1
|
Gardella B, Gritti A, Soleymaninejadian E, Pasquali MF, Riemma G, La Verde M, Schettino MT, Fortunato N, Torella M, Dominoni M. New Perspectives in Therapeutic Vaccines for HPV: A Critical Review. Medicina (B Aires) 2022; 58:medicina58070860. [PMID: 35888579 PMCID: PMC9315585 DOI: 10.3390/medicina58070860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 12/21/2022] Open
Abstract
Human Papillomavirus is the main cause of cervical cancer, including squamous cell carcinoma of the oropharynx, anus, rectum, penis, vagina, and vulva. In recent years, considerable effort has been made to control HPV-induced diseases using either prophylactic or therapeutic approaches. A critical review of the literature about the therapeutic Human Papillomavirus vaccine was performed to analyze its efficacy in the treatment of female lower genital tract lesions and its possible perspective application in clinical practice. The most important medical databases were consulted, and all papers published from 2000 until 2021 were considered. We retrieved a group of seven papers, reporting the role of anti HPV therapeutic vaccines against the L2 protein in the order of their efficacy and safety in female lower genital tract disease. In addition, the immune response due to vaccine administration was evaluated. The development of therapeutic vaccines represents an interesting challenge for the treatment of HPV infection of the lower genital tract. Literature data underline that the L2 protein may be an interesting and promising target in the development of therapeutic HPV vaccines, but the possible strengths and the unclear longevity of L2 immune responses are factors to be considered before clinical use.
Collapse
Affiliation(s)
- Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| | - Andrea Gritti
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-00382-503722
| | - Ehsan Soleymaninejadian
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marianna Francesca Pasquali
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gaetano Riemma
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Marco La Verde
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Maria Teresa Schettino
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Nicola Fortunato
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Marco Torella
- Obstetrics and Gynecology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (G.R.); (M.L.V.); (M.T.S.); (N.F.); (M.T.)
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy; (B.G.); (M.F.P.); (M.D.)
- Department of Obstetrics and Gynecology, IRCCS Fundation Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
2
|
Dong M, Meinerz NM, Walker KD, Garcea RL, Randolph TW. Thermostability of a trivalent, capsomere-based vaccine for human papillomavirus infection. Eur J Pharm Biopharm 2021; 168:131-138. [PMID: 34438020 DOI: 10.1016/j.ejpb.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
Currently licensed vaccines require a cold-chain to maintain efficacy. This cold-chain requirement reduces the availability of vaccines in resource-poor areas of the world. Commercially available human papillomavirus (HPV) vaccines protect against the most common HPV types related to cervical cancer; however, their impact is limited in many regions due to cold-chain requirements. The goal of this study was to test the thermostability of an adjuvanted, trivalent HPV L1 capsomere-based vaccine (containing HPV types 16, 18, and 31) that was formulated by using lyophilization to embed the antigens within a solid, glassy matrix. Thermal stabilities were determined by storing the vaccine formulations for 3 months at 50 °C, followed by immunization of BALB/c mice and measurement of antibody responses. Antibody responses to capsomere vaccines formulated with alum were unchanged after storage for 3 months at 50 °C. Neutralizing responses to these vaccines were unchanged by high-temperature storage, and were equivalent to those generated after administration of the commercially available liquid HPV vaccine Gardasil®9.
Collapse
Affiliation(s)
- Miao Dong
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Natalie M Meinerz
- The BioFrontiers Program, University of Colorado, Boulder, CO, USA; The Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Kathryne D Walker
- The BioFrontiers Program, University of Colorado, Boulder, CO, USA; The Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Robert L Garcea
- The BioFrontiers Program, University of Colorado, Boulder, CO, USA; The Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Theodore W Randolph
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
3
|
Mixed Bacteriophage MS2-L2 VLPs Elicit Long-Lasting Protective Antibodies against HPV Pseudovirus 51. Viruses 2021; 13:v13061113. [PMID: 34200586 PMCID: PMC8227171 DOI: 10.3390/v13061113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Three prophylactic vaccines are approved to protect against HPV infections. These vaccines are highly immunogenic. The most recent HPV vaccine, Gardasil-9, protects against HPV types associated with ~90% of cervical cancer (worldwide). Thus, ~10% of HPV-associated cancers are not protected by Gardasil-9. Although this is not a large percentage overall, the HPV types associated with 10% of cervical cancer not protected by the current vaccine are significantly important, especially in HIV/AIDS patients who are infected with multiple HPV types. To broaden the spectrum of protection against HPV infections, we developed mixed MS2-L2 VLPs (MS2-31L2/16L2 VLPs and MS2-consL2 (69-86) VLPs) in a previous study. Immunization with the VLPs neutralized/protected mice against infection with eleven high-risk HPV types associated with ~95% of cervical cancer and against one low-risk HPV type associated with ~36% of genital warts & up to 32% of recurrent respiratory papillomatosis. Here, we report that the mixed MS2-L2 VLPs can protect mice from three additional HPV types: HPV51, which is associated with ~0.8% of cervical cancer; HPV6, which is associated with up to 60% of genital warts; HPV5, which is associated with skin cancers in patients with epidermodysplasia verruciformis (EV). Overall, mixed MS2-L2 VLPs can protect against twelve HPV types associated with ~95.8% of cervical cancers and against two HPV types associated with ~90% of genital warts and >90% recurrent respiratory papillomatosis. Additionally, the VLPs protect against one of two HPV types associated with ~90% of HPV-associated skin cancers in patients with EV. More importantly, we observed that mixed MS2-L2 VLPs elicit protective antibodies that last over 9 months. Furthermore, a spray-freeze-dried formulation of the VLPs is stable, immunogenic, and protective at room temperature and 37 °C.
Collapse
|
4
|
Huber B, Wang JW, Roden RBS, Kirnbauer R. RG1-VLP and Other L2-Based, Broad-Spectrum HPV Vaccine Candidates. J Clin Med 2021; 10:jcm10051044. [PMID: 33802456 PMCID: PMC7959455 DOI: 10.3390/jcm10051044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Licensed human papillomavirus (HPV) vaccines contain virus-like particles (VLPs) self-assembled from L1 major-capsid proteins that are remarkably effective prophylactic immunogens. However, the induced type-restricted immune response limits coverage to the included vaccine types, and costly multiplex formulations, restrictive storage and distribution conditions drive the need for next generation HPV vaccines. Vaccine candidates based upon the minor structural protein L2 are particularly promising because conserved N-terminal epitopes induce broadly cross-type neutralizing and protective antibodies. Several strategies to increase the immunological potency of such epitopes are being investigated, including concatemeric multimers, fusion to toll-like receptors ligands or T cell epitopes, as well as immunodominant presentation by different nanoparticle or VLP structures. Several promising L2-based vaccine candidates have reached or will soon enter first-in-man clinical studies. RG1-VLP present the HPV16L2 amino-acid 17–36 conserved neutralization epitope “RG1” repetitively and closely spaced on an immunodominant surface loop of HPV16 L1-VLP and small animal immunizations provide cross-protection against challenge with all medically-significant high-risk and several low-risk HPV types. With a successful current good manufacturing practice (cGMP) campaign and this promising breadth of activity, even encompassing cross-neutralization of several cutaneous HPV types, RG1-VLP are ready for a first-in-human clinical study. This review aims to provide a general overview of these candidates with a special focus on the RG1-VLP vaccine and its road to the clinic.
