1
|
Liu X, Van Maele L, Matarazzo L, Soulard D, Alves Duarte da Silva V, de Bakker V, Dénéréaz J, Bock FP, Taschner M, Ou J, Gruber S, Nizet V, Sirard JC, Veening JW. A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection. Cell Host Microbe 2024; 32:304-314.e8. [PMID: 38417443 DOI: 10.1016/j.chom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against S. pneumoniae serotypes 2, 15A, and 24F in a murine model. In contrast to standard capsule-based vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4+ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, indicating LafB antigenicity in humans. Collectively, these findings present a universal pneumococcal vaccine antigen that remains effective following influenza infection.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Laurye Van Maele
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laura Matarazzo
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Daphnée Soulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vinicius Alves Duarte da Silva
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Julien Dénéréaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jinzhao Ou
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Claude Sirard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Prasanna M, Varela Calvino R, Lambert A, Arista Romero M, Pujals S, Trottein F, Camberlein E, Grandjean C, Csaba N. Semisynthetic Pneumococcal Glycoconjugate Nanovaccine. Bioconjug Chem 2023; 34:1563-1575. [PMID: 37694903 PMCID: PMC10515484 DOI: 10.1021/acs.bioconjchem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Pneumococcal conjugate vaccines offer an excellent safety profile and high protection against the serotypes comprised in the vaccine. However, inclusion of protein antigens fromStreptococcus pneumoniaecombined with potent adjuvants and a suitable delivery system are expected to both extend protection to serotype strains not represented in the formulation and stimulate a broader immune response, thus more effective in young children, elderly, and immunocompromised populations. Along this line, nanoparticle (NP) delivery systems can enhance the immunogenicity of antigens by protecting them from degradation and increasing their uptake by antigen-presenting cells, as well as offering co-delivery with adjuvants. We report herein the encapsulation of a semisynthetic glycoconjugate (GC) composed of a synthetic tetrasaccharide mimicking theS. pneumoniae serotype 14 capsular polysaccharide (CP14) linked to the Pneumococcal surface protein A (PsaA) using chitosan NPs (CNPs). These GC-loaded chitosan nanoparticles (GC-CNPs) were not toxic to human monocyte-derived dendritic cells (MoDCs), showed enhanced uptake, and displayed better immunostimulatory properties in comparison to the naked GC. A comparative study was carried out in mice to evaluate the immune response elicited by the glycoconjugate-administered subcutaneously (SC), where the GC-CNPs displayed 100-fold higher IgG response as compared with the group treated with nonencapsulated GC. Overall, the study demonstrates the potential of this chitosan-based nanovaccine for efficient delivery of glycoconjugate antigens.
Collapse
Affiliation(s)
- Maruthi Prasanna
- Center
for Research in Molecular Medicine and Chronic Diseases, Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela 15706, Spain
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
- Department
of Biochemistry and Molecular Biology, University
of Santiago de Compostela, Santiago
de Compostela 15706, Spain
| | - Rubén Varela Calvino
- Department
of Biochemistry and Molecular Biology, University
of Santiago de Compostela, Santiago
de Compostela 15706, Spain
| | - Annie Lambert
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Maria Arista Romero
- Department
of Biological Chemistry, Institute for Advanced
Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - Sylvia Pujals
- Department
of Biological Chemistry, Institute for Advanced
Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain
| | - François Trottein
- Univ.
Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019—UMR
9017—CIIL—Center for Infection and Immunity of Lille, Lille F-59000, France
| | - Emilie Camberlein
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Cyrille Grandjean
- Nantes
Université, CNRS, Unité des Sciences Biologiques et
des Biotechnologies (US2B), UMR 6286, Nantes F-44000, France
| | - Noemi Csaba
- Center
for Research in Molecular Medicine and Chronic Diseases, Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela 15706, Spain
| |
Collapse
|
3
|
Chan WY, Entwisle C, Ercoli G, Ramos-Sevillano E, McIlgorm A, Cecchini P, Bailey C, Lam O, Whiting G, Green N, Goldblatt D, Wheeler JX, Brown JS. Corrected and Republished from: "A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge". Infect Immun 2022; 90:e0084618a. [PMID: 35076289 PMCID: PMC9199499 DOI: 10.1128/iai.00846-18a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
Affiliation(s)
- Win-Yan Chan
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | | | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Elise Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Ann McIlgorm
- ImmunoBiology Ltd., Babraham, Cambridge, United Kingdom
| | | | | | - Oliver Lam
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Gail Whiting
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Nicola Green
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Goldblatt
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jun X. Wheeler
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| |
Collapse
|
4
|
Weight CM, Jochems SP, Adler H, Ferreira DM, Brown JS, Heyderman RS. Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:651474. [PMID: 34113578 PMCID: PMC8185287 DOI: 10.3389/fcimb.2021.651474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
In humans, nasopharyngeal carriage of Streptococcus pneumoniae is common and although primarily asymptomatic, is a pre-requisite for pneumonia and invasive pneumococcal disease (IPD). Together, these kill over 500,000 people over the age of 70 years worldwide every year. Pneumococcal conjugate vaccines have been largely successful in reducing IPD in young children and have had considerable indirect impact in protection of older people in industrialized country settings (herd immunity). However, serotype replacement continues to threaten vulnerable populations, particularly older people in whom direct vaccine efficacy is reduced. The early control of pneumococcal colonization at the mucosal surface is mediated through a complex array of epithelial and innate immune cell interactions. Older people often display a state of chronic inflammation, which is associated with an increased mortality risk and has been termed 'Inflammageing'. In this review, we discuss the contribution of an altered microbiome, the impact of inflammageing on human epithelial and innate immunity to S. pneumoniae, and how the resulting dysregulation may affect the outcome of pneumococcal infection in older individuals. We describe the impact of the pneumococcal vaccine and highlight potential research approaches which may improve our understanding of respiratory mucosal immunity during pneumococcal colonization in older individuals.
