1
|
Çokçalışkan C, Tuncer-Göktuna P, Sareyyüpoğlu B, Türkoğlu T, Yıldız M, Deveci MNF, Aras-Uzun E, Arslan A, Kürkçü A, Uzunlu E, Asar E. Booster administration can make a difference in the antibody response to intradermal foot-and-mouth disease vaccination in cattle. Arch Virol 2022; 167:405-413. [PMID: 35034176 DOI: 10.1007/s00705-021-05273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 11/02/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically important viral disease of cloven-hoofed animals. Routine vaccination is one of the preferred methods of protection against this disease in endemic countries. For protective immunity against FMD, repeated immunizations with frequent administration are required. Intradermal immunization has many advantages over intramuscular administration of vaccines. In this study, a commercial tetravalent FMD vaccine adjuvanted with Montanide ISA 206 was administered to cattle via the intramuscular (2 mL [n = 10] and 0.5 mL [n = 9]) and intradermal (0.5 mL [n = 11]) routes. Booster doses were administered 28 days later using the same vaccine and routes. Serum samples were collected on days 0, 7, 14, and 28 post-vaccination (pv) and at 30 and 60 days post-booster. Homologous and heterologous virus neutralization tests and liquid-phase blocking and isotype ELISAs were used to measure the antibody response. The results showed that intradermal administration of quarter doses of the vaccine provides an equal or better virus neutralization antibody response than intramuscular administration of the same dose of vaccine after booster administration in cattle. This means that four times more cattle can be immunized with the same amount of vaccine using the intradermal route without compromising immunity.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey.
| | - Pelin Tuncer-Göktuna
- Republic of Turkey, Ministry of Agriculture and Forestry, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Beyhan Sareyyüpoğlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Tunçer Türkoğlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Muhammet Yıldız
- Directorate-General for State Farms, Republic of Turkey, Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - M Nuri Fırat Deveci
- Directorate-General for State Farms, Republic of Turkey, Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - Eylem Aras-Uzun
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Abdullah Arslan
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Ayça Kürkçü
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Ergün Uzunlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Erdoğan Asar
- Republic of Turkey, Turkish Statistical Institute, Ankara, Turkey
| |
Collapse
|
2
|
Schnyder JL, De Pijper CA, Garcia Garrido HM, Daams JG, Goorhuis A, Stijnis C, Schaumburg F, Grobusch MP. Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination - A systematic review and meta-analysis. Travel Med Infect Dis 2020; 37:101868. [PMID: 32898704 PMCID: PMC7474844 DOI: 10.1016/j.tmaid.2020.101868] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Vaccine supply shortages are of global concern. We hypothesise that intradermal (ID) immunisation as an alternative to standard routes might augment vaccine supply utilisation without loss of vaccine immunogenicity and efficacy. METHODS We conducted a systematic review and meta-analysis searching Medline, Embase and Web of Science databases. Studies were included if: licensed, currently available vaccines were used; fractional dose of ID was compared to IM or SC immunisation; primary immunisation schedules were evaluated; immunogenicity, safety data and/or cost were reported. We calculated risk differences (RD). Studies were included in meta-analysis if: a pre-defined immune correlate of protection was assessed; WHO-recommend schedules and antigen doses were used in the control group; the same schedule was applied to both ID and control groups (PROSPERO registration no. CRD42020151725). RESULTS The primary search yielded 5,873 articles, of which 156 articles were included; covering 12 vaccines. Non-inferiority of immunogenicity with 20-60% of antigen used with ID vaccines was demonstrated for influenza (H1N1: RD -0·01; 95% CI -0·02, 0·01; I2 = 55%, H2N3: RD 0·00; 95% CI -0·01, 0·01; I2 = 0%, B: RD -0·00; 95% CI -0·02, 0·01; I2 = 72%), rabies (RD 0·00; 95% CI -0·02, 0·02; I2 = 0%), and hepatitis B vaccines (RD -0·01; 95% CI -0·04, 0·02; I2 = 20%). Clinical trials on the remaining vaccines yielded promising results, but are scarce. CONCLUSIONS There is potential for inoculum/antigen dose-reduction by using ID immunisation as compared to standard routes of administration for some vaccines (e.g. influenza, rabies). When suitable, vaccine trials should include an ID arm.
