1
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Qu W, Guo Y, Xu Y, Zhang J, Wang Z, Ding C, Pan Y. Advance in strategies to build efficient vaccines against tuberculosis. Front Vet Sci 2022; 9:955204. [PMID: 36504851 PMCID: PMC9731747 DOI: 10.3389/fvets.2022.955204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis is a chronic consumptive infectious disease, which can cause great damage to human and animal health all over the world. The emergence of multi-drug resistant strains, the unstable protective effect of Bacillus Calmette-Guérin (BCG) vaccine on adults, and the mixed infection with HIV all warn people to exploit new approaches for conquering tuberculosis. At present, there has been significant progress in developing tuberculosis vaccines, such as improved BCG vaccine, subunit vaccine, DNA vaccine, live attenuated vaccine and inactivated vaccine. Among these candidate vaccines, there are some promising vaccines to improve or replace BCG vaccine effect. Meanwhile, the application of adjuvants, prime-boost strategy, immunoinformatic tools and targeting components have been studied concentratedly, and verified as valid means of raising the efficiency of tuberculosis vaccines as well. In this paper, the latest advance in tuberculosis vaccines in recent years is reviewed to provide reliable information for future tuberculosis prevention and treatment.
Collapse
Affiliation(s)
- Wei Qu
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yinhui Guo
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yan Xu
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jie Zhang
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zongchao Wang
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Chaoyue Ding
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China,*Correspondence: Yuanhu Pan
| |
Collapse
|
4
|
Wolf G, Gerber AN, Fasana ZG, Rosenberg K, Singh NJ. Acute effects of FLT3L treatment on T cells in intact mice. Sci Rep 2022; 12:19487. [PMID: 36376544 PMCID: PMC9662129 DOI: 10.1038/s41598-022-24126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T cells express a diverse repertoire of antigen-specific receptors, which together protect against the full range of pathogens. In this context, the total repertoire of memory T cells which are maintained by trophic signals, long after pathogen clearance, is critical. Since these trophic factors include cytokines and self-peptide-MHC, both of which are available from endogenous antigen-presenting cells (APC), we hypothesized that enhancing APC numbers in vivo can be a viable strategy to amplify the population of memory T cells. We evaluated this by acutely treating intact mice with FMS-like tyrosine kinase 3 ligand (Flt3l), which promotes expansion of APCs. Here we report that this treatment allowed for, an expansion of effector-memory CD4+ and CD8+ T cells as well as an increase in their expression of KLRG1 and CD25. In the lymph nodes and spleen, the expansion was limited to a specific CD8 (CD44-low but CD62L-) subset. Functionally, this subset is distinct from naïve T cells and could produce significant amounts of effector cytokines upon restimulation. Taken together, these data suggest that the administration of Flt3L can impact both APC turnover as well as a corresponding flux of specific subsets of CD8+ T cells in an intact peripheral immune compartment.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Allison N Gerber
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Zachary G Fasana
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Kenneth Rosenberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
Drug delivery with dissolving microneedles: Skin puncture, its influencing factors and improvement strategies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Microneedle systems for delivering nucleic acid drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:273-292. [PMID: 35003824 PMCID: PMC8726529 DOI: 10.1007/s40005-021-00558-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Background Nucleic acid-based gene therapy is a promising technology that has been used in various applications such as novel vaccination platforms for infectious/cancer diseases and cellular reprogramming because of its fast, specific, and effective properties. Despite its potential, the parenteral nucleic acid drug formulation exhibits instability and low efficacy due to various barriers, such as stability concerns related to its liquid state formulation, skin barriers, and endogenous nuclease degradation. As promising alternatives, many attempts have been made to perform nucleic acid delivery using a microneedle system. With its minimal invasiveness, microneedle can deliver nucleic acid drugs with enhanced efficacy and improved stability. Area covered This review describes nucleic acid medicines' current state and features and their delivery systems utilizing non-viral vectors and physical delivery systems. In addition, different types of microneedle delivery systems and their properties are briefly reviewed. Furthermore, recent advances of microneedle-based nucleic acid drugs, including featured vaccination applications, are described. Expert opinion Nucleic acid drugs have shown significant potential beyond the limitation of conventional small molecules, and the current COVID-19 pandemic highlights the importance of nucleic acid therapies as a novel vaccination platform. Microneedle-mediated nucleic acid drug delivery is a potential platform for less invasive nucleic acid drug delivery. Microneedle system can show enhanced efficacy, stability, and improved patient convenience through self-administration with less pain.
