1
|
Fellahi S, Nassik S, Maaroufi I, Tligui NS, Touzani CD, Rawi T, Delvecchio A, Ducatez MF, Houadfi ME. Pathogenesis of Avian Influenza Virus Subtype H9N2 in Turkeys and Evaluation of Inactivated Vaccine Efficacy. Avian Dis 2021; 65:46-51. [PMID: 34339121 DOI: 10.1637/aviandiseases-d-20-00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 11/05/2022]
Abstract
Avian influenza H9N2 viruses circulate in all types of poultry species, including turkeys, and cause significant losses for the poultry industry in many parts of the word. The aim of this study was to assess the pathogenesis of the Moroccan avian influenza virus (AIV) H9N2 under experimental conditions in turkeys and the protection efficacy of an inactivated commercial vaccine against AIV H9N2. Unvaccinated turkeys showed marked depression sinusitis, respiratory distress characterized by bronchiolar and tracheal rales of moderate severity, and a mortality rate of 50%. Postmortem examinations of dead and euthanatized birds revealed the presence of fibrinous tracheitis and airsacculitis lesions. Vaccination reduced the mortality rate to 20%. Vaccinated birds recovered at day 10 postchallenge, and only 12.5% (1/8) and 37.5% of birds still displayed fibrinous and nonfibrinous airsacculitis lesions, respectively, at day 15 postinoculation. Viral shedding in cloacal and tracheal swabs was lower in vaccinated than in control birds. Although viral RNA was detected in the cloacal swabs of all unvaccinated turkeys at day 3 postinoculation, only 50% of the vaccinated turkeys were positive for virus detection. At day 11 postinoculation, no viral RNA was detected in oropharyngeal swabs of vaccinated turkeys, whereas 40% of the unvaccinated turkeys were still shedding virus.
Collapse
Affiliation(s)
- Siham Fellahi
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco, ,
| | - Saadia Nassik
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Imane Maaroufi
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Nour-Said Tligui
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Charifa Drissi Touzani
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | | | | | | | - Mohamed El Houadfi
- Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique Vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| |
Collapse
|
2
|
Wille M, Holmes EC. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038489. [PMID: 31871237 DOI: 10.1101/cshperspect.a038489] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The patterns and processes of influenza virus evolution are of fundamental importance, underpinning such traits as the propensity to emerge in new host species and the ability to rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evolution of influenza viruses. We begin with an exploration of the origins of influenza viruses within the orthomyxoviruses, showing how our perception of the evolutionary history of these viruses has been transformed with metagenomic sequencing. We then outline the diversity of virus subtypes in different species and the processes by which these viruses have emerged in new hosts, with a particular focus on the role played by segment reassortment. We then turn our attention to documenting the spread and phylodynamics of seasonal influenza A and B viruses in human populations, including the drivers of antigenic evolution, and finish with a discussion of virus diversity and evolution at the scale of individual hosts.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
3
|
Bertran K, Criado MF, Lee DH, Killmaster L, Sá E Silva M, Lucio E, Widener J, Pritchard N, Atkins E, Mebatsion T, Swayne DE. Protection of White Leghorn chickens by recombinant fowlpox vector vaccine with an updated H5 insert against Mexican H5N2 avian influenza viruses. Vaccine 2019; 38:1526-1534. [PMID: 31862196 DOI: 10.1016/j.vaccine.2019.11.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
Despite decades of vaccination, surveillance, and biosecurity measures, H5N2 low pathogenicity avian influenza (LPAI) virus infections continue in Mexico and neighboring countries. One explanation for tenacity of H5N2 LPAI in Mexico is the antigenic divergence of circulating field viruses compared to licensed vaccines due to antigenic drift. Our phylogenetic analysis indicates that the H5N2 LPAI viruses circulating in Mexico and neighboring countries since 1994 have undergone antigenic drift away from vaccine seed strains. Here we evaluated the efficacy of a new recombinant fowlpox virus vector containing an updated H5 insert (rFPV-H5/2016), more relevant to the current strains circulating in Mexico. We tested the vaccine efficacy against a closely related subcluster 4 Mexican H5N2 LPAI (2010 H5/LP) virus and the historic H5N2 HPAI (1995 H5/HP) virus in White Leghorn chickens. The rFPV-H5/2016 vaccine provided hemagglutinin inhibition (HI) titers pre-challenge against viral antigens from both challenge viruses in almost 100% of the immunized birds, with no differences in number of birds seroconverting or HI titers among all tested doses (1.5, 2.0, and 3.1 log10 mean tissue culture infectious doses/bird). The vaccine conferred 100% clinical protection and a significant decrease in oral and cloacal virus shedding from 1995 H5/HP virus challenged birds when compared to the sham controls at all tested doses. Virus shedding titers from vaccinated 2010 H5/LP virus challenged birds significantly decreased compared to sham birds especially at earlier time points. Our results confirm the efficacy of the new rFPV-H5/2016 against antigenic drift of LPAI virus in Mexico and suggest that this vaccine would be a good candidate, likely as a primer in a prime-boost vaccination program.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605 USA; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain.