Collapse
Affiliation(s)
- Jenny L Schnyder
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Cornelis A De Pijper
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Hannah M Garcia Garrido
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Joost G Daams
- Medical Library, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Abraham Goorhuis
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Cornelis Stijnis
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Martin P Grobusch
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Chen Z, Liu K, Liu X, Lou Y. Modelling epidemics with fractional-dose vaccination in response to limited vaccine supply. J Theor Biol 2019; 486:110085. [PMID: 31758966 DOI: 10.1016/j.jtbi.2019.110085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/10/2019] [Accepted: 11/16/2019] [Indexed: 11/26/2022]
Abstract
The control strategies of emergency infectious diseases are constrained by limited medical resources. The fractional dose vaccination strategy as one of feasible strategies was proposed in response to global shortages of vaccine stockpiles. Although a variety of epidemic models have been developed under the circumstances of limited resources in treatment, few models particularly investigated vaccination strategies in resource-limited settings. In this paper, we develop a two-group SIR model with incorporation of proportionate mixing patterns and n-fold fractional dose vaccination related parameters to evaluate the efficiency of fractional dose vaccination on disease control at the population level. The existence and uniqueness of the final size of the two-group SIR epidemic model, the formulation of the basic reproduction number and the relationship between them are established. Moreover, numerical simulations are performed based on this two-group vector-free model to investigate the effectiveness of n-fold fractional dose vaccination by using the emergency outbreaks of yellow fever in Angola in 2016. By employing linear and nonlinear dose-response relationships, we compare the resulting fluctuations of four characteristics of the epidemics, which are the outbreak size, the peak time of the outbreak, the basic reproduction number and the infection attack rate (IAR). For both types of dose-response relationships, dose-fractionation takes positive effects in lowering the outbreak size, delay the peak time of the outbreak, reducing the basic reproduction number and the IAR of yellow fever only when the vaccine efficacy is high enough. Moreover, five-fold fractional dose vaccination strategy may not be the optimal vaccination strategy as proposed by the World Health Organization if the dose-response relationship is nonlinear.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Kaihui Liu
- Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Xiuxiang Liu
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Yijun Lou
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Schaumburg F, De Pijper CA, Grobusch MP. Intradermal travel vaccinations-when less means more. Travel Med Infect Dis 2019; 28:3-5. [PMID: 30878310 DOI: 10.1016/j.tmaid.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany.
| | - Cornelis A De Pijper
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, Meibergdreef 9, 1100, DD, Amsterdam, Netherlands
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, Meibergdreef 9, 1100, DD, Amsterdam, Netherlands
| |
Collapse
|
5
|
Oreskovic Z, Nechvatalova K, Krejci J, Kummer V, Faldyna M. Aspects of intradermal immunization with different adjuvants: The role of dendritic cells and Th1/Th2 response. PLoS One 2019; 14:e0211896. [PMID: 30742635 PMCID: PMC6370205 DOI: 10.1371/journal.pone.0211896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Intradermal (i.d.) application of vaccine is promising way how to induce specific immune response against particular pathogens. Adjuvants, substances added into vaccination dose with the aim to increase immunogenicity, play important role in activation of dendritic cells with subsequent activation of lymphocytes. They can, however, induce unwanted local reactions. The aim of the study was to determine the effect of i.d. administration of model antigen keyhole limped hemocyanine alone or with different adjuvants-aluminium hydroxide and oil-based adjuvants-on local histopathological reaction as well as dendritic cell activation at the site of administration and local cytokine and chemokine response. This was assessed at 4 and 24 hours after application. Selection of the adjuvants was based on the fact, that they differently enhance antibody or cell-mediated immunity. The results showed activation of dendritic cells and both Th1 and Th2 response stimulated by oil-based adjuvants. It was associated with higher expression of set of genes, incl. chemokine receptor CCR7 or Th1-associated chemokine CXCL10 and cytokine IFNγ. Application of the antigen with aluminium hydroxide induced higher expression of Th2-associated IL4 or IL13. On the other hand, both complete and incomplete Freund´s adjuvants provoked strong local reaction associated with influx of neutrophils. This was accompanied with high expression of proinflammatory IL1 or neutrophil chemoattractant CXCL8. Surprisingly, similarly strong local reaction was detected also after application of aluminium hydroxide-based adjuvant. The best balanced local reaction with sufficient activation of immune cells was detected after application of oil-based adjuvants Montanide and Emulsigen.