Collapse
Affiliation(s)
- Bettina Huber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joshua Weiyuan Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- PathoVax LLC, Baltimore, MD 21205, USA
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21218, USA; (J.W.W.); (R.B.S.R.)
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-77680
| |
Collapse
|
5
|
Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines (Basel) 2020; 8:vaccines8040568. [PMID: 33019516 PMCID: PMC7712070 DOI: 10.3390/vaccines8040568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The human papillomaviruses (HPVs) are a family of small DNA tumor viruses including over 200 genotypes classified by phylogeny into several genera. Different genera of HPVs cause ano-genital and oropharyngeal cancers, skin cancers, as well as benign diseases including skin and genital warts. Licensed vaccines composed of L1 virus-like particles (VLPs) confer protection generally restricted to the ≤9 HPV types targeted. Here, we examine approaches aimed at broadening the protection against diverse HPV types by targeting conserved epitopes of the minor capsid protein, L2. Compared to L1 VLP, L2 is less immunogenic. However, with appropriate presentation to the immune system, L2 can elicit durable, broadly cross-neutralizing antibody responses and protection against skin and genital challenge with diverse HPV types. Such approaches to enhance the strength and breadth of the humoral response include the display of L2 peptides on VLPs or viral capsids, bacteria, thioredoxin and other platforms for multimerization. Neither L2 nor L1 vaccinations elicit a therapeutic response. However, fusion of L2 with early viral antigens has the potential to elicit both prophylactic and therapeutic immunity. This review of cross-protective HPV vaccines based on L2 is timely as several candidates have recently entered early-phase clinical trials.
Collapse
|
6
|
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020; 11:1100. [PMID: 32582186 PMCID: PMC7297083 DOI: 10.3389/fimmu.2020.01100] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
7
|
Yadav R, Zhai L, Tumban E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2019; 12:v12010018. [PMID: 31877975 PMCID: PMC7019592 DOI: 10.3390/v12010018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infections worldwide. Ninety percent of infected individuals clear the infection within two years; however, in the remaining 10% of infected individuals, the infection(s) persists and ultimately leads to cancers (anogenital cancers and head and neck cancers) and genital warts. Fortunately, three prophylactic vaccines have been approved to protect against HPV infections. The most recent HPV vaccine, Gardasil-9 (a nonavalent vaccine), protects against seven HPV types associated with ~90% of cervical cancer and against two HPV types associated with ~90% genital warts with little cross-protection against non-vaccine HPV types. The current vaccines are based on virus-like particles (VLPs) derived from the major capsid protein, L1. The L1 protein is not conserved among HPV types. The minor capsid protein, L2, on the other hand, is highly conserved among HPV types and has been an alternative target antigen, for over two decades, to develop a broadly protective HPV vaccine. The L2 protein, unlike the L1, cannot form VLPs and as such, it is less immunogenic. This review summarizes current studies aimed at developing HPV L2 vaccines by multivalently displaying L2 peptides on VLPs derived from bacteriophages and eukaryotic viruses. Recent data show that a monovalent HPV L1 VLP as well as bivalent MS2 VLPs displaying HPV L2 peptides (representing amino acids 17–36 and/or consensus amino acids 69–86) elicit robust broadly protective antibodies against diverse HPV types (6/11/16/18/26/31/33/34/35/39/43/44/45/51/52/53/56/58/59/66/68/73) associated with cancers and genital warts. Thus, VLP-based L2 vaccines look promising and may be favorable, in the near future, over current L1-based HPV vaccines and should be explored further.
Collapse
Affiliation(s)
- Rashi Yadav
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
| | - Lukai Zhai
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Current address: Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Tumban
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (R.Y.); (L.Z.)
- Correspondence: ; Tel.: +1-906-487-2256; Fax: +1-906-487-3167
| |
Collapse
|
8
|
Li Z, Song S, He M, Wang D, Shi J, Liu X, Li Y, Chi X, Wei S, Yang Y, Wang Z, Li J, Qian H, Yu H, Zheng Q, Yan X, Zhao Q, Zhang J, Gu Y, Li S, Xia N. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat Commun 2018; 9:5360. [PMID: 30560935 PMCID: PMC6299097 DOI: 10.1038/s41467-018-07199-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/18/2018] [Indexed: 11/21/2022] Open
Abstract
Sequence variability in surface-antigenic sites of pathogenic proteins is an important obstacle in vaccine development. Over 200 distinct genomic sequences have been identified for human papillomavirus (HPV), of which more than 18 are associated with cervical cancer. Here, based on the high structural similarity of L1 surface loops within a group of phylogenetically close HPV types, we design a triple-type chimera of HPV33/58/52 using loop swapping. The chimeric VLPs elicit neutralization titers comparable with a mix of the three wild-type VLPs both in mice and non-human primates. This engineered region of the chimeric protein recapitulates the conformational contours of the antigenic surfaces of the parental-type proteins, offering a basis for this high immunity. Our stratagem is equally successful in developing other triplet-type chimeras (HPV16/35/31, HPV56/66/53, HPV39/68/70, HPV18/45/59), paving the way for the development of an improved HPV prophylactic vaccine against all carcinogenic HPV strains. This technique may also be extrapolated to other microbes.
