1
|
Majie A, Saha R, Sarkar B. The outbreak of the monkeypox virus in the shadow of the pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48686-48702. [PMID: 36854947 PMCID: PMC9974386 DOI: 10.1007/s11356-023-26098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/20/2023] [Indexed: 04/16/2023]
Abstract
The human monkeypox virus (MPXV) was first identified in 1959. Since then, the incidence of the disease has been sporadic. The endemic regions were identified in Africa's central and western areas. However, the infection started to spread in 2017 to non-endemic regions such as North and South America, Europe, and Asia. Since May 2022, the non-endemic areas reported 62,635 till 20th September 2022. Although the monkeypox virus has a mortality of ≥ 10%, it showed only 82 mortalities worldwide in 2022. The common symptoms include chills, fever, fatigue, and skin lesions, and the complications include secondary respiratory tract infections, encephalitis, blindness, and severe diarrhea. The factors responsible for spreading the virus include improper handling and consumption of infected bushmeat, unprotected sexual intercourse, contact with an infected person, no smallpox vaccination, improper hygiene, lower diagnostic capacity, and strong travel history from the endemic regions. The therapeutic strategy is symptom-based treatment and supportive care. Antivirals and vaccines such as Tecovirimat, Brincidofovir, Cidofovir, Imvamune, and ACAM2000 have shown promising results. The primary purpose of the review is to perform an epidemiological study and investigate the pathobiology, diagnosis, prevention, treatment, and some associated complications of the monkeypox virus in 2022.
Collapse
Affiliation(s)
- Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Rajdeep Saha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215 India
| |
Collapse
|
2
|
Fay PC, Wijesiriwardana N, Munyanduki H, Sanz-Bernardo B, Lewis I, Haga IR, Moffat K, van Vliet AHM, Hope J, Graham SP, Beard PM. The immune response to lumpy skin disease virus in cattle is influenced by inoculation route. Front Immunol 2022; 13:1051008. [PMID: 36518761 PMCID: PMC9742517 DOI: 10.3389/fimmu.2022.1051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV via either needle-inoculation or arthropod-inoculation using virus-positive Stomoxys calcitrans and Aedes aegypti vectors. Seven out of seventeen needle-inoculated calves (41%) developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific IFN-γ immune response was detected in the needle-inoculated calves from 5 days post inoculation (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated immune response was detected in all eight clinical arthropod-inoculated calves, with little response detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves, however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of protection in LSD. This study presents the first evidence of differences in the immune response between clinical and nonclinical cattle and highlights the importance of using a relevant transmission model when studying LSD.
Collapse
Affiliation(s)
- Petra C Fay
- The Pirbright Institute, Pirbright, United Kingdom
| | - Najith Wijesiriwardana
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | | | - Isabel Lewis
- The Pirbright Institute, Pirbright, United Kingdom
| | - Ismar R Haga
- The Pirbright Institute, Pirbright, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Jayne Hope
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
3
|
Hou J, Wang S, Li D, Carpp LN, Zhang T, Liu Y, Jia M, Peng H, Liu C, Wu H, Huang Y, Shao Y. Early Pro-Inflammatory Signal and T-Cell Activation Associate With Vaccine-Induced Anti-Vaccinia Protective Neutralizing Antibodies. Front Immunol 2021; 12:737487. [PMID: 34707608 PMCID: PMC8542877 DOI: 10.3389/fimmu.2021.737487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Both vaccine “take” and neutralizing antibody (nAb) titer are historical correlates for vaccine-induced protection from smallpox. We analyzed a subset of samples from a phase 2a trial of three DNA/HIV-1 primes and a recombinant Tiantan vaccinia virus-vectored (rTV)/HIV-1 booster and found that a proportion of participants showed no anti-vaccinia nAb response to the rTV/HIV-1 booster, despite successful vaccine “take.” Using a rich transcriptomic and vaccinia-specific immunological dataset with fine kinetic sampling, we investigated the molecular mechanisms underlying nAb response. Blood transcription module analysis revealed the downregulation of the activator protein 1 (AP-1) pathway in responders, but not in non-responders, and the upregulation of T-cell activation in responders. Furthermore, transcriptional factor network reconstruction revealed the upregulation of AP-1 core genes at hour 4 and day 1 post-rTV/HIV-1 vaccination, followed by a downregulation from day 3 until day 28 in responders. In contrast, AP-1 core and pro-inflammatory genes were upregulated on day 7 in non-responders. We speculate that persistent pro-inflammatory signaling early post-rTV/HIV-1 vaccination inhibits the nAb response.