Collapse
Affiliation(s)
- Zrinka Oreskovic
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Josef Krejci
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Vladimir Kummer
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Martin Faldyna
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
6
|
Ho NI, Huis In 't Veld LGM, Raaijmakers TK, Adema GJ. Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines? Front Immunol 2018; 9:2874. [PMID: 30619259 PMCID: PMC6300500 DOI: 10.3389/fimmu.2018.02874] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, vaccine development has advanced significantly in pursuing higher safety with less side effects. However, this is often accompanied by a reduction in vaccine immunogenicity and an increased dependency on adjuvants to enhance vaccine potency. Especially for diseases like cancer, it is important that therapeutic vaccines contain adjuvants that promote strong T cell responses. An important mode of action for such adjuvants is to prolong antigen exposure to dendritic cells (DCs) and to induce their maturation. These mature DCs are extremely effective in the activation of antigen-specific T cells, which is a pre-requisite for induction of potent and long-lasting cellular immunity. For the activation of CD8+ cytotoxic T cell responses, however, the exogenous vaccine antigens need to gain access to the endogenous MHCI presentation pathway of DCs, a process referred to as antigen cross-presentation. In this review, we will focus on recent insights in clinically relevant vaccine adjuvants that impact DC cross-presentation efficiency, including aluminum-based nanoparticles, saponin-based adjuvants, and Toll-like receptor ligands. Furthermore, we will discuss the importance of adjuvant combinations and highlight new developments in cancer vaccines. Understanding the mode of action of adjuvants in general and on antigen cross-presentation in DCs in particular will be important for the design of novel adjuvants as part of vaccines able to induce strong cellular immunity.
Collapse
Affiliation(s)
- Nataschja I Ho
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lisa G M Huis In 't Veld
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tonke K Raaijmakers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy. Trends Pharmacol Sci 2017; 38:771-793. [PMID: 28668223 DOI: 10.1016/j.tips.2017.06.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
Adjuvants incorporated in prophylactic and/or therapeutic vaccine formulations impact vaccine efficacy by enhancing, modulating, and/or prolonging the immune response. In addition, they reduce antigen concentration and the number of immunizations required for protective efficacy, therefore contributing to making vaccines more cost effective. Our better understanding of the molecular mechanisms of immune recognition and protection has led research efforts to develop new adjuvants that are currently at various stages of development or clinical evaluation. In this review, we focus mainly on several of these promising adjuvants, and summarize recent work conducted in various laboratories to develop novel lipid-containing adjuvants.
Collapse
|
8
|
Levin Y, Kochba E, Shukarev G, Rusch S, Herrera-Taracena G, van Damme P. A phase 1, open-label, randomized study to compare the immunogenicity and safety of different administration routes and doses of virosomal influenza vaccine in elderly. Vaccine 2016; 34:5262-5272. [PMID: 27667332 DOI: 10.1016/j.vaccine.2016.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Influenza remains a significant problem in elderly despite widespread vaccination coverage. This randomized, phase-I study in elderly compared different strategies of improving vaccine immunogenicity. METHODS A total of 370 healthy participants (⩾65years) were randomized equally 1:1:1:1:1:1 to six influenza vaccine treatments (approximately 60-63 participants per treatment arm) at day 1 that consisted of three investigational virosomal vaccine formulations at doses of 7.5, 15, and 45μg HA antigen/strain administered intradermally (ID) by MicronJet600™ microneedle device (NanoPass Technologies) or intramuscularly (IM), and three comparator registered seasonal vaccines; Inflexal V™ (Janssen) and MF59 adjuvanted Fluad™ (Novartis) administered IM and Intanza™ (Sanofi