1
|
Anisimov AP, Vagaiskaya AS, Trunyakova AS, Dentovskaya SV. Live Plague Vaccine Development: Past, Present, and Future. Vaccines (Basel) 2025; 13:66. [PMID: 39852845 PMCID: PMC11768842 DOI: 10.3390/vaccines13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
During the last 100 years, vaccine development has evolved from an empirical approach to one of the more rational vaccine designs where the careful selection of antigens and adjuvants is key to the desired efficacy for challenging pathogens and/or challenging populations. To improve immunogenicity while maintaining a favorable reactogenicity and safety profile, modern vaccine design must consider factors beyond the choice of target antigen alone. With new vaccine technologies currently emerging, it will be possible to custom-design vaccines for optimal efficacy in groups of people with different responses to vaccination. It should be noted that after a fairly long period of overwhelming dominance of papers devoted to subunit plague vaccines, materials devoted to the development of live plague vaccines have increasingly been published. In this review, we present our opinion on reasonable tactics for the development and application of live, safe, and protective human plague vaccines causing an enhanced duration of protection and breadth of action against various virulent strains in vaccination studies representing different ages, genders, and nucleotide polymorphisms of the genes responsible for immune response.
Collapse
Affiliation(s)
- Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.V.); (A.S.T.); (S.V.D.)
| | | | | | | |
Collapse
|
2
|
Williamson ED, Kilgore PB, Hendrix EK, Neil BH, Sha J, Chopra AK. Progress on the research and development of plague vaccines with a call to action. NPJ Vaccines 2024; 9:162. [PMID: 39242587 PMCID: PMC11379892 DOI: 10.1038/s41541-024-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
There is a compelling demand for approved plague vaccines due to the endemicity of Yersinia pestis and its potential for pandemic spread. Whilst substantial progress has been made, we recommend that the global funding and health security systems should work urgently to translate some of the efficacious vaccines reviewed herein to expedite clinical development and to prevent future disastrous plague outbreaks, particularly caused by antimicrobial resistant Y. pestis strains.Content includes material subject to Crown Copyright © 2024.This is an open access article under the Open Government License ( http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ ).
Collapse
Affiliation(s)
- E Diane Williamson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - Paul B Kilgore
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Emily K Hendrix
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Blake H Neil
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, TX, 77555, USA.
- Galveston National Laboratory, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Gupta A, Mahajan P, Bhagyawant SS, Saxena N, Johri AK, Kumar S, Verma SK. Recombinant YopE and LcrV vaccine candidates protect mice against plague and yersiniosis. Heliyon 2024; 10:e31446. [PMID: 38826713 PMCID: PMC11141369 DOI: 10.1016/j.heliyon.2024.e31446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
No licensed vaccine exists for the lethal plague and yersiniosis. Therefore, a combination of recombinant YopE and LcrV antigens of Yersinia pestis was evaluated for its vaccine potential in a mouse model. YopE and LcrV in formulation with alum imparted a robust humoral immune response, with isotyping profiles leaning towards the IgG1 and IgG2b subclasses. It was also observed that a significantly enhanced expression of IFN-γ, TNF-α, IL-6, IL-2, and IL-1β from the splenic cells of vaccinated mice, as well as YopE and LcrV-explicit IFN-γ eliciting T-cells. The cocktail of YopE + LcrV formulation conferred complete protection against 100 LD50Y. pestis infection, while individually, LcrV and YopE provided 80 % and 60 % protection, respectively. Similarly, the YopE + LcrV vaccinated animal group had significantly lower colony forming unit (CFU) counts in the spleen and blood compared to the groups administered with YopE or LcrV alone when challenged with Yersinia pseudotuberculosis and Yersinia enterocolitica. Histopathologic evidence reinforces these results, indicating the YopE + LcrV formulation provided superior protection against acute lung injury as early as day 3 post-challenge. In conclusion, the alum-adjuvanted YopE + LcrV is a promising vaccine formulation, eliciting a robust antibody response including a milieu of pro-inflammatory cytokines and T-cell effector functions that contribute to the protective immunity against Yersinia infections. YopE and LcrV, conserved across all three human-pathogenic Yersinia species, provide cross-protection. Therefore, our current vaccine (YopE + LcrV) targets all three pathogens: Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica. However, the efficacy should be tested in other higher mammalian models.
Collapse
Affiliation(s)
- Ankit Gupta
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sameer S. Bhagyawant
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011, MP, India
| | - Nandita Saxena
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Subodh Kumar
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Shailendra Kumar Verma
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| |
Collapse
|
4
|
Galloway DR, Li J, Nguyen NX, Falkenberg FW, Henning L, Krile R, Chou YL, Herron JN, Hale JS, Williamson ED. Co-formulation of the rF1V plague vaccine with depot-formulated cytokines enhances immunogenicity and efficacy to elicit protective responses against aerosol challenge in mice. Front Immunol 2024; 15:1277526. [PMID: 38605961 PMCID: PMC11007139 DOI: 10.3389/fimmu.2024.1277526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
This study evaluated a depot-formulated cytokine-based adjuvant to improve the efficacy of the recombinant F1V (rF1V) plague vaccine and examined the protective response following aerosol challenge in a murine model. The results of this study showed that co-formulation of the Alhydrogel-adsorbed rF1V plague fusion vaccine with the depot-formulated cytokines recombinant human interleukin 2 (rhuIL-2) and/or recombinant murine granulocyte macrophage colony-stimulating factor (rmGM-CSF) significantly enhances immunogenicity and significant protection at lower antigen doses against a lethal aerosol challenge. These results provide additional support for the co-application of the depot-formulated IL-2 and/or GM-CSF cytokines to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Darrell R. Galloway
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Jiahui Li
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Nguyen X. Nguyen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | | | - Lisa Henning
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - Robert Krile
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - Ying-Liang Chou
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - James N. Herron
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - J. Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - E. Diane Williamson
- Chemical Biological Radiological Division, Defense Science and Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
5
|
Biryukov SS, Wu H, Dankmeyer JL, Rill NO, Klimko CP, Egland KA, Shoe JL, Hunter M, Fetterer DP, Qiu J, Davies ML, Bausch CL, Sullivan EJ, Luke T, Cote CK. Polyclonal Antibodies Derived from Transchromosomic Bovines Vaccinated with the Recombinant F1-V Vaccine Increase Bacterial Opsonization In Vitro and Protect Mice from Pneumonic Plague. Antibodies (Basel) 2023; 12:antib12020033. [PMID: 37218899 DOI: 10.3390/antib12020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Plague is an ancient disease that continues to be of concern to both the public health and biodefense research communities. Pneumonic plague is caused by hematogenous spread of Yersinia pestis bacteria from a ruptured bubo to the lungs or by directly inhaling aerosolized bacteria. The fatality rate associated with pneumonic plague is significant unless effective antibiotic therapy is initiated soon after an early and accurate diagnosis is made. As with all bacterial pathogens, drug resistance is a primary concern when developing strategies to combat these Yersinia pestis infections in the future. While there has been significant progress in vaccine development, no FDA-approved vaccine strategy exists; thus, other medical countermeasures are needed. Antibody treatment has been shown to be effective in animal models of plague. We produced fully human polyclonal antibodies in transchromosomic bovines vaccinated with the recombinant F1-V plague vaccine. The resulting human antibodies opsonized Y. pestis bacteria in the presence of RAW264.7 cells and afforded significant protection to BALB/c mice after exposure to aerosolized Y. pestis. These data demonstrate the utility of this technology to produce large quantities of non-immunogenic anti-plague human antibodies to prevent or possibly treat pneumonic plague in human.