Collapse
Affiliation(s)
- Jue Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuhui Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Manxue Jia
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Peng
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Acquisition and decay of IgM and IgG responses to merozoite antigens after Plasmodium falciparum malaria in Ghanaian children. PLoS One 2020; 15:e0243943. [PMID: 33332459 PMCID: PMC7746192 DOI: 10.1371/journal.pone.0243943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Developing a vaccine against Plasmodium falciparum malaria has been challenging, primarily due to high levels of antigen polymorphism and a complex parasite lifecycle. Immunization with the P. falciparum merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 has been shown to give rise to growth inhibitory and synergistic antisera. Therefore, these five merozoite proteins are considered to be promising candidates for a second-generation multivalent malaria vaccine. Nevertheless, little is known about IgG and IgM responses to these antigens in populations that are naturally exposed to P. falciparum. In this study, serum samples from clinically immune adults and malaria exposed children from Ghana were studied to compare levels of IgG and IgM specific for PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5. All five antigens were found to be specifically recognized by both IgM and IgG in serum from clinically immune adults and from children with malaria. Longitudinal analysis of the latter group showed an early, transient IgM response that was followed by IgG, which peaked 14 days after the initial diagnosis. IgG levels and parasitemia did not correlate, whereas parasitemia was weakly positively correlated with IgM levels. These findings show that IgG and IgM specific for merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 are high in children during P. falciparum malaria, but that the IgM induction and decline occurs earlier in infection than that of IgG.
Collapse
|
5
|
Envelope-Specific IgG3 and IgG1 Responses Are Associated with Clearance of Acute Hepatitis C Virus Infection. Viruses 2020; 12:v12010075. [PMID: 31936235 PMCID: PMC7019651 DOI: 10.3390/v12010075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) can be cleared naturally in a subset of individuals. However, the asymptomatic nature of acute HCV infection makes the study of the early immune response and defining the correlates of protection challenging. Despite this, there is now strong evidence implicating the humoral immune response, specifically neutralising antibodies, in determining the clearance or chronicity outcomes of primary HCV infection. In general, immunoglobulin G (IgG) plays the major role in viral neutralisation. However, there are limited investigations of anti-HCV envelope protein 2 (E2) isotypes (IgM, IgG, IgA) and IgG subclasses (IgG1-4) in early HCV infection. In this study, using a rare cohort of 14 very recently HCV-infected individuals (4-45 days) with varying disease outcome (n = 7 clearers), the timing and potency of anti-HCV E2 isotypes and IgG subclasses were examined longitudinally, in relation to neutralising antibody activity. Clearance was associated with anti-E2 IgG, specifically IgG1 and IgG3, and appeared essential to prevent the emergence of new HCV variants and the chronic infection outcome. Interestingly, these IgG responses were accompanied by IgM antibodies and were associated with neutralising antibody activity in the subjects who cleared infection. These findings provide novel insights into the early humoral immune response characteristics associated with HCV disease outcome.