Collapse
Affiliation(s)
- Zhihai Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Maozhou He
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Daning Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Jingjie Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Yunbing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Xin Chi
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Shuangping Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Yurou Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Zhiping Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Jinjin Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Huilian Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Xiaodong Yan
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102.
| |
Collapse
|
9
|
Barra F, Leone Roberti Maggiore U, Bogani G, Ditto A, Signorelli M, Martinelli F, Chiappa V, Lorusso D, Raspagliesi F, Ferrero S. New prophylactics human papilloma virus (HPV) vaccines against cervical cancer. J OBSTET GYNAECOL 2018; 39:1-10. [DOI: 10.1080/01443615.2018.1493441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynaecology, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Giorgio Bogani
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Antonino Ditto
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Mauro Signorelli
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Fabio Martinelli
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Valentina Chiappa
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Domenica Lorusso
- Department of Gynaecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | | | - Simone Ferrero
- Academic Unit of Obstetrics and Gynaecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Genoa, Italy
| |
Collapse
|
10
|
Abstract
Viral structural proteins share a common nature of homotypic interactions that drive viral capsid formation. This natural process has been mimicked in vitro through recombinant technology to generate various virus-like particles (VLPs) and small subviral particles that exhibit similar structural and antigenic properties of their authentic viruses. Therefore, such self-assembled, polyvalent, and highly immunogenic VLPs and small subviral particles are excellent subunit vaccines against individual viruses, such as the VLP vaccines against the hepatitis B virus, human papilloma virus, and hepatitis E virus, which have already been in the markets. In addition, various antigens and epitopes can be fused with VLPs, small subviral particles, or protein polymers, forming chimeric mono-, bi-, or trivalent vaccines. Owing to their easy-production, un-infectiousness, and polyvalence, the recombinant, chimeric vaccines offer a new approach for development of safe, low-cost, and high efficient subunit vaccines against a single or more pathogens or diseases. While the first VLP-based combination vaccine against malaria has been approved for human use, many others are under development with promising future, which are summarized in this commentary.
Collapse
Affiliation(s)
- Ming Tan
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Xi Jiang
- a Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,b Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|
11
|
A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antiviral Res 2017; 147:116-123. [PMID: 28939477 DOI: 10.1016/j.antiviral.2017.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPVs) cause approximately 5% of cancer cases worldwide. Fortunately, three prophylactic vaccines have been approved to protect against HPV infections. Gardasil-9, the most recent HPV vaccine, is predicted to offer protection against the HPV types that cause ∼90% of cervical cancer, 86% of HPV-associated penile cancers, and ∼93% of HPV-associated head & neck cancers. As an alternative to Gardasil-9, we developed and tested a novel candidate vaccine targeting conserved epitopes in the HPV minor capsid protein, L2. We displayed a tandem HPV31/16L2 peptide (amino acid 17-31) or consensus peptides from HPV L2 (amino acid 69-86 or 108-122) on the surface of bacteriophage MS2 virus-like particles (VLPs). Mice immunized with the MS2 VLPs displaying the tandem peptide or immunized with a mixture of VLPs (displaying the tandem peptide and consensus peptide 69-86) elicited high titer antibodies against individual L2 epitopes. Moreover, vaccinated mice were protected from cervicovaginal infection with HPV pseudoviruses 16, 31, 45, 58 and sera from immunized mice neutralized HPV pseudoviruses 18 and 33 at levels similar to mice immunized with Gardasil-9. These results suggest that immunization with a tandem, L2 peptide or a low valency mixture of L2 peptide-displaying VLPs can provide broad protection against multiple HPV types.
Collapse
|
12
|
Kalnin K, Chivukula S, Tibbitts T, Yan Y, Stegalkina S, Shen L, Cieszynski J, Costa V, Sabharwal R, Anderson SF, Christensen N, Jagu S, Roden RBS, Kleanthous H. Incorporation of RG1 epitope concatemers into a self-adjuvanting Flagellin-L2 vaccine broaden durable protection against cutaneous challenge with diverse human papillomavirus genotypes. Vaccine 2017; 35:4942-4951. [PMID: 28778613 PMCID: PMC6454882 DOI: 10.1016/j.vaccine.2017.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/23/2022]
Abstract
AIM To achieve durable and broad protection against human papillomaviruses by vaccination with multimers of minor capsid antigen L2 using self-adjuvanting fusions with the toll-like receptor-5 (TLR5) ligand bacterial flagellin (Fla) instead of co-formulation with alum. METHODS Fla fusions with L2 protective epitopes comprising residues 11-200, 11-88 and/or 17-38 of a single or multiple HPV types were produced in E. coli and their capacity to activate TLR5 signaling was assessed. Immunogenicity was evaluated serially following administration of 3 intramuscular doses of Fla-L2 multimer without exogenous adjuvant, followed by challenge 1, 3, 6 or 12months later, and efficacy compared to vaccination with human doses of L1 VLP vaccines (Gardasil and Cervarix) or L2 multimer formulated in alum. Serum antibody responses were assessed by peptide ELISA, in vitro neutralization assays and passive transfer to naïve rabbits in which End-Point Protection Titers (EPPT) were determined using serial dilutions of pooled immune sera collected 1, 3, 6 or 12months after completing active immunization. Efficacy was assessed by determining wart volume following concurrent challenge at different sites with HPV6/16/18/31/45/58 'quasivirions' containing cottontail rabbit papillomavirus (CRPV) genomes. RESULTS Vaccination in the absence of exogenous adjuvant with Fla-HPV16 L2 11-200 fusion protein elicited durable protection against HPV16, but limited cross-protection against other HPV types. Peptide mapping data suggested the importance of the 17-38 aa region in conferring immunity. Indeed, addition of L2 residues 17-38 of HPV6/18/31/39/52 to a Fla-HPV16 L2 11-200 or 11-88 elicited broader protection via active or passive immunization, similar to that seen with vaccination with an alum-adjuvanted L2 multimer comprising the aa 11-88 peptides of five or eight genital HPV types. CONCLUSIONS Vaccination with flagellin fused L2 multimers provided lasting (>1year) immunity without the need for an exogenous adjuvant. Inclusion of the L2 amino acid 17-38 region in such multi-HPV type fusions expanded the spectrum of protection.
Collapse
Affiliation(s)
- Kirill Kalnin
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA.
| | | | | | - Yanhua Yan
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | - Lihua Shen
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | - Victor Costa
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | | | - Neil Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Subhashini Jagu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
13
|
Zeng J, Yang S, Wang X, Gao Y, Zhang M. Effects of siRNA-mediated suppression of HPV-11 L1 expression on the proliferation and apoptosis of vaginal epithelial cells. Exp Ther Med 2017; 13:1561-1565. [PMID: 28413509 DOI: 10.3892/etm.2017.4120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to investigate the effects of human papillomavirus (HPV) infection on the gynecological disease of vaginitis and to demonstrate how the small interfering RNA (siRNA) method may be used for HPV prevention in the clinic. Human vaginal epithelial cells were transfected with HPV-11 L1 expression vector and siRNA-HPV-11 L1 vectors and a control group was transfected with scrambled siRNA. Cell proliferation in each group was analyzed using the MTT assay and the expression of apoptosis-associated proteins was measured by western blot analysis. Compared with the control group, HPV-11 L1 mRNA and protein levels were significantly increased following transfection with the HPV-11 L1 expression vector in cells (P<0.05), but this result was significantly reversed by silencing of HPV-11 L1 (P<0.05). In addition, cell proliferation in the HPV-11 group was lower than that in the control group; however, cell proliferation was significantly increased in cells transfected with silenced L1 compared with that in the control group (P<0.05). Furthermore, silencing of HPV-11 L1 significantly decreased caspase-3 and caspase-9 expressions in cells, whereas the expression was increased in the HPV-11 L1 group (P<0.05). The present study suggested that siRNA-mediated silencing of HPV-11 L1 may have potential therapeutic applications for treating gynecological diseases associated with HPV-11 infection.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shumei Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaorui Wang
- Department of Oral Medicine, The 323rd Hospital of The People's Liberation Army, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Gao
- Nursing Department, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Mei Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
14
|
Huber B, Schellenbacher C, Shafti-Keramat S, Jindra C, Christensen N, Kirnbauer R. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV). PLoS One 2017; 12:e0169533. [PMID: 28056100 PMCID: PMC5215943 DOI: 10.1371/journal.pone.0169533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV infections.
