1
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
2
|
Wu S, Ding T, Shao H, Qian K, Ye J, Qin A. A quadruplex real-time PCR assay combined with a conventional PCR for the differential detection of Marek's disease virus vaccines and field strains. Front Vet Sci 2023; 10:1161441. [PMID: 37252401 PMCID: PMC10213282 DOI: 10.3389/fvets.2023.1161441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
To evaluate the effect of the vaccine and differentiate vaccine from virulent MDV, a new quadruplex real-time PCR assay based on TaqMan probes was developed to differentiate and accurately quantify HVT, CVI988 and virulent MDV-1. The results showed that the limit of detection (LOD) of the new assay was 10 copies with correlation coefficients >0.994 of CVI988, HVT and virulent MDV DNA molecules without cross-reactivity with other avian disease viruses. The intra-assay and inter-assay coefficients of variation (CVs) of Ct values for the new assay were less than 3%. Analysis of replication kinetics of CVI988 and virulent MDV of collected feathers between 7 and 60 days post-infection (dpi) showed MD5 had no significant effect on the genomic load of CVI988 (p > 0.05), while vaccination with CVI988 could significantly reduce the viral load of MD5 (p < 0.05). Combined with meq gene PCR, this method can effectively identify virulent MDV infections in immunized chickens. These results demonstrated that this assay could distinguish between the vaccine and virulent MDV strains and had the advantages of being reliable, sensitive and specific to confirm the immunization status and monitor the circulation of virulent MDV strains.
Collapse
Affiliation(s)
- Shaopeng Wu
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tian Ding
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Sun A, Zhao X, Zhu X, Kong Z, Liao Y, Teng M, Yao Y, Luo J, Nair V, Zhuang G, Zhang G. Fully Attenuated meq and pp38 Double Gene Deletion Mutant Virus Confers Superior Immunological Protection against Highly Virulent Marek's Disease Virus Infection. Microbiol Spectr 2022; 10:e0287122. [PMID: 36350141 PMCID: PMC9769808 DOI: 10.1128/spectrum.02871-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Marek's disease virus (MDV) induces immunosuppression and neoplastic disease in chickens. The virus is controllable via an attenuated meq deletion mutant virus, which has the disadvantage of retaining the ability to induce lymphoid organ atrophy. To overcome this deficiency and produce more vaccine candidates, a recombinant MDV was generated from the highly virulent Md5BAC strain, in which both meq and a cytolytic replication-related gene, pp38, were deleted. Replication of the double deletion virus, Md5BAC ΔmeqΔpp38, was comparable with that of the parental virus in vitro. The double deletion virus was shown to be fully attenuated and to reduce lymphoid organ atrophy in vivo. Crucially, Md5BAC ΔmeqΔpp38 confers superior protection against highly virulent virus compared with a commercial vaccine strain, CVI988/Rispens. Transcriptomic profiling indicated that Md5BAC ΔmeqΔpp38 induced a different host immune response from CVI988/Rispens. In summary, a novel, effective, and safe vaccine candidate for prevention and control of MD caused by highly virulent MDV is reported. IMPORTANCE MDV is a highly contagious immunosuppressive and neoplastic pathogen. The virus can be controlled through vaccination via an attenuated meq deletion mutant virus that retains the ability to induce lymphoid organ atrophy. In this study, we overcame the deficiency by generating meq and pp38 double deletion mutant virus. Indeed, the successfully generated meq and pp38 double deletion mutant virus had significantly reduced replication capacity in vivo but not in vitro. It was fully attenuated and conferred superior protection efficacy against very virulent MDV challenge. In addition, the possible immunological protective mechanism of the double deletion mutant virus was shown to be different from that of the gold standard MDV vaccine, CVI988/Rispens. Overall, we successfully generated an attenuated meq deletion mutant virus and widened the range of potential vaccine candidates. Importantly, this study provides for the first time the theoretical basis of vaccination induced by fully attenuated gene-deletion mutant virus.
Collapse
Affiliation(s)
- Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojing Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Zhengjie Kong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Yongxiu Yao
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Venugopal Nair
- Viral Oncogenesis Group,The Pirbright Institute, Pirbright, Surrey, United Kingdom
- UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
4
|
Ellington C, Cortes AL, Faiz NM, Mays JK, Fadly A, Silva RF, Gimeno IM. Characterization of Md5-BAC-REV-LTR virus as Marek's disease vaccine in commercial meat-type chickens: protection and immunosuppression. Avian Pathol 2021; 50:490-499. [PMID: 34463588 DOI: 10.1080/03079457.2021.1970108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Md5-BAC-REV-LTR is a recombinant Marek's disease virus (MDV), with an insertion of the long terminal repeat (LTR) of reticuloendotheliosis virus (REV) into the genome of the highly virulent MDV strain rMd5. It has been shown that Md5-BAC-REV-LTR does not induce tumours and confers high protection against challenge with MDV in 15 × 7 chickens. The objective of the present study was to evaluate the protection and safety (in terms of oncogenicity and immunosuppression) of Md5-BAC-REV-LTR in commercial meat-type chickens bearing maternal antibodies against MDV. Our results show that sub-cutaneous administration of Md5-BAC-REV-LTR at 1 day of age conferred high protection (protection index PI = 84.2) against an early challenge (1 day) by contact exposure to shedder birds infected with the vv+ MDV 648A strain. In such stringent challenge conditions, Md5-BAC-REV-LTR was more protective than a commercial CVI988 (PI = 12.4) and similar to the experimental vaccine Md5-BACΔmeq (PI = 92.4). Furthermore, Md5-BAC-REV-LTR did not induce either tumours or immunosuppression in this study. Immunosuppression was evaluated by the relative lymphoid organ weights and also by the ability of the vaccine to induce late-MDV-induced immunosuppression associated with reactivation of the virus. This study shows that Md5-BAC-REV-LTR has the potential to be used as a MD vaccine and is highly protective against early challenge with vv+ MDV. RESEARCH HIGHLIGHTSMd5-BAC-REV-LTR is highly protective against early challenge with vv+ MDV in commercial meat-type chickens.Md5-BAC-REV-LTR does not cause early immunosuppression.Md5-BAC-REV-LTR does not cause late immunosuppression.Unlike other serotype 1 vaccines, Md5-BAC-REV-LTR is not detected in feather pulp at 7 days post vaccination.