Collapse
Affiliation(s)
- Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Hua Wu
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Kristi A Egland
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - David P Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Ju Qiu
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | | | - Eddie J Sullivan
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Thomas Luke
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
6
|
Galloway DR, Nguyen NX, Li J, Houston N, Gregersen G, Williamson ED, Falkenberg FW, Herron JN, Hale JS. The magnitude of the germinal center B cell and T follicular helper cell response predicts long-lasting antibody titers to plague vaccination. Front Immunol 2022; 13:1017385. [PMID: 36389793 PMCID: PMC9650111 DOI: 10.3389/fimmu.2022.1017385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
The development of a safe and effective vaccine against Yersinia pestis, the causative organism for plague disease, remains an important global health priority. Studies have demonstrated effective immune-based protection against plague challenge that is induced by plague antigen subunit vaccination in an aqueous alhydrogel formulation; however, whether these candidate vaccines in this formulation and presentation, induce long-lasting immunological memory in the form of durable cellular and antibody recall responses has not been fully demonstrated. In this study, we analyzed germinal center T follicular helper and germinal center B cell responses following F1V and F1 + V plague subunit immunization of mice with vaccines formulated in various adjuvants. Our data demonstrate that recombinant plague protein immunization formulated with IL-2/GM-CSF cytokines bound to alhydrogel adjuvant drive an increase in the magnitude of the germinal center T follicular helper and germinal center B cell responses following primary immunization, compared to vaccines formulated with Alhydrogel adjuvant alone. In contrast, plague protein subunit immunization combined with CpG ODN bound to alhydrogel increased the magnitude and duration of the germinal center Tfh and B cell responses following booster immunization. Importantly, enhanced germinal center Tfh and B cell responses correlated with long-lasting and high F1V-specific antibody titers and more robust antibody recall responses to F1V re-exposure. These findings indicate that vaccine formulations that drive enhancement of the germinal center Tfh and B cell responses are critical for inducing durable plague-specific humoral immunity.
Collapse
Affiliation(s)
- Darrell R. Galloway
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Nguyen X. Nguyen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jiahui Li
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Nicholas Houston
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Gage Gregersen
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - E. Diane Williamson
- Chemical Biological Radiological Division, Defense Science and Technology Laboratory (DSTL) Porton Down, Salisbury, United Kingdom
| | | | - James N. Herron
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - J. Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Moore BD, Macleod C, Henning L, Krile R, Chou YL, Laws TR, Butcher WA, Moore KM, Walker NJ, Williamson ED, Galloway DR. Predictors of Survival after Vaccination in a Pneumonic Plague Model. Vaccines (Basel) 2022; 10:145. [PMID: 35214604 PMCID: PMC8876284 DOI: 10.3390/vaccines10020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The need for an updated plague vaccine is highlighted by outbreaks in endemic regions together with the pandemic potential of this disease. There is no easily available, approved vaccine. Methods: Here we have used a murine model of pneumonic plague to examine the factors that maximise immunogenicity and contribute to survival following vaccination. We varied vaccine type, as either a genetic fusion of the F1 and V protein antigens or a mixture of these two recombinant antigens, as well as antigen dose-level and formulation in order to correlate immune response to survival. Results: Whilst there was interaction between each of the variables of vaccine type, dose level and formulation and these all contributed to survival, vaccine formulation in protein-coated microcrystals (PCMCs) was the key contributor in inducing antibody titres. From these data, we propose a cut-off in total serum antibody titre to the F1 and V proteins of 100 µg/mL and 200 µg/mL, respectively. At these thresholds, survival is predicted in this murine pneumonic model to be >90%. Within the total titre of antibody to the V antigen, the neutralising antibody component correlated with dose level and was enhanced when the V antigen in free form was formulated in PCMCs. Antibody titre to F1 was limited by fusion to V, but this was compensated for by PCMC formulation. Conclusions: These data will enable clinical assessment of this and other candidate plague vaccines that utilise the same vaccine antigens by identifying a target antibody titre from murine models, which will guide the evaluation of clinical titres as serological surrogate markers of efficacy.
Collapse
Affiliation(s)
- Barry D. Moore
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK; (B.D.M.); (C.M.)
| | - Clair Macleod
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK; (B.D.M.); (C.M.)
| | - Lisa Henning
- Battelle Biomedical Research Center, West Jefferson, OH 43162, USA; (L.H.); (R.K.); (Y.-L.C.)
| | - Robert Krile
- Battelle Biomedical Research Center, West Jefferson, OH 43162, USA; (L.H.); (R.K.); (Y.-L.C.)
| | - Ying-Liang Chou
- Battelle Biomedical Research Center, West Jefferson, OH 43162, USA; (L.H.); (R.K.); (Y.-L.C.)
| | - Thomas R. Laws
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK; (T.R.L.); (W.A.B.); (K.M.M.); (N.J.W.)
| | - Wendy A. Butcher
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK; (T.R.L.); (W.A.B.); (K.M.M.); (N.J.W.)
| | - Kristoffer M. Moore
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK; (T.R.L.); (W.A.B.); (K.M.M.); (N.J.W.)
| | - Nicola J. Walker
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK; (T.R.L.); (W.A.B.); (K.M.M.); (N.J.W.)
| | - Ethel Diane Williamson
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK; (T.R.L.); (W.A.B.); (K.M.M.); (N.J.W.)
| | - Darrell R. Galloway
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
8
|
Combinatorial Viral Vector-Based and Live Attenuated Vaccines without an Adjuvant to Generate Broader Immune Responses to Effectively Combat Pneumonic Plague. mBio 2021; 12:e0322321. [PMID: 34872353 PMCID: PMC8649767 DOI: 10.1128/mbio.03223-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF−) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF− mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response.
Collapse
|
9
|
Rosario-Acevedo R, Biryukov SS, Bozue JA, Cote CK. Plague Prevention and Therapy: Perspectives on Current and Future Strategies. Biomedicines 2021; 9:1421. [PMID: 34680537 PMCID: PMC8533540 DOI: 10.3390/biomedicines9101421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by the bacterial pathogen Yersinia pestis, is a vector-borne disease that has caused millions of human deaths over several centuries. Presently, human plague infections continue throughout the world. Transmission from one host to another relies mainly on infected flea bites, which can cause enlarged lymph nodes called buboes, followed by septicemic dissemination of the pathogen. Additionally, droplet inhalation after close contact with infected mammals can result in primary pneumonic plague. Here, we review research advances in the areas of vaccines and therapeutics for plague in context of Y. pestis virulence factors and disease pathogenesis. Plague continues to be both a public health threat and a biodefense concern and we highlight research that is important for infection mitigation and disease treatment.
Collapse
Affiliation(s)
| | | | | | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA; (R.R.-A.); (S.S.B.); (J.A.B.)
| |
Collapse
|
10
|
Biryukov S, Dankmeyer JL, Shamsuddin Z, Velez I, Rill NO, Rosario-Acevedo R, Klimko CP, Shoe JL, Hunter M, Ward MD, Cazares LH, Fetterer DP, Bozue JA, Worsham PL, Cote CK, Amemiya K. Impact of Toll-Like Receptor-Specific Agonists on the Host Immune Response to the Yersinia pestis Plague rF1V Vaccine. Front Immunol 2021; 12:726416. [PMID: 34512658 PMCID: PMC8430260 DOI: 10.3389/fimmu.2021.726416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Relatively recent advances in plague vaccinology have produced the recombinant fusion protein F1-V plague vaccine. This vaccine has been shown to readily protect mice from both bubonic and pneumonic plague. The protection afforded by this vaccine is solely based upon the immune response elicited by the F1 or V epitopes expressed on the F1-V fusion protein. Accordingly, questions remain surrounding its efficacy against infection with non-encapsulated (F1-negative) strains. In an attempt to further optimize the F1-V elicited immune response and address efficacy concerns, we examined the inclusion of multiple toll-like receptor agonists into vaccine regimens. We examined the resulting immune responses and also any protection afforded to mice that were exposed to aerosolized Yersinia pestis. Our data demonstrate that it is possible to further augment the F1-V vaccine strategy in order to optimize and augment vaccine efficacy.