Collapse
Affiliation(s)
- Bettina Huber
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christina Schellenbacher
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Jindra
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Neil Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
15
|
Tekewe A, Connors NK, Middelberg APJ, Lua LHL. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein Sci 2016; 25:1507-16. [PMID: 27222486 DOI: 10.1002/pro.2953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/20/2016] [Indexed: 11/09/2022]
Abstract
Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs.
Collapse
Affiliation(s)
- Alemu Tekewe
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Natalie K Connors
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Linda H L Lua
- The University of Queensland, UQ Protein Expression Facility, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
16
|
Antibody Persistence in Adults Two Years after Vaccination with an H1N1 2009 Pandemic Influenza Virus-Like Particle Vaccine. PLoS One 2016; 11:e0150146. [PMID: 26919288 PMCID: PMC4769292 DOI: 10.1371/journal.pone.0150146] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/09/2016] [Indexed: 02/02/2023] Open
Abstract
The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs), have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans.
Collapse
|
17
|
McKee SJ, Bergot AS, Leggatt GR. Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol 2015; 25 Suppl 1:54-71. [PMID: 25752816 DOI: 10.1002/rmv.1824] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been more than 7 years since the commercial introduction of highly successful vaccines protecting against high-risk human papillomavirus (HPV) subtypes and the development of cervical cancer. From an immune standpoint, the dependence of cervical cancer on viral infection has meant that HPV proteins can be targeted as strong tumour antigens leading to clearance of the infection and the subsequent protection from cancer. Commercially available vaccines consisting of the L1 capsid protein assembled as virus-like particles (VLPs) induce neutralising antibodies that deny access of the virus to cervical epithelial cells. While greater than 90% efficacy has been demonstrated at the completion of large phase III trials in young women, vaccine developers are now addressing broader issues such as efficacy in boys, longevity of the protection and inducing cross-reactive antibody for oncogenic, non-vaccine HPV strains. For women with existing HPV infection, the prophylactic vaccines provide little protection, and consequently, the need for therapeutic vaccines will continue into the future. Therapeutic vaccines targeting HPVE6 and E7 proteins are actively being pursued with new adjuvants and delivery vectors, combined with an improved knowledge of the tumour microenvironment, showing great promise. This review will focus on recent progress in prophylactic and therapeutic vaccine development and implementation since the publication of end of study data from phase III clinical trials between 2010 and 2012.
Collapse
Affiliation(s)
- Sara J McKee
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | | | | |
Collapse
|
18
|
Hassett KJ, Meinerz NM, Semmelmann F, Cousins MC, Garcea RL, Randolph TW. Development of a highly thermostable, adjuvanted human papillomavirus vaccine. Eur J Pharm Biopharm 2015; 94:220-8. [PMID: 25998700 DOI: 10.1016/j.ejpb.2015.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
A major impediment to economical, worldwide vaccine distribution is the requirement for a "cold chain" to preserve antigenicity. We addressed this problem using a model human papillomavirus (HPV) vaccine stabilized by immobilizing HPV16 L1 capsomeres, i.e., pentameric subunits of the virus capsid, within organic glasses formed by lyophilization. Lyophilized glass and liquid vaccine formulations were incubated at 50°C for 12weeks, and then analyzed for retention of capsomere conformational integrity and the ability to elicit neutralizing antibody responses after immunization of BALB/c mice. Capsomeres in glassy-state vaccines retained tertiary and quaternary structure, and critical conformational epitopes. Moreover, glassy formulations adjuvanted with aluminum hydroxide or aluminum hydroxide and glycopyranoside lipid A were not only as immunogenic as the commercially available HPV vaccine Cervarix®, but also retained complete neutralizing immunogenicity after high-temperature storage. The thermal stability of such adjuvanted vaccine powder preparations may thus eliminate the need for the cold chain.
Collapse
Affiliation(s)
- Kimberly J Hassett
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Natalie M Meinerz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States; The Bio Frontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Florian Semmelmann
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Megan C Cousins
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Robert L Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States; The Bio Frontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Theodore W Randolph
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
19
|
Wang D, Li Z, Xiao J, Wang J, Zhang L, Liu Y, Fan F, Xin L, Wei M, Kong Z, Yu H, Gu Y, Zhang J, Li S, Xia N. Identification of Broad-Genotype HPV L2 Neutralization Site for Pan-HPV Vaccine Development by a Cross-Neutralizing Antibody. PLoS One 2015; 10:e0123944. [PMID: 25905781 PMCID: PMC4408011 DOI: 10.1371/journal.pone.0123944] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
Abstract
Human Papillomavirus (HPV), a non-enveloped, double-stranded DNA virus, is responsible for 5% of human cancers. The HPV capsid consists of major and minor structural proteins, L1 and L2. L1 proteins form an icosahedral shell with building blocks of the pentameric capsomere, and one L2 molecule extends outward from the central hole of the capsid. Thus, L2 is concealed within L1 and only becomes exposed when the capsid interacts with host cells. The low antigenic variation of L2 means that this protein could offer a target for the development of a pan-HPV vaccine. Toward this goal, here we describe an anti-L2 monoclonal antibody, 14H6, which broadly neutralizes at least 11 types of HPV, covering types 6, 11, 16, 18, 31, 33, 35, 45, 52, 58 and 59, in pseudovirion--based cell neutralization assay. The mAb 14H6 recognizes a minimal linear epitope located on amino acids 21 to 30 of the L2 protein. Alanine scanning mutagenesis and sequence alignment identified several conserved residues (Cys22, Lys23, Thr27, Cys28 and Pro29) that are involved in the 14H6 binding with L2. The epitope was grafted to several scaffolding proteins, including HPV16 L1 virus-like particles, HBV 149 core antigen and CRM197. The resultant chimeric constructs were expressed in Escherichia coli and purified with high efficiency. Immunization with these pan-HPV vaccine candidates elicited high titers of the L2-specific antibody in mice and conferred robust (3-log) titers of cross-genotype neutralization, including against HPV11, 16, 18, 45, 52, 58 and 59. These findings will help in the development of an L2-based, pan-HPV vaccine.