Collapse
Affiliation(s)
- C Ellington
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - A L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| | - N M Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - J K Mays
- USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Aly Fadly
- USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Robert F Silva
- USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - I M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Conrad SJ, Hearn CJ, Silva RF, Dunn JR. Codon Deoptimization of UL54 in meq-Deleted Marek's Disease Vaccine Candidate Eliminates Lymphoid Atrophy but Reduces Vaccinal Protection. Avian Dis 2021; 64:243-246. [PMID: 33205163 DOI: 10.1637/aviandiseases-d-19-00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/13/2020] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is an oncogenic, lymphoproliferative, and highly contagious disease of chickens. Its etiologic agent is the alphaherpesvirus Marek's disease virus (MDV, Gallid alphaherpesvirus 2), and it is a chronic and ubiquitous problem for the poultry industry with significant economic impact in the United States and worldwide. We have previously demonstrated that MDV attenuated by dicodon deoptimization of the UL54 gene results in reduced gene product accumulation in vitro, with reduced viral genome copy number upon infection and reduced atrophy of bursa and thymus in vivo as well. In this report we detail our attempts to use the same attenuation strategy on a meq-deleted MDV mutant, rMd5B40ΔMeq. Unlike the wild-type rMd5B40 virus the rMd5B40ΔMeq is no longer oncogenic, but infected birds experience an unacceptable amount of bursa and thymus atrophy (BTA). We produced two meq-deleted MDV recombinants with a dicodon-deoptimized UL54 (rMd5B40ΔMeq/UL54deop1 and -deop2) and tested their tendency to cause BTA and to serve as a protective vaccine. We found that, although dicodon deoptimization of the UL54 gene results in a virus that spares the infected animal from atrophy of the bursa and thymus, the meq-deleted UL54-deoptimized recombinant is also less protective than the meq-deleted virus without UL54 deoptimization, the HVT + SB1 combination vaccine, or the Rispens (CVI988) vaccine.
Collapse
Affiliation(s)
- Steven J Conrad
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - Cari J Hearn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - Robert F Silva
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - John R Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| |
Collapse
|
6
|
Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek's Disease Virus. Viruses 2021; 13:v13060974. [PMID: 34070255 PMCID: PMC8225041 DOI: 10.3390/v13060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic avian alphaherpesvirus whose genome consists of unique long (UL) and short (US) regions that are flanked by inverted repeat regions. More than 100 open reading frames (ORFs) have been annotated in the MDV genome, and are involved in various aspects of MDV biology and pathogenesis. Within UL and US regions of MDV, there are several unique ORFs, some of which have recently been shown to be important for MDV replication and pathogenesis. In this review, we will summarize the current knowledge on these ORFs and compare their location in different MDV strains.
Collapse
|
7
|
A Novel Effective and Safe Vaccine for Prevention of Marek's Disease Caused by Infection with a Very Virulent Plus (vv+) Marek's Disease Virus. Vaccines (Basel) 2021; 9:vaccines9020159. [PMID: 33669421 PMCID: PMC7920416 DOI: 10.3390/vaccines9020159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Marek’s disease virus (MDV) is a highly contagious alphaherpesvirus that causes rapid onset lymphoma in chickens. Marek’s disease (MD) is effectively controlled using vaccination; however, MDV continues to break through vaccinal immunity, due to the emergence of highly virulent field strains. Earlier studies revealed that deletion of the meq gene from MDV resulted in an attenuated virus that protects against MD in chickens challenged with highly virulent field strains. However, the meq deleted virus retains the ability to induce significant lymphoid organ atrophy. In a different study, we found that the deletion of the vIL8 gene resulted in the loss of lymphoid organ atrophy in inoculated chickens. Here, we describe the generation of a recombinant MDV from which both meq and vIL8 genes were deleted. In vitro studies revealed that the meq and vIL8 double deletion virus replicated at levels similar to the parental very virulent plus (vv+) virus. In addition, in vivo studies showed that the double deletion mutant virus (686BAC-ΔMeqΔvIL8) conferred protection comparable to CVI988, a commercial vaccine strain, when challenged with a vv+ MDV virus, and significantly reduced lymphoid organ atrophy, when compared to meq null virus, in chickens. In conclusion, our study describes the development of a safe and effective vaccine candidate for prevention of MD in chickens.