| | - Miria Ferreira Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605 USA.
| | - Dong-Hun Lee
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605 USA.
| | - Mariana Sá E Silva
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Eduardo Lucio
- Boehringer Ingelheim Animal Health, SA de CV, Maiz 49, Xaltocan, 16090 Ciudad de Mexico, Mexico.
| | - Justin Widener
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Nikki Pritchard
- Boehringer Ingelheim Animal Health USA Inc., 1112 Airport Parkway, Gainesville, GA 30503, USA.
| | - Emily Atkins
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Teshome Mebatsion
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605 USA.
| |
Collapse
|
4
|
Kalenik BM, Góra-Sochacka A, Stachyra A, Pietrzak M, Kopera E, Fogtman A, Sirko A. Transcriptional response to a prime/boost vaccination of chickens with three vaccine variants based on HA DNA and Pichia-produced HA protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:8-18. [PMID: 29986836 DOI: 10.1016/j.dci.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Highly pathogenic avian influenza causes severe economic losses and is a potential threat to public health. Better knowledge of the mechanisms of chicken response to the novel types of vaccines against avian influenza might be helpful in their successful implementation into poultry vaccination programs in different countries. This work presents a comprehensive analysis of gene expression response elicited in chicken spleens by a combined DNA/recombinant protein prime/boost vaccination compared to DNA/DNA and protein/protein regimens. All groups of vaccinated chickens displayed changes in spleen transcriptomes in comparison to the control group with 423, 375 and 212 identified differentially expressed genes in protein/protein, DNA/DNA and DNA/protein group, respectively. Genes with most significantly changed expression belong to immune-related categories. Depending on a group, a fraction of 15-34% of up-regulated and a fraction of 15-42% of down-regulated immune-related genes are shared by all groups. Interestingly, the most upregulated genes encode β-defensins, short peptides with antimicrobial activity and immunomodulatory functions. Microarray results were validated with RT-qPCR method, which confirmed differential regulation of the selected immune-related genes. Immune-related differentially expressed genes and metabolic pathways identified in this work are compared to the available literature data on gene expression changes in vaccinated and non-vaccinated chickens after influenza infection.
Collapse
MESH Headings
- Animals
- Chickens
- DNA, Viral/immunology
- Gene Expression Profiling
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Immunization, Secondary/methods
- Immunogenicity, Vaccine/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Metabolic Networks and Pathways/immunology
- Pichia
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Spleen/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Barbara Małgorzata Kalenik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Maria Pietrzak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Edyta Kopera
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
5
|
Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia. J Virol 2015; 89:3746-62. [PMID: 25609805 DOI: 10.1128/jvi.00025-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥ 1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤ 1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using antigenic variant wild-type viruses or rg-generated LPAI virus seed strains containing the hemagglutinin and neuraminidase genes of wild-type viruses. IMPORTANCE H5N1 high-pathogenicity avian influenza (HPAI) virus has become endemic in Indonesian poultry, and such poultry are the source of virus for birds and mammals, including humans. Vaccination has become a part of the poultry control strategy, but vaccine failures have occurred in the field. This study identified possible causes of vaccine failure, which included the use of an unlicensed virus seed strain and induction of low levels of protective antibody because of an insufficient quantity of vaccine antigen. However, the most important cause of vaccine failure was the appearance of drift variant field viruses that partially or completely overcame commercial vaccine-induced immunity. Furthermore, experimental vaccines using inactivated wild-type virus or reverse genetics-generated vaccines containing the hemagglutinin and neuraminidase genes of wild-type drift variant field viruses were protective. These studies indicate the need for surveillance to identify drift variant viruses in the field and update licensed vaccines when such variants appear.