Pasteur) administered ID via Soluvia™ prefilled microinjection system (BD). Serological evaluations were performed at days 22 and 90 and safety followed-up for 6months. RESULTS Intradermal delivery of virosomal vaccine using MicronJet600™ resulted in significantly higher immunogenicity than the equivalent dose of virosomal Inflexal V™ administered intramuscularly across most of the parameters and strains, as well as in some of the readouts and strains as compared with the 45μg dose of virosomal vaccine formulation. Of 370 participants, 300 (81.1%) reported ⩾1 adverse event (AE); more participants reported solicited local AEs (72.2%) than solicited systemic AEs (12.2%). CONCLUSIONS Intradermal delivery significantly improved influenza vaccine immunogenicity compared with intramuscular delivery. Triple dose (45μg) virosomal vaccine did not demonstrate any benefit on vaccine's immunogenicity over 15μg commercial presentation. All treatments were generally safe and well-tolerated.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Aged
- Aged, 80 and over
- Aging/immunology
- Antibodies, Viral/blood
- Dose-Response Relationship, Immunologic
- Drug Administration Routes
- Female
- Humans
- Immunogenicity, Vaccine
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Injections, Intradermal
- Injections, Intramuscular
- Male
- Vaccines, Virosome/administration & dosage
- Vaccines, Virosome/adverse effects
- Vaccines, Virosome/immunology
Collapse
Affiliation(s)
| | | | | | - Sarah Rusch
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Pierre van Damme
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Belgium
| |
Collapse
|
9
|
Liang F, Loré K. Local innate immune responses in the vaccine adjuvant-injected muscle. Clin Transl Immunology 2016; 5:e74. [PMID: 27195117 PMCID: PMC4855268 DOI: 10.1038/cti.2016.19] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/26/2022] Open
Abstract
Inducing a high magnitude of antibodies, possibly in combination with T-cell responses that offer epitope breadth over prolonged periods of time is likely a prerequisite for effective vaccines against severe diseases such as HIV-1 infection, malaria and tuberculosis. A much better understanding of the innate immune mechanisms that are critical for inducing desired responses to vaccination would help in the design of novel vaccines. The majority of human vaccines are administered into the muscle. In this brief review, we focus on the initial innate immune events that occur locally at the site of intramuscular vaccine delivery, and how they are influenced by clinically approved vaccine adjuvants. In particular, the effects on cell mobilization, cell activation and vaccine antigen uptake are reviewed. Understanding how distinct adjuvants enhance and tailor vaccine responses would facilitate the selection of the best-suited adjuvant to improve vaccine efficacy to a given pathogen.
Collapse
Affiliation(s)
- Frank Liang
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet , Stockholm, Sweden
| | - Karin Loré
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
10
|
Finessi V, Nicoli F, Gallerani E, Sforza F, Sicurella M, Cafaro A, Caputo A, Ensoli B, Gavioli R. Effects of different routes of administration on the immunogenicity of the Tat protein and a Tat-derived peptide. Hum Vaccin Immunother 2016; 11:1489-93. [PMID: 25875962 DOI: 10.1080/21645515.2015.1016676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The use of the Tat protein of HIV in vaccines against AIDS showed promising results in primate and human studies. To characterize the impact of the administration route on the induction of humoral responses at systemic and mucosal levels, we compared intradermal, intramuscular and mucosal immunizations with Tat and a Tat-derived peptide. Mice were immunized with the Tat protein by different routes and the titer and isotype of anti-Tat antibodies were assessed in serum and mucosal lavages. Intramuscular and intradermal administrations showed comparable immunogenicity, while the mucosal administration was unable to induce IgM in serum and IgG at mucosal sites but showed superior immunogenicity in terms of IgA induction. Anti-Tat antibodies were also obtained upon vaccination with the immunodominant Tat 1-20 peptide which was, however, less immunogenic than the whole Tat protein.