Collapse
|
8
|
Kannaki TR, Gowthaman V. Marek’s disease: time to review the emerging threat in Indian poultry. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T. R. Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus, Namakkal, India
| |
Collapse
|
9
|
Abstract
A healthy immune system is a cornerstone for poultry production. Any factor diminishing the immune responses will affect production parameters and increase cost. There are numerous factors, infectious and noninfectious, causing immunosuppression (IS) in chickens. This paper reviews the three viral diseases that most commonly induce IS or subclinical IS in chickens: Marek's disease virus (MDV), chicken infectious anemia virus (CIAV), and infectious bursal disease virus (IBDV), as well as the interactions among them. MDV-induced IS (MDV-IS) affects both humoral and cellular immune responses. It is very complex, poorly understood, and in many cases underdiagnosed. Vaccination protects against some but not all aspects of MDV-IS. CIAV induces apoptosis of the hemocytoblasts resulting in anemia, hemorrhages, and increased susceptibility to bacterial infections. It also causes apoptosis of thymocytes and dividing T lymphocytes, affecting T helper functions, which are essential for antibody production and cytotoxic T lymphocyte (CTL) functions. Control of CIAV is based on vaccination of breeders and maternal antibodies (MAbs). However, subclinical IS can occur after MAbs wane. IBDV infection affects the innate immune responses during virus replication and humoral immune responses as a consequence of the destruction of B-cell populations. Vaccines with various levels of attenuation are used to control IBDV. Interactions with MAbs and residual virulence of the vaccines need to be considered when designing vaccination plans. The interaction between IBDV, CIAV, and MDV is critical although underestimated in many cases. A proper control of IBDV is a must to have proper humoral immune responses needed to control CIAV. Equally, long-term control of MDV is not possible if chickens are coinfected with CIAV, as CIAV jeopardizes CTL functions critical for MDV control.
Collapse
Affiliation(s)
- I M Gimeno
- A Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
| | - K A Schat
- B Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
10
|
Kamel M, El-Sayed A. Utilization of herpesviridae as recombinant viral vectors in vaccine development against animal pathogens. Virus Res 2019; 270:197648. [PMID: 31279828 DOI: 10.1016/j.virusres.2019.197648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Throughout the past few decades, numerous viral species have been generated as vaccine vectors. Every viral vector has its own distinct characteristics. For example, the family herpesviridae encompasses several viruses that have medical and veterinary importance. Attenuated herpesviruses are developed as vectors to convey heterologous immunogens targeting several serious and crucial pathogens. Some of these vectors have already been licensed for use in the veterinary field. One of their prominent features is their capability to accommodate large amount of foreign DNA, and to stimulate both cell-mediated and humoral immune responses. A better understanding of vector-host interaction builds up a robust foundation for the future development of herpesviruses-based vectors. At the time, many molecular tools are applied to enable the generation of herpesvirus-based recombinant vaccine vectors such as BAC technology, homologous and two-step en passant mutagenesis, codon optimization, and the CRISPR/Cas9 system. This review article highlights the most important techniques applied in constructing recombinant herpesviruses vectors, advantages and disadvantages of each recombinant herpesvirus vector, and the most recent research regarding their use to control major animal diseases.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Sun A, Luo J, Wan B, Du Y, Wang X, Weng H, Cao X, Zhang T, Chai S, Zhao D, Xing G, Zhuang G, Zhang G. Lorf9 deletion significantly eliminated lymphoid organ atrophy induced by meq-deleted very virulent Marek's disease virus. Vet Microbiol 2019; 235:164-169. [PMID: 31282374 DOI: 10.1016/j.vetmic.2019.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that causes rapid onset of T cell lymphomas in chickens. MDV continues to break through vaccinal immunity due to the emergence of highly virulent field strains. Earlier studies revealed that deletion of the meq gene from MDV results in attenuated vaccines that protect against disease when chickens are infected with highly virulent strains. However, meq-deleted viruses still retain the ability to induce lymphoid organ atrophy, which raises safety concerns. In an earlier study, we found that deletion of lorf9 counteracts this lymphoid organ atrophy. Here, we describe the generation of a double deletion mutant virus lacking virus-encoded meq and lorf9. In vitro studies revealed that during replication, the mutant virus had kinetic characteristics similar to the parental virus; however, in vivo the replication capability was significantly reduced. Results of animal studies revealed no obvious MDV-specific symptoms and lesions. Importantly, the double deletion mutant virus lost the capacity to induce lymphoid organ atrophy, which has been the main obstacle during development of a good vaccine candidate.
Collapse
Affiliation(s)
- Aijun Sun
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Jun Luo
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Xiangru Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Haoyu Weng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Xinru Cao
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Tianlu Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China
| | - Shujun Chai
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Dong Zhao
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Guangxu Xing
- Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China
| | - Guoqing Zhuang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China.
| | - Gaiping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, PR China; Key laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, PR China.
| |
Collapse
|
12
|
Zhang Y, Liu C, Yan F, Liu A, Cheng Y, Li Z, Sun G, Lv H, Wang X. Recombinant Gallid herpesvirus 2 with interrupted meq genes confers safe and efficacious protection against virulent field strains. Vaccine 2017; 35:4695-4701. [PMID: 28754487 DOI: 10.1016/j.vaccine.2017.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
Gallid herpesvirus 2 (GaHV-2) continuously evolves, which reduces the effectiveness of existing vaccines. To construct new GaHV-2 candidate vaccines, LMS, which is a virulent GaHV-2 field strain isolated from diseased chicken flocks in Southwest China in 2007, was modified such that both copies of its meq oncogene were partially deleted. The resulting virus, i.e., rMSΔmeq, was characterized using PCR and sequencing. To evaluate the safety and protective efficacy of rMSΔmeq, specific pathogen-free (SPF) chickens were inoculated with 2000 plaque forming units (pfu) and 20,000pfu of rMSΔmeq immediately after hatching. All birds grew well during the experimental period, and none of the challenged chickens developed Marek's disease-associated lymphoma. In addition, the rMSΔmeq- and CVI988/Rispens-vaccinated SPF chickens were challenged with 1000 pfu and 5000 pfu of the representative virulent GaHV-2 Md5 strain and 1000 pfu of the variant GaHV-2 strains LCC or LTS. The results showed that the rMSΔmeq strain provided complete protection, which was similar to that provided by the CVI988/Rispens vaccine (protective index (PI) of 95.5) when challenged with a conventional dose of the Md5 strain. However, rMSΔmeq provided a PI of 90.9 when challenged with 5000 pfu of the Md5 strain, which was significantly higher than that provided by the CVI988/Rispens vaccine (54.5). rMSΔmeq provided a PI of 86.4 against LCC, which was equal to that provided by the CVI988/Rispens vaccine (81.8). In addition, rMSΔmeq provided a PI of 100 against LTS, which was significantly higher than that provided by the CVI988/Rispens vaccine (68.2). Altogether, the rMSΔmeq virus provided efficient protection against representative and variant GaHV-2 strains. In conclusion, the rMSΔmeq virus is a safe and effective vaccine candidate for the prevention of Marek's disease and is effective against the Chinese variant GaHV-2 strains.