Collapse
Affiliation(s)
- Caroline M. Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeremy S. Brown
- Respiratory Medicine, University College London, London, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
5
|
Pichichero ME. Immunologic dysfunction contributes to the otitis prone condition. J Infect 2020; 80:614-622. [PMID: 32205139 DOI: 10.1016/j.jinf.2020.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Acute Otitis Media (AOM) is a multifactorial disease occurring mostly in young children who are immunologically naïve to AOM pathogens. This review focuses on work from Rochester NY, USA over the past 12 years among young children who had AOM infections microbiologically-confirmed by tympanocentesis, so called "stringently-defined". Among stringently-defined otitis prone children deficiencies in fundamental immune defense mechanisms have been identified that contribute to the propensity of young children to experience recurrent AOM. Dysfunction in innate immune responses that cause an immunopathological impact in the nasopharynx have been discovered including inadequate proinflammatory cytokine response and poor epithelial cell repair. Adaptive immunity defects in B cell function and immunologic memory resulting in low levels of antibody to otopathogen-specific antigens allows repeated infections. CD4+ and CD8+ T cell function and memory defects significantly contribute. The immune profile of an otitis prone child resembles that of a neonate through the first year of life. Immunologic deficits in otitis prone children cause them to be unusually vulnerable to viral upper respiratory infections and respond inadequately to routine pediatric vaccines.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY.
| |
Collapse
|
6
|
Pillot A, Defontaine A, Fateh A, Lambert A, Prasanna M, Fanuel M, Pipelier M, Csaba N, Violo T, Camberlein E, Grandjean C. Site-Specific Conjugation for Fully Controlled Glycoconjugate Vaccine Preparation. Front Chem 2019; 7:726. [PMID: 31737603 PMCID: PMC6839274 DOI: 10.3389/fchem.2019.00726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Glycoconjugate vaccines are formed by covalently link a carbohydrate antigen to a carrier protein whose role is to achieve a long lasting immune response directed against the carbohydrate antigen. The nature of the sugar antigen, its length, its ratio per carrier protein and the conjugation chemistry impact on both structure and the immune response of a glycoconjugate vaccine. In addition it has long been assumed that the sites at which the carbohydrate antigen is attached can also have an impact. These important issue can now be addressed owing to the development of novel chemoselective ligation reactions as well as techniques such as site-selective mutagenesis, glycoengineering, or extension of the genetic code. The preparation and characterization of homogeneous bivalent pneumococcal vaccines is reported. The preparation and characterization of homogeneous bivalent pneumococcal vaccines is reported. A synthetic tetrasaccharide representative of the serotype 14 capsular polysaccharide of Streptococcus pneumoniae has been linked using the thiol/maleimide coupling chemistry to four different Pneumococcal surface adhesin A (PsaA) mutants, each harboring a single cysteine mutation at a defined position. Humoral response of these 1 to 1 carbohydrate antigen/PsaA conjugates have been assessed in mice. Our results showed that the carbohydrate antigen-PsaA connectivity impacts the anti-carrier response and raise questions about the design of glycoconjugate vaccine whereby the protein plays the dual role of immunogen and carrier.
