those challenged with serovar F (N.I.1) from a different subcomplex. Females were caged with male mice. Based on fertility rates, number of embryos, and hydrosalpinx formation, vaccinated mice were protected against challenges with serovars D (UW-3/Cx), D (UCI-96/Cx), and E (IOL-43) but not F (N.I.1). CONCLUSIONS This is the first subunit vaccine shown to protect mice against infection, pathology, and infertility caused by different C. trachomatis serovars.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine
| |
Collapse
|
9
|
Diaz-Dinamarca DA, Soto DA, Leyton YY, Altamirano-Lagos MJ, Avendaño MJ, Kalergis AM, Vasquez AE. Oral vaccine based on a surface immunogenic protein mixed with alum promotes a decrease in Streptococcus agalactiae vaginal colonization in a mouse model. Mol Immunol 2018; 103:63-70. [PMID: 30205305 DOI: 10.1016/j.molimm.2018.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023]
Abstract
The Surface Immunogenic Protein (SIP) of Group B Streptococcus (GBS) had been described as a good target for vaccine development. To date, SIP has been reported as a highly conserved protein, and in a mouse model it induces protection against lethal GBS challenge. Also, similar effects have been described by intranasal immunization with a SIP-based vaccine. In this study, we show the immune response induced by an oral SIP-based vaccine formulated on alum in a mouse model. Our vaccine can reduce vaginal GBS colonization and induce specific SIP-antibodies with opsonophagocytosis activities against GBS. Moreover, we observed the activation of T-cells producing IFN-γ, TNF-α, IL-10, IL-2, and increased expression of the transcription factor T-bet, suggesting a Th1-type humoral response. The oral SIP-based vaccine is a novel alternative in the development of a vaccine against GBS.
Collapse
Affiliation(s)
- D A Diaz-Dinamarca
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Chile; Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D A Soto
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Chile
| | - Y Y Leyton
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Chile
| | - M J Altamirano-Lagos
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Chile; Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M J Avendaño
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Chile; Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A E Vasquez
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Chile; Universidad San Sebastián, Facultad de Medicina y Ciencia, Escuela de Bioquímica, Providencia, Santiago, Chile.
| |
Collapse
|
10
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
11
|
Influence of ageing on the gastrointestinal environment of the rat and its implications for drug delivery. Eur J Pharm Sci 2014; 62:76-85. [PMID: 24834990 DOI: 10.1016/j.ejps.2014.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/07/2014] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
Abstract
Age-mediated changes in gut physiology are considerations central to the elucidation of drug performance from oral formulations. Using rats of different age groups we measured the pH, buffer capacity, fluid volume, osmolality, and surface tension of gastrointestinal (GI) fluids, and therein explored the impact of these variables on prednisolone and mesalazine solubility in luminal fluids. We also studied the distribution of gut associated lymphoid tissue (GALT) and mucus layer thickness across the GI tract in rats of different age groups. At a mucosal level, there was an increase in GALT from young to adult rat. Gastrointestinal pH and buffer capacity remained mostly unchanged with age, except some pH differences in stomach and distal small intestine and a higher buffer capacity in the large intestinal fluids of young rats. Osmolality and surface tension also remained unaffected with the exception of a lower osmolality in elderly stomach and a lower surface tension in the small intestine of young rats. The difference in luminal environment on ageing influenced the solubility of studied drugs, for instance prednisolone solubility was shown to be higher in adult rats (mid small intestine and caecum) and solubility of mesalazine was significantly higher in the elderly distal small intestine.