Collapse
Affiliation(s)
- Sergei Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Zain Shamsuddin
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ivan Velez
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Michael D. Ward
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lisa H. Cazares
- Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joel A. Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
11
|
Kilgore PB, Sha J, Andersson JA, Motin VL, Chopra AK. A new generation needle- and adjuvant-free trivalent plague vaccine utilizing adenovirus-5 nanoparticle platform. NPJ Vaccines 2021; 6:21. [PMID: 33514747 PMCID: PMC7846801 DOI: 10.1038/s41541-020-00275-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
A plague vaccine with a fusion cassette of YscF, F1, and LcrV encoding genes in an adenovirus-5 vector (rAd5-YFV) is evaluated for efficacy and immune responses in mice. Two doses of the vaccine provides 100% protection when administered intranasally against challenge with Yersinia pestis CO92 or its isogenic F1 mutant in short- or long- term immunization in pneumonic/bubonic plague models. The corresponding protection rates drop in rAd5-LcrV monovalent vaccinated mice in plague models. The rAd5-YFV vaccine induces superior humoral, mucosal and cell-mediated immunity, with clearance of the pathogen. Immunization of mice with rAd5-YFV followed by CO92 infection dampens proinflammatory cytokines and neutrophil chemoattractant production, while increasing Th1- and Th2-cytokine responses as well as macrophage/monocyte chemo-attractants when compared to the challenge control animals. This is a first study showing complete protection of mice from pneumonic/bubonic plague with a viral vector-based vaccine without the use of needles and the adjuvant.
Collapse
Affiliation(s)
- Paul B. Kilgore
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA
| | - Jian Sha
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA. .,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Jourdan A. Andersson
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA
| | - Vladimir L. Motin
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Department of Pathology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX USA
| | - Ashok K. Chopra
- grid.176731.50000 0001 1547 9964Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX USA ,grid.176731.50000 0001 1547 9964Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
12
|
Gupta A, Narayan B, Kumar S, Verma SK. Vaccine Potential of a Recombinant Bivalent Fusion Protein LcrV-HSP70 Against Plague and Yersiniosis. Front Immunol 2020; 11:988. [PMID: 32595634 PMCID: PMC7303293 DOI: 10.3389/fimmu.2020.00988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/27/2020] [Indexed: 01/31/2023] Open
Abstract
To counteract the deadly pathogens, i.e., Y. pestis, Y. enetrocolitica, and Y. pseudotuberculosis, we prepared a recombinant DNA construct lcrV-hsp70 encoding the bivalent fusion protein LcrV-HSP70. The lcrV gene of Y. pestis and hsp70 domain II DNA fragment of M. tuberculosis were amplified by PCR. The lcrV amplicon was first ligated in the pET vector using NcoI and BamHI restriction sites. Just downstream to the lcrV gene, the hsp70 domain II was ligated using BamHI and Hind III restriction sites. The in-frame and the orientation of cloned lcrV-hsp70 were checked by restriction analysis and nucleotide sequencing. The recombinant bivalent fusion protein LcrV-HSP70 was expressed in E. coli and purified by affinity chromatography. The vaccine potential of LcrV-HSP70 fusion protein was evaluated in formulation with alum. BALB/c mice were vaccinated, and the humoral and cellular immune responses were studied. The fusion protein LcrV-HSP70 induced a strong and significant humoral immune response in comparison to control animals. We also observed a significant difference in the expression levels of IFN-γ and TNF-α in LcrV–HSP70-immunized mice in comparison to control, HSP70, and LcrV groups. To test the protective efficacy of the LcrV–HSP70 fusion protein against plague and Yersiniosis, the vaccinated mice were challenged with Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis separately. The bivalent fusion protein LcrV–HSP70 imparted 100% protection against the plague. In the case of Yersiniosis, on day 2 post challenge, there was a significant reduction in the number of CFU of Y. enterocolitica and Y. pseudotuberculosis in the blood (CFU/ml) and the spleen (CFU/g) of vaccinated animals in comparison to the LcrV, HSP70, and control group animals.
Collapse
Affiliation(s)
- Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Bineet Narayan
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Subodh Kumar
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | | |
Collapse
|
13
|
Development of Yersinia pestis F1 antigen-loaded liposome vaccine against plague using microneedles as a delivery system. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Singh AK, Curtiss R, Sun W. A Recombinant Attenuated Yersinia pseudotuberculosis Vaccine Delivering a Y. pestis YopE Nt138-LcrV Fusion Elicits Broad Protection against Plague and Yersiniosis in Mice. Infect Immun 2019; 87:e00296-19. [PMID: 31331960 PMCID: PMC6759313 DOI: 10.1128/iai.00296-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, a novel recombinant attenuated Yersinia pseudotuberculosis PB1+ strain (χ10069) engineered with ΔyopK ΔyopJ Δasd triple mutations was used to deliver a Y. pestis fusion protein, YopE amino acid 1 to 138-LcrV (YopENt138-LcrV), to Swiss Webster mice as a protective antigen against infections by yersiniae. χ10069 bacteria harboring the pYA5199 plasmid constitutively synthesized the YopENt138-LcrV fusion protein and secreted it via the type 3 secretion system (T3SS) at 37°C under calcium-deprived conditions. The attenuated strain χ10069(pYA5199) was manifested by the establishment of controlled infection in different tissues without developing conspicuous signs of disease in histopathological analysis of microtome sections. A single-dose oral immunization of χ10069(pYA5199) induced strong serum antibody titers (log10 mean value, 4.2), secretory IgA in bronchoalveolar lavage (BAL) fluid from immunized mice, and Yersinia-specific CD4+ and CD8+ T cells producing high levels of tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 2 (IL-2), as well as IL-17, in both lungs and spleens of immunized mice, conferring comprehensive Th1- and Th2-mediated immune responses and protection against bubonic and pneumonic plague challenges, with 80% and 90% survival, respectively. Mice immunized with χ10069(pYA5199) also exhibited complete protection against lethal oral infections by Yersinia enterocolitica WA and Y. pseudotuberculosis PB1+. These findings indicated that χ10069(pYA5199) as an oral vaccine induces protective immunity to prevent bubonic and pneumonic plague, as well as yersiniosis, in mice and would be a promising oral vaccine candidate for protection against plague and yersiniosis for human and veterinary applications.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
15
|
Gallagher TB, Mellado-Sanchez G, Jorgensen AL, Moore S, Nataro JP, Pasetti MF, Baillie LW. Development of a multiple-antigen protein fusion vaccine candidate that confers protection against Bacillus anthracis and Yersinia pestis. PLoS Negl Trop Dis 2019; 13:e0007644. [PMID: 31430284 PMCID: PMC6716679 DOI: 10.1371/journal.pntd.0007644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/30/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