Collapse
Affiliation(s)
- Aline Pillot
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
- Université de Nantes, CNRS, Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, Nantes, France
| | - Alain Defontaine
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| | - Amina Fateh
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| | - Annie Lambert
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| | - Maruthi Prasanna
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), School of Pharamacy, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mathieu Fanuel
- Unité Biopolymères Interactions Assemblages Plate-Forme BIBS, INRA, Nantes, France
| | - Muriel Pipelier
- Université de Nantes, CNRS, Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, Nantes, France
| | - Noemi Csaba
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), School of Pharamacy, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Typhaine Violo
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| | - Emilie Camberlein
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| | - Cyrille Grandjean
- Université de Nantes, CNRS, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| |
Collapse
|
7
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
8
|
A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge. Infect Immun 2019; 87:IAI.00846-18. [PMID: 30530620 PMCID: PMC6386546 DOI: 10.1128/iai.00846-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
|
9
|
Voß F, Kohler TP, Meyer T, Abdullah MR, van Opzeeland FJ, Saleh M, Michalik S, van Selm S, Schmidt F, de Jonge MI, Hammerschmidt S. Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation. Front Immunol 2018; 9:2405. [PMID: 30405609 PMCID: PMC6202950 DOI: 10.3389/fimmu.2018.02405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
Streptococcus pneumoniae is endowed with a variety of surface-exposed proteins representing putative vaccine candidates. Lipoproteins are covalently anchored to the cell membrane and highly conserved among pneumococcal serotypes. Here, we evaluated these lipoproteins for their immunogenicity and protective potential against pneumococcal colonisation. A multiplex-based immunoproteomics approach revealed the immunogenicity of selected lipoproteins. High antibody titres were measured in sera from mice immunised with the lipoproteins MetQ, PnrA, PsaA, and DacB. An analysis of convalescent patient sera confirmed the immunogenicity of these lipoproteins. Examining the surface localisation and accessibility of the lipoproteins using flow cytometry indicated that PnrA and DacB were highly abundant on the surface of the bacteria. Mice were immunised intranasally with PnrA, DacB, and MetQ using cholera toxin subunit B (CTB) as an adjuvant, followed by an intranasal challenge with S. pneumoniae D39. PnrA protected the mice from pneumococcal colonisation. For the immunisation with DacB and MetQ, a trend in reducing the bacterial load could be observed, although this effect was not statistically significant. The reduction in bacterial colonisation was correlated with the increased production of antigen-specific IL-17A in the nasal cavity. Immunisation induced high systemic IgG levels with a predominance for the IgG1 isotype, except for DacB, where IgG levels were substantially lower compared to MetQ and PnrA. Our results indicate that lipoproteins are interesting targets for future vaccine strategies as they are highly conserved, abundant, and immunogenic.
Collapse
Affiliation(s)
- Franziska Voß
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tanja Meyer
- Department of Functional Genomics, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Mohammed R Abdullah
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Fred J van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Malek Saleh
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Department of Functional Genomics, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Saskia van Selm
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Schmidt
- Department of Functional Genomics, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,ZIK-FunGene, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Principi N, Esposito S. Development of pneumococcal vaccines over the last 10 years. Expert Opin Biol Ther 2017; 18:7-17. [DOI: 10.1080/14712598.2018.1384462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Susanna Esposito
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
11
|
Hoe E, Anderson J, Nathanielsz J, Toh ZQ, Marimla R, Balloch A, Licciardi PV. The contrasting roles of Th17 immunity in human health and disease. Microbiol Immunol 2017; 61:49-56. [PMID: 28225165 DOI: 10.1111/1348-0421.12471] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
Abstract
The human immune system is a tightly regulated network that protects the host from disease. An important aspect of this is the balance between pro-inflammatory Th17 cells and anti-inflammatory T regulatory (Treg) cells in maintaining immune homeostasis. Foxp3+ Treg are critical for sustaining immune tolerance through IL-10 and transforming growth factor-β while related orphan receptor-γt+ Th17 cells promote immunopathology and auto-inflammatory diseases through the actions of IL-17A, IL-21 and IL-22. Therefore, imbalance between Treg and Th17 cells can result in serious pathology in many organs and tissues. Recently, certain IL-17-producing cells have been found to be protective against infectious disease, particularly in relation to extracellular bacteria such Streptococcus pneumoniae; a number of other novel IL-17-secreting cell populations have also been reported to protect against a variety of other pathogens. In this mini-review, the dual roles of Treg and Th17 cells are discussed in the context of autoimmunity and infections, highlighting recent advances in the field. Development of novel strategies specifically designed to target these critical immune response pathways will become increasingly important in maintenance of human health.