Collapse
Affiliation(s)
- Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| | - Fuhai Yan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Ailing Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yun Cheng
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Zhijie Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Guorong Sun
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongchao Lv
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
13
|
Marek's disease vaccines: Current status, and strategies for improvement and development of vector vaccines. Vet Microbiol 2016; 206:113-120. [PMID: 28038868 DOI: 10.1016/j.vetmic.2016.11.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/19/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative viral disease of chickens, which has been controlled through vaccination since 1969. MD vaccines protect against tumors but do not provide sterilizing immunity, and thus it is generally believed that their use has contributed to increase virulence of field strains with the ability to cause MD in vaccinated chickens. Traditional methods of developing vaccines, like cell culture attenuation, have proved unsuccessful for the development of improved vaccines to protect against highly virulent MD virus (MDV) field strains. With the advent of recombinant DNA technology, it is now possible to study MDV gene function and develop rational vaccines that protect against highly pathogenic strains. In addition, the long term protection conferred by MD vaccines, their excellent safety profile, their efficacy when administered early (at hatch or in ovo), and their ability to overcome maternal antibodies, has made MDV an excellent candidate vector to protect not only against MD but also against other important viral poultry diseases. In this review we will discuss the current status of MD vaccines and their use as vector vaccines to control important viral poultry diseases.
Collapse
|
14
|
Mays JK, Black-Pyrkosz A, Spatz S, Fadly AM, Dunn JR. Protective efficacy of a recombinant bacterial artificial chromosome clone of a very virulent Marek's disease virus containing a reticuloendotheliosis virus long terminal repeat. Avian Pathol 2016; 45:657-666. [PMID: 27258614 DOI: 10.1080/03079457.2016.1197376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Marek's disease virus (MDV), an alphaherpesvirus, causes Marek's disease (MD), a lymphoproliferative disease in poultry characterized by T-cell lymphomas, nerve lesions, and mortality. Vaccination is used worldwide to control MD, but increasingly virulent field strains can overcome this protection, driving a need to create new vaccines. Previous studies revealed that insertion of reticuloendotheliosis virus (REV) long terminal repeat (LTR) into a bacterial artificial chromosome (BAC) clone of a very virulent strain of MDV, Md5, rendered the resultant recombinant virus, rMd5 REV-LTR BAC, fully attenuated in maternal antibody positive (Mab+) chickens at passage 40. In the current study, the protective efficacy of rMd5 REV-LTR BAC was evaluated. First, passage 70 was identified as being fully attenuated in maternal antibody negative chickens and chosen as the optimal passage level for use in protective efficacy studies. Second, three protective efficacy trials were conducted comparing the rMd5 REV-LTR p70 BAC to the CVI988/Rispens vaccine. Groups of Mab+ and Mab- 15I5 × 71 chickens were vaccinated in ovo at 18 days of embryonation or intra-abdominally at day of hatch, and challenged at 5 days post-hatch with the vv+MDV strain 686. Vaccination at day of hatch and in ovo with rMd5 REV-LTR p70 BAC protected chickens against MDV-induced bursa and thymic atrophy, but did not provide the same level of protection against MD tumours as that afforded by the commercial vaccine, CVI988/Rispens.
Collapse
Affiliation(s)
- Jody K Mays
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - Alexis Black-Pyrkosz
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - Stephen Spatz
- b US National Poultry Research Center, United States Department of Agriculture , Agricultural Research Service , Athens , GA , USA
| | - Aly M Fadly
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - John R Dunn
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| |
Collapse
|
15
|
Faiz NM, Cortes AL, Guy JS, Fogle JE, Gimeno IM. Efficacy of various Marek's disease vaccines protocols for prevention of Marek's disease virus-induced immunosuppression. Vaccine 2016; 34:4180-4187. [PMID: 27371103 DOI: 10.1016/j.vaccine.2016.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Marek's disease virus (MDV) induces tumors and severe immunosuppression in chickens. MDV-induced immunosuppression (MDV-IS) is very complex and difficult to study. In particular, the late MDV-IS (late-MDV-IS) is of great concern since it can occur in the absence of lymphoid organ atrophy or gross tumors. We have recently developed a model to reproduce late-MDV-IS under laboratory conditions. This model measures MDV-IS indirectly by assessing the effect of MDV infection on the efficacy of infectious laryngotracheitis (ILT) vaccination; hence the name late-MDV-IS ILT model. In this study, we have used the late-MDV-IS ILT model to evaluate if MD vaccination can protect against late-MDV-IS. One experiment was conducted to determine whether serotype 1 MD vaccines (CVI988 and Md5ΔMEQ) could induce late-MDV-IS by themselves. Three additional experiments were conducted to evaluate efficacy of different MD vaccines (HVT, HVT+SB-1, CVI988, and Md5ΔMEQ) and different vaccine protocols (day-old vaccination, in ovo vaccination, and double vaccination) against late-MDV-IS. Our results show that none of the currently used vaccine protocols (HVT, HVT+SB-1, or CVI988 administered at day of age, in ovo, or in double vaccination protocols) protected against late-MDV-IS induced by vv+MDV strains 648A and 686. Experimental vaccine Md5ΔMEQ administered subcutaneously at one day of age was the only vaccine protocol that significantly reduced late-MDV-IS induced by vv+MDV strain 686. This study demonstrates that currently used vaccine protocols confer high levels of protection against MDV-induced tumors (protection index=100), but do not protect against late-MDV-IS; thus, commercial poultry flocks could suffer late-MDV-IS even in complete absence of tumors. Our results suggest that MDV-IS might not be related to the development of tumors and novel control methods are needed. Further evaluation of the experimental vaccine Md5ΔMEQ might shed light on protective mechanisms against late-MDV-IS.