Collapse
|
6
|
Sarkar S, Piepenbrink MS, Basu M, Thakar J, Keefer MC, Hessell AJ, Haigwood NL, Kobie JJ. IL-33 enhances the kinetics and quality of the antibody response to a DNA and protein-based HIV-1 Env vaccine. Vaccine 2019; 37:2322-2330. [PMID: 30926296 PMCID: PMC6506229 DOI: 10.1016/j.vaccine.2019.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Induction of a sustained and broad antibody (Ab) response is a major goal in developing a protective HIV-1 vaccine. DNA priming alone shows reduced levels of immunogenicity; however, when combined with protein boosting is an attractive vaccination strategy for induction of humoral responses. Using the VC10014 DNA and protein-based vaccine consisting of HIV-1 envelope (Env) gp160 plasmids and trimeric gp140 proteins derived from an HIV-1 clade B infected subject who developed broadly neutralizing serum Abs, and which has been previously demonstrated to induce Tier 2 heterologous neutralizing Abs in rhesus macaques, we evaluated whether MPLA and IL-33 when administered during the DNA priming phase enhances the humoral response in mice. The addition of IL-33 during the gp160 DNA priming phase resulted in high titer gp120-specific plasma IgG after the first immunization. The IL-33 treated mice had higher plasma IgG Ab avidity, breadth, and durability after DNA and protein co-immunization with alum adjuvant as compared to MPLA and alum only treated mice. IL-33 was also associated with a significant IgM Env-specific response and expansion of peritoneal and splenic B-1b B cells. These results indicate that DNA priming in the presence of exogenous IL-33 qualitatively alters the HIV-1 Env-specific humoral response, improving the kinetics and breadth of potentially protective Ab.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Madhubanti Basu
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C Keefer
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - James J Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
7
|
Jin J, Simmons G. Antiviral Functions of Monoclonal Antibodies against Chikungunya Virus. Viruses 2019; 11:v11040305. [PMID: 30925717 PMCID: PMC6520934 DOI: 10.3390/v11040305] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is the most common alphavirus infecting humans worldwide. Antibodies play pivotal roles in the immune response to infection. Increasingly, therapeutic antibodies are becoming important for protection from pathogen infection for which neither vaccine nor treatment is available, such as CHIKV infection. The new generation of ultra-potent and/or broadly cross-reactive monoclonal antibodies (mAbs) provides new opportunities for intervention. In the past decade, several potent human and mouse anti-CHIKV mAbs were isolated and demonstrated to be protective in vivo. Mechanistic studies of these mAbs suggest that mAbs exert multiple modes of action cooperatively. Better understanding of these antiviral mechanisms for mAbs will help to optimize mAb therapies.
Collapse
Affiliation(s)
- Jing Jin
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Pérez-Mazliah D, Nguyen MP, Hosking C, McLaughlin S, Lewis MD, Tumwine I, Levy P, Langhorne J. Follicular Helper T Cells are Essential for the Elimination of Plasmodium Infection. EBioMedicine 2017; 24:216-230. [PMID: 28888925 PMCID: PMC5652023 DOI: 10.1016/j.ebiom.2017.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells have been shown to be critical for the activation of germinal center (GC) B-cell responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses. Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, resulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6 mice and consequent disruption of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P. chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection models, Signaling Lymphocyte Activation Molecule (SLAM)-Associated Protein (SAP)-deficient mice were able to activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell responses to this complex parasite compared with those of protein immunizations and viral infections. Therefore, these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses. Chronic Plasmodium infection cannot be eliminated in the absence of Tfh cell responses. SAP-deficient mice are able to activate GC Tfh and GC B-cell responses to Plasmodium infection. There is a hierarchical requirement for the control of chronic Plasmodium infection following IL-21R > Tfh cells > SAP.
Successful vaccines work through activation of protective B-cell responses. Malaria, caused by Plasmodium infection transmitted by mosquito bites, remains a global threat. Despite substantial efforts, a vaccine able to bring about high levels of protection from Plasmodium infection remains elusive. Here, using an experimental malaria model including natural mosquito transmission, we demonstrate that proper activation of follicular helper CD4+ T cells is essential for the control and eradication of chronic Plasmodium infection through protective B-cell responses. Thus, it is strongly advisable for novel vaccine efforts to monitor the robust activation of this important immune compartment.
Collapse
|
9
|
The neutralizing role of IgM during early Chikungunya virus infection. PLoS One 2017; 12:e0171989. [PMID: 28182795 PMCID: PMC5300252 DOI: 10.1371/journal.pone.0171989] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays.