Bacillus anthracis and Yersinia pestis are zoonotic bacteria capable of causing severe and sometimes fatal infections in animals and humans. Although considered as diseases of antiquity in industrialized countries due to animal and public health improvements, they remain endemic in vast regions of the world disproportionally affecting the poor. These pathogens also remain a serious threat if deployed in biological warfare. A single vaccine capable of stimulating rapid protection against both pathogens would be an extremely advantageous public health tool. We produced multiple-antigen fusion proteins (MaF1 and MaF2) containing protective regions from B. anthracis protective antigen (PA) and lethal factor (LF), and from Y. pestis V antigen (LcrV) and fraction 1 (F1) capsule. The MaF2 sequence was also expressed from a plasmid construct (pDNA-MaF2). Immunogenicity and protective efficacy were investigated in mice following homologous and heterologous prime-boost immunization. Antibody responses were determined by ELISA and anthrax toxin neutralization assay. Vaccine efficacy was determined against lethal challenge with either anthrax toxin or Y. pestis. Both constructs elicited LcrV and LF-specific serum IgG, and MaF2 elicited toxin-neutralizing antibodies. Immunizations with MaF2 conferred 100% and 88% protection against Y. pestis and anthrax toxin, respectively. In contrast, pDNA-MaF2 conferred only 63% protection against Y. pestis and no protection against anthrax toxin challenge. pDNA-MaF2-prime MaF2-boost induced 75% protection against Y. pestis and 25% protection against anthrax toxin. Protection was increased by the molecular adjuvant CARDif. In conclusion, MaF2 is a promising multi-antigen vaccine candidate against anthrax and plague that warrants further investigation. Anthrax and plague are ancient infectious diseases that continue to affect people living in poor, endemic regions and to threaten industrialized nations due to their potential use in biowarfare. Candidate vaccines need improvement to minimize non-desirable effects and increase their efficacy. The purpose of this work was to develop and evaluate a single subunit vaccine capable of conferring protection against Bacillus anthracis and Yersinia pestis. To this end, specific regions from their genome or key protective protein sequences from both microorganisms were combined to obtain either recombinant plasmids or recombinant proteins and tested as vaccine candidates in mice. The recombinant protein MaF2 induced specific antibody responses and afforded full and partial protection against Y. pestis and B. anthracis, respectively. Meanwhile, the DNA vaccine equivalent to MaF2 conferred only partial protection against Y. pestis, which increased when combined with an MaF2 protein boost. MaF2 emerged as a promising dual pathogen recombinant vaccine that warrants further investigation.
Collapse
Affiliation(s)
- Theresa B. Gallagher
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Gabriela Mellado-Sanchez
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Ana L. Jorgensen
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Stephen Moore
- BIOMET, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Box, Charlottesville, VA, United States of America
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail: (MFP); (LWB)
| | - Les W. Baillie
- The Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
- * E-mail: (MFP); (LWB)
| |
Collapse
|
16
|
Bowen W, Batra L, Pulsifer AR, Yolcu ES, Lawrenz MB, Shirwan H. Robust Th1 cellular and humoral responses generated by the Yersinia pestis rF1-V subunit vaccine formulated to contain an agonist of the CD137 pathway do not translate into increased protection against pneumonic plague. Vaccine 2019; 37:5708-5716. [PMID: 31416643 DOI: 10.1016/j.vaccine.2019.07.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
Yersinia pestis is the causative agent of plague and is a re-emerging pathogen that also has the potential as a biological weapon, necessitating the development of a preventive vaccine. Despite intense efforts for the last several decades, there is currently not a vaccine approved by the FDA. The rF1-V vaccine adjuvanted with Alhydrogel is a lead candidate subunit vaccine for plague and generates a strong Th2-mediate humoral response with a modest Th1 cellular response. As immune protection against Y. pestis requires both humoral and Th1 cellular responses, modifying the rF1-V subunit vaccine formulation to include a robust inducer of Th1 responses may improve efficacy. Thus, we reformulated the subunit vaccine to include SA-4-1BBL, an agonist of the CD137 costimulatory pathway and a potent inducer of Th1 response, and assessed its protective efficacy against pneumonic plague. We herein show for the first time a sex bias in the prophylactic efficacy of the Alhydrogel adjuvanted rF1-V vaccine, with female mice showing better protection against pneumonic plague than male. The sex bias for protection was irrespective of the generation of comparable levels of rF1-V-specific antibody titers and Th1 cellular responses in both sexes. The subunit vaccine reformulated with SA-4-1BBL generated robust Th1 cellular and humoral responses. A prime-boost vaccination scheme involving prime with rF1-V + Alhydrogel and boost with the rF1-V + SA-4-1BBL provided protection in male mice against pneumonic plague. In marked contrast, prime and boost with rF1-V reformulated with both adjuvants resulted in the loss of protection against pneumonic plague, despite generating high levels of humoral and Th1 cellular responses. While unexpected, these findings demonstrate the complexity of immune mechanisms required for protection. Elucidating mechanisms responsible for these differences in protection will help to guide the development of better prophylactic subunit vaccines effective against pneumonic plague.
Collapse
Affiliation(s)
- William Bowen
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; FasCure Therapeutics, LLC, Louisville, KY 40202, United States
| | - Lalit Batra
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States
| | - Amanda R Pulsifer
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States
| | - Esma S Yolcu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States; The Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, United States.
| | - Haval Shirwan
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
17
|
Carvalho AL, Miquel-Clopés A, Wegmann U, Jones E, Stentz R, Telatin A, Walker NJ, Butcher WA, Brown PJ, Holmes S, Dennis MJ, Williamson ED, Funnell SGP, Stock M, Carding SR. Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization. Clin Exp Immunol 2019; 196:287-304. [PMID: 30985006 PMCID: PMC6514708 DOI: 10.1111/cei.13301] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Plague caused by the Gram‐negative bacterium, Yersinia pestis, is still endemic in parts of the world today. Protection against pneumonic plague is essential to prevent the development and spread of epidemics. Despite this, there are currently no licensed plague vaccines in the western world. Here we describe the means of delivering biologically active plague vaccine antigens directly to mucosal sites of plague infection using highly stable microvesicles (outer membrane vesicles; OMVs) that are naturally produced by the abundant and harmless human commensal gut bacterium Bacteroides thetaiotaomicron (Bt). Bt was engineered to express major plague protective antigens in its OMVs, specifically Fraction 1 (F1) in the outer membrane and LcrV (V antigen) in the lumen, for targeted delivery to the gastrointestinal (GI) and respiratory tracts in a non‐human primate (NHP) host. Our key findings were that Bt OMVs stably expresses F1 and V plague antigens, particularly the V antigen, in the correct, immunogenic form. When delivered intranasally V‐OMVs elicited substantive and specific immune and antibody responses, both in the serum [immunoglobulin (Ig)G] and in the upper and lower respiratory tract (IgA); this included the generation of serum antibodies able to kill plague bacteria. Our results also showed that Bt OMV‐based vaccines had many desirable characteristics, including: biosafety and an absence of any adverse effects, pathology or gross alteration of resident microbial communities (microbiotas); high stability and thermo‐tolerance; needle‐free delivery; intrinsic adjuvanticity; the ability to stimulate both humoral and cell‐mediated immune responses; and targeting of primary sites of plague infection.