Collapse
Affiliation(s)
- Nik M Faiz
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - James S Guy
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, Veterinary School, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
16
|
Ralapanawe S, Walkden-Brown SW, Renz KG, Islam AFMF. Protection provided by Rispens CVI988 vaccine against Marek's disease virus isolates of different pathotypes and early prediction of vaccine take and MD outcome. Avian Pathol 2016; 45:26-37. [DOI: 10.1080/03079457.2015.1110850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Su S, Cui N, Li J, Sun P, Li H, Li Y, Cui Z. Deletion of the BAC sequences from recombinant meq-null Marek's disease (MD) virus increases immunosuppression while maintaining protective efficacy against MD. Poult Sci 2016; 95:1504-1512. [PMID: 26957626 DOI: 10.3382/ps/pew067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) GX0101 is a field strain of MDV with a naturally occurring insertion of the reticuloendotheliosis virus (REV) long terminal repeat (LTR) fragment. Both copies of the meq gene were knocked out in the GX0101 bacterial artificial chromosome (BAC) clone to construct the recombinant virus SC9-1, resulting in a complete lack of pathogenicity and providing better protection against MD than CVI988/Rispens. In the present study, the BAC sequences in SC9-1 were removed using a cre-loxP system, and the virus termed SC9-2. SC9-2 showed a significant increase in replication in vitro and in vivo. There was a significant decrease in chicken weight, immune organ index, and antibody levels compared with those of SC9-1-inoculated chickens. The immune protection index of SC9-2 was similar to that of SC9-1, and the difference was not significant. The results of our studies demonstrate that the SC9-2 virus provides protection in specific pathogen free (SPF) chickens when challenged with a very virulent MDV rMd5, but it induces immunosuppressive effects in SPF chickens.
Collapse
Affiliation(s)
- S Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - N Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - J Li
- Tengzhou Animal Husbandry and Veterinary Bureau, Tengzhou, Shandong, 277500, China
| | - P Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - H Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Y Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
18
|
Hildebrandt E, Dunn JR, Cheng HH. The Mut UL5-I682R Marek's Disease Virus with a Single Nucleotide Mutation Within the Helicase-Primase Subunit Gene not only Reduces Virulence but also Provides Partial Vaccinal Protection Against Marek's Disease. Avian Dis 2015; 59:94-7. [PMID: 26292541 DOI: 10.1637/10929-090314-reg] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease virus (MDV) is an oncogenic herpesvirus that afflicts chickens with the disease known as Marek's disease (MD). This virus induces tumors, nerve lesions, immunosuppression, and death of affected birds. Vaccines are the primary control method for MD but, due to the periodic evolution of field strains, it is necessary to explore the development of new MD vaccines. MD vaccines are often attenuated MDV strains generated through serial passage in vitro. We previously used experimental evolution of MDV to provide a better understanding of the genetic basis of attenuation. During complete genome sequencing of evolved MDV populations, we identified a point mutation within the UL5 helicase-primase gene and created a UL5 recombinant virus that significantly reduced disease incidence by 89%-100%. To determine if experimental evolution also identifies mutations that provide protective qualities as potential vaccine candidates, we tested the UL5 recombinant virus as a vaccine and compared its protection to commercial herpesvirus of turkey (HVT) and bivalent (HVT + SB-1) vaccines. Both commercial vaccines resulted in higher protection against MD than did the UL5 recombinant virus, although the UL5 virus did provide protection against developing MD in 46%-70% of birds challenged. This indicates that a mutation within the UL5 helicase-primase gene not only reduces virulence but also confers protection against challenge with virulent MDV, providing support that not only can experimental evolution identify candidate mutations involved in attenuation but can also identify potential candidates for use in vaccine development.