Collapse
Affiliation(s)
- Valentina Finessi
- a Department of Life Sciences and Biotechnology; University of Ferrara ; Ferrara , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015; 14:1509-23. [PMID: 26313239 DOI: 10.1586/14760584.2015.1081067] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant and dosing; individual variations among vaccine recipients and vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Lu Zhang
- a 1 Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,b 2 China-US Vaccine Research Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wei Wang
- c 3 Wang Biologics, LLC, Chesterfield, MO 63017, USA ; Current affiliation: Bayer HealthCare, Berkeley, CA 94710, USA
| | - Shixia Wang
- d 4 Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
12
|
|
13
|
Levin Y, Kochba E, Kenney R. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: are all delivery methods the same? Vaccine 2014; 32:4249-52. [PMID: 24930715 DOI: 10.1016/j.vaccine.2014.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/19/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
The skin provides the largest immune barrier to infection and is a readily accessible site for vaccination, although intradermal (ID) injection can be challenging. The MicronJet™ microneedle is a novel device that consistently injects antigens very close to the skin's dendritic cells. A dose-sparing ID injection study was conducted in 280 healthy adult volunteers using trivalent virosomal adjuvanted influenza vaccine. ID injection of 3 μg using the MicronJet™ was well tolerated and showed a statistically higher geometric mean fold rise than the same dose ID using a conventional needle (Mantoux technique) for the H1N1 and B strains or a 15 μg intramuscular (IM) injection for the H3N2 strain. Thus, the immune response appears to partially depend on the delivery device and route of injection. The MicronJet™ may allow dose-sparing, yet give a superior response in influenza vaccination and warrants further clinical evaluation.
Collapse
Affiliation(s)
- Yotam Levin
- NanoPass Technologies Ltd., 3 Golda Meir Street, Nes Ziona 7403648, Israel.
| | - Efrat Kochba
- NanoPass Technologies Ltd., 3 Golda Meir Street, Nes Ziona 7403648, Israel.
| | - Richard Kenney
- Crucell Holland B.V., Archimedesweg 4, 2333 CN Leiden, The Netherlands.
| |
Collapse
|
14
|
Skountzou I, Compans RW. Skin immunization with influenza vaccines. Curr Top Microbiol Immunol 2014; 386:343-69. [PMID: 25038939 DOI: 10.1007/82_2014_407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Problems with existing influenza vaccines include the strain specificity of the immune response, resulting in the need for frequent reformulation in response to viral antigenic drift. Even in years when the same influenza strains are prevalent, the duration of immunity is limited, and results in the need for annual revaccination. The immunogenicity of the present split or subunit vaccines is also lower than that observed with whole inactivated virus, and the vaccines are not very effective in high risk groups such as the young or the elderly. Vaccine coverage is incomplete, due in part to concerns about the use of hypodermic needles for delivery. Alternative approaches for vaccination are being developed which address many of these concerns. Here we review new approaches which focus on skin immunization, including the development of needle-free delivery systems which use stable dry formulations and induce stronger and longer-lasting immune responses.
Collapse
Affiliation(s)
- Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, CNR Building, 1518 Clifton Road, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
15
|
Cappelletti M, Taddeo A, Colombo E, Brambilla L, Bellinvia M, Pregliasco F, Villa ML, Della Bella S. Immunogenicity and safety of seasonal influenza vaccination in patients with classic Kaposi's sarcoma. J Invest Dermatol 2012; 132:2414-2421. [PMID: 22622418 DOI: 10.1038/jid.2012.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Classic Kaposi's sarcoma (cKS) is a human herpesvirus-8 (HHV-8)-associated lympho-angioproliferative tumor typically occurring in the elderly. It is associated with HHV-8-driven perturbed balance of peripheral B-cell subsets, which may have an impact on immune responses to antigenic stimulation. We took advantage of the common practice of cKS patients to undergo seasonal influenza vaccination because of advanced age and analyzed the immunogenicity and safety of licensed trivalent influenza vaccine in 46 cKS patients and 44 matched controls. Licensure criteria for immunogenicity were fulfilled in both groups. Four weeks after vaccination, hemagglutination-inhibition antibody titers against each viral strain contained in the vaccine increased in patients and controls (all P<0.001). Protection against at least one strain was achieved by 96% of cKS and 91% of control subjects. Protection against all strains persisted after 12 weeks, demonstrating a long-lasting response to vaccination. The vaccine was equally well tolerated by patients and controls, as assessed by evaluating solicited local and systemic reactions to the vaccine, and appearance or increase of antinuclear autoantibodies. HHV-8 virological rebound was observed in four cKS patients, but was not accompanied by progression of KS lesions. We conclude that seasonal influenza vaccine given to cKS patients is immunogenic and safe.