Collapse
|
10
|
Kennedy RB, Poland GA, Ovsyannikova IG, Oberg AL, Asmann YW, Grill DE, Vierkant RA, Jacobson RM. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine 2016; 34:3283-90. [PMID: 27177944 PMCID: PMC5528000 DOI: 10.1016/j.vaccine.2016.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
Abstract
Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or "take" at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as "protected." However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1000) cohorts of recipients of either Dryvax(®) or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Inna G Ovsyannikova
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Diane E Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Robert A Vierkant
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Robert M Jacobson
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Abstract
Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.
Collapse
Affiliation(s)
- Emily A Voigt
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
12
|
Liu Q, Fan C, Zhou S, Guo Y, Zuo Q, Ma J, Liu S, Wu X, Peng Z, Fan T, Guo C, Shen Y, Huang W, Li B, He Z, Wang Y. Bioluminescent imaging of vaccinia virus infection in immunocompetent and immunodeficient rats as a model for human smallpox. Sci Rep 2015; 5:11397. [PMID: 26235050 PMCID: PMC4522659 DOI: 10.1038/srep11397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/11/2015] [Indexed: 01/23/2023] Open
Abstract
Due to the increasing concern of using smallpox virus as biological weapons for terrorist attack, there is renewed interest in studying the pathogenesis of human smallpox and development of new therapies. Animal models are highly demanded for efficacy and safety examination of new vaccines and therapeutic drugs. Here, we demonstrated that both wild type and immunodeficient rats infected with an engineered vaccinia virus carrying Firefly luciferase reporter gene (rTV-Fluc) could recapitulate infectious and clinical features of human smallpox. Vaccinia viral infection in wild type Sprague-Dawley (SD) rats displayed a diffusible pattern in various organs, including liver, head and limbs. The intensity of bioluminescence generated from rTV-Fluc correlated well with viral loads in tissues. Moreover, neutralizing antibodies had a protective effect against virus reinfection. The recombination activating gene 2 (Rag2) knockout rats generated by transcription activator-like effector nucleases (TALENs) technology were further used to examine the infectivity of the rTV-Fluc in immunodeficient populations. Here we demonstrated that Rag2-/- rats were more susceptible to rTV-Fluc than SD rats with a slower virus clearance rate. Therefore, the rTV-Fluc/SD rats and rTV-Fluc/Rag2-/- rats are suitable visualization models, which recapitulate wild type or immunodeficient populations respectively, for testing human smallpox vaccine and antiviral drugs.
Collapse
Affiliation(s)
- Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yanan Guo
- Biocytogen Co., Ltd, Beijing, 101111, China
| | - Qin Zuo
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jian Ma
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Zexu Peng
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Tao Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | | | | | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Baowen Li
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Zhengming He
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
13
|
Keckler MS, Reynolds MG, Damon IK, Karem KL. The effects of post-exposure smallpox vaccination on clinical disease presentation: addressing the data gaps between historical epidemiology and modern surrogate model data. Vaccine 2013; 31:5192-201. [PMID: 23994378 DOI: 10.1016/j.vaccine.2013.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
Decades after public health interventions - including pre- and post-exposure vaccination - were used to eradicate smallpox, zoonotic orthopoxvirus outbreaks and the potential threat of a release of variola virus remain public health concerns. Routine prophylactic smallpox vaccination of the public ceased worldwide in 1980, and the adverse event rate associated with the currently licensed live vaccinia virus vaccine makes reinstatement of policies recommending routine pre-exposure vaccination unlikely in the absence of an orthopoxvirus outbreak. Consequently, licensing of safer vaccines and therapeutics that can be used post-orthopoxvirus exposure is necessary to protect the global population from these threats. Variola virus is a solely human pathogen that does not naturally infect any other known animal species. Therefore, the use of surrogate viruses in animal models of orthopoxvirus infection is important for the development of novel vaccines and therapeutics. Major complications involved with the use of surrogate models include both the absence of a model that accurately mimics all aspects of human smallpox disease and a lack of reproducibility across model species. These complications limit our ability to model post-exposure vaccination with newer vaccines for application to human orthopoxvirus outbreaks. This review seeks to (1) summarize conclusions about the efficacy of post-exposure smallpox vaccination from historic epidemiological reports and modern animal studies; (2) identify data gaps in these studies; and (3) summarize the clinical features of orthopoxvirus-associated infections in various animal models to identify those models that are most useful for post-exposure vaccination studies. The ultimate purpose of this review is to provide observations and comments regarding available model systems and data gaps for use in improving post-exposure medical countermeasures against orthopoxviruses.