Collapse
|
6
|
Richard-Mazet A, Goutebroze S, Le Gros FX, Swayne DE, Bublot M. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies. Vet Res 2014; 45:107. [PMID: 25359591 PMCID: PMC4258031 DOI: 10.1186/s13567-014-0107-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/01/2014] [Indexed: 12/24/2022] Open
Abstract
Inactivated and fowlpox virus (FP)-vectored vaccines have been used to control H5 avian influenza (AI) in poultry. In H5 AI endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of three immunogenicity and one efficacy studies performed in birds with or without MDA indicated that the immunogenicity of an inactivated vaccine based on a H5N9 AI isolate (inH5N9) was severely impaired in chicks hatched from inH5N9-vaccinated breeders. This MDA interference was lower when breeders received only one administration of the same vaccine and could be overcome by priming the chicks at day-of-age with a live recombinant FP-vectored vaccine with H5 avian influenza gene insert (FP-AI). The interference of anti-FP MDA was of lower intensity than the interference of anti-AI MDA. The highest interference observed on the prime-boost immunogenicity was in chicks hatched from breeders vaccinated with the same prime-boost scheme. The level of protection against an antigenic variant H5N1 highly pathogenic AI isolate from Indonesia against which the FP-AI or inH5N9 alone was poorly protective could be circumvented by the prime-boost regimen in birds with either FP or AI MDA. Thus, the immunogenicity of vaccines in young chicks with MDA depends on the vaccination scheme and the type of vaccine used in their parent flocks. The heterologous prime-boost in birds with MDA may at least partially overcome MDA interference on inactivated vaccine.
Collapse
Affiliation(s)
| | | | | | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, Georgia, 30605, USA.
| | - Michel Bublot
- Merial S.A.S., R&D, 254 rue M. Mérieux, 69007, Lyon, France.
| |
Collapse
|
7
|
Guan Y, Smith GJ. The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res 2013; 178:35-43. [PMID: 23735533 PMCID: PMC4017639 DOI: 10.1016/j.virusres.2013.05.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/23/2013] [Accepted: 05/20/2013] [Indexed: 02/05/2023]
Abstract
The Asian highly pathogenic avian influenza H5N1 virus was first detected in the goose population of Guangdong, China in 1996. The viruses in this lineage are unique in their ecological success, demonstrating an extremely broad host range and becoming established in poultry over much of Asia and in Africa. H5N1 viruses have also diverged into multiple clades and subclades that generally do not cross neutralize, which has greatly confounded control measures in poultry and pre-pandemic vaccine strain selection. Although H5N1 viruses currently cannot transmit efficiently between mammals they exhibit high mortality in humans and recent experimental studies have shown that it is possible to generate an H5N1 virus that is transmissible in mammals. In addition to causing unprecedented economic losses, the long-term presence of the H5N1 virus in poultry and its frequent introductions to humans continue to pose a significant pandemic threat. Here we provide a summary of the genesis, molecular epidemiology and evolution of this H5N1 lineage, particularly the factors that have contributed to the continued diversification and ecological success of H5N1 viruses, with particular reference to the poultry production systems they have emerged from.