Collapse
|
7
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
8
|
Nguyen TT, Oh Y, Kim Y, Shin Y, Baek SK, Park JH. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother 2020; 17:316-327. [PMID: 32667239 PMCID: PMC7872046 DOI: 10.1080/21645515.2020.1767997] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A microneedle array patch (MAP) has been developed as a new delivery system for vaccines. Preclinical and clinical trials with a vaccine MAP showed improved stability, safety, and immunological efficacy compared to conventional vaccine administration. Various vaccines can be delivered with a MAP. Currently, microneedle manufacturers can mass-produce pharmaceutical MAP and cosmetic MAP and this mass-production system can be adapted to produce a vaccine MAP. Clinical trials with a vaccine MAP have shown comparable efficacy with conventional administration, and discussions about regulations for a vaccine MAP are underway. However, there are concerns of reasonable cost, mass production, efficacy, and safety standards that meet FDA approval, as well as the need for feedback regarding the best method of administration. Currently, microneedles have been studied for the delivery of many kinds of vaccines, and preclinical and clinical studies of vaccine microneedles are in progress. For the foreseeable future, some vaccines will continue to be administered with syringes and needles while the use of a vaccine MAP continues to be improved because of the advantages of less pain, self-administration, improved stability, convenience, and safety.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology-HUTECH , Ho Chi Minh, Vietnam
| | - Yujeong Oh
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yunseo Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yura Shin
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Inc , Seongnam, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Yang J, Li M, Cui M, Fu ZF, Zhao L, Zhou M. A Recombinant Rabies Virus Expressing Fms-like Tyrosine Kinase 3 Ligand (Flt3L) Induces Enhanced Immunogenicity in Mice. Virol Sin 2019; 34:662-672. [PMID: 31254272 DOI: 10.1007/s12250-019-00144-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Rabies is a zoonotic disease that still causes 59,000 human deaths each year, and rabies vaccine is the most effective way to control the disease. Our previous studies suggested that the maturation of DC plays an important role in enhancing the immunogenicity of rabies vaccine. Flt3L has been reported to own the ability to accelerate the DC maturation, therefore, in this study, a recombinant rabies virus expressing mouse Flt3L, designated as LBNSE-Flt3L, was constructed, and its immunogenicity was characterized. It was found that LBNSE-Flt3L could enhance the maturation of DC both in vitro and in vivo, and significantly more TFH cells and Germinal Center B (GC B) cells were generated in mice immunized with LBNSE-Flt3L than those immunized with the parent virus LBNSE. Consequently, expressing of Flt3L could elevate the level of virus-neutralizing antibodies (VNA) in immunized mice which provides a better protection from a lethal rabies virus challenge. Taken together, our study extends the potential of Flt3L as a good adjuvant to develop novel rabies vaccine by enhancing the VNA production through activating the DC-TFH-GC B axis in immunized mice.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingming Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Li MH, Zhang D, Zhang L, Qu XJ, Lu Y, Shen G, Wu SL, Chang M, Liu RY, Hu LP, Hao HX, Hua WH, Song SJ, Wan G, Liu SA, Xie Y. Ratios of T-helper 2 Cells to T-helper 1 Cells and Cytokine Levels in Patients with Hepatitis B. Chin Med J (Engl) 2018; 130:1810-1815. [PMID: 28748854 PMCID: PMC5547833 DOI: 10.4103/0366-6999.211541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B is an immune response-mediated disease. The aim of this study was to explore the differences of ratios of T-helper (Th) 2 cells to Th1 cells and cytokine levels in acute hepatitis B (AHB) patients and chronic hepatitis B virus (HBV)-infected patients in immune-tolerance and immune-active phases. METHODS Thirty chronic HBV-infected patients in the immune-tolerant phase (IT group) and 50 chronic hepatitis B patients in the immune-active (clearance) phase (IC group), 32 AHB patients (AHB group), and 13 healthy individuals (HI group) were enrolled in the study. Th cell proportions in peripheral blood, cytokine levels in plasma, and serum levels of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen were detected. RESULTS The Th1 cell percentage and Th2/Th1 ratio in the HBV infection group (including IT, IC, and AHB groups) were significantly different from those in HI group (24.10% ± 8.66% and 1.72 ± 0.61 vs. 15.16% ± 4.34% and 2.40 ± 0.74, respectively; all P < 0.001). However, there were no differences in the Th1 cell percentages and Th2/Th1 ratios among the IT, IC, and AHB groups. In HBV infection group, the median levels of Flt3 ligand (Flt3L), interferon (IFN)-γ, and interleukin (IL)-17A were significantly lower than those in HI group (29.26 pg/ml, 33.72 pg/ml, and 12.27 pg/ml vs. 108.54 pg/ml, 66.48 pg/ml, and 35.96 pg/ml, respectively; all P < 0.05). IFN-α2, IL-10, and transforming growth factor (TGF)-β2 median levels in hepatitis group (including patients in AHB and IC groups) were significantly higher than those in IT group (40.14 pg/ml, 13.58 pg/ml, and 557.41 pg/ml vs. 16.74 pg/ml, 6.80 pg/ml, and 419.01 pg/ml, respectively; all P < 0.05), while patients in hepatitis group had significant lower Flt3L level than IT patients (30.77 vs. 59.96 pg/ml, P = 0.021). Compared with IC group, patients in AHB group had significant higher median levels of IL-10, TGF-β1, and TGF-β2 (22.77 pg/ml, 10,447.00 pg/ml, and 782.28 pg/ml vs. 8.66 pg/ml, 3755.50 pg/ml, and 482.87 pg/ml, respectively; all P < 0.05). CONCLUSIONS Compared with chronic HBV-infected patients in immune-tolerance phase, chronic HBV-infected patients in immune-active phase and AHB patients had similar Th2/Th1 ratios, significantly higher levels of IFN-α2, IL-10, and TGF-β. AHB patients had significantly higher IL-10 and TGF-β levels than chronic HBV-infected patients in immune-active phase.