Collapse
Affiliation(s)
- M Shannon Keckler
- Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, United States.
| | | | | | | |
Collapse
|
14
|
Khanolkar A, Williams MA, Harty JT. Antigen experience shapes phenotype and function of memory Th1 cells. PLoS One 2013; 8:e65234. [PMID: 23762323 PMCID: PMC3676405 DOI: 10.1371/journal.pone.0065234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/23/2013] [Indexed: 12/22/2022] Open
Abstract
Primary and secondary (boosted) memory CD8 T cells exhibit differences in gene expression, phenotype and function. The impact of repeated antigen stimulations on memory CD4 T cells is largely unknown. To address this issue, we utilized LCMV and Listeria monocytogenes infection of mice to characterize primary and secondary antigen (Ag)-specific Th1 CD4 T cell responses. Ag-specific primary memory CD4 T cells display a CD62LloCCR7hi CD27hi CD127hi phenotype and are polyfunctional (most produce IFNγ, TNFα and IL-2). Following homologous prime-boost immunization we observed pathogen-specific differences in the rate of CD62L and CCR7 upregulation on memory CD4 T cells as well as in IL-2+IFNγco-production by secondary effectors. Phenotypic and functional plasticity of memory Th1 cells was observed following heterologous prime-boost immunization, wherein secondary memory CD4 T cells acquired phenotypic and functional characteristics dictated by the boosting agent rather than the primary immunizing agent. Our data also demonstrate that secondary memory Th1 cells accelerated neutralizing Ab formation in response to LCMV infection, suggesting enhanced capacity of this population to provide quality help for antibody production. Collectively these data have important implications for prime-boost vaccination strategies that seek to enhance protective immune responses mediated by Th1 CD4 T cell responses.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (JTH); (MAW)
| | - John T. Harty
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (JTH); (MAW)
| |
Collapse
|
15
|
Benhnia MREI, Maybeno M, Blum D, Aguilar-Sino R, Matho M, Meng X, Head S, Felgner PL, Zajonc DM, Koriazova L, Kato S, Burton DR, Xiang Y, Crowe JE, Peters B, Crotty S. Unusual features of vaccinia virus extracellular virion form neutralization resistance revealed in human antibody responses to the smallpox vaccine. J Virol 2013; 87:1569-85. [PMID: 23152530 PMCID: PMC3554146 DOI: 10.1128/jvi.02152-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201-1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.
Collapse
Affiliation(s)
| | | | - David Blum
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rowena Aguilar-Sino
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Michael Matho
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | - Xiangzhi Meng
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Steven Head
- DNA Array Core Facility and Consortium for Functional Glycomics, The Scripps Research Institute, La Jolla, California, USA
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California, USA
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | | | | | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
16
|
|
17
|
Goulding J, Bogue R, Tahiliani V, Croft M, Salek-Ardakani S. CD8 T cells are essential for recovery from a respiratory vaccinia virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2432-40. [PMID: 22826318 DOI: 10.4049/jimmunol.1200799] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The precise immune components required for protection against a respiratory Orthopoxvirus infection, such as human smallpox or monkeypox, remain to be fully identified. In this study, we used the virulent Western Reserve strain of vaccinia virus (VACV-WR) to model a primary respiratory Orthopoxvirus infection. Naive mice infected with VACV-WR mounted an early CD8 T cell response directed against dominant and subdominant VACV-WR Ags, followed by a CD4 T cell and Ig response. In contrast to other VACV-WR infection models that highlight the critical requirement for CD4 T cells and Ig, we found that only mice deficient in CD8 T cells presented with severe cachexia, pulmonary inflammation, viral dissemination, and 100% mortality. Depletion of CD8 T cells at specified times throughout infection highlighted that they perform their critical function between days 4 and 6 postinfection and that their protective requirement is critically dictated by initial viral load and virulence. Finally, the ability of adoptively transferred naive CD8 T cells to protect RAG⁻/⁻ mice against a lethal VACV-WR infection demonstrated that they are both necessary and sufficient in protecting against a primary VACV-WR infection of the respiratory tract.