Collapse
Affiliation(s)
- A L Carvalho
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - A Miquel-Clopés
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - U Wegmann
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - E Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - R Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - A Telatin
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - N J Walker
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - W A Butcher
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - P J Brown
- Public Health England, Porton, Porton, Salisbury, UK
| | - S Holmes
- Public Health England, Porton, Porton, Salisbury, UK
| | - M J Dennis
- Public Health England, Porton, Porton, Salisbury, UK
| | - E D Williamson
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - S G P Funnell
- Public Health England, Porton, Porton, Salisbury, UK
| | - M Stock
- Plant Biotechnology Ltd, Norwich, UK
| | - S R Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK.,Norwich Medical School, University East Anglia, Norwich, UK
| |
Collapse
|
18
|
Current State of the Problem of Vaccine Development for Specific Prophylaxis of Plague. ПРОБЛЕМЫ ОСОБО ОПАСНЫХ ИНФЕКЦИЙ 2019. [DOI: 10.21055/0370-1069-2019-1-50-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emergence of large-scale plague outbreaks in Africa and South America countries in the modern period, characterized by high frequency of pneumonic plague development (including with lethal outcome) keeps up the interest of scientists to the matters of development and testing of means for specific prophylaxis of this particularly dangerous infectious disease. WHO workshop that was held in 2018 identified the general principles of optimization of design and testing of new-generation vaccines effectively protecting the population from plague infection. Application of the achievements of biological and medical sciences for outlining rational strategy for construction of immunobiological preparations led to a certain progress in the creation of not only sub-unit vaccines based on recombinant antigens, but also live and vector preparations on the platform of safe bacterial strains and replicating and non-replicating viruses in recent years. The review comprehensively considers the relevant trends in vaccine construction for plague prevention, describes advantages of the state-of-the art methodologies for their safety and efficiency enhancement.
Collapse
|
19
|
Avril A. Therapeutic Antibodies for Biodefense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:173-205. [PMID: 29549640 DOI: 10.1007/978-3-319-72077-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diseases can be caused naturally by biological agents such as bacteria, viruses and toxins (natural risk). However, such biological agents can be intentionally disseminated in the environment by a State (military context) or terrorists to cause diseases in a population or livestock, to destabilize a nation by creating a climate of terror, destabilizing the economy and undermining institutions. Biological agents can be classified according to the severity of illness they cause, its mortality and how easily the agent can be spread. The Centers for Diseases Control and Prevention (CDC) classify biological agents in three categories (A, B and C); Category A consists of the six pathogens most suitable for use as bioweapons (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Antibodies represent a perfect biomedical countermeasure as they present both prophylactic and therapeutic properties, act fast and are highly specific to the target. This review focuses on the main biological agents that could be used as bioweapons, the history of biowarfare and antibodies that have been developed to neutralize these agents.
Collapse
Affiliation(s)
- Arnaud Avril
- Département des maladies infectieuses, Unité biothérapies anti-infectieuses et immunité, Institut de Recherche Biomédical des Armées, Brétigny-sur-Orge, France.
| |
Collapse
|
20
|
D’Ortenzio E, Lemaître N, Brouat C, Loubet P, Sebbane F, Rajerison M, Baril L, Yazdanpanah Y. Plague: Bridging gaps towards better disease control. Med Mal Infect 2018; 48:307-317. [DOI: 10.1016/j.medmal.2018.04.393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 01/14/2023]
|
21
|
Moore BD, New RRC, Butcher W, Mahood R, Steward J, Bayliss M, MacLeod C, Bogus M, Williamson ED. Dual route vaccination for plague with emergency use applications. Vaccine 2018; 36:5210-5217. [PMID: 30017148 DOI: 10.1016/j.vaccine.2018.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 02/04/2023]
Abstract
Here, we report a dual-route vaccination approach for plague, able to induce a rapid response involving systemic and mucosal immunity, whilst also providing ease of use in those resource-poor settings most vulnerable to disease outbreaks. This novel vaccine (VypVaxDuo) comprises the recombinant F1 and V proteins in free association. VypVaxDuo has been designed for administration via a sub-cutaneous priming dose followed by a single oral booster dose and has been demonstrated to induce early onset immunity 14 days after the primary immunisation; full protective efficacy against live organism challenge was achieved in Balb/c mice exposed to 2 × 104 median lethal doses of Yersinia pestis Co92, by the sub-cutaneous route at 25 days after the oral booster immunisation. This dual-route vaccination effectively induced serum IgG and serum and faecal IgA, specific for F1 and V, which constitute two key virulence factors in Y. pestis, and is therefore suitable for further development to prevent bubonic plague and for evaluation in models of pneumonic plague. This is an essential requirement for control of disease outbreaks in areas of the world endemic for plague and is supported further by the observed exceptional stability of the primary vaccine formulation in vialled form under thermostressed conditions (40 °C for 29 weeks, and 40 °C with 75% relative humidity for 6 weeks), meaning no cold chain for storage or distribution is needed. In clinical use, the injected priming dose would be administered on simple rehydration of the dry powder by means of a dual barrel syringe, with the subsequent single booster dose being provided in an enteric-coated capsule suitable for oral self-administration.
Collapse
Affiliation(s)
- B D Moore
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK.
| | - R R C New
- Proxima Concepts Ltd, London BioScience Innovation Centre, UK
| | - W Butcher
- Defence Science & Technology Laboratory, Porton Down, Salisbury UK
| | - R Mahood
- Defence Science & Technology Laboratory, Porton Down, Salisbury UK
| | - J Steward
- Defence Science & Technology Laboratory, Porton Down, Salisbury UK
| | - M Bayliss
- Defence Science & Technology Laboratory, Porton Down, Salisbury UK
| | - C MacLeod
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - M Bogus
- Proxima Concepts Ltd, London BioScience Innovation Centre, UK
| | - E D Williamson
- Defence Science & Technology Laboratory, Porton Down, Salisbury UK
| |
Collapse
|
22
|
Liu L, Wei D, Qu Z, Sun L, Miao Y, Yang Y, Lu J, Du W, Wang B, Li B. A safety and immunogenicity study of a novel subunit plague vaccine in cynomolgus macaques. J Appl Toxicol 2017; 38:408-417. [PMID: 29134676 DOI: 10.1002/jat.3550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
Plague has led to millions of deaths in history and outbreaks continue to the present day. The efficacy limitations and safety concerns of the existing killed whole cell and live-attenuated vaccines call for the development of new vaccines. In this study, we evaluated the immunogenicity and safety of a novel subunit plague vaccine, comprising native F1 antigen and recombinant V antigen. The cynomolgus macaques in low- and high-dose vaccine groups were vaccinated at weeks 0, 2, 4 and 6, at dose levels of 15 μg F1 + 15 μg rV and 30 μg F1 + 30 μg rV respectively. Specific antibodies and interferon-γ and interleukin-2 expression in lymphocytes were measured. For safety, except for the general toxicity and local irritation, we made a systematic immunotoxicity study on the vaccine including immunostimulation, autoimmunity and anaphylactic reaction. The vaccine induced high levels of serum anti-F1 and anti-rV antibodies, and caused small increases of interferon-γ and interleukin-2 in monkeys. The vaccination led to a reversible increase in the number of peripheral blood eosinophils, the increases in serum IgE level in a few animals and histopathological change of granulomas at injection sites. The vaccine had no impact on general conditions, most clinical pathology parameters, percentages of T-cell subsets, organ weights and gross pathology of treated monkeys and had passable local tolerance. The F1 + rV subunit plague vaccine can induce very strong humoral immunity and low level of cellular immunity in cynomolgus macaques and has a good safety profile.