Collapse
Affiliation(s)
- Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Zhihai Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jieqiong Xiao
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Junqi Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Li Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yajing Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Fei Fan
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lu Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Minxi Wei
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
- * E-mail: (SL); (NX)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
- * E-mail: (SL); (NX)
| |
Collapse
|
20
|
A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types. PLoS One 2015; 10:e0120152. [PMID: 25790098 PMCID: PMC4366228 DOI: 10.1371/journal.pone.0120152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023] Open
Abstract
Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV.
Collapse
|
21
|
Hassett KJ, Vance DJ, Jain NK, Sahni N, Rabia LA, Cousins MC, Joshi S, Volkin DB, Middaugh CR, Mantis NJ, Carpenter JF, Randolph TW. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants. J Pharm Sci 2015; 104:627-39. [PMID: 25581103 DOI: 10.1002/jps.24295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/28/2014] [Indexed: 01/14/2023]
Abstract
During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose.
Collapse
Affiliation(s)
- Kimberly J Hassett
- Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, University of Colorado, Boulder, Boulder, Colorado, 80303
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang L, Xia M, Huang P, Fang H, Cao D, Meng XJ, McNeal M, Jiang X, Tan M. Branched-linear and agglomerate protein polymers as vaccine platforms. Biomaterials 2014; 35:8427-38. [PMID: 24985736 PMCID: PMC4137571 DOI: 10.1016/j.biomaterials.2014.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
Many viral structural proteins and their truncated domains share a common feature of homotypic interaction forming dimers, trimers, and/or oligomers with various valences. We reported previously a simple strategy for construction of linear and network polymers through the dimerization feature of viral proteins for vaccine development. In this study, technologies were developed to produce more sophisticated polyvalent complexes through both the dimerization and oligomerization natures of viral antigens. As proof of concept, branched-linear and agglomerate polymers were made via fusions of the dimeric glutathione-s-transferase (GST) with either a tetrameric hepatitis E virus (HEV) protruding protein or a 24-meric norovirus (NoV) protruding protein. Furthermore, a monomeric antigen, either the M2e epitope of influenza A virus or the VP8* antigen of rotavirus, was inserted and displayed by the polymer platform. All resulting polymers were easily produced in Escherichia coli at high yields. Immunization of mice showed that the polymer vaccines induced significantly higher specific humoral and T cell responses than those induced by the dimeric antigens. Additional evidence in supporting use of polymer vaccines included the significantly higher neutralization activity and protective immunity of the polymer vaccines against the corresponding viruses than those of the dimer vaccines. Thus, our technology for production of polymers containing different viral antigens offers a strategy for vaccine development against infectious pathogens and their associated diseases.
Collapse
Affiliation(s)
- Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Hao Fang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Tan M, Jiang X. Subviral particle as vaccine and vaccine platform. Curr Opin Virol 2014; 6:24-33. [PMID: 24662314 PMCID: PMC4072748 DOI: 10.1016/j.coviro.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023]
Abstract
Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
24
|
Tyler M, Tumban E, Chackerian B. Second-generation prophylactic HPV vaccines: successes and challenges. Expert Rev Vaccines 2013; 13:247-55. [PMID: 24350614 DOI: 10.1586/14760584.2014.865523] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of HPV as the causative factor in cervical cancer has led to the development of the HPV vaccines Gardasil and Cervarix. These vaccines effectively protect against two HPV types associated with 70% of cervical cancer cases. Despite this success, researchers continue to develop second-generation HPV vaccines to protect against more HPV types and allow increased uptake in developing countries. While a reformulated vaccine based on the current technology is currently in clinical trials, another strategy consists of targeting highly conserved epitopes in the minor capsid protein of HPV, L2. Vaccines targeting L2 induce broadly neutralizing antibodies, capable of blocking infection by a wide range of HPV types. Several vaccine designs have been developed to optimize the display of L2 epitopes to the immune system and to reduce the cost of manufacture and distribution. L2-based vaccines show considerable promise as a potential next-generation HPV vaccine.
Collapse
Affiliation(s)
- Mitchell Tyler
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
25
|
Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 2013; 111:425-40. [PMID: 24347238 DOI: 10.1002/bit.25159] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/23/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Virus-like particle (VLP) technology seeks to harness the optimally tuned immunostimulatory properties of natural viruses while omitting the infectious trait. VLPs that assemble from a single protein have been shown to be safe and highly efficacious in humans, and highly profitable. VLPs emerging from basic research possess varying levels of complexity and comprise single or multiple proteins, with or without a lipid membrane. Complex VLP assembly is traditionally orchestrated within cells using black-box approaches, which are appropriate when knowledge and control over assembly are limited. Recovery challenges including those of adherent and intracellular contaminants must then be addressed. Recent commercial VLPs variously incorporate steps that include VLP in vitro assembly to address these problems robustly, but at the expense of process complexity. Increasing research activity and translation opportunity necessitate bioengineering advances and new bioprocessing modalities for efficient and cost-effective production of VLPs. Emerging approaches are necessarily multi-scale and multi-disciplinary, encompassing diverse fields from computational design of molecules to new macro-scale purification materials. In this review, we highlight historical and emerging VLP vaccine approaches. We overview approaches that seek to specifically engineer a desirable immune response through modular VLP design, and those that seek to improve bioprocess efficiency through inhibition of intracellular assembly to allow optimal use of existing purification technologies prior to cell-free VLP assembly. Greater understanding of VLP assembly and increased interdisciplinary activity will see enormous progress in VLP technology over the coming decade, driven by clear translational opportunity.