Collapse
Affiliation(s)
- Ming-Hui Li
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Dan Zhang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lu Zhang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Jing Qu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yao Lu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ge Shen
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shu-Ling Wu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Min Chang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ru-Yu Liu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei-Ping Hu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hong-Xiao Hao
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wen-Hao Hua
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shu-Jing Song
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gang Wan
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shun-Ai Liu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yao Xie
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
11
|
Shin JH, Noh JY, Kim KH, Park JK, Lee JH, Jeong SD, Jung DY, Song CS, Kim YC. Effect of zymosan and poly (I:C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine. J Control Release 2017; 265:83-92. [PMID: 28890214 DOI: 10.1016/j.jconrel.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Microneedles are the micrometer size devices used for the delivery of vaccines and biotherapeutics. In order to increase the vaccine efficacy and reduce the antigen dose, there is a significant need to find some adjuvants for the microneedle vaccination. In this study, zymosan, which is the cell wall preparation of Saccharomyces cerevisiae, or poly (I:C) was coated on a microneedle with inactivated influenza virus, and then immunized into BALB/c mouse to determine the immunogenicity, protection and synergetic effect between two adjuvants. As a result, the group administered with zymosan and vaccine antigen showed significantly stronger IgG response, HI titer and IgG subtypes without any adverse effects, compared to the group immunized with the vaccine antigen alone. Also, there were enhanced cellular immune responses in the group received adjuvant with vaccine antigen. In addition, they showed superior protection and lung viral reduction against lethal viral challenge. Taken together, this study confirms that zymosan can be used as an immunostimulant for microneedle vaccination.
Collapse
Affiliation(s)
- Ju-Hyung Shin
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jin-Yong Noh
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kwon-Ho Kim
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jae-Keun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ji-Ho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seong Dong Jeong
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Dae-Yoon Jung
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
12
|
Enhanced efficacy of DNA vaccination against botulinum neurotoxin serotype A by co-administration of plasmids encoding DC-stimulating Flt3L and MIP-3α cytokines. Biologicals 2016; 44:441-7. [DOI: 10.1016/j.biologicals.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/31/2023] Open
|
13
|
Savelkoul HFJ, Ferro VA, Strioga MM, Schijns VEJC. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines (Basel) 2015; 3:148-71. [PMID: 26344951 PMCID: PMC4494243 DOI: 10.3390/vaccines3010148] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/11/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022] Open
Abstract
The existence of pathogens that escape recognition by specific vaccines, the need to improve existing vaccines and the increased availability of therapeutic (non-infectious disease) vaccines necessitate the rational development of novel vaccine concepts based on the induction of protective cell-mediated immune responses. For naive T-cell activation, several signals resulting from innate and adaptive interactions need to be integrated, and adjuvants may interfere with some or all of these signals. Adjuvants, for example, are used to promote the immunogenicity of antigens in vaccines, by inducing a pro-inflammatory environment that enables the recruitment and promotion of the infiltration of phagocytic cells, particularly antigen-presenting cells (APC), to the injection site. Adjuvants can enhance antigen presentation, induce cytokine expression, activate APC and modulate more downstream adaptive immune reactions (vaccine delivery systems, facilitating immune Signal 1). In addition, adjuvants can act as immunopotentiators (facilitating Signals 2 and 3) exhibiting immune stimulatory effects during antigen presentation by inducing the expression of co-stimulatory molecules on APC. Together, these signals determine the strength of activation of specific T-cells, thereby also influencing the quality of the downstream T helper cytokine profiles and the differentiation of antigen-specific T helper populations (Signal 3). New adjuvants should also target specific (innate) immune cells in order to facilitate proper activation of downstream adaptive immune responses and homing (Signal 4). It is desirable that these adjuvants should be able to exert such responses in the context of mucosal administered vaccines. This review focuses on the understanding of the potential working mechanisms of the most well-known classes of adjuvants to be used effectively in vaccines.