Collapse
Affiliation(s)
- Li Liu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Dong Wei
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Li Sun
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hong Da Middle Street, Yizhuang Economic Development Area, Beijing, 100176, China
| | - Jinbiao Lu
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Weixin Du
- Institute for the Control of Biological Products, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| | - Bingxiang Wang
- Lanzhou Institute of Biological Products Co., Ltd. 888 Yanchang Road, Lanzhou, 730046, China
| | - Bo Li
- National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102269, China
| |
Collapse
|
23
|
Andersson JA, Sha J, Erova TE, Fitts EC, Ponnusamy D, Kozlova EV, Kirtley ML, Chopra AK. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 2017; 7:448. [PMID: 29090192 PMCID: PMC5650977 DOI: 10.3389/fcimb.2017.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashok K Chopra
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,WHO Collaborating Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Li M, Cai RJ, Song S, Jiang ZY, Li Y, Gou HC, Chu PP, Li CL, Qiu HJ. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model. PLoS One 2017; 12:e0176537. [PMID: 28448603 PMCID: PMC5407842 DOI: 10.1371/journal.pone.0176537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/12/2017] [Indexed: 12/04/2022] Open
Abstract
Glässer’s disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926) identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC), rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ) in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease.
Collapse
Affiliation(s)
- Miao Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Ru-Jian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Zhi-Yong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Hong-Chao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Pin-Pin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Chun-Ling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- * E-mail: (CL); (HQ)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (CL); (HQ)
| |
Collapse
|
25
|
Verma SK, Tuteja U. Plague Vaccine Development: Current Research and Future Trends. Front Immunol 2016; 7:602. [PMID: 28018363 PMCID: PMC5155008 DOI: 10.3389/fimmu.2016.00602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 02/05/2023] Open
Abstract
Plague is one of the world’s most lethal human diseases caused by Yersinia pestis, a Gram-negative bacterium. Despite overwhelming studies for many years worldwide, there is no safe and effective vaccine against this fatal disease. Inhalation of Y. pestis bacilli causes pneumonic plague, a fast growing and deadly dangerous disease. F1/LcrV-based vaccines failed to provide adequate protection in African green monkey model in spite of providing protection in mice and cynomolgus macaques. There is still no explanation for this inconsistent efficacy, and scientists leg behind to search reliable correlate assays for immune protection. These paucities are the main barriers to improve the effectiveness of plague vaccine. In the present scenario, one has to pay special attention to elicit strong cellular immune response in developing a next-generation vaccine against plague. Here, we review the scientific contributions and existing progress in developing subunit vaccines, the role of molecular adjuvants; DNA vaccines; live delivery platforms; and attenuated vaccines developed to counteract virulent strains of Y. pestis.
Collapse
Affiliation(s)
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment , Gwalior , India
| |
Collapse
|
26
|
Immunisation of two rodent species with new live-attenuated mutants of Yersinia pestis CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague. NPJ Vaccines 2016; 1:16020. [PMID: 29263858 PMCID: PMC5707884 DOI: 10.1038/npjvaccines.2016.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 11/10/2022] Open
Abstract
We showed recently that the live-attenuated Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants of Yersinia pestis CO92 provided short-term protection to mice against developing subsequent lethal pneumonic plague. These mutants were either deleted for genes encoding Braun lipoprotein (Lpp), an acetyltransferase (MsbB) and the attachment invasion locus (Ail) (Δlpp ΔmsbB Δail) or contained a modified version of the ail gene with diminished virulence (Δlpp ΔmsbB::ailL2). Here, long-term immune responses were first examined after intramuscular immunisation of mice with the above-mentioned mutants, as well as the newly constructed Δlpp ΔmsbB Δpla mutant, deleted for the plasminogen-activator protease (pla) gene instead of ail. Y. pestis-specific IgG levels peaked between day 35 and 56 in the mutant-immunised mice and were sustained until the last tested day 112. Splenic memory B cells peaked earlier (day 42) before declining in the Δlpp ΔmsbB::ailL2 mutant-immunised mice while being sustained for 63 days in the Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutant-immunised mice. Splenic CD4+ T cells increased in all immunised mice by day 42 with differential cytokine production among the immunised groups. On day 120, immunised mice were exposed intranasally to wild-type (WT) CO92, and 80–100% survived pneumonic challenge. Mice immunised with the above-mentioned three mutants had increased innate as well as CD4+ responses immediately after WT CO92 exposure, and coupled with sustained antibody production, indicated the role of both arms of the immune response in protection. Likewise, rats vaccinated with either Δlpp ΔmsbB Δail or the Δlpp ΔmsbB Δpla mutant also developed long-term humoral and cell-mediated immune responses to provide 100% protection against developing pneumonic plague. On the basis of the attenuated phenotype, the Δlpp ΔmsbB Δail mutant was recently excluded from the Centers for Disease Control and Prevention select agent list.
Collapse
|
27
|
A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:586-600. [PMID: 27170642 DOI: 10.1128/cvi.00150-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022]
Abstract
Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.
Collapse
|
28
|
Tadepalli G, Singh AK, Balakrishna K, Murali HS, Batra HV. Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19 + rP39) against B. abortus 544 and B. melitensis 16M infection in murine model. Mol Immunol 2016; 71:34-41. [DOI: 10.1016/j.molimm.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023]
|
29
|
Pechous RD, Sivaraman V, Stasulli NM, Goldman WE. Pneumonic Plague: The Darker Side of Yersinia pestis. Trends Microbiol 2016; 24:190-197. [DOI: 10.1016/j.tim.2015.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022]
|
30
|
Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1255-68. [PMID: 26446423 DOI: 10.1128/cvi.00499-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/03/2015] [Indexed: 12/12/2022]
Abstract
Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential.
Collapse
|
31
|
High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 2015; 83:2065-81. [PMID: 25754198 DOI: 10.1128/iai.02913-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).
Collapse
|
32
|
van Lier CJ, Tiner BL, Chauhan S, Motin VL, Fitts EC, Huante MB, Endsley JJ, Ponnusamy D, Sha J, Chopra AK. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages. Microb Pathog 2015; 80:27-38. [PMID: 25697665 PMCID: PMC4363157 DOI: 10.1016/j.micpath.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 01/31/2023]
Abstract
We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune responses in the host similar to that of WT CO92, which are highly desirable in a live-attenuated vaccine candidate.