Collapse
|
19
|
A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD. Vaccine 2015; 33:596-603. [DOI: 10.1016/j.vaccine.2014.12.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/11/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022]
|
20
|
Zhang Z, Chen W, Ma C, Zhao P, Duan L, Zhang F, Sun A, Li Y, Su H, Li S, Cui H, Cui Z. Construction of recombinant Marek's disease virus (MDV) lacking the meq oncogene and co-expressing AIV-H9N2 HA and NA genes under control of exogenous promoters. J Biotechnol 2014; 181:45-54. [DOI: 10.1016/j.jbiotec.2014.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
|
21
|
Zhang Z, Ma C, Zhao P, Duan L, Chen W, Zhang F, Cui Z. Construction of recombinant Marek's disease virus (rMDV) co-expressing AIV-H9N2-NA and NDV-F genes under control of MDV's own bi-directional promoter. PLoS One 2014; 9:e90677. [PMID: 24599338 PMCID: PMC3944216 DOI: 10.1371/journal.pone.0090677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/03/2014] [Indexed: 11/29/2022] Open
Abstract
To qualitatively analyze and evaluate a bi-directional promoter transcriptional function in both transient and transgenic systems, several different plasmids were constructed and recombinant MDV type 1 strain GX0101 was developed to co-express a Neuraminidase (NA) gene from Avian Influenza Virus H9N2 strain and a Fusion (F) gene from the Newcastle disease virus (NDV). The two foreign genes, NDV-F gene and AIV-NA gene, were inserted in the plasmid driven in each direction by the bi-directional promoter. To test whether the expression of pp38/pp24 heterodimers are the required activators for the expression of the foreign genes, the recombinant plasmid pPpp38-NA/1.8kb-F containing expression cassette for the two foreign genes was co-transfected with a pp38/pp24 expression plasmid, pBud-pp38-pp24, in chicken embryo fibroblast (CEF) cells. Alternatively, plasmid pPpp38-NA/1.8kb-F was transfected in GX0101-infected CEFs where the viral endogenous pp38/pp24 were expressed via virus infection. The expression of both foreign genes was activated by pp38/pp24 dimers either via virus infection, or co-expression. The CEFs transfected with pPpp38-NA/1.8kb-F alone had no expression. We chose to insert the expression cassette of Ppp38-NA/1.8kb-F in the non-essential region of GX0101ΔMeq US2 gene, and formed a new rMDV named MZC13NA/F through homologous recombination. Indirect fluorescence antibody (IFA) test, ELISA and Western blot analyses indicated that F and NA genes were expressed simultaneously under control of the bi-directional promoter, but in opposite directions. The data also indicated the activity of the promoter in the 1.8-kb mRNA transcript direction was higher than that in the direction for the pp38 gene. The expression of pp38/pp24 dimers either via co-tranfection of the pBud-pp38-pp24 plasmid, or by GX0101 virus infection were critical to activate the bi-directional promoter for expression of two foreign genes in both directions. Therefore, the confirmed function of the bi-directional promoter provides better feasibilities to insert multiple foreign genes in MDV genome based vectors.
Collapse
Affiliation(s)
- Zhenjie Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Chengtai Ma
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Luntao Duan
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Wenqing Chen
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Fushou Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Animal Disease Prevention Technology and Research Center of Shandong Province, Taian, China
- * E-mail:
| |
Collapse
|
22
|
Rahaus M, Augustinski K, Castells M, Desloges N. Application of a new bivalent Marek's disease vaccine does not interfere with infectious bronchitis or Newcastle disease vaccinations and proves efficacious. Avian Dis 2013; 57:498-502. [PMID: 23901767 DOI: 10.1637/10334-082712-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A possible interference after Marek's disease (MD) vaccination using an experimental bivalent vaccine, consisting of a redesigned CVI-988/Rispens-type MDV-1 strain and herpesvirus of turkeys, with vaccination against infectious bronchitis (IB) virus (IBV) or Newcastle disease (ND) virus (NDV) was examined. Day-old specific-pathogen-free chicks were concomitantly vaccinated with the bivalent MD vaccine (either intramuscularly or subcutaneously) and with commercially available vaccines against ND or IB. Afterward chickens were challenged with either lethal MD virus (MDV) or NDV strains or with a pathogenic IBV strain. After challenge, neither mortality nor notable clinical signs of MD, ND, or IB were observed in the vaccinated birds. The experimental bivalent MDV vaccine proved efficacious against lethal MDV challenge and did not affect the efficacy of the NDV or IBV vaccines. In conclusion, no signs of interference or adverse effects were detected. Thus, the vaccines can be administered concomitantly on chickens' first day of life.
Collapse
Affiliation(s)
- Markus Rahaus
- Lohmann Animal Health GmbH, Heinz-Lohmann Str. 4, 27472, Cuxhaven, Germany.
| | | | | | | |
Collapse
|
23
|
Abstract
Despite the remarkable progress in our understanding of Marek's disease (MD) and the causative Marek's disease virus (MDV) biology, a number of major features of this complex viral disease remain unknown. Significant information on critical aspects of virus latency in lymphoid cells, and the virus-host interaction in MDV-induced lymphoma, remains to be identified. Moreover, the nature of the unique milieu of the feather follicle epithelial cell that allows cytolytic infection to continue, despite maintaining the latent infection in the lymphoid cells, is not fully understood. Although there has been significant progress in our understanding of the functions of a number of viral genes in the pathogenesis of the disease, the characteristics of the latent infection, how it differs from tumor phase, and whether latency is a prerequisite for the tumor phase are all important questions still to be answered. Reticuloendotheliosis virus-transformed cell lines have been shown to support MDV latency in a manner almost identical to that seen in MDV-transformed cell lines. There are increasing data on the role of epigenetic regulation, including DNA methylation and histone modifications, in maintaining viral latency. Onset of MD tumor is relatively rapid, and recent studies based on chromosomal integration and T-cell repertoire analysis demonstrated the clonal nature of MD lymphomas. Among the viral determinants of oncogenicity, the basic leucine zipper protein Meq is considered to be the most important and the most extensively studied. Deleting the Meq proteins or abolishing some of the important interactions does affect the oncogenicity of the virus. In addition, the noncoding sequences in the viral genome, such as the viral telomerase RNA and the virus-encoded microRNAs, also have significant influence on MDV-encoded oncogenesis.