Collapse
Affiliation(s)
- Edwin Hoe
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Jeremy Anderson
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Jordan Nathanielsz
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Zheng Quan Toh
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Rachel Marimla
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Anne Balloch
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Paul V Licciardi
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
12
|
Abstract
Streptococcus pneumoniae remains one of the most frequent bacterial causes of morbidity and mortality worldwide. National immunization programs implementing pneumococcal polysaccharide conjugate vaccines (PCVs) have successfully reduced rates of vaccine-type invasive disease and colonization both via direct effects in immunized children and, in some settings, indirect effects in unimmunized individuals. Limitations of the current PCV approach include the emergence of non-vaccine serotypes contributing to carriage and invasive disease in high-PCV coverage settings and the high cost of goods of PCVs which limits their accessibility in developing countries where the burden of disease remains highest. Furthermore, the distribution of serotypes causing disease varies geographically and includes more serotypes than are currently covered in a single PCV formulation. Researchers have long been exploring the potential of genetically conserved non-capsular pneumococcal antigens as vaccine candidates that might overcome such limitations. To better evaluate the rationale of such approaches, an understanding of the mechanisms of immunity to the various phases of pneumococcal infection is of paramount importance. Herein we will review the evolving understanding of both vaccine-induced and naturally acquired immunity to pneumococcal colonization and infection and discuss how this informs current approaches using serotype-independent pneumococcal vaccine candidates. We will then review the alternative vaccine candidates that have been or are currently under evaluation in clinical trials.
Collapse
Affiliation(s)
- Kristin Moffitt
- a Division of Infectious Diseases ; Department of Medicine; Boston Children's Hospital ; Boston , MA USA
| | - Richard Malley
- a Division of Infectious Diseases ; Department of Medicine; Boston Children's Hospital ; Boston , MA USA
| |
Collapse
|
13
|
Otczyk DC, Cripps AW. Vaccination for the control of childhood bacterial pneumonia - Haemophilus influenzae type b and pneumococcal vaccines. Pneumonia (Nathan) 2016; 2:2-15. [PMID: 31463182 PMCID: PMC6707409 DOI: 10.15172/pneu.2013.2/229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/25/2012] [Accepted: 02/14/2013] [Indexed: 12/31/2022] Open
Abstract
Pneumonia in childhood is endemic in large parts of the world and in particular, in developing countries, as well as in many indigenous communities within developed nations. Haemophilus influenzae type b and Streptococcus pneumoniae conjugate vaccines are currently available against the leading bacterial causes of pneumonia. The use of the vaccines in both industrialised and developing countries have shown a dramatic reduction in the burden of pneumonia and invasive disease in children. However, the greatest threat facing pneumococcal conjugate vaccine effectiveness is serotype replacement. The current vaccines provide serotype-specific, antibody-mediated protection against only a few of the 90+ capsule serotypes. Therefore, there has been a focus in recent years to rapidly advance technologies that will result in broader disease coverage and more affordable vaccines that can be used in developing countries. The next generation of pneumococcal vaccines have advanced to clinical trials.
Collapse
Affiliation(s)
- Diana C. Otczyk
- School of Medicine, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, 4222 Australia
| | - Allan W. Cripps
- School of Medicine, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, 4222 Australia
| |
Collapse
|
14
|
Elhaik Goldman S, Dotan S, Talias A, Lilo A, Azriel S, Malka I, Portnoi M, Ohayon A, Kafka D, Ellis R, Elkabets M, Porgador A, Levin D, Azhari R, Swiatlo E, Ling E, Feldman G, Tal M, Dagan R, Mizrachi Nebenzahl Y. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice. Int J Mol Med 2016; 37:1127-38. [PMID: 26935978 DOI: 10.3892/ijmm.2016.2512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shahar Dotan
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Amir Talias
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Amit Lilo
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Shalhevet Azriel
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Itay Malka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Maxim Portnoi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ariel Ohayon
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Daniel Kafka
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Ronald Ellis
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ditza Levin
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Rosa Azhari
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982, Israel
| | - Edwin Swiatlo
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eduard Ling
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Galia Feldman
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | - Michael Tal
- NasVax/Protea Vaccine Technologies Ltd., Kiryat Weizmann, Science Park, Ness Ziona 74140, Israel
| | - Ron Dagan
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer‑Sheva 84100, Israel
| | | |
Collapse
|
15
|
Otero C, Díaz D, Uriarte I, Bezrodnik L, Finiasz MR, Fink S. Peripheral blood monocyte and T cell subsets in children with specific polysaccharide antibody deficiency (SPAD). Hum Immunol 2015; 77:12-19. [PMID: 26577026 DOI: 10.1016/j.humimm.2015.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 11/05/2014] [Accepted: 09/28/2015] [Indexed: 11/16/2022]
Abstract
Specific polysaccharide antibody deficiency (SPAD) is a well reported immunodeficiency characterized by a failure to produce antibodies against polyvalent polysaccharide antigens, expressed by encapsulated microorganisms. The clinical presentation of these patients involves recurrent bacterial infections, being the most frequent agent Streptococcus (S.) pneumoniae. In SPAD patients few reports refer to cells other than B cells. Since the immune response to S. pneumoniae and other encapsulated bacteria was historically considered restricted to B cells, the antibody deficiency seemed enough to justify the repetitive infections in SPAD patients. Our purpose is to determine if the B cell defects reported in SPAD patients are accompanied by defects in other leukocyte subpopulations necessary for the development of a proper adaptive immune response against S. pneumoniae. We here report that age related changes observed in healthy children involving increased percentages of classical monocytes (CD14++ CD16- cells) and decreased intermediate monocytes (CD14++ CD16+ cells), are absent in SPAD patients. Alterations can also be observed in T cells, supporting that the immune deficiency in SPAD patients is more complex than what has been described up to now.