Collapse
Affiliation(s)
- John Goulding
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA 92037, USA
| | | | | | | | | |
Collapse
|
18
|
Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 2012; 36:986-1002. [PMID: 22683125 DOI: 10.1016/j.immuni.2012.05.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/17/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023]
Abstract
Humans and mice deficient in the adaptor protein SAP (Sh2d1a) have a major defect in humoral immunity, resulting from a lack of T cell help for B cells. The role of SAP in this process is incompletely understood. We found that deletion of receptor Ly108 (Slamf6) in CD4(+) T cells reversed the Sh2d1a(-/-) phenotype, eliminating the SAP requirement for germinal centers. This potent negative signaling by Ly108 required immunotyrosine switch motifs (ITSMs) and SHP-1 recruitment, resulting in high amounts of SHP-1 at the T cell:B cell synapse, limiting T cell:B cell adhesion. Ly108-negative signaling was important not only in CD4(+) T cells; we found that NKT cell differentiation was substantially restored in Slamf6(-/-)Sh2d1a(-/-) mice. The ability of SAP to regulate both positive and negative signals in T cells can explain the severity of SAP deficiency and highlights the importance of SAP and SHP-1 competition for Ly108 ITSM binding as a rheostat for the magnitude of T cell help to B cells.
Collapse
Affiliation(s)
- Robin Kageyama
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Immune modulation in primary vaccinia virus zoonotic human infections. Clin Dev Immunol 2011; 2012:974067. [PMID: 22229039 PMCID: PMC3249598 DOI: 10.1155/2012/974067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022]
Abstract
In 2010, the WHO celebrated the 30th anniversary of the smallpox eradication. Ironically, infections caused by viruses related to smallpox are being increasingly reported worldwide, including Monkeypox, Cowpox, and Vaccinia virus (VACV). Little is known about the human immunological responses elicited during acute infections caused by orthopoxviruses. We have followed VACV zoonotic outbreaks taking place in Brazil and analyzed cellular immune responses in patients acutely infected by VACV. Results indicated that these patients show a biased immune modulation when compared to noninfected controls. Amounts of B cells are low and less activated in infected patients. Although present, T CD4+ cells are also less activated when compared to noninfected individuals, and so are monocytes/macrophages. Similar results were obtained when Balb/C mice were experimentally infected with a VACV sample isolated during the zoonotic outbreaks. Taking together, the data suggest that zoonotic VACVs modulate specific immune cell compartments during an acute infection in humans.
Collapse
|
20
|
Hynote ED, Mervine PC, Stricker RB. Clinical evidence for rapid transmission of Lyme disease following a tickbite. Diagn Microbiol Infect Dis 2011; 72:188-92. [PMID: 22104184 DOI: 10.1016/j.diagmicrobio.2011.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/01/2023]
Abstract
Lyme disease transmission to humans by Ixodes ticks is thought to require at least 36-48 h of tick attachment. We describe 3 cases in which transmission of Borrelia burgdorferi, the spirochetal agent of Lyme disease, appears to have occurred in less than 24 h based on the degree of tick engorgement, clinical signs of acute infection, and immunologic evidence of acute Lyme disease. Health care providers and individuals exposed to ticks should be aware that transmission of Lyme disease may occur more rapidly than animal models suggest. A diagnosis of Lyme disease should not be ruled out based on a short tick attachment time in a subject with clinical evidence of B. burgdorferi infection.