Collapse
Affiliation(s)
- Venugopal Nair
- Avian Viral Diseases Programme, The Pirbright Institute, Compton Laboratory, Compton, Berkshire RG20 7NN, United Kingdom.
| |
Collapse
|
24
|
Lee LF, Kreager K, Heidari M, Zhang H, Lupiani B, Reddy SM, Fadly A. Properties of a meq-deleted rmd5 Marek's disease vaccine: protection against virulent MDV challenge and induction of lymphoid organ atrophy are simultaneously attenuated by serial passage in vitro. Avian Dis 2013; 57:491-7. [PMID: 23901766 DOI: 10.1637/10388-092612-reg.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously shown that deletion of the meq gene from the genome of Cosmid-cloned rMd5 strain of Marek's disease virus (MDV-1) resulted in loss of transformation and oncogenic capacity of the virus. The rMd5deltaMeq (Meq null) virus has been shown to be an excellent vaccine in maternal antibody positive (MAb+) chickens challenged with a very virulent plus (vv+) strain of MDV, 648A. The only drawback was that it retained its ability to induce bursa and thymus atrophy (BTA) like that of the parental rMd5 in maternal antibody negative (MAb-) chickens. We recently reported that the attenuated Meq null virus did not induce BTA at the 40th cell culture passage onward. Its protective ability against challenge with vv+ MDV, strain 686 was similar to the original virus at the 19th passage in MAb- chickens. In this study, we compared the same series of attenuated meq null viruses in commercial chickens. In commercial chickens with MAb, the attenuated viruses quickly lost protection with increasing cell culture attenuation. These data suggest that although attenuation of these meq null viruses eliminated BTA, it had no influence on their protective efficacy in MAb- chickens. However, in commercial chickens (MAb+), the best protection was provided by the original 19th passage; the attenuated 40th passage was as good as one of the currently commercial CVI988/Rispens vaccine, and it did not induce BTA. Therefore, protection against virulent MDV challenge and induction of lymphoid organ atrophy are simultaneously attenuated by serial passage in vitro.
Collapse
Affiliation(s)
- Lucy F Lee
- United States Department of Agriculture-Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lupiani B, Lee LF, Kreager KS, Witter RL, Reddy SM. Insertion of reticuloendotheliosis virus long terminal repeat into the genome of CVI988 strain of Marek's disease virus results in enhanced growth and protection. Avian Dis 2013; 57:427-31. [PMID: 23901756 DOI: 10.1637/10445-110412-resnote.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease of chickens caused by serotype 1 MD virus (MDV). Vaccination of commercial poultry has drastically reduced losses from MD, and the poultry industry cannot be sustained without the use of vaccines. Retrovirus insertion into herpesvirus genomes is an efficient process that alters the biological properties of herpesviruses. RM1, a virus derived from the virulent JM strain of MDV, by insertion of the reticuloendotheliosis (REV) long terminal repeat (LTR), was attenuated for oncogenicity but retains properties of the parental virus, such as lymphoid organ atrophy. Here we show that insertion of the REV LTR into the genome of vaccine strain CVI988 resulted in a virus (CVRM) that replicated to higher levels than parental CVI988 in cell culture and that remained apathogenic for chickens. In addition, CVRM showed protection indices similar or superior to those afforded by CVI988 virus in laboratory and field protection trials, indicating that it could be developed as a safe and efficacious vaccine to protect against very virulent plus MDV.
Collapse
Affiliation(s)
- Blanca Lupiani
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
26
|
Gimeno IM, Witter RL, Cortes AL, Reddy SM, Pandiri AR. Standardization of a model to study revaccination against Marek's disease under laboratory conditions. Avian Pathol 2012; 41:59-68. [PMID: 22845322 DOI: 10.1080/03079457.2011.635636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Revaccination, the practice of administering Marek's disease (MD) vaccine a second time, has been used in commercial poultry flocks for many years. The rationale is largely anecdotal as the few published reports have failed to provide support for the value of the practice. In the present work, we have standardized a model to study MD revaccination under laboratory conditions. Nine bird experiments were conducted to evaluate homologous revaccination (same vaccine administered twice) and heterologous revaccination (administration of two different vaccines) with various challenge models. Our results demonstrated that heterologous revaccination (with a second vaccine more protective than the first vaccine) but not homologous revaccination provided a beneficial increase in protection. Administration of the first vaccine at 18 days of embryonation followed by a more protective second vaccine at hatch reproduced systematically the benefits of revaccination. In addition, our results show that revaccination protocols might aid in solving major drawbacks associated with various highly protective experimental MD vaccines; that is, lymphoid organ atrophy and residual virulence. Strain RM1 is one of the most protective vaccines against early challenge with highly virulent MD virus but it induces severe lymphoid atrophy in chickens lacking maternal antibodies against MD virus. In this study, strain RM1 did not induce lymphoid organ atrophy when administered as second vaccine in a revaccination protocol. Similarly, strain 648A100/BP5 maintains residual virulence in chickens lacking maternal antibodies against MD virus but did not induce any lesions when used as a second vaccine. Until now, arbitrary revaccination protocols have been occasionally proven useful to the poultry industry. The model developed in this study will allow for a better understanding of this phenomenon and its optimization. A more rational use of this practice will be of great help to control MD outbreaks until better vaccines are available.
Collapse
Affiliation(s)
- Isabel M Gimeno
- Population Health and Pathobiology Department, College of Veterinary Medicine, North Carolina State University, Raleigh, USA.