Collapse
Affiliation(s)
- C Otero
- Immunology Department, IMEX-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - D Díaz
- Immunology, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - I Uriarte
- Immunology, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - L Bezrodnik
- Immunology, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - M R Finiasz
- Immunology Department, IMEX-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - S Fink
- Immunology Department, IMEX-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Herbert JA, Mitchell AM, Mitchell TJ. A Serine-Threonine Kinase (StkP) Regulates Expression of the Pneumococcal Pilus and Modulates Bacterial Adherence to Human Epithelial and Endothelial Cells In Vitro. PLoS One 2015; 10:e0127212. [PMID: 26090876 PMCID: PMC4474723 DOI: 10.1371/journal.pone.0127212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 12/25/2022] Open
Abstract
The pneumococcal serine threonine protein kinase (StkP) acts as a global regulator in the pneumococcus. Bacterial mutants deficient in StkP are less virulent in animal models of infection. The gene for this regulator is located adjacent to the gene for its cognate phosphatase in the pneumococcal genome. The phosphatase dephosphorylates proteins phosphorylated by StkP and has been shown to regulate a number of key pneumococcal virulence factors and to modulate adherence to eukaryotic cells. The role of StkP in adherence of pneumococci to human cells has not previously been reported. In this study we show StkP represses the pneumococcal pilus, a virulence factor known to be important for bacterial adhesion. In a serotype 4 strain regulation of the pilus by StkP modulates adherence to human brain microvascular endothelial cells (HBMEC) and human lung epithelial cells. This suggests that the pneumococcal pilus may play a role in adherence during infections such as meningitis and pneumonia. We show that regulation of the pilus occurs at the population level as StkP alters the number of pili-positive cells within a single culture. As far as we are aware this is the first gene identified outside of the pilus islet that regulates the biphasic expression of the pilus. These findings suggest StkPs role in cell division may be linked to regulation of expression of a cell surface adhesin.
Collapse
Affiliation(s)
- Jenny A. Herbert
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, England, United Kingdom
| | - Andrea M. Mitchell
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, England, United Kingdom
| | - Timothy J. Mitchell
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, England, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Genetic conjugation of components in two pneumococcal fusion protein vaccines enhances paediatric mucosal immune responses. Vaccine 2015; 33:1711-8. [PMID: 25698489 DOI: 10.1016/j.vaccine.2015.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/20/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae colonises the upper respiratory tract and can cause pneumonia, meningitis and otitis media. Existing pneumococcal conjugate vaccines are expensive to produce and only protect against 13 of the 90+ pneumococcal serotypes; hence there is an urgent need for the development of new vaccines. We have shown previously in mice that pneumolysin (Ply) and a non-toxic variant (Δ6Ply) enhance antibody responses when genetically fused to pneumococcal surface adhesin A (PsaA), a potentially valuable effect for future vaccines. We investigated this adjuvanticity in human paediatric mucosal primary immune cell cultures. Adenoidal mononuclear cells (AMNC) from children aged 0-15 years (n=46) were stimulated with conjugated, admixed or individual proteins, cell viability and CD4+ T-cell proliferative responses were assessed using flow cytometry and cytokine secretion was measured using multiplex technology. Proliferation of CD4+ T-cells in response to PsaAPly, was significantly higher than responses to individual or admixed proteins (p=0.002). In contrast, an enhanced response to PsaAΔ6Ply compared to individual or admixed proteins only occurred at higher concentrations (p<0.01). Evaluation of cytotoxicity suggested that responses occurred when Ply-induced cytolysis was inhibited, either by fusion or mutation, but importantly an additional toxicity independent immune enhancing effect was also apparent as a result of fusion. Responses were MHC class II dependent and had a Th1/Th17 profile. Genetic fusion of Δ6Ply to PsaA significantly modulates and enhances pro-inflammatory CD4+ T-cell responses without the cytolytic effects of some other pneumolysoids. Membrane binding activity of such proteins may confer valuable adjuvant properties as fusion may assist Δ6Ply to deliver PsaA to the APC surface effectively, contributing to the initiation of anti-pneumococcal CD4+ T-cell immunity.