Collapse
Affiliation(s)
- Monica Cappelletti
- Department of Biomedical Sciences and Technologies, University of Milan, Milano, Italy
| | - Adriano Taddeo
- Department of Biomedical Sciences and Technologies, University of Milan, Milano, Italy
| | - Elena Colombo
- Department of Biomedical Sciences and Technologies, University of Milan, Milano, Italy
| | - Lucia Brambilla
- Institute of Dermatological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milano, Italy
| | - Monica Bellinvia
- Institute of Dermatological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milano, Italy
| | - Fabrizio Pregliasco
- Department of Public Health, Microbiology and Virology, University of Milan, Milano, Italy
| | - Maria L Villa
- Department of Biomedical Sciences and Technologies, University of Milan, Milano, Italy
| | - Silvia Della Bella
- Department of Translational Medicine, University of Milan, Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Clinico Humanitas, Rozzano (Milano), Italy.
| |
Collapse
|
16
|
Immunogenicity of protein aggregates--concerns and realities. Int J Pharm 2012; 431:1-11. [PMID: 22546296 DOI: 10.1016/j.ijpharm.2012.04.040] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/14/2023]
Abstract
Protein aggregation is one of the key challenges in the development of protein biotherapeutics. It is a critical product quality issue as well as a potential safety concern due to the increased immunogenicity potential of these aggregates. The overwhelming safety concern has led to an increased development effort and regulatory scrutiny in recent years. The main purposes of this review are to examine the literature data on the relationship between protein aggregates and immunogenicity, to highlight the linkage and existing inconsistencies/uncertainties, and to propose directions for future investigations/development.
Collapse
|
17
|
Mallick AI, Kulkarni RR, St Paul M, Parvizi P, Nagy E, Behboudi S, Sharif S. Vaccination with CpG-adjuvanted avian influenza virosomes promotes antiviral immune responses and reduces virus shedding in chickens. Viral Immunol 2012; 25:226-31. [PMID: 22512311 DOI: 10.1089/vim.2011.0085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of virosomes as a vaccine platform has proven successful against several viruses. Here we examined the protective efficacy of a virosome-based vaccine consisting of avian influenza virus (AIV) A/Duck/Czech/56/H4N6 in chickens against a homologous AIV challenge. Virosomes adjuvanted with CpG-ODN or recombinant chicken interferon (IFN)-γ significantly reduced virus shedding after virus challenge. Furthermore, immunization with virosomes adjuvanted with CpG-ODN increased hemagglutination inhibition (HI) and virus-specific neutralizing serum antibodies, as well as virus-specific serum IgG and mucosal IgA responses. We also found a significant increase in the expression of type I and II interferon genes in the protected birds following virus challenge. In summary, this study demonstrated the ability of virosomes adjuvanted with CpG-ODN to reduce AIV shedding, and elicit virus-specific protective antibody responses in vaccinated birds.