| | | | | | | | | |
Collapse
|
27
|
Dunn JR, Silva RF. Ability of MEQ-Deleted MDV Vaccine Candidates to Adversely Affect Lymphoid Organs and Chicken Weight Gain. Avian Dis 2012; 56:494-500. [DOI: 10.1637/10062-011812-reg.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Lee LF, Heidari M, Zhang H, Lupiani B, Reddy SM, Fadly A. Cell culture attenuation eliminates rMd5ΔMeq-induced bursal and thymic atrophy and renders the mutant virus as an effective and safe vaccine against Marek's disease. Vaccine 2012; 30:5151-8. [PMID: 22687760 DOI: 10.1016/j.vaccine.2012.05.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
Marek's disease virus (MDV) encodes a basic leucine zipper oncoprotein, Meq, which structurally resembles jun/fos family of transcriptional activators. It has been clearly demonstrated that deletion of Meq results in loss of transformation and oncogenic capacity of MDV. The rMd5ΔMeq virus provided superior protection than CVI988/Rispens vaccine in 15×7 chickens when challenged with a very virulent plus (vv+) strain of MDV, 648A. The rMd5ΔMeq construct was also shown to be an effective vaccine in commercial chickens that were challenged under field conditions by exposure to seeder chicken inoculated with MDV strain 686, a vv+ and arguably the most pathogenic strain of MDV. Although deletion of Meq gene renders the virus non-oncogenic, it still induces lymphoid organ atrophy like that of the parental rMd5, in highly susceptible MDV maternal antibody negative (MAb-) chickens. We have generated 50 cell culture passages of attenuated rMd5ΔMeq viruses and found no significant lymphoid organ atrophy beginning at 40(th) passage onward when compared with the normal control chickens. The protective ability of these attenuated Meq null viruses against challenge with vv+ MDV strain 686 is similar to the original virus at 19(th) passage in maternal antibody negative chickens. The data indicate that attenuation of these Meq null viruses has no influence on their protective efficacy, but eliminated lymphoid organ atrophy and rendered them safe to use even in MAb- chickens, a characteristic that should facilitate commercialization and licensing by vaccine manufacturers.
Collapse
Affiliation(s)
- Lucy F Lee
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823,United States.
| | | | | | | | | | | |
Collapse
|
29
|
Gimeno IM, Cortes AL, Witter RL, Pandiri AR. Optimization of the Protocols for Double Vaccination Against Marek's Disease by Using Commercially Available Vaccines: Evaluation of Protection, Vaccine Replication, and Activation of T Cells. Avian Dis 2012; 56:295-305. [DOI: 10.1637/9930-091311-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Gimeno IM, Witter RL, Cortes AL, Reed WM. Replication ability of three highly protective Marek's disease vaccines: implications in lymphoid organ atrophy and protection. Avian Pathol 2012; 40:573-9. [PMID: 22107091 DOI: 10.1080/03079457.2011.617725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The present work is a chronological study of the pathogenesis of three attenuated serotype 1 Marek's disease (MD) virus strains (RM1, CVI988 and 648A80) that provide high protection against MD but have been attenuated by different procedures and induce different degrees of lymphoid organ atrophy. All studied strains replicated in the lymphoid organs (bursa,x thymus and spleen) and a peak of replication was detected at 6 days post inoculation (d.p.i.). Differences, however, were observed among vaccine strains. RM1 strain replicates more in all lymphoid organs compared with CVI988 and 648A80 strains. In addition, replication of RM1 in the thymus did not decrease after 6 d.p.i. but continued at high levels at 14 d.p.i. and until the thymus was completely destroyed. Lung infection occurred very early after infection with all of the three vaccines and the level of replication was similar to that found in the lymphoid organs. Infected cells were very large and appeared scattered in the lung parenchyma and in the parabronchial lining. The study of the target cells for the early infection in cell suspensions of blood and spleen showed that both non-adherent cell populations (enriched in lymphoid cells) and adherent cells (enriched in monocytes/macrophages) supported MD virus infection. Infection in adherent cells was especially high at very early stages of the infection (3 to 6 d.p.i.). Atrophy of lymphoid organs is a major drawback in the production of highly protective vaccines against MD. A better understanding of the mechanisms associated with lymphoid organ atrophy will aid in overcoming this problem.
Collapse
Affiliation(s)
- Isabel M Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, USA.
| | | | | | | |
Collapse
|
31
|
Chang S, Ding Z, Dunn JR, Lee LF, Heidari M, Song J, Ernst CW, Zhang H. A comparative evaluation of the protective efficacy of rMd5deltaMeq and CVI988/ Rispens against a vv+ strain of Marek's disease virus infection in a series of recombinant congenic strains of White Leghorn chickens. Avian Dis 2011; 55:384-90. [PMID: 22017035 DOI: 10.1637/9524-091310-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.
Collapse
Affiliation(s)
- Shuang Chang
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, 3606 E. Mount Hope Road, East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee LF, Zhang H, Heidari M, Lupiani B, Reddy SM. Evaluation of factors affecting vaccine efficacy of recombinant Marek's disease virus lacking the Meq oncogene in chickens. Avian Dis 2011; 55:172-9. [PMID: 21793430 DOI: 10.1637/9575-101510-reg.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously reported that deletion of the Meq gene from the oncogenic rMd5 virus rendered it apathogenic for chickens. Here we examined multiple factors affecting Marek's disease vaccine efficacy of this nonpathogenic recombinant Meq null rMd5 virus (rMd5deltaMeq). These factors included host genetics (MHC haplotype), strain or dose of challenge virus, vaccine challenge intervals, and maternal antibody status of the vaccinated chicks. Studies on host genetics were carried out in five chicken lines comprising four different MHC B-haplotypes. Results showed that chicken lines tested were highly protected, with protective indexes of 100% (B*2/*15), 94% (B*2/*2), 87% (B*19/*19), and 83% (B*21/*21). At a challenge dose above 8000 plaque-forming units, differences in protection were observed between the two highly virulent strains examined (648A and 686). The interval between vaccination and challenge indicated a protective efficacy from 0 to 2 days varied greatly (12%-82%) after challenge with vv+686, the most virulent virus. Less variation and significant protection began at 3 days post vaccination and reached a maximum at 5 days post vaccination with about 80%-100% protection. Taken together, our results indicate that the factors examined in this study are important for vaccine efficacy and need to be considered in comparative evaluations of vaccines.
Collapse
Affiliation(s)
- Lucy F Lee
- United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA.
| | | | | | | | | |
Collapse
|