Collapse
Affiliation(s)
- Linda H L Lua
- Protein Expression Facility, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Pineo CB, Hitzeroth II, Rybicki EP. Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:964-75. [PMID: 23924054 DOI: 10.1111/pbi.12089] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Cervical cancer is caused by infection with human papillomaviruses (HPV) and is a global concern, particularly in developing countries, which have ~80% of the burden. HPV L1 virus-like particle (VLP) type-restricted vaccines prevent new infections and associated disease. However, their high cost has limited their application, and cytological screening programmes are still required to detect malignant lesions associated with the nonvaccine types. Thus, there is an urgent need for cheap second-generation HPV vaccines that protect against multiple types. The objective of this study was to express novel HPV-16 L1-based chimaeras, containing cross-protective epitopes from the L2 minor capsid protein, in tobacco plants. These L1/L2 chimaeras contained epitope sequences derived from HPV-16 L2 amino acid 108-120, 56-81 or 17-36 substituted into the C-terminal helix 4 (h4) region of L1 from amino acid 414. All chimaeras were expressed in Nicotiana benthamiana via an Agrobacterium-mediated transient system and targeted to chloroplasts. The chimaeras were highly expressed with yields of ~1.2 g/kg plant tissue; however, they assembled differently, indicating that the length and nature of the L2 epitope affect VLP assembly. The chimaera containing L2 amino acids 108-120 was the most successful candidate vaccine. It assembled into small VLPs and elicited anti-L1 and anti-L2 responses in mice, and antisera neutralized homologous HPV-16 and heterologous HPV-52 pseudovirions. The other chimaeras predominantly assembled into capsomeres and other aggregates and elicited weaker humoral immune responses, demonstrating the importance of VLP assembly for the immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Catherine B Pineo
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | | | | |
Collapse
|
27
|
Wang JW, Roden RBS. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 2013; 12:129-41. [PMID: 23414405 DOI: 10.1586/erv.12.151] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As compared with peptide- or protein-based vaccines, naked DNA vectors and even traditional attenuated or inactivated virus vaccines, virus-like particles (VLPs) are an attractive vaccine platform, as they offer a combination of safety, ease of production and both high-density B-cell epitope display and intracellular presentation of T-cell epitopes that induce potent humoral and cellular immune responses, respectively. Indeed, HPV vaccines based on VLP production by recombinant expression of major capsid antigen L1 in yeast (Gardasil(®), Merck & Co., NJ, USA) or insect cells (Cervarix(®), GlaxoSmithKline, London, UK) have been licensed for the prevention of cervical and anogenital infection and disease associated with the genotypes targeted by each vaccine. However, these HPV vaccines have not been demonstrated as effective to treat existing infections, and efforts to develop a therapeutic HPV vaccine continue. Furthermore, current HPV L1-VLP vaccines provide type-restricted protection, requiring highly multivalent formulations to broaden coverage to the dozen or more oncogenic HPV genotypes. This raises the complexity and cost of vaccine production. The lack of access to screening and high disease burden in developing countries has spurred efforts to develop second-generation HPV vaccines that are more affordable, induce wider protective coverage and offer therapeutic coverage against HPV-associated malignancies. Given the previous success with L1-VLP-based vaccines against HPV, VLPs have been also adopted as platforms for many second-generation HPV and non-HPV vaccine candidates with both prophylactic and therapeutic intent. In this article, the authors examine the progress and challenges of these efforts, with a focus on how they inform VLP vaccine design.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287-0014, USA
| | | |
Collapse
|
28
|
Keef T, Wardman JP, Ranson NA, Stockley PG, Twarock R. Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool. Acta Crystallogr A 2013; 69:140-50. [PMID: 23403965 DOI: 10.1107/s0108767312047150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/16/2012] [Indexed: 11/10/2022] Open
Abstract
Understanding the fundamental principles of virus architecture is one of the most important challenges in biology and medicine. Crick and Watson were the first to propose that viruses exhibit symmetry in the organization of their protein containers for reasons of genetic economy. Based on this, Caspar and Klug introduced quasi-equivalence theory to predict the relative locations of the coat proteins within these containers and classified virus structure in terms of T-numbers. Here it is shown that quasi-equivalence is part of a wider set of structural constraints on virus structure. These constraints can be formulated using an extension of the underlying symmetry group and this is demonstrated with a number of case studies. This new concept in virus biology provides for the first time predictive information on the structural constraints on coat protein and genome topography, and reveals a previously unrecognized structural interdependence of the shapes and sizes of different viral components. It opens up the possibility of distinguishing the structures of different viruses with the same T-number, suggesting a refined viral structure classification scheme. It can moreover be used as a basis for models of virus function, e.g. to characterize the start and end configurations of a structural transition important for infection.
Collapse
Affiliation(s)
- Thomas Keef
- York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, England
| | | | | | | | | |
Collapse
|
29
|
Nyitray AG, Lu B, Kreimer AR, Anic G, Stanberry LR, Giuliano AR. The Epidemiology and Control of Human Papillomavirus Infection and Clinical Disease. Sex Transm Dis 2013. [DOI: 10.1016/b978-0-12-391059-2.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Ma B, Maraj B, Tran NP, Knoff J, Chen A, Alvarez RD, Hung CF, Wu TC. Emerging human papillomavirus vaccines. Expert Opin Emerg Drugs 2012; 17:469-92. [PMID: 23163511 PMCID: PMC3786409 DOI: 10.1517/14728214.2012.744393] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Identification of human papillomavirus (HPV) as the etiologic factor of cervical, anogenital, and a subset of head and neck cancers has stimulated the development of preventive and therapeutic HPV vaccines to control HPV-associated malignancies. Excitement has been generated by the commercialization of two preventive L1-based vaccines, which use HPV virus-like particles (VLPs) to generate capsid-specific neutralizing antibodies. However, factors such as high cost and requirement for cold chain have prevented widespread implementation where they are needed most. AREAS COVERED Next generation preventive HPV vaccine candidates have focused on cost-effective stable alternatives and generating broader protection via targeting multivalent L1 VLPs, L2 capsid protein, and chimeric L1/L2 VLPs. Therapeutic HPV vaccine candidates have focused on enhancing T cell-mediated killing of HPV-transformed tumor cells, which constitutively express HPV-encoded proteins, E6 and E7. Several therapeutic HPV vaccines are in clinical trials. EXPERT OPINION Although progress is being made, cost remains an issue inhibiting the use of preventive HPV vaccines in countries that carry the majority of the cervical cancer burden. In addition, progression of therapeutic HPV vaccines through clinical trials may require combination strategies employing different therapeutic modalities. As research in the development of HPV vaccines continues, we may generate effective strategies to control HPV-associated malignancies.
Collapse
Affiliation(s)
- Barbara Ma
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Bharat Maraj
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Nam Phuong Tran
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Jayne Knoff
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Alexander Chen
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Ronald D Alvarez
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Birmingham, MD, USA
| | - Chien-Fu Hung
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Oncology, Baltimore, MD, USA
| | - T.-C. Wu
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Oncology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Obstetrics and Gynecology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Molecular Microbiology and Immunology, Baltimore, MD, USA
| |
Collapse
|
31
|
Tumban E, Peabody J, Tyler M, Peabody DS, Chackerian B. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus. PLoS One 2012. [PMID: 23185426 PMCID: PMC3501453 DOI: 10.1371/journal.pone.0049751] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Virus-like Particles (VLPs) display can be used to increase the immunogenicity of heterologous antigens. Here, we report the use of a bacteriophage MS2-based VLP display platform to develop a monovalent vaccine targeting a broadly neutralizing epitope in the minor capsid protein human papillomavirus (HPV) that provides broad protection from diverse HPV types in a mouse pseudovirus infection model. Methodology/Principal Findings Peptides spanning a previously described cross-neutralizing epitope from HPV type 16 were genetically inserted at the N-terminus of MS2 bacteriophage coat protein. Three of the four recombinant L2-coat proteins assembled into VLPs. L2-VLPs elicited high-titer anti-L2 antibodies in mice, similar to recombinant VLPs that we had previously made in which the L2 peptide was displayed on a surface-exposed loop on VLPs of a related bacteriophage, PP7. Somewhat surprisingly, L2-MS2 VLPs elicited antibodies that were much more broadly cross-reactive with L2 peptides from diverse HPV isolates than L2-PP7 VLPs. Similarly, mice immunized with L2-MS2 VLPs were protected from genital and cutaneous infection by highly diverse HPV pseudovirus types. Conclusion/Significance We show that peptides can be displayed in a highly immunogenic fashion at the N-terminus of MS2 coat protein VLPs. A VLP-based vaccine targeting HPV L2 elicits broadly cross-reactive and cross-protective antibodies to heterologous HPV types. L2-VLPs could serve as the basis of a broadly protective second generation HPV vaccine.