Collapse
|
18
|
Menter T, Giefing-Kroell C, Grubeck-Loebenstein B, Tzankov A. Characterization of the inflammatory infiltrate in Streptococcus pneumoniae pneumonia in young and elderly patients. Pathobiology 2014; 81:160-7. [PMID: 24751977 DOI: 10.1159/000360165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
There is an increased susceptibility and mortality in the elderly due to pneumonia caused by Streptococcus pneumoniae. We aimed to assess the inflammatory cell composition with respect to age in pneumococcal pneumonia patients. Neutrophilic granulocytes and various lymphocyte and macrophage subpopulations were immunohistochemically quantified on lung tissue specimens of young (n = 5; mean age 8.4 years), middle-aged (n = 8; mean age 55.9 years) and elderly (n = 9; mean age 86.6 years) pneumonia patients with microbiologically proven S. pneumoniae pneumonia. We discovered a higher percentage of neutrophilic granulocytes in elderly as opposed to young patients (95 vs. 75%, p = 0.012). Conversely, young patients versus elderly patients had more alveolar macrophages (CD11c+: 20 vs. 9%, p = 0.029) and M1 macrophages (CD14+: 30 vs. 10%, p = 0.012 and HLA-DR+: 52 vs. 11%, p = 0.019). There was no significant difference concerning M2 macrophages and lymphocytes. Comparison of young patients with middle-aged patients showed similar significant results for alveolar macrophages (p = 0.019) and subsignificant results for M1 macrophages and neutrophilic granulocytes (p < 0.08). This is the first study characterizing the inflammatory infiltrate of pneumococcal pneumonia in situ. Our observations improve the understanding of the innate immune mechanisms of pneumococcal lung infection and point at the potential of therapies for restoring macrophage function and decreasing neutrophilic influx in order to help prevent or cure pneumonia.
Collapse
Affiliation(s)
- Thomas Menter
- Institute of Pathology, University Hospital, Basel, Switzerland
| | | | | | | |
Collapse
|
19
|
Schulz C, Hammerschmidt S. Exploitation of physiology and metabolomics to identify pneumococcal vaccine candidates. Expert Rev Vaccines 2014; 12:1061-75. [PMID: 24053399 DOI: 10.1586/14760584.2013.824708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is the etiologic agent of community-acquired pneumonia and invasive pneumococcal diseases such as septicemia and bacterial meningitis. The increasing antibiotic resistance and the suboptimal efficacy or limited serotype coverage of currently available vaccines urgently requires novel approaches in exploring new antimicrobials, therapeutic intervention strategies and vaccines. The current vaccine development strategies rely on the hypothesis that surface-exposed proteins, which are essential for pneumococcal virulence, are the most suitable candidates for future protein-based vaccines. Since virulence is closely linked with bacterial fitness, the potential of a pathogen to colonize and infect the host depends further on its physiology. This review summarizes the application of genome-wide techniques and their exploitation to decipher fundamental insights into bacterial factors associated with fitness, metabolism and virulence, leading to the discovery of vaccine candidates or antimicrobials.
Collapse
Affiliation(s)
- Christian Schulz
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D 17487 Greifswald, Germany
| | | |
Collapse
|
20
|
Krone CL, van de Groep K, Trzciński K, Sanders EAM, Bogaert D. Immunosenescence and pneumococcal disease: an imbalance in host-pathogen interactions. THE LANCET RESPIRATORY MEDICINE 2013; 2:141-53. [PMID: 24503269 DOI: 10.1016/s2213-2600(13)70165-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Respiratory infections are among the most important causes of morbidity and mortality from infectious diseases worldwide. The most common causative bacterium, Streptococcus pneumoniae, frequently colonises the upper respiratory tract, where it resides mostly asymptomatically. Occasionally, however, S pneumoniae can cause severe disease such as pneumonia. Local host immunity is essential to control colonising pathogens by preventing overgrowth, spread, and invasion. However, age-related immune deficits in elderly people, known as immunosenescence, might contribute to increased disease burden. We review present knowledge about immunosenescence in the respiratory tract against Gram-positive bacteria, particularly S pneumoniae. We discuss the possible underdetection of pneumococcal colonisation in elderly people, and suggest changes to present surveillance methods to improve understanding of the relation between colonisation and disease. We conclude that present knowledge about alteration of host-pathogen interactions by immunosenescence in the respiratory tract is insufficient, and that research is needed to enable improved measures for prevention.