Collapse
Affiliation(s)
- Yi Guan
- State Key Laboratory of Emerging Infectious Diseases and Center of Influenza Research, The University of Hong Kong, Hong Kong SAR, China
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Gavin J.D. Smith
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857
- Duke Global Health Institute, Duke University, Box 90519, Durham, North Carolina 27708
| |
Collapse
|
8
|
Swayne DE, Spackman E, Pantin-Jackwood M. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface. ECOHEALTH 2013; 11:94-108. [PMID: 24026475 DOI: 10.1007/s10393-013-0861-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of most HPAI epizootics. However, vaccination of poultry was added as a control tool in 1995 and has been used during five epizootics. Over 113 billion doses of AI vaccine have been used in poultry from 2002 to 2010 as oil-emulsified, inactivated whole AIV vaccines (95.5%) and live vectored vaccines (4.5%). Over 99% of the vaccine has been used in the four H5N1 HPAI enzootic countries: China including Hong Kong (91%), Egypt (4.7%), Indonesia (2.3%), and Vietnam (1.4%) where vaccination programs have been nationwide and routine to all poultry. Ten other countries used vaccine in poultry in a focused, risk-based manner but this accounted for less than 1% of the vaccine used. Most vaccine "failures" have resulted from problems in the vaccination process; i.e., failure to adequately administer the vaccine to at-risk poultry resulting in lack of population immunity, while fewer failures have resulted from antigenic drift of field viruses away from the vaccine viruses. It is currently not feasible to vaccinate wild birds against H5N1 HPAI, but naturally occurring infections with H5 low pathogenicity avian influenza viruses may generate cross-protective immunity against H5N1 HPAI. The most feasible method to prevent and control H5N1 HPAI in wild birds is through control of the disease in poultry with use of vaccine to reduce environmental burden of H5N1 HPAIV, and eventual eradication of the virus in domestic poultry, especially in domestic ducks which are raised in enzootic countries on range or in other outdoor systems having contact with wild aquatic and periurban terrestrial birds.
Collapse
Affiliation(s)
- David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA, 30605, USA,
| | | | | |
Collapse
|
9
|
Forrest HL, Garcia A, Danner A, Seiler JP, Friedman K, Webster RG, Jones JC. Effect of passive immunization on immunogenicity and protective efficacy of vaccination against a Mexican low-pathogenic avian H5N2 influenza virus. Influenza Other Respir Viruses 2013; 7:1194-201. [PMID: 23889740 PMCID: PMC4495725 DOI: 10.1111/irv.12140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 11/28/2022] Open
Abstract
Background Despite the use of vaccines, low‐pathogenic (LP) H5N2 influenza viruses have continued to circulate and evolve in chickens in Mexico since 1993, giving rise to multiple genetic variants. Antigenic drift is partially responsible for the failure to control H5N2 influenza by vaccination; the contribution of maternal antibodies to this problem has received less attention. Methods We investigated the effect of different antisera on the efficacy of vaccination and whether booster doses of vaccine can impact immune suppression. Results While single doses of inactivated oil emulsion vaccine to currently circulating H5N2 influenza viruses provide partial protection from homologous challenge, chickens that receive high‐titer homologous antisera intraperitoneally before vaccination showed effects ranging from added protection to immunosuppression. Post‐infection antisera were less immunosuppressive than antisera obtained from field‐vaccinated chickens. Homologous, post‐infection chicken antisera provided initial protection from virus challenge, but reduced the induction of detectable antibody responses. Homologous antisera from field‐vaccinated chickens were markedly immunosuppressive, annulling the efficacy of the vaccine and leaving the chickens as susceptible to infection as non‐vaccinated birds. Booster doses of vaccine reduced the immunosuppressive effects of the administered sera. Conclusion Vaccine efficacy against LP H5N2 in Mexico can be severely reduced by maternal antibodies. Source‐dependent antisera effects offer the possibility of further elucidation of the immunosuppressive components involved.
Collapse
Affiliation(s)
- Heather L Forrest
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Spackman E, Swayne DE. Vaccination of gallinaceous poultry for H5N1 highly pathogenic avian influenza: current questions and new technology. Virus Res 2013; 178:121-32. [PMID: 23524326 DOI: 10.1016/j.virusres.2013.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022]
Abstract
Vaccination of poultry for avian influenza virus (AIV) is a complex topic as there are numerous technical, logistic and regulatory aspects which must be considered. Historically, control of high pathogenicity (HP) AIV infection in poultry has been accomplished by eradication and stamping out when outbreaks occur locally. Since the H5N1 HPAIV from Asia has spread and become enzootic, vaccination has been used on a long-term basis by some countries to control the virus, other countries have used it temporarily to aid eradication efforts, while others have not used it at all. Currently, H5N1 HPAIV is considered enzootic in China, Egypt, Viet Nam, India, Bangladesh and Indonesia. All but Bangladesh and India have instituted vaccination programs for poultry. Importantly, the specifics of these programs differ to accommodate different situations, resources, and industry structure in each country. The current vaccines most commonly used are inactivated whole virus vaccines, but vectored vaccine use is increasing. Numerous technical improvements to these platforms and novel vaccine platforms for H5N1 vaccines have been reported, but most are not ready to be implemented in the field.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, 934 College Station Rd., Athens, GA 30605, United States.