Collapse
Affiliation(s)
- Amirul I Mallick
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Eichelberger MC, Green MD. Animal models to assess the toxicity, immunogenicity and effectiveness of candidate influenza vaccines. Expert Opin Drug Metab Toxicol 2011; 7:1117-27. [PMID: 21749266 DOI: 10.1517/17425255.2011.602065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Every year, > 100 million doses of licensed influenza vaccine are administered worldwide, with relatively few serious adverse events reported. Initiatives to manufacture influenza vaccines on different platforms have come about to ensure timely production of strain-specific as well as universal vaccines. To prevent adverse events that may be associated with these new vaccines, it is important to evaluate the toxicity of new formulations in animal models. AREAS COVERED This review outlines preclinical studies that evaluate safety, immunogenicity and effectiveness of novel products to support further development and clinical trials. This has been done through a review of the latest literature describing vaccines under development. EXPERT OPINION The objective of preclinical safety tests is to demonstrate the absence of toxic contaminants and adventitious agents. Additional tests that characterize vaccine content more completely, or demonstrate the absence of exacerbated disease following virus challenge in vaccinated animals, may provide additional data to ensure the safety of new vaccine strategies.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
19
|
Ansaldi F, Durando P, Icardi G. Intradermal influenza vaccine and new devices: a promising chance for vaccine improvement. Expert Opin Biol Ther 2011; 11:415-27. [DOI: 10.1517/14712598.2011.557658] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Teunissen MBM, Haniffa M, Collin MP. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol 2011; 351:25-76. [PMID: 21833835 DOI: 10.1007/82_2011_169] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DC) are the key initiators and regulators of any immune response which determine the outcome of CD4(+) and CD8(+) T-cell responses. Multiple distinct DC subsets can be distinguished by location, phenotype, and function in the homeostatic and inflamed human skin. The function of steady-state cutaneous DCs or recruited inflammatory DCs is influenced by the surrounding cellular and extracellular skin microenvironment. The skin is an attractive site for vaccination given the extended local network of DCs and the easy access to the skin-draining lymph nodes to generate effector T cells and immunoglobulin-producing B cells for long-term protective immunity. In the context of intradermal vaccination we describe in this review the skin-associated immune system, the characteristics of the different skin DC subsets, the mechanism of antigen uptake and presentation, and how the properties of DCs can be manipulated. This knowledge is critical for the development of intradermal vaccine strategies and supports the concept of intradermal vaccination as a superior route to the conventional intramuscular or subcutaneous methods.
Collapse
Affiliation(s)
- M B M Teunissen
- Department of Dermatology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
'Dressed for success' C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells. Curr Opin Immunol 2010; 23:131-7. [PMID: 21169001 DOI: 10.1016/j.coi.2010.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/17/2010] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
Abstract
Current strategies in immunotherapy for the treatment of tumors or autoimmunity focus on direct in vivo targeting of antigens to dendritic cells (DC), as these cells are the key regulators of immune responses. Multiple DC subsets can be distinguished in both humans and mice, based on phenotype and location. Moreover, recent data show that these subsets have distinct functions. All these features have implications for the design of DC-targeting vaccines. In this review we integrate recent knowledge on the different DC subsets in human and mice and how DC-expressed C-type lectin receptors (CLR) can be exploited for the induction of either antigen-specific immunity or tolerance.
Collapse
|
22
|
Amorij JP, Hinrichs WL, Frijlink HW, Wilschut JC, Huckriede A. Needle-free influenza vaccination. THE LANCET. INFECTIOUS DISEASES 2010; 10:699-711. [PMID: 20883966 DOI: 10.1016/s1473-3099(10)70157-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccination is the cornerstone of influenza control in epidemic and pandemic situations. Influenza vaccines are typically given by intramuscular injection. However, needle-free vaccinations could offer several distinct advantages over intramuscular injections: they are pain-free, easier to distribute, and easier to give to patients, and their use could reduce vaccination costs. Moreover, vaccine delivery via the respiratory tract, alimentary tract, or skin might elicit mucosal immune responses at the site of virus entry and better cellular immunity, thus improving effectiveness. Although various needle-free vaccination methods for influenza have shown preclinical promise, few have progressed to clinical trials-only live attenuated intranasal vaccines have received approval, and only in some countries. Further clinical investigation is needed to help realise the potential of needle-free vaccination for influenza.