Collapse
Affiliation(s)
- Ebenezer Tumban
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (ET); (BC)
| | - Julianne Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Mitchell Tyler
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (ET); (BC)
| |
Collapse
|
32
|
Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. PLoS One 2012; 7:e47492. [PMID: 23091628 PMCID: PMC3472981 DOI: 10.1371/journal.pone.0047492] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/12/2012] [Indexed: 01/10/2023] Open
Abstract
Although many studies provide strong evidence supporting the development of HCV virus-like particle (VLP)-based vaccines, the fact that heterologous viral vectors and/or multiple dosing regimes are required to induce protective immunity indicates that it is necessary to improve their immunogenicity. In this study, we have evaluated the use of an anionic self-adjuvanting lipopeptide containing the TLR2 agonist Pam2Cys (E8Pam2Cys) to enhance the immunogenicity of VLPs containing the HCV structural proteins (core, E1 and E2) of genotype 1a. While co-formulation of this lipopeptide with VLPs only resulted in marginal improvements in dendritic cell (DC) uptake, its ability to concomitantly induce DC maturation at very small doses is a feature not observed using VLPs alone or in the presence of an aluminium hydroxide-based adjuvant (Alum). Dramatically improved VLP and E2-specific antibody responses were observed in VLP+E8Pam2Cys vaccinated mice where up to 3 doses of non-adjuvanted or traditionally alum-adjuvanted VLPs was required to match the antibody titres obtained with a single dose of VLPs formulated with this lipopeptide. This result also correlated with significantly higher numbers of specific antibody secreting cells that was detected in the spleens of VLP+E8Pam2Cys vaccinated mice and greater ability of sera from these mice to neutralise the binding and uptake of VLPs by Huh7 cells. Moreover, vaccination of HLA-A2 transgenic mice with this formulation also induced better VLP-specific IFN-γ-mediated responses compared to non-adjuvanted VLPs but comparable levels to that achieved when coadministered with complete freund’s adjuvant. These results suggest overall that the immunogenicity of HCV VLPs can be significantly improved by the addition of this novel adjuvant by targeting their delivery to DCs and could therefore constitute a viable vaccine strategy for the treatment of HCV.
Collapse
|
33
|
Seitz H, Schmitt M, Böhmer G, Kopp-Schneider A, Müller M. Natural variants in the major neutralizing epitope of human papillomavirus minor capsid protein L2. Int J Cancer 2012; 132:E139-48. [PMID: 22961598 DOI: 10.1002/ijc.27831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/14/2012] [Indexed: 11/08/2022]
Abstract
The amino terminus of the human papillomavirus minor capsid protein L2 contains a major cross-neutralizing epitope that provides the basis for the development of a broadly protective HPV vaccine. This attainable broad protection would eliminate one of the major drawbacks of the commercial L1-based prophylactic vaccines. In this study, we asked whether there are natural variants of the L2 cross-neutralizing epitope and if these variants provide means for immune escape from vaccine-induced anti-L2 antibodies. For this, we isolated in silico and in vitro, a total of 477 L2 sequences of HPV types 16, 18, 31, 45, 51, 52 and 58. We identified natural L2 epitope variants for HPV 18, 31, 45 and 51. To determine whether these variants escape L2-directed neutralization, we generated pseudovirions encompassing the natural variants and tested these in an in vitro neutralization assay using monoclonal and polyclonal antibodies. Our results indicate that natural variants of the L2 major neutralizing epitope are frequent among two different study populations from Germany and Mongolia and in the GenBank database. Of two identified HPV 31 L2 single amino acid variants, one could be neutralized well, while the other variant was neutralized very poorly. We also observed that single amino acid variants of HPV 18 and 45 are neutralized well while a HPV 18 double variant was neutralized at significantly lower rates, indicating that L2 variants have to be accounted for when developing HPV L2-based prophylactic vaccines.
Collapse
Affiliation(s)
- Hanna Seitz
- Deutsches Krebsforschungszentrum Heidelberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
Human papillomavirus (HPV) is a highly transmissible infection responsible for a range of diseases in women including cervical carcinomas, vulval carcinomas, anogenital carcinomas and genital warts. In men it is associated with penile carcinomas, anogenital carcinomas and oropharyngeal carcinomas. The history of the development of HPV vaccines includes a significant Australian input and represents a tremendous advancement in our understanding of HPV virology as well as further elucidating the overall contribution of viruses to carcinogenesis. Prophylactic HPV vaccines were licensed for use in Australia in 2007 in order to protect against development of future cases of cervical carcinoma and early results are promising. The benefit of the vaccine will not be restricted to cervical lesions and cross protection amongst a variety of HPV subtypes is described. The development of the HPV vaccine and its ultimate incorporation into our National Immunisation Schedule is reviewed.
Collapse
|
35
|
Gersch ED, Gissmann L, Garcea RL. New approaches to prophylactic human papillomavirus vaccines for cervical cancer prevention. Antivir Ther 2011; 17:425-34. [PMID: 22293302 DOI: 10.3851/imp1941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/12/2022]
Abstract
The currently licensed human papillomavirus (HPV) vaccines are safe and highly effective at preventing HPV infection for a select number of papillomavirus types, thus decreasing the incidence of precursors to cervical cancer. It is expected that vaccination will also ultimately reduce the incidence of this cancer. The licensed HPV vaccines are, however, type restricted and expensive, and also require refrigeration, multiple doses and intramuscular injection. Second-generation vaccines are currently being developed to address these shortcomings. New expression systems, viral and bacterial vectors for HPV L1 capsid protein delivery, and use of the HPV L2 capsid protein will hopefully aid in decreasing cost and increasing ease of use and breadth of protection. These second-generation vaccines could also allow affordable immunization of women in developing countries, where the incidence of cervical cancer is high.