| | | |
Collapse
|
11
|
Swayne DE, Eggert D, Beck JR. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine. Vaccine 2012; 30:4964-70. [DOI: 10.1016/j.vaccine.2012.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 01/06/2023]
|
12
|
Escorcia M, Carrillo-Sánchez K, March-Mifsut S, Chapa J, Lucio E, Nava GM. Impact of antigenic and genetic drift on the serologic surveillance of H5N2 avian influenza viruses. BMC Vet Res 2010; 6:57. [PMID: 21172021 PMCID: PMC3023700 DOI: 10.1186/1746-6148-6-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/20/2010] [Indexed: 11/29/2022] Open
Abstract
Background Serologic surveillance of Avian Influenza (AI) viruses is carried out by the hemagglutination inhibition (HI) test using reference reagents. This method is recommended by animal health organizations as a standard test to detect antigenic differences (subtypes) between circulating influenza virus, vaccine- and/or reference- strains. However, significant discrepancies between reference antisera and field isolates have been observed during serosurveillance of influenza A viruses in pig and poultry farms. The objective of this study was to examine the effects of influenza virus genetic and antigenic drift on serologic testing using standard HI assays and reference reagents. Low pathogenic AI H5N2 viruses isolated in Mexico between 1994 and 2008 were used for phylogenetic analysis of AI hemagglutinin genes and for serologic testing using antisera produced with year-specific AI virus isolates. Results Phylogenetic analysis revealed significant divergence between early LPAI H5N2 viruses (1994 - 1998) and more recent virus field isolates (2002 - 2008). Results of the HI test were markedly influenced by the selection of the AI H5N2 virus (year of isolation) used as reference antigen for the assay. These analyses indicate that LPAI H5N2 viruses in Mexico are constantly undergoing genetic drift and that serosurveillance of AI viruses is significantly influenced by the antigen or antisera used for the HI test. Conclusions Reference viral antigens and/or antisera need to be replaced constantly during surveillance of AI viruses to keep pace with the AI antigenic drift. This strategy should improve the estimation of antigenic differences between circulating AI viruses and the selection of suitable vaccine strains.
Collapse
Affiliation(s)
- Magdalena Escorcia
- Washington University School of Medicine, Dept. Pathology and Immunology, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Park KJ, Kwon HI, Song MS, Pascua PNQ, Baek YH, Lee JH, Jang HL, Lim JY, Mo IP, Moon HJ, Kim CJ, Choi YK. Rapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmes. J Gen Virol 2010; 92:36-50. [PMID: 20861321 DOI: 10.1099/vir.0.024992-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate whether currently circulating H9N2 avian influenza viruses (AIVs) in domestic poultry have evolved in Korean poultry since 2007, genetic and serological comparisons were conducted of H9N2 isolates from poultry slaughterhouses from January 2008 to December 2009. The isolation rate was relatively low in 2008 but increased gradually from January 2009 onwards. Genetic and phylogenetic analyses revealed that reassortant viruses had emerged, generating at least five novel genotypes, mostly containing segments of a previously prevalent domestic H9N2 virus lineage (Ck/Korea/04116/04-like). It was noteworthy that the N2 genes of some H9N2 isolates (genotypes D, E and F) were derived from those of H3N2-like viruses commonly isolated among domestic ducks in live-poultry markets. Animal challenge studies demonstrated that the pathogenicity of Ck/Korea/SH0906/09 (genotype B) and Ck/Korea/SH0912/09 (genotype F) in domestic avian species was altered due to reassortment. Furthermore, serological analysis revealed that the isolates were antigenically distinct from previous Korean H9N2 viruses including Ck/Korea/01310/01. Such antigenic diversity was illustrated further in experiments using H9N2-immunized chickens, which could not inhibit the replication and transmission of challenge viruses from each genotype. These results suggest that H9N2 viruses from domestic poultry have undergone substantial evolution since 2007 by immune selection as a result of vaccinal and natural immunity, coupled with reassortment. Taken together, this study demonstrates that periodical updating of vaccine strains, based on continuous surveillance data, is an important issue in order to provide sufficient protectivity against AIV infections.
Collapse
Affiliation(s)
- Kuk Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|