Collapse
Affiliation(s)
- Eleanor D Hynote
- International Lyme and Associated Diseases Society1, Bethesda, MD 20827-1461, USA
| | | | | |
Collapse
|
21
|
Zhao Y, Adams YF, Croft M. Preferential replication of vaccinia virus in the ovaries is independent of immune regulation through IL-10 and TGF-β. Viral Immunol 2011; 24:387-96. [PMID: 21958373 DOI: 10.1089/vim.2011.0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccinia virus (VACV) exhibits a strong tropism for ovarian tissue and can cause ovary pathology and sterility. Why VACV preferentially accumulates in this organ is not known. Here we show that multiple immune cell populations infiltrated the ovaries following VACV infection, including virus-specific CD8 T cells making both IFN-γ and TNF. This was also accompanied by the induction of interleukin (IL)-10 and TGF-β, suggesting that VACV may exploit the ovarian environment for immune evasion via induction of these suppressive cytokines. To test this we used several strategies, including neutralizing these cytokines, and exogenous targeting of the T-cell response, to determine if this inhibited virus replication in the ovaries. We found that the VACV-specific CD8 T-cell immunity and the clearance of virus were not enhanced in the ovaries of infected mice in which IL-10 receptor (IL-10R) was blocked with antagonist antibody. VACV replication was also only moderately affected in the ovaries of infected IL-10 knockout mice. Similarly, blockade of TGF-β with antagonist antibody demonstrated no effect on CD8 T-cell immunity or VACV replication. Lastly, an agonist antibody targeting the tumor necrosis factor receptor superfamily member OX40 (TNFRSF4) enhanced the number of VACV-specific CD8 T cells producing IFN-γ in lymphoid tissue, but had no effect on CD8 T-cell infiltration of the ovaries or on the viral load. Collectively, the results indicate that preferential replication of VACV in the ovaries may not be dependent on immune suppressive mechanisms in this tissue.
Collapse
Affiliation(s)
- Yuan Zhao
- La Jolla Institute for Allergy and Immunology, Division of Immune Regulation, La Jolla, California 92037, USA
| | | | | |
Collapse
|
22
|
Cohen ME, Xiao Y, Eisenberg RJ, Cohen GH, Isaacs SN. Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors. PLoS One 2011; 6:e20597. [PMID: 21687676 PMCID: PMC3110783 DOI: 10.1371/journal.pone.0020597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.
Collapse
Affiliation(s)
- Matthew E. Cohen
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuhong Xiao
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roselyn J. Eisenberg
- Department of Microbiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stuart N. Isaacs
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
23
|
Salek-Ardakani S, Choi YS, Rafii-El-Idrissi Benhnia M, Flynn R, Arens R, Shoenberger S, Crotty S, Croft M, Salek-Ardakani S. B cell-specific expression of B7-2 is required for follicular Th cell function in response to vaccinia virus. THE JOURNAL OF IMMUNOLOGY 2011; 186:5294-303. [PMID: 21441451 DOI: 10.4049/jimmunol.1100406] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicular Th (T(FH)) cells are specialized in provision of help to B cells that is essential for promoting protective Ab responses. CD28/B7 (B7-1 and B7-2) interactions are required for germinal center (GC) formation, but it is not clear if they simply support activation of naive CD4 T cells during initiation of responses by dendritic cells or if they directly control T(FH) cells and/or directly influence follicular B cell differentiation. Using a model of vaccinia virus infection, we show that B7-2 but not B7-1 deficiency profoundly impaired T(FH) cell development but did not affect CD4 T cell priming and Th1 differentiation. Consistent with this, B7-2 but not B7-1 was required for acquisition of GC B cell phenotype, plasma cell generation, and virus-specific neutralizing Ab responses. Mixed adoptive transfer experiments indicated that bidirectional interactions between CD28 expressed on activated T cells and B7-2 expressed on follicular B cells were essential for maintenance of the T(FH) phenotype and GC B cell development. Our data provide new insight into the source and nature of molecules required for T(FH) cells to direct GC B cell responses.