Collapse
Affiliation(s)
- Huub F J Savelkoul
- Cell Biology and Immunology, Wageningen University, Wageningen, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Marius M Strioga
- Department of Immunology, Center of Oncosurgery, National Cancer Institute, P. Baublio Str. 3b-321, LT-08406 Vilnius, Lithuania.
| | - Virgil E J C Schijns
- Cell Biology and Immunology, Wageningen University, Wageningen, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- ERC-Belgium and ERC-The Netherlands, 5374 RE Schaijk, The Netherlands.
| |
Collapse
|
14
|
Wang J, Zhu R, Gao B, Wu B, Li K, Sun X, Liu H, Wang S. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials 2013; 35:466-78. [PMID: 24099705 DOI: 10.1016/j.biomaterials.2013.09.060] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023]
Abstract
Various approaches have been used to improve systemic immune response to infectious disease or virus, and DNA vaccination has been demonstrated to be one of these effective ways to elicit protective immunity against pathogens. Our previous studies showed that layered double hydroxides (LDH) nanoparticles could be efficiently taken up by the MDDCs and had an adjuvant activity for DC maturation. To further enhance the immune adjuvant activity of LDH, core-shell structure SiO2@LDH nanoparticles were synthesized with an average diameter of about 210 nm. And its high transfection efficiency in vitro was demonstrated by using GFP expression plasmid as model DNA. Exposing SiO2@LDH nanoparticles to macrophages caused a higher dose-dependent expression of IFN-γ, IL-6, CD86 and MHC II, compared with SiO2 and LDH respectively. Furthermore, in vivo immunization of BALB/c mice indicated that, DNA vaccine loaded-SiO2@LDH nanoparticles not only induced much higher serum antibody response than naked DNA vaccine and plain nanoparticles, but also obviously promoted T-cell proliferation and skewed T helper to Th1 polarization. Additionally, it was proved that the caveolae-mediated uptake of SiO2@LDH nanoparticles by macrophage lead to macrophages activation via NF-κB signaling pathway. Our results indicate that SiO2@LDH nanoparticles could serve as a potential non-viral gene delivery system.
Collapse
Affiliation(s)
- Jin Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Feng G, Jiang Q, Xia M, Lu Y, Qiu W, Zhao D, Lu L, Peng G, Wang Y. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013; 8:e61135. [PMID: 23637790 PMCID: PMC3634041 DOI: 10.1371/journal.pone.0061135] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.
Collapse
Affiliation(s)
- Ganzhu Feng
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Qingtao Jiang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Mei Xia
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Yanlai Lu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Dan Zhao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Liwei Lu
- Department of Pathology, Hong Kong University, Hong Kong, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Yingwei Wang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ouyang K, Chen L, Sun H, Du J, Shi M. Screening and appraisal for immunological adjuvant-active fractions fromPlatycodon grandiflorumtotal saponins. Immunopharmacol Immunotoxicol 2011; 34:126-34. [DOI: 10.3109/08923973.2011.586704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Oosterhuis K, van den Berg JH, Schumacher TN, Haanen JBAG. DNA vaccines and intradermal vaccination by DNA tattooing. Curr Top Microbiol Immunol 2010; 351:221-50. [PMID: 21107792 DOI: 10.1007/82_2010_117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past two decades, DNA vaccination has been developed as a method for the induction of immune responses. However, in spite of high expectations based on their efficacy in preclinical models, immunogenicity of first generation DNA vaccines in clinical trials was shown to be poor, and no DNA vaccines have yet been licensed for human use. In recent years significant progress has been made in the development of second generation DNA vaccines and DNA vaccine delivery methods. Here we review the key characteristics of DNA vaccines as compared to other vaccine platforms, and recent insights into the prerequisites for induction of immune responses by DNA vaccines will be discussed. We illustrate the development of second generation DNA vaccines with the description of DNA tattooing as a novel DNA delivery method. This technique has shown great promise both in a small animal model and in non-human primates and is currently under clinical evaluation.
Collapse
Affiliation(s)
- K Oosterhuis
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|