Collapse
Affiliation(s)
- Christina J van Lier
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bethany L Tiner
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vladimir L Motin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
33
|
Read T, Olkhov RV, Williamson ED, Shaw AM. Kinetic epitope mapping of monoclonal antibodies raised against the Yersinia pestis virulence factor LcrV. Biosens Bioelectron 2015; 65:47-53. [DOI: 10.1016/j.bios.2014.09.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
34
|
Batra L, Verma SK, Nagar DP, Saxena N, Pathak P, Pant SC, Tuteja U. HSP70 domain II of Mycobacterium tuberculosis modulates immune response and protective potential of F1 and LcrV antigens of Yersinia pestis in a mouse model. PLoS Negl Trop Dis 2014; 8:e3322. [PMID: 25474358 PMCID: PMC4256173 DOI: 10.1371/journal.pntd.0003322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023] Open
Abstract
No ideal vaccine exists to control plague, a deadly dangerous disease caused by Yersinia pestis. In this context, we cloned, expressed and purified recombinant F1, LcrV antigens of Y. pestis and heat shock protein70 (HSP70) domain II of M. tuberculosis in E. coli. To evaluate the protective potential of each purified protein alone or in combination, Balb/C mice were immunized. Humoral and cell mediated immune responses were evaluated. Immunized animals were challenged with 100 LD50 of Y. pestis via intra-peritoneal route. Vaccine candidates i.e., F1 and LcrV generated highly significant titres of anti-F1 and anti-LcrV IgG antibodies. A significant difference was noticed in the expression level of IL-2, IFN-γ and TNF-α in splenocytes of immunized animals. Significantly increased percentages of CD4+ and CD8+ T cells producing IFN-γ in spleen of vaccinated animals were observed in comparison to control group by flow cytometric analysis. We investigated whether the F1, LcrV and HSP70(II) antigens alone or in combination can effectively protect immunized animals from any histopathological changes. Signs of histopathological lesions noticed in lung, liver, kidney and spleen of immunized animals on 3rd day post challenge whereas no lesions in animals that survived to day 20 post-infection were observed. Immunohistochemistry showed bacteria in lung, liver, spleen and kidney on 3rd day post-infection whereas no bacteria was observed on day 20 post-infection in surviving animals in LcrV, LcrV+HSP70(II), F1+LcrV, and F1+LcrV+HSP70(II) vaccinated groups. A significant difference was observed in the expression of IL-2, IFN-γ, TNF-α, and CD4+/CD8+ T cells secreting IFN-γ in the F1+LcrV+HSP70(II) vaccinated group in comparison to the F1+LcrV vaccinated group. Three combinations that included LcrV+HSP70(II), F1+LcrV or F1+LcrV+HSP70(II) provided 100% protection, whereas LcrV alone provided only 75% protection. These findings suggest that HSP70(II) of M. tuberculosis can be a potent immunomodulator for F1 and LcrV containing vaccine candidates against plague.
Collapse
Affiliation(s)
- Lalit Batra
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Shailendra K. Verma
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Durgesh P. Nagar
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Nandita Saxena
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Prachi Pathak
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Satish C. Pant
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| |
Collapse
|
35
|
Multiple roles of Myd88 in the immune response to the plague F1-V vaccine and in protection against an aerosol challenge of Yersinia pestis CO92 in mice. J Immunol Res 2014; 2014:341820. [PMID: 24995344 PMCID: PMC4065692 DOI: 10.1155/2014/341820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/23/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023] Open
Abstract
The current candidate vaccine against Yersinia pestis infection consists of two subunit proteins: the capsule protein or F1 protein and the low calcium response V protein or V-antigen. Little is known of the recognition of the vaccine by the host's innate immune system and how it affects the acquired immune response to the vaccine. Thus, we vaccinated Toll-like receptor (Tlr) 2, 4, and 2/4-double deficient, as well as signal adaptor protein Myd88-deficient mice. We found that Tlr4 and Myd88 appeared to be required for an optimal immune response to the F1-V vaccine but not Tlr2 when compared to wild-type mice. However, there was a difference between the requirement for Tlr4 and MyD88 in vaccinated animals. When F1-V vaccinated Tlr4 mutant (lipopolysaccharide tolerant) and Myd88-deficient mice were challenged by aerosol with Y. pestis CO92, all but one Tlr4 mutant mice survived the challenge, but no vaccinated Myd88-deficient mice survived the challenge. Spleens from these latter nonsurviving mice showed that Y. pestis was not cleared from the infected mice. Our results suggest that MyD88 appears to be important for both an optimal immune response to F1-V and in protection against a lethal challenge of Y. pestis CO92 in F1-V vaccinated mice.
Collapse
|
36
|
Abstract
Plague has been a scourge of mankind for centuries, and outbreaks continue to the present day. The virulence mechanisms employed by the etiological agent Yersinia pestis are reviewed in the context of the available prophylactic and therapeutic strategies for plague. Although antibiotics are available, resistance is emerging in this dangerous pathogen. Therapeutics used in the clinic are discussed and innovative approaches to the design and development of new therapeutic compounds are reviewed. Currently there is no licensed vaccine available for prevention of plague in the USA or western Europe, although both live attenuated strains and killed whole-cell extracts have been used historically. Live strains are still approved for human use in some parts of the world, such as the former Soviet Union, but poor safety profiles render them unacceptable to many countries. The development of safe, effective next-generation vaccines, including the recombinant subunit vaccine currently used in clinical trials is discussed.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | | |
Collapse
|
37
|
Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague. Infect Immun 2014; 82:2485-503. [PMID: 24686064 DOI: 10.1128/iai.01595-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.
Collapse
|
38
|
Ali R, Kumar S, Naqvi RA, Rao D. B and T cell epitope mapping and study the humoral and cell mediated immune response to B–T constructs of YscF antigen of Yersinia pestis. Comp Immunol Microbiol Infect Dis 2013; 36:365-78. [DOI: 10.1016/j.cimid.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 02/05/2023]
|
39
|
Ali R, Naqvi RA, Kumar S, Bhat AA, Rao DN. Multiple antigen peptide containing B and T cell epitopes of F1 antigen of Yersinia pestis showed enhanced Th1 immune response in murine model. Scand J Immunol 2013; 77:361-71. [PMID: 23480362 DOI: 10.1111/sji.12042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
Yersinia pestis is a facultative bacterium that can survive and proliferate inside host macrophages and cause bubonic, pneumonic and systemic infection. Apart from humoral response, cell-mediated protection plays a major role in combating the disease. Fraction 1 capsular antigen (F1-Ag) of Y. pestis has long been exploited as a vaccine candidate. In this study, F1-multiple antigenic peptide (F1-MAP or MAP)-specific cell-mediated and cytokine responses were studied in murine model. MAP consisting of three B and one T cell epitopes of F1-antigen with one palmitoyl residue was synthesized using Fmoc chemistry. Mice were immunized with different formulations of MAP in poly DL-lactide-co-glycolide (PLGA) microspheres. F1-MAP with CpG oligodeoxynucleotide (CpG-ODN) as an adjuvant showed enhanced in vitro T cell proliferation and Th1 (IL-2, IFN-γ and TNF-α) and Th17 (IL-17A) cytokine secretion. Similar formulation also showed significantly higher numbers of cytokine (IL-2, IFN-γ)-secreting cells. Moreover, F1-MAP with CpG formulation showed significantly high (P < 0.001) percentage of CD4(+) IFN-γ(+) cells as compared to CD8(+) IFN-γ(+) cells, and also more (CD4- IFN-γ)(+) cells secrete perforin and granzyme as compared to (CD8- IFN-γ)(+) showing Th1 response. Thus, the study highlights the importance of Th1 cytokine and existence of CD4(+) and CD8(+) immune response. This study proposes a new perspective for the development of vaccination strategies for Y. pestis that trigger T cell immune response.