Collapse
Affiliation(s)
- Elizabeth D Gersch
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | | |
Collapse
|
36
|
Wu WH, Gersch E, Kwak K, Jagu S, Karanam B, Huh WK, Garcea RL, Roden RBS. Capsomer vaccines protect mice from vaginal challenge with human papillomavirus. PLoS One 2011; 6:e27141. [PMID: 22069498 PMCID: PMC3206079 DOI: 10.1371/journal.pone.0027141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
Capsomers were produced in bacteria as glutathione-S-transferase (GST) fusion proteins with human papillomavirus type 16 L1 lacking the first nine and final 29 residues (GST-HPV16L1Δ) alone or linked with residues 13-47 of HPV18, HPV31 and HPV45 L2 in tandem (GST-HPV16L1Δ-L2x3). Subcutaneous immunization of mice with GST-HPV16L1Δ or GST-HPV16L1Δ-L2x3 in alum and monophosphoryl lipid A induced similarly high titers of HPV16 neutralizing antibodies. GST-HPV16L1Δ-L2x3 also elicited moderate L2-specific antibody titers. Intravaginal challenge studies showed that immunization of mice with GST-HPV16 L1Δ or GST-HPV16L1Δ-L2x3 capsomers, like Cervarix®, provided complete protection against HPV16. Conversely, vaccination with GST-HPV16 L1Δ capsomers failed to protect against HPV18 challenge, whereas mice immunized with either GST-HPV16L1Δ-L2x3 capsomers or Cervarix® were each completely protected. Thus, while the L2-specific response was moderate, it did not interfere with immunity to L1 in the context of GST-HPV16L1Δ-L2x3 and is sufficient to mediate L2-dependent protection against an experimental vaginal challenge with HPV18.
Collapse
Affiliation(s)
- Wai-Hong Wu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth Gersch
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Kihyuck Kwak
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Subhashini Jagu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Balasubramanyam Karanam
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Warner K. Huh
- Department of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Richard B. S. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Olthof NC, Straetmans JMJAA, Snoeck R, Ramaekers FCS, Kremer B, Speel EJM. Next-generation treatment strategies for human papillomavirus-related head and neck squamous cell carcinoma: where do we go? Rev Med Virol 2011; 22:88-105. [PMID: 21984561 DOI: 10.1002/rmv.714] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022]
Abstract
Oncogenic human papillomavirus (HPV) is currently recognised as a major risk factor for the development of head and neck squamous cell carcinomas (HNSCC). HPV is mostly detected in tumours arising from the oropharynx and more specifically from the tonsil. HPV-related tumours display clinical and molecular characteristics that are distinct from HPV-unrelated tumours, which are generally induced by alcohol and tobacco abuse. Detection of biologically active HPV in HNSCC has prognostic relevance, which warrants the separate classification of HPV-induced tumours and is a prerequisite for further optimisation of treatment protocols for this distinct group. Current guidelines for the treatment of oropharyngeal squamous cell carcinoma (OPSCC) have not incorporated specific treatment modalities for HPV-related tumours. The development of such treatment options is still in a preclinical phase or in early clinical trials. Recent data on treatment response of OPSCC have been obtained by retrospectively analysing HPV-status and indicate that patients with HPV-related tumours show a favourable prognosis, independent of the type of treatment. These patients may benefit from de-intensified treatment, which should be assessed in prospective clinical trials. The development and future use of new antiviral and immunomodulatory therapeutics may be instrumental in this approach to improve survival rates and decrease disease-and-treatment-related morbidity. In this review we will focus on present therapeutic HPV-targeting strategies and discuss future directions for de-intensified treatment of HPV-positive HNSCC.
Collapse
Affiliation(s)
- Nadine C Olthof
- Departments of Otorhinolaryngology and Head and Neck Surgery, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Frazer IH, Leggatt GR, Mattarollo SR. Prevention and treatment of papillomavirus-related cancers through immunization. Annu Rev Immunol 2011; 29:111-38. [PMID: 21166538 DOI: 10.1146/annurev-immunol-031210-101308] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cervical and other anogenital cancers are initiated by infection with one of a small group of human papillomaviruses (HPV). Virus-like particle-based vaccines have recently been developed to prevent infection with two cancer-associated HPV genotypes (HPV16, HPV18) and have been ∼95% effective at preventing HPV-associated disease caused by these genotypes in virus-naive subjects. Although immunization induces virus-neutralizing antibody sufficient to prevent infection, persistence of antibody as measured by current assays does not appear necessary to maintain protection over time. Investigators have not identified a reliable surrogate immunological marker of protection against disease following immunization. The prophylactic vaccines are not therapeutic for existing infection. Trials of HPV-specific immunotherapy have shown some efficacy for existing disease, although animal modeling suggests that a combination of immunization and local enhancement of innate immunity may be necessary for optimal therapeutic outcome. HPV prophylactic vaccines are the first vaccines designed to prevent a human cancer and are the practical outcome of a global collaborative effort between basic and applied scientists, clinicians, and industry.
Collapse
Affiliation(s)
- Ian H Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | |
Collapse
|
39
|
Kwak K, Yemelyanova A, Roden RBS. Prevention of cancer by prophylactic human papillomavirus vaccines. Curr Opin Immunol 2010; 23:244-51. [PMID: 21185706 DOI: 10.1016/j.coi.2010.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/22/2010] [Indexed: 01/12/2023]
Abstract
Oncogenic human papillomaviruses (HPVs) are exclusively mucosal pathogens that are noncytopathic and the basal epithelial cells harboring and maintaining an infection do not produce either capsid antigen or virus. The efficacy of the licensed L1 virus-like particle (VLP) vaccines has encouraged development of several second generation vaccines aimed at expanding the coverage to all oncogenic HPV types and reducing barriers to global implementation. Currently there is no defined immune correlate of protection that can be used to determine if an individual patient is protected and for the evaluation of these second generation vaccines. Surprisingly, passive transfer of neutralizing serum antibody is protective in animal models. Recent studies suggest how neutralizing antibody mediates immunity against mucosal HPV and the possible impact of memory B cells.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
40
|
Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:174-196. [PMID: 20872839 PMCID: PMC7169818 DOI: 10.1002/wnan.119] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current vaccines that provide protection against infectious diseases have primarily relied on attenuated or inactivated pathogens. Virus‐like particles (VLPs), comprised of capsid proteins that can initiate an immune response but do not include the genetic material required for replication, promote immunogenicity and have been developed and approved as vaccines in some cases. In addition, many of these VLPs can be used as molecular platforms for genetic fusion or chemical attachment of heterologous antigenic epitopes. This approach has been shown to provide protective immunity against the foreign epitopes in many cases. A variety of VLPs and virus‐based nanoparticles are being developed for use as vaccines and epitope platforms. These particles have the potential to increase efficacy of current vaccines as well as treat diseases for which no effective vaccines are available. WIREs Nanomed Nanobiotechnol 2011 3 174–196 DOI: 10.1002/wnan.119 This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
Collapse
Affiliation(s)
- Emily M Plummer
- Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|