Collapse
|
12
|
Cheng C, Pal S, Tifrea D, Jia Z, de la Maza LM. A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. Microbes Infect 2014; 16:244-52. [PMID: 24291713 PMCID: PMC3965591 DOI: 10.1016/j.micinf.2013.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the World and there is a need for a vaccine. To enhance the immunogenicity of a vaccine formulated with the Chlamydia muridarum (Cm) mouse pneumonitis recombinant major outer membrane protein (MOMP), we used combinations of Pam2CSK4 + CpG-1826 and Montanide ISA 720 VG + CpG-1826 as adjuvants. Neisseria gonorrhoeae recombinant porin B (Ng-PorB) was used as the antigen control with the same adjuvants. Female BALB/c mice were immunized twice in the nares (i.n.) or in the colon (cl.) and were boosted twice by the intramuscular plus subcutaneous (i.m. + s.c.) routes. Based on the IgG2a/IgG1 ratio in sera, mice immunized with MOMP + Pam2CSK4 + CpG-1826 showed a strong Th2 response while animals vaccinated with MOMP + Montanide ISA 720 VG + CpG-1826 had a Th1 response. Both groups of mice also developed robust Cm-specific T cell proliferation and high levels of IFN-γ. Four weeks after the last immunization, the mice were challenged i.n. with 10(4) inclusion-forming units (IFU) of Cm. Using changes in body weight and number of IFU recovered from the lungs at 10 days post-challenge mice immunized i.n. + i.m./s.c. with MOMP + Pam2CSK4 + CpG-1826 were better protected than other groups. In conclusion, MOMP adjuvanted with Pam2CSK4 + CpG-1826, elicits strong humoral and cellular immune responses and induces significant protection against Chlamydia.
Collapse
Affiliation(s)
- Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Delia Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Zhenyu Jia
- Translational Cancer Biology, Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
13
|
Abstract
Oral vaccines are safe and easy to administer and convenient for all ages. They have been successfully developed to protect from many infectious diseases acquired through oral transmission. We recently found in animal models that formulation of oral vaccines in a nanoparticle-releasing microparticle delivery system is a viable approach for selectively inducing large intestinal protective immunity against infections at rectal and genital mucosae. These large-intestine targeted oral vaccines are a potential substitute for the intracolorectal immunization, which has been found to be effective against rectogenital infections but is not feasible for mass vaccination. Moreover, the newly developed delivery system can be modified to selectively target either the small or large intestine for immunization and accordingly revealed a regionalized immune system in the gut. Future applications and research endeavors suggested by the findings are discussed.
Collapse
Affiliation(s)
- Qing Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China,Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China,Correspondence to: Qing Zhu, and Jay A. Berzofsky,
| | - Jay A. Berzofsky
- Vaccine Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA,Correspondence to: Qing Zhu, and Jay A. Berzofsky,
| |
Collapse
|
14
|
Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat Med 2012; 18:1291-6. [PMID: 22797811 PMCID: PMC3475749 DOI: 10.1038/nm.2866] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 01/11/2012] [Indexed: 12/27/2022]
Abstract
Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic microorganisms. Vaccination through large intestinal mucosa, previously proven protective for both of these mucosal sites in animal studies, can be achieved successfully by direct intracolorectal (i.c.r.) administration, but this route is clinically impractical. Oral vaccine delivery seems preferable but runs the risk of the vaccine's destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which induced colorectal immunity in mice comparably to colorectal vaccination and protected against rectal and vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine delivery system to target the large intestine, but not the small intestine, may represent a feasible new strategy for immune protection of rectal and vaginal mucosa.
Collapse
|
15
|
Sandolo C, Péchiné S, Le Monnier A, Hoys S, Janoir C, Coviello T, Alhaique F, Collignon A, Fattal E, Tsapis N. Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile. Eur J Pharm Biopharm 2011; 79:566-73. [DOI: 10.1016/j.ejpb.2011.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 11/27/2022]
|
16
|
Carmichael JR, Pal S, Tifrea D, de la Maza LM. Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine. Vaccine 2011; 29:5276-83. [PMID: 21609745 DOI: 10.1016/j.vaccine.2011.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 01/04/2023]
Abstract
A vaccine formulated with the Chlamydia muridarum recombinant major outer membrane protein, plus the adjuvants CpG and Montanide, was tested for its ability to protect BALB/c mice against a vaginal challenge. Mice were immunized by mucosal [intravaginal (i.vag.) plus colonic (col.), or intranasal (i.n.) plus sublingual (s.l.)], or systemic [intramuscular (i.m.) plus subcutaneous (s.c.)] routes, and a combination of mucosal priming and systemic boosting routes. A negative control group was vaccinated with the Neisseria gonorrhoeae porin B (Ng-rPorB) and a positive control group was inoculated in the nares with live Chlamydia. The strongest Chlamydia-specific humoral and cell-mediated immune responses were observed in the groups immunized by a combination of mucosal and systemic routes. Following the vaginal challenge, groups immunized using mucosal priming followed by systemic immunization had a significant decrease in the number of mice with positive vaginal cultures. For example, of the mice immunized i.n./s.l.+i.m./s.c., 24% had positive cultures during the six weeks of the experiment versus 69% for the negative control group immunized with Ng-rPorB (P<0.05). Similarly, the groups of mice primed by the mucosal routes and boosted by the systemic routes had significantly less IFU in the vaginal cultures when compared to the Ng-rPorB animals (P<0.05). These combination groups were also protected against infertility. The two groups had fertility rates of 100% (i.n./s.l.+i.m./s.c.) and 81% (i.vag./col.+i.m./s.c.) equivalent to the positive-control group immunized with live Chlamydia (100% fertility; P>0.05). These results show the importance of the schedule and routes of vaccination and represent the first study to show protection against infertility by a Chlamydia recombinant subunit vaccine.