Collapse
Affiliation(s)
- Jean-Pierre Amorij
- Department of Pharmaceutical Technology and Biopharmacy, University of Gröningen, Netherlands
| | | | | | | | | |
Collapse
|
23
|
Zielinski RJ, Smedley JV, Perera PY, Silvera PM, Waldmann TA, Capala J, Perera LP. Smallpox vaccine with integrated IL-15 demonstrates enhanced in vivo viral clearance in immunodeficient mice and confers long term protection against a lethal monkeypox challenge in cynomolgus monkeys. Vaccine 2010; 28:7081-91. [PMID: 20728526 PMCID: PMC2952667 DOI: 10.1016/j.vaccine.2010.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/09/2010] [Accepted: 08/02/2010] [Indexed: 11/30/2022]
Abstract
Despite the eradication of smallpox, there is heightened concern that it could be reintroduced as a result of intentional release of Variola major virus through an act of bioterrorism. The live vaccine that was pivotal in the eradication of smallpox though considered a gold standard for its efficacy still retains sufficient residual virulence that can cause life-threatening sequelae especially in immune deficient individuals. Therefore, a safer smallpox vaccine that can match the efficacy of first generation vaccines is urgently needed. We previously reported that the integration of human IL-15 cytokine into the genome of Wyeth strain of vaccinia (Wyeth/IL-15), the same strain as the licensed vaccine, generates a vaccine with superior immunogenicity and efficacy in a mouse model. We now demonstrate that Wyeth/IL-15 is non-lethal to athymic nude mice when administered intravenously at a dose of 10(7) plaque forming units and it undergoes enhanced in vivo clearance in these immune deficient mice. Furthermore, a majority of cynomolgus monkeys vaccinated with vaccinia viruses with integrated IL-15, when challenged 3 years later with a lethal dose of monkeypox virus displayed milder clinical manifestations with complete recovery supporting the utility of Wyeth/IL-15 for contemporary populations as a safer and efficacious smallpox vaccine.
Collapse
Affiliation(s)
- Rafal J Zielinski
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892-1374, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Falsey AR. New emerging technologies and the intradermal route: the novel way to immunize against influenza. Vaccine 2010; 28 Suppl 4:D24-32. [DOI: 10.1016/j.vaccine.2010.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Vankerckhoven V, Van Damme P. Clinical studies assessing immunogenicity and safety of intradermally administered influenza vaccines. Expert Opin Drug Deliv 2010; 7:1109-25. [DOI: 10.1517/17425247.2010.507668] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Mohanan D, Slütter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kündig TM, Gander B, Johansen P. Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 2010; 147:342-9. [PMID: 20727926 DOI: 10.1016/j.jconrel.2010.08.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/16/2010] [Accepted: 08/09/2010] [Indexed: 12/16/2022]
Abstract
Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.
Collapse
Affiliation(s)
- Deepa Mohanan
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Esposito S, Marchisio P, Ansaldi F, Bianchini S, Pacei M, Baggi E, Trabattoni D, Icardi G, Principi N. A randomized clinical trial assessing immunogenicity and safety of a double dose of virosomal-adjuvanted influenza vaccine administered to unprimed children aged 6–35 months. Vaccine 2010; 28:6137-44. [DOI: 10.1016/j.vaccine.2010.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/05/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
|
28
|
Chuaychoo B, Wongsurakiat P, Nana A, Kositanont U, Maranetra KN. The immunogenicity of intradermal influenza vaccination in COPD patients. Vaccine 2010; 28:4045-51. [PMID: 20412877 DOI: 10.1016/j.vaccine.2010.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
We evaluated the immunogenicity of a reduced-dose intradermal trivalent, inactivated, split-virion seasonal influenza vaccine compared to that of a conventional intramuscular vaccination in chronic obstructive pulmonary disease (COPD) patients. One hundred and fifty-six COPD patients randomly received either 0.2 ml (6 microg hemagglutinin (HA) per strain) split into two-site intradermal (ID) injections or a single 0.5 ml (15 microg HA per strain) intramuscular (IM) injection. Geometric mean titers, seroconversion factors, seroconversion rates and seroprotection rates at 4 weeks post-vaccination in the ID group were less than those in the IM group. Only the seroconversion factor to influenza B in the ID group was statistically less than in the IM group (18.8 in the ID group, n=81 versus 37.3 in the IM group, n=75, p=0.045). Nevertheless, each strain of the ID vaccination met all the Committee for Proprietary Medicinal Products (CPMP) criteria. Seroprotection rates were above 60% throughout the year in influenza A (H3N2), for at least 6 months in influenza A (H1N1) and at least 4 weeks in influenza B in both ID and IM groups. The reduced-dose intradermal vaccination may be considered for use in COPD patients in a vaccine shortage situation.
Collapse
Affiliation(s)
- Benjamas Chuaychoo
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Siriraj Hospital, Mahidol University, 2 Pranok Road, BangkokNoi, Bangkok 10700, Thailand.
| | | | | | | | | |
Collapse
|
29
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2009. [DOI: 10.1002/pds.1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|