Collapse
Affiliation(s)
- R Ali
- Department of Biochemistry, All India Institute of Medical Sciences AIIMS, New Delhi-110029, India
| | | | | | | | | |
Collapse
|
40
|
Endom EE. Bioterrorism and the Pediatric Patient: An Update. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2013. [DOI: 10.1016/j.cpem.2013.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Hickey AJ, Lin JS, Kummer LW, Szaba FM, Duso DK, Tighe M, Parent MA, Smiley ST. Intranasal prophylaxis with CpG oligodeoxynucleotide can protect against Yersinia pestis infection. Infect Immun 2013; 81:2123-32. [PMID: 23545300 PMCID: PMC3676034 DOI: 10.1128/iai.00316-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/03/2023] Open
Abstract
Immunomodulatory agents potentially represent a new class of broad-spectrum antimicrobials. Here, we demonstrate that prophylaxis with immunomodulatory cytosine-phosphate-guanidine (CpG) oligodeoxynucleotide (ODN), a toll-like receptor 9 (TLR9) agonist, confers protection against Yersinia pestis, the etiologic agent of plague. The data establish that intranasal administration of CpG ODN 1 day prior to lethal pulmonary exposure to Y. pestis strain KIM D27 significantly improves survival of C57BL/6 mice and reduces bacterial growth in hepatic tissue, despite paradoxically increasing bacterial growth in the lung. All of these CpG ODN-mediated impacts, including the increased pulmonary burden, are TLR9 dependent, as they are not observed in TLR9-deficient mice. The capacity of prophylactic intranasal CpG ODN to enhance survival does not require adaptive immunity, as it is evident in mice lacking B and/or T cells; however, the presence of T cells improves long-term survival. The prophylactic regimen also improves survival and reduces hepatic bacterial burden in mice challenged intraperitoneally with KIM D27, indicating that intranasal delivery of CpG ODN has systemic impacts. Indeed, intranasal prophylaxis with CpG ODN provides significant protection against subcutaneous challenge with Y. pestis strain CO92 even though it fails to protect mice from intranasal challenge with that fully virulent strain.
Collapse
|
42
|
Williamson ED, Oyston PCF. Protecting against plague: towards a next-generation vaccine. Clin Exp Immunol 2013; 172:1-8. [PMID: 23480179 PMCID: PMC3719925 DOI: 10.1111/cei.12044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 01/22/2023] Open
Abstract
The causative organism of plague is the bacterium Yersinia pestis. Advances in understanding the complex pathogenesis of plague infection have led to the identification of the F1- and V-antigens as key components of a next-generation vaccine for plague, which have the potential to be effective against all forms of the disease. Here we review the roles of F1- and V-antigens in the context of the range of virulence mechanisms deployed by Y. pestis, in order to develop a greater understanding of the protective immune responses required to protect against plague.
Collapse
Affiliation(s)
- E D Williamson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Salisbury, Wilts, UK.
| | | |
Collapse
|
43
|
|
44
|
Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:227-38. [PMID: 23239803 DOI: 10.1128/cvi.00597-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.
Collapse
|
45
|
Plague vaccines: current developments and future perspectives. Emerg Microbes Infect 2012; 1:e36. [PMID: 26038406 PMCID: PMC3630923 DOI: 10.1038/emi.2012.34] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022]
Abstract
Despite many decades of intensive studies of Yersinia pestis, the causative agent of plague, there is no safe and efficient vaccine against this devastating disease. A recently developed F1/V subunit vaccine candidate, which relies mainly on humoral immunity, showed promising results in animal studies; however, its efficacy in humans still has to be carefully evaluated. In addition, those developing next-generation plague vaccines need to pay particular attention to the importance of eliciting cell-mediated immunity. In this review, we analyzed the current progress in developing subunit, DNA and live carrier platforms of delivery by bacterial and viral vectors, as well as approaches for controlled attenuation of virulent strains of Y. pestis.
Collapse
|
46
|
Gregory A, Williamson E, Prior J, Butcher W, Thompson I, Shaw A, Titball R. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine 2012; 30:6777-82. [DOI: 10.1016/j.vaccine.2012.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 12/22/2022]
|
47
|
Perry DL, Bollinger L, L.White G. The Baboon (Papio spp.) as a model of human Ebola virus infection. Viruses 2012; 4:2400-16. [PMID: 23202470 PMCID: PMC3497058 DOI: 10.3390/v4102400] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 01/09/2023] Open
Abstract
Baboons are susceptible to natural Ebola virus (EBOV) infection and share 96% genetic homology with humans. Despite these characteristics, baboons have rarely been utilized as experimental models of human EBOV infection to evaluate the efficacy of prophylactics and therapeutics in the United States. This review will summarize what is known about the pathogenesis of EBOV infection in baboons compared to EBOV infection in humans and other Old World nonhuman primates. In addition, we will discuss how closely the baboon model recapitulates human EBOV infection. We will also review some of the housing requirements and behavioral attributes of baboons compared to other Old World nonhuman primates. Due to the lack of data available on the pathogenesis of Marburg virus (MARV) infection in baboons, discussion of the pathogenesis of MARV infection in baboons will be limited.
Collapse
Affiliation(s)
- Donna L. Perry
- Integrated Research Facility, Division of Clinical Research, NIAID, NIH, Frederick, MD, USA;
| | - Laura Bollinger
- Integrated Research Facility, Division of Clinical Research, NIAID, NIH, Frederick, MD, USA;
| | - Gary L.White
- Department of Pathology, University of Oklahoma Baboon Research Resource, University of Oklahoma, Ft. Reno Science Park, OK, USA;
| |
Collapse
|
48
|
Fellows P, Lin W, Detrisac C, Hu SC, Rajendran N, Gingras B, Holland L, Price J, Bolanowski M, House RV. Establishment of a Swiss Webster mouse model of pneumonic plague to meet essential data elements under the animal rule. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:468-76. [PMID: 22336286 PMCID: PMC3318273 DOI: 10.1128/cvi.05591-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
A recombinant vaccine (rF1V) is being developed for protection against pneumonic plague. This study was performed to address essential data elements to establish a well-characterized Swiss Webster mouse model for licensing the rF1V vaccine using the FDA's Animal Rule. These elements include the documentation of challenge material characteristics, aerosol exposure parameters, details of the onset and severity of clinical signs, pathophysiological response to disease, and relevance to human disease. Prior to animal exposures, an evaluation of the aerosol system was performed to determine and understand the variability of the aerosol exposure system. Standardized procedures for the preparation of Yersinia pestis challenge material also were developed. The 50% lethal dose (LD(50)) was estimated to be 1,966 CFU using Probit analysis. Following the LD(50) determination, pathology was evaluated by exposing mice to a target LD(99) (42,890 CFU). Mice were euthanized at 12, 24, 36, 48, 60, and 72 h postexposure. At each time point, samples were collected for clinical pathology, detection of bacteria in blood and tissues, and pathology evaluations. A general increase in incidence and severity of microscopic findings was observed in the lung, lymph nodes, spleen, and liver from 36 to 72 h postchallenge. Similarly, the incidence and severity of pneumonia increased throughout the study; however, some mice died in the absence of pneumonia, suggesting that disease progression does not require the development of pneumonia. Disease pathology in the Swiss Webster mouse is similar to that observed in humans, demonstrating the utility of this pneumonic plague model that can be used by researchers investigating plague countermeasures.
Collapse
Affiliation(s)
- Patricia Fellows
- DynPort Vaccine Company LLC, A CSC Company, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Williamson ED, Oyston PCF. The natural history and incidence of Yersinia pestis and prospects for vaccination. J Med Microbiol 2012; 61:911-918. [PMID: 22442294 DOI: 10.1099/jmm.0.037960-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Plague is an ancient, serious, infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses the natural history of the bacterium and its evolution into a flea-vectored bacterium able to transmit bubonic plague. It reviews the incidence of plague in the modern world and charts the history of vaccines which have been used to protect against the flea-vectored disease, which erupts as bubonic plague. Current approaches to vaccine development to protect against pneumonic, as well as bubonic, plague are also reviewed. The considerable challenges in achieving a vaccine which is licensed for human use and which will comprehensively protect against this serious human pathogen are assessed.
Collapse
Affiliation(s)
- E D Williamson
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - P C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
50
|
Eisele NA, Brown CR, Anderson DM. Phagocytes and humoral immunity to pneumonic plague. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:165-71. [PMID: 22782760 DOI: 10.1007/978-1-4614-3561-7_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nicholas A Eisele
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|