Collapse
Affiliation(s)
- Jennifer R Carmichael
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | |
Collapse
|
17
|
Merchant HA, McConnell EL, Liu F, Ramaswamy C, Kulkarni RP, Basit AW, Murdan S. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci 2011; 42:3-10. [DOI: 10.1016/j.ejps.2010.09.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
18
|
Ralli-Jain P, Tifrea D, Cheng C, Pal S, de la Maza LM. Enhancement of the protective efficacy of a Chlamydia trachomatis recombinant vaccine by combining systemic and mucosal routes for immunization. Vaccine 2010; 28:7659-66. [PMID: 20875490 DOI: 10.1016/j.vaccine.2010.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/09/2010] [Accepted: 09/12/2010] [Indexed: 10/19/2022]
Abstract
Chlamydia trachomatis causes respiratory and sexually transmitted infections. Here, we tested a vaccine formulated with the recombinant major outer membrane protein from C. trachomatis mouse pneumonitis (CT-MoPn) for its ability to protect mice against an intranasal (i.n.) challenge. The adjuvants CpG and Montanide were used for systemic routes, intramuscular (i.m.) and subcutaneous (s.c.), and cholera toxin for mucosal routes, sublingual (s.l.) and colonic (c.l.). Mucosal immunizations were performed either alone or in combination with systemic routes. Mice inoculated i.n. with 10(4) inclusion-forming units (IFU) of CT-MoPn served as a positive control and the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) as the negative antigen control. Immunized animals were challenged i.n. with 10(4)IFU of CT-MoPn. Following immunization the combination groups showed high chlamydial serum IgG titers (s.l.+i.m.+s.c. 25,600; c.l+i.m.+s.c. 102,400) and the IgG2a/IgG1 ratios indicated a Th1 response. Following the i.n. challenge the s.l.+i.m.+s.c. group showed the best protection as demonstrated by an increase in body weight of 0.3% over the 10 day course of infection. A statistically significant difference was found when compared with the Ng-rPorB immunized animals that had lost 20% of their original body weight (P<0.05). In addition, the repeated measures ANOVA test showed significant difference in body weight change for the combined immunized groups vs their mucosal counterparts and also the systemic immunized group. A statistically significant difference (P<0.05) was also observed in the number of IFUs recovered from the lungs when the s.l.+i.m.+s.c. (2.8×10(6)) and c.l.+i.m.+s.c. (3.4×10(6)) groups were compared to their respective mucosal only groups (s.l.: 61.9×10(6) and c.l: 136.2×10(6)) and the control Ng-rPorB immunized mice (198.2×10(6)) (P<0.05). In conclusion, a combined systemic plus mucosal vaccination provides better protection against a respiratory challenge with C. trachomatis than either systemic or mucosal immunizations alone.