Collapse
Affiliation(s)
- Samira Salek-Ardakani
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The Vaccinia virus complement control protein modulates adaptive immune responses during infection. J Virol 2010; 85:2547-56. [PMID: 21191012 DOI: 10.1128/jvi.01474-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement activation is an important component of the innate immune response against viral infection and also shapes adaptive immune responses. Despite compelling evidence that complement activation enhances T cell and antibody (Ab) responses during viral infection, it is unknown whether inhibition of complement by pathogens alters these responses. Vaccinia virus (VACV) modulates complement activation by encoding a complement regulatory protein called the vaccinia virus complement control protein (VCP). Although VCP has been described as a virulence factor, the mechanisms by which VCP enhances VACV pathogenesis have not been fully defined. Since complement is necessary for optimal adaptive immune responses to several viruses, we hypothesized that VCP contributes to pathogenesis by modulating anti-VACV T cell and Ab responses. In this study, we used an intradermal model of VACV infection to compare pathogenesis of wild-type virus (vv-VCPwt) and a virus lacking VCP (vv-VCPko). vv-VCPko formed smaller lesions in wild-type mice but not in complement-deficient mice. Attenuation of vv-VCPko correlated with increased accumulation of T cells at the site of infection, enhanced neutralizing antibody responses, and reduced viral titers. Importantly, depleting CD8(+) T cells together with CD4(+) T cells, which also eliminated T helper cell-dependent Ab responses, restored vv-VCPko to wild-type levels of virulence. These results suggest that VCP contributes to virulence by dampening both antibody and T cell responses. This work provides insight into how modulation of complement by poxviruses contributes to virulence and demonstrates that a pathogen-encoded complement regulatory protein can modulate adaptive immunity.
Collapse
|
25
|
McCausland MM, Benhnia MREI, Crickard L, Laudenslager J, Granger SW, Tahara T, Kubo R, Koriazova L, Kato S, Crotty S. Combination therapy of vaccinia virus infection with human anti-H3 and anti-B5 monoclonal antibodies in a small animal model. Antivir Ther 2010; 15:661-75. [PMID: 20587859 DOI: 10.3851/imp1573] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Treatment of rare severe side effects of vaccinia virus (VACV) immunization in humans is currently very challenging. VACV possesses two immunologically distinct virion forms in vivo - intracellular mature virion (MV, IMV) and extracellular virion (EV, EEV). METHODS Antibody-mediated therapeutic efficacy was determined against VACV infection in a small animal model of progressive vaccinia. The model consisted of severe combined immunodeficiency mice infected with VACV New York City Board of Health vaccine strain and treated with monoclonal antibodies (mAbs). RESULTS Here, we show that combination therapy with two fully human mAbs against an immunodominant MV antigen, H3 (H3L), and an EV antigen, B5 (B5R), provides significantly better protection against disease and death than either single human monoclonal or human vaccinia immune globulin, the currently licensed therapeutic for side effects of smallpox vaccination. CONCLUSIONS The preclinical studies validate that this combination of mAbs against H3 and B5 is a promising approach as a poxvirus infection treatment for use in humans.
Collapse
Affiliation(s)
- Megan M McCausland
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yusuf I, Kageyama R, Monticelli L, Johnston RJ, Ditoro D, Hansen K, Barnett B, Crotty S. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). THE JOURNAL OF IMMUNOLOGY 2010; 185:190-202. [PMID: 20525889 DOI: 10.4049/jimmunol.0903505] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD4 T cell help is critical for the generation and maintenance of germinal centers (GCs), and T follicular helper (T(FH)) cells are the CD4 T cell subset required for this process. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP [SH2D1A]) expression in CD4 T cells is essential for GC development. However, SAP-deficient mice have only a moderate defect in T(FH) differentiation, as defined by common T(FH) surface markers. CXCR5(+) T(FH) cells are found within the GC, as well as along the boundary regions of T/B cell zones. In this study, we show that GC-associated T follicular helper (GC T(FH)) cells can be identified by their coexpression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of T(FH) and GC T(FH) populations. GC T(FH) cells are a functionally discrete subset of further polarized T(FH) cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a T(H)2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC T(FH) cell subset and SAP(-) T(FH) cells are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that uses SAP signaling, is specifically required for IL-4 production by GC T(FH) cells. GC T(FH) cells require IL-4 and -21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by GC CD4 T cells but not in T(FH) cell and GC T(FH) cell differentiation.
Collapse
Affiliation(s)
- Isharat Yusuf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, School of Medicine, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|