Collapse
Affiliation(s)
- Cassandra L Krone
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Kirsten van de Groep
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Krzysztof Trzciński
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Elizabeth A M Sanders
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Debby Bogaert
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands.
| |
Collapse
|
21
|
Miyaji EN, Oliveira MLS, Carvalho E, Ho PL. Serotype-independent pneumococcal vaccines. Cell Mol Life Sci 2013; 70:3303-26. [PMID: 23269437 PMCID: PMC11113425 DOI: 10.1007/s00018-012-1234-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae remains an important cause of disease with high mortality and morbidity, especially in children and in the elderly. The widespread use of the polysaccharide conjugate vaccines in some countries has led to a significant decrease in invasive disease caused by vaccine serotypes, but an increase in disease caused by non-vaccine serotypes has impacted on the overall efficacy of these vaccines on pneumococcal disease. The obvious solution to overcome such shortcomings would be the development of new formulations that provide serotype-independent immunity. This review focuses on the most promising approaches, including protein antigens, whole cell pneumococcal vaccines, and recombinant bacteria expressing pneumococcal antigens. The protective capacity of these vaccine candidates against the different stages of pneumococcal infection, including colonization, mucosal disease, and invasive disease in animal models is reviewed. Some of the human trials that have already been performed or that are currently ongoing are presented. Finally, the feasibility and the possible shortcomings of these candidates in relation to an ideal vaccine against pneumococcal infections are discussed.
Collapse
Affiliation(s)
- Eliane Namie Miyaji
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| |
Collapse
|
22
|
Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N, Wright AKA, Pennington SH, Bricio-Moreno L, Bricio Moreno L, Moreno AT, Miyaji EN, Wright AD, Collins AM, Goldblatt D, Kadioglu A, Gordon SB. Controlled human infection and rechallenge with Streptococcus pneumoniae reveals the protective efficacy of carriage in healthy adults. Am J Respir Crit Care Med 2013; 187:855-64. [PMID: 23370916 DOI: 10.1164/rccm.201212-2277oc] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE The immunological and protective role of pneumococcal carriage in healthy adults is not known, but high rates of disease and death in the elderly are associated with low carriage prevalence. OBJECTIVES We employed an experimental human pneumococcal carriage model to investigate the immunizing effect of a single carriage episode. METHODS Seventy healthy adults were challenged, and of those with carriage, 10 were rechallenged intranasally with live 6B Streptococcus pneumoniae up to 11 months after clearance of the first carriage episode. Serum and nasal wash antibody responses were measured before and after each challenge. MEASUREMENTS AND MAIN RESULTS A total of 29 subjects were experimentally colonized. No subjects were colonized by experimental rechallenge, demonstrating the protective effect of initial carriage against subsequent infection. Carriage increased both mucosal and serum IgG levels to pneumococcal proteins and polysaccharide, resulting in a fourfold increase in opsonophagocytic activity. Importantly, passive transfer of postcarriage sera from colonized subjects conferred 70% protection against lethal challenge by a heterologous strain in a murine model of invasive pneumococcal pneumonia. These levels were significantly higher than the protection conferred by either precarriage sera (30%) or saline (10%). CONCLUSIONS Experimental human carriage resulted in mucosal and systemic immunological responses that conferred protection against recolonization and invasive pneumococcal disease. These data suggest that mucosal pneumococcal vaccination strategies may be important for vulnerable patient groups, particularly the elderly, who do not sustain carriage.
Collapse
Affiliation(s)
- Daniela M Ferreira
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dela Cruz CS, Liu W, He CH, Jacoby A, Gornitzky A, Ma B, Flavell R, Lee CG, Elias JA. Chitinase 3-like-1 promotes Streptococcus pneumoniae killing and augments host tolerance to lung antibacterial responses. Cell Host Microbe 2013; 12:34-46. [PMID: 22817986 DOI: 10.1016/j.chom.2012.05.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 01/20/2023]
Abstract
Host antibacterial responses include mechanisms that kill bacteria, but also those that protect or tolerize the host to potentially damaging antibacterial effects. We determined that Chitinase 3-like-1 (Chi3l1), a conserved prototypic chitinase-like protein, is induced by Streptococcus pneumoniae and plays central roles in promoting bacterial clearance and mediating host tolerance. S. pneumoniae-infected Chi3l1 null mice exhibit exaggerated lung injury, inflammation and hemorrhage, more frequent bacterial dissemination, decreased bacterial clearance, and enhanced mortality compared to controls. Chi3l1 augments macrophage bacterial killing by inhibiting caspase-1-dependent macrophage pyroptosis and augments host tolerance by controlling inflammasome activation, ATP accumulation, expression of ATP receptor P2X7R, and production of thymic stromal lymphopoietin and type 1, type 2, and type 17 cytokines. These data demonstrate that Chi3l1 is induced during infection, where it promotes bacterial clearance while simultaneously augmenting host tolerance, and that these roles likely contributed to the retention of Chi3l1 over species and evolutionary time.