Collapse
Affiliation(s)
- Pooja Ralli-Jain
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | |
Collapse
|
19
|
McConnell EL, Liu F, Basit AW. Colonic treatments and targets: issues and opportunities. J Drug Target 2009; 17:335-63. [PMID: 19555265 DOI: 10.1080/10611860902839502] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The colon provides a plethora of therapeutic opportunities. There are multiple disease targets, drug molecules, and colon-specific delivery systems to be explored. Clinical studies highlight the potential for systemic delivery via the colon, and the emerging data on the levels of cell membrane transporters and metabolic enzymes along the gut could prove advantageous for this. Often efflux transporters and metabolic enzyme levels are lower in the colon, suggesting a potential for improved bioavailability of drug substrates at this site. The locoregional distribution of multiple metabolic enzymes (including cytochromes), efflux transporters (including P-glycoprotein and breast cancer resistance proteins), and influx transporters (including the solute carrier family) along the intestine is summarized. Local delivery to the colonic mucosa remains a valuable therapeutic option. New therapies that target inflammatory mediators could improve the treatment of inflammatory bowel disease, and old and new anticancer molecules could, when delivered topically, prove to be beneficial adjuncts to the current systemic or surgical treatments. New issues such as pharmacogenomics, chronotherapeutics, and the delivery of prebiotics and probiotics are also discussed in this review. Targeting drugs to the colon utilizes various strategies, each with their advantages and flaws. The most promising systems are considered in the light of the physiological data which influence their in vivo behavior.
Collapse
|
20
|
Ito F, Fujimori H, Honnami H, Kawakami H, Kanamura K, Makino K. Study of types and mixture ratio of organic solvent used to dissolve polymers for preparation of drug-containing PLGA microspheres. Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2008.12.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Basit AW, Short MD, McConnell EL. Microbiota-triggered colonic delivery: Robustness of the polysaccharide approach in the fed state in man. J Drug Target 2009; 17:64-71. [DOI: 10.1080/10611860802455805] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Demberg T, Robert-Guroff M. Mucosal immunity and protection against HIV/SIV infection: strategies and challenges for vaccine design. Int Rev Immunol 2009; 28:20-48. [PMID: 19241252 PMCID: PMC3466469 DOI: 10.1080/08830180802684331] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To date, most HIV vaccine strategies have focused on parenteral immunization and systemic immunity. These approaches have not yielded the efficacious HIV vaccine urgently needed to control the AIDS pandemic. As HIV is primarily mucosally transmitted, efforts are being re-focused on mucosal vaccine strategies, in spite of complexities of immune response induction and evaluation. Here, we outline issues in mucosal vaccine design and illustrate strategies with examples from the recent literature. Development of a successful HIV vaccine will require in-depth understanding of the mucosal immune system, knowledge that ultimately will benefit vaccine design for all mucosally transmitted infectious agents.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | | |
Collapse
|
23
|
Gut instincts: Explorations in intestinal physiology and drug delivery. Int J Pharm 2008; 364:213-26. [DOI: 10.1016/j.ijpharm.2008.05.012] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/03/2008] [Accepted: 05/06/2008] [Indexed: 12/12/2022]
|
24
|
Ibekwe VC, Khela MK, Evans DF, Basit AW. A new concept in colonic drug targeting: a combined pH-responsive and bacterially-triggered drug delivery technology. Aliment Pharmacol Ther 2008; 28:911-6. [PMID: 18647282 DOI: 10.1111/j.1365-2036.2008.03810.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Current approaches to colonic drug delivery exploit one of two main physiological characteristics: the pH change or increase in bacterial numbers along the gastrointestinal tract. Here, we describe a new concept in targeted delivery, which combines these triggers to improve colonic delivery. AIM To assess the in-vivo targeting performance of a novel colonic delivery coating comprising a mixture of pH-responsive enteric polymer (Eudragit S) and biodegradable polysaccharide (resistant starch) in a single layer matrix film. METHODS Tablets (radio-labelled) were film-coated with the dual-mechanism coating and administered in a three-way crossover study to eight healthy volunteers (i) without food, (ii) with breakfast or (iii) 30 min before breakfast. The site of intestinal disintegration was assessed using gamma scintigraphy. RESULTS The coated tablets were able to resist breakdown in the stomach and small intestine. Consistent disintegration of the dosage form was seen at the ileocaecal junction/large intestine. The site of disintegration remained unaffected by feeding. CONCLUSIONS The dual-mechanism (pH/bacterial) coating provides colon-specificity. Each trigger mechanism has the capacity to act as a failsafe, ensuring appropriate targeting in the gastrointestinal tract. This platform technology has potential for systemic applications or the treatment of local disorders of the large intestine, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- V C Ibekwe
- Department of Pharmaceutics, The School of Pharmacy, University of London, London, UK
| | | | | | | |
Collapse
|