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of Th17 responses to Streptococcus pneumoniae in humans: comparisons between adults and children in a developed and a developing country. Vaccine 2012; 30:3897-907. [PMID: 22504663 DOI: 10.1016/j.vaccine.2012.03.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/25/2012] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Intranasal exposure to Streptococcus pneumoniae as well as mucosal or parenteral immunization with a recently developed killed pneumococcal whole cell vaccine, confer Th17-mediated protection against subsequent S. pneumoniae colonization in mice. Given our interest in the function of Th17 cells and the ongoing efforts to develop this vaccine for use in infants and children in developing countries, we analyzed Th17 responses to the whole cell antigen (WCA) and individual pneumococcal antigens in healthy individuals and patients with pneumococcal disease and compared responses in children and adults from Sweden and Bangladesh. Peripheral blood mononuclear cells (PBMCs) isolated from Swedish adults produced IL-17A after stimulation with WCA, with the pneumolysoid PdT and with the protein required for cell separation in group B streptococci (PcsB). IL-22 and IFN-γ responses were also detected, but these cytokines originated from separate CD4+ T cell subsets. PBMCs from Swedish children produced lower levels of IL-17A in response to WCA compared to adults, whereas no such difference was noted from the samples from Bangladesh, where responses by children and adults were both significantly higher than those in Sweden. High IL-17A responses to stimulation with WCA were also observed in children with proven or probable pneumococcal pneumonia. Our results thus demonstrate the presence of Th17-type T cells that are specific for pneumococcus in both children and adults. The different levels of Th17 responses to pneumococci in children and adults in developing and developed countries, which may at least partly be due to differences in exposure to pneumococci, are important factors to consider in the evaluation of candidate pneumococcal protein-based vaccines in human trials.
Collapse
|
25
|
Sham LT, Tsui HCT, Land AD, Barendt SM, Winkler ME. Recent advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and antimicrobial targets. Curr Opin Microbiol 2012; 15:194-203. [PMID: 22280885 DOI: 10.1016/j.mib.2011.12.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/09/2023]
Abstract
Streptococcus pneumoniae is a serious human respiratory pathogen that has the capacity to evade capsule-based vaccines and to develop multidrug antibiotic resistance. This review summarizes recent advances in understanding the mechanisms and regulation of peptidoglycan (PG) biosynthesis that result in ellipsoid-shaped, ovococcus Streptococcus cells. New results support a two-state model for septal and peripheral PG synthesis at mid-cell, involvement of essential cell division proteins in PG remodeling, and mid-cell localization of proteins that organize PG biosynthesis and that form the protein translocation apparatus. PG biosynthesis proteins have already turned up as promising vaccine candidates and targets of antibiotics. Properties of several recently characterized proteins that mediate or regulate PG biosynthesis suggest a source of additional targets for therapies against pneumococcus.
Collapse
Affiliation(s)
- Lok-To Sham
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, United States
| | | | | | | | | |
Collapse
|
26
|
Novel protein-based pneumococcal vaccines administered with the Th1-promoting adjuvant IC31 induce protective immunity against pneumococcal disease in neonatal mice. Infect Immun 2011; 80:461-8. [PMID: 22025519 DOI: 10.1128/iai.05801-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pneumoniae is responsible for many vaccine-preventable deaths, annually causing around 1 million deaths in children younger than 5 years of age. A new generation of pneumococcal vaccines based on conserved proteins is being developed. We evaluated the immunogenicities and protective efficacies of four pneumococcal protein vaccine candidates, PcsB, StkP, PsaA, and PspA, in a neonatal mouse model. Mice were immunized three times and challenged intranasally with virulent pneumococci. All four proteins were immunogenic in neonatal mice, and antibody (Ab) responses were significantly enhanced by the novel adjuvant IC31, which consists of an antibacterial peptide (KLKL5KLK) and a synthetic oligodeoxynucleotide, ODN1a, that signals through Toll-like receptor 9 (TLR9). Two single proteins, StkP and PspA, combined with IC31 significantly reduced pneumococcal bacteremia but had no effects on lung infection. Three proteins, PcsB, StkP, and PsaA, were evaluated with alum or IC31. IC31 enhanced Ab responses and avidity to all three proteins, whereas alum enhanced Ab responses and avidity to StkP and PsaA only. Mice receiving the trivalent protein formulation with IC31 had significantly reduced bacteremia and lung infection compared to unvaccinated mice, but the level of protection was dependent on the dose of IC31. When PspA was added to the trivalent protein formulation, the dose of IC31 needed to obtain protective immunity could be reduced. These results demonstrate that a novel pneumococcal protein-based vaccine is immunogenic at an early age of mice and emphasize the benefits of using a combination of conserved proteins and an effective adjuvant to elicit potent protective immunity against invasive pneumococcal disease.
Collapse
|
27
|
Experimental human pneumococcal carriage models for vaccine research. Trends Microbiol 2011; 19:464-70. [DOI: 10.1016/j.tim.2011.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/02/2011] [Accepted: 06/13/2011] [Indexed: 01/14/2023]
|