1
|
Plotkin SA, Offit P. Efficacy of Rotavirus Vaccines. Pediatr Infect Dis J 2024; 43:518-519. [PMID: 38506514 DOI: 10.1097/inf.0000000000004319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Affiliation(s)
| | - Paul Offit
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Zeng M, Ma WJ. Reply to the Letter to the Editor regarding cross-protection of RotaTeq. J Pediatr 2024; 268:113953. [PMID: 38336202 DOI: 10.1016/j.jpeds.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Mei Zeng
- Department of Infectious Disease, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Jie Ma
- Department of Infectious Disease, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Carias C, Hartwig S, Kanibir N, Matthijnssens J, Tu Y. Letter to the Editor on Cross-Protection of RotaTeq. J Pediatr 2024; 268:113952. [PMID: 38336206 DOI: 10.1016/j.jpeds.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Affiliation(s)
| | | | - Nabi Kanibir
- Global Medical and Scientific Affairs, MSD International GmbH Luzern, Switzerland
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Research Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
4
|
Kitt EM, Yoon HW, Comar CE, Smith KP, Harris RM, Esona MD, Gautam R, Mijatovic-Rustempasic S, Hopkins AL, Jaimes J, Handy LK. Genotypic investigation of a rotavirus cluster at a quaternary-care pediatric hospital. Infect Control Hosp Epidemiol 2023; 44:1680-1682. [PMID: 36691772 PMCID: PMC10587370 DOI: 10.1017/ice.2022.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 12/03/2022] [Indexed: 01/25/2023]
Abstract
Rotavirus (RV) was a common healthcare-associated infection prior to the introduction of the RV vaccine. Following widespread RV vaccination, healthcare-associated rotavirus cases are rare. We describe an investigation of a cluster of rotavirus infections in a pediatric hospital in which an uncommon genotype not typically circulating in the United States was detected.
Collapse
Affiliation(s)
- Eimear M. Kitt
- Department of Infection Prevention and Control, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hee-won Yoon
- Department of Infection Prevention and Control, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Courtney E. Comar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Clinical Microbiology Laboratory, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
- Infectious Diseases Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kenneth P. Smith
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Infectious Diseases Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rebecca M. Harris
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Infectious Diseases Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mathew D. Esona
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Rashi Gautam
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Slavica Mijatovic-Rustempasic
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Amy L. Hopkins
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Jose Jaimes
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Lori K. Handy
- Department of Infection Prevention and Control, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Vetter V, Gardner RC, Debrus S, Benninghoff B, Pereira P. Established and new rotavirus vaccines: a comprehensive review for healthcare professionals. Hum Vaccin Immunother 2022; 18:1870395. [PMID: 33605839 PMCID: PMC8920198 DOI: 10.1080/21645515.2020.1870395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 01/05/2023] Open
Abstract
Robust scientific evidence related to two rotavirus (RV) vaccines available worldwide demonstrates their significant impact on RV disease burden. Improving RV vaccination coverage may result in better RV disease control. To make RV vaccination accessible to all eligible children worldwide and improve vaccine effectiveness in high-mortality settings, research into new RV vaccines continues. Although current and in-development RV vaccines differ in vaccine design, their common goal is the reduction of RV disease risk in children <5 years old for whom disease burden is the most significant. Given the range of RV vaccines available, informed decision-making is essential regarding the choice of vaccine for immunization. This review aims to describe the landscape of current and new RV vaccines, providing context for the assessment of their similarities and differences. As data for new vaccines are limited, future investigations will be required to evaluate their performance/added value in a real-world setting.
Collapse
Affiliation(s)
- Volker Vetter
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Robert C. Gardner
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Serge Debrus
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Bernd Benninghoff
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Priya Pereira
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| |
Collapse
|
6
|
Whole genome analysis of rotavirus strains circulating in Benin before vaccine introduction, 2016-2018. Virus Res 2022; 313:198715. [PMID: 35247484 DOI: 10.1016/j.virusres.2022.198715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Species A Rotaviruses (RVA) still play a major role in causing acute diarrhea in children under five years old worldwide. Currently, an 11-gene classification system is used to designate the full genotypic constellations of circulating strains. Viral proteins and non-structural proteins in the order VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 are represented by the genotypes Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, respectively. In Benin, ROTAVAC® vaccine was introduced into the Expanded Programme on Immunization in December 2019. To monitor circulating RVA strains for changes that may affect vaccine performance, in-depth analysis of strains prior to vaccine introduction are needed. Here we report, the whole-gene characterization (11 ORFs) for 72 randomly selected RVA strains of common and unusual genotypes collected in Benin from the 2016-2018 seasons. The sequenced strains were 15 G1P[8], 20 G2P[4], 5 G9P[8], 14 G12P[8], 9 G3P[6], 2 G1P[6], 3 G2P[6], 2 G9P[4], 1 G12P[6], and 1 G1G9P[8]/P[4]. The study strains exhibited two genetic constellations designed as Wa-like G1/G9/G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and DS-1-like G2/G3/G12-P[4]/P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Genotype G9P[4] strains possessed a DS-1-like genetic constellation with an E6 NSP4 gene, G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2. The mixed genotype showed both Wa-like and DS-1-like profiles with a T6 NSP3 gene G1/G9P[8]/[4]-I1/I2-R1/R2-C1/C2-M1/M2-A1/A2-N1/N2-T1/T6-E1/E6-H1/H2. At the allelic level, the analysis of the Benin strains, reference strains (with known alleles), vaccine strains (with known alleles) identified 2-13 and 1-17 alleles for DS-1-like and Wa-like strains, respectively. Most of the study strains clustered into previously defined alleles, but we defined 3 new alleles for the VP7 (G3=1 new allele and G12=2 new alleles) and VP4 (P[4]=1 new allele and P[6]=2 new alleles) genes which formed the basis of the VP7 and VP4 gene clusters, respectively. For the remaining 9 genes, 0-6 new alleles were identified for both Wa-like and DS-1-like strains. This analysis of whole genome sequences of RVA strains circulating in Benin described genetic point mutations and reassortment events as well as novel alleles. Further detailed studies on these new alleles are needed and these data can also provide a baseline for studies on RVA in the post-vaccination period.
Collapse
|
7
|
Varghese T, Kang G, Steele AD. Understanding Rotavirus Vaccine Efficacy and Effectiveness in Countries with High Child Mortality. Vaccines (Basel) 2022; 10:346. [PMID: 35334978 PMCID: PMC8948967 DOI: 10.3390/vaccines10030346] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
Rotavirus claims thousands of lives of children globally every year with a disproportionately high burden in low- and lower-middle income countries where access to health care is limited. Oral, live-attenuated rotavirus vaccines have been evaluated in multiple settings in both low- and high-income populations and have been shown to be safe and efficacious. However, the vaccine efficacy observed in low-income settings with high rotavirus and diarrheal mortality was significantly lower than that seen in high-income populations where rotavirus mortality is less common. Rotavirus vaccines have been introduced and rolled out in more than 112 countries, providing the opportunity to assess effectiveness of the vaccines in these different settings. We provide an overview of the efficacy, effectiveness, and impact of rotavirus vaccines, focusing on high-mortality settings and identify the knowledge gaps for future research. Despite lower efficacy, rotavirus vaccines substantially reduce diarrheal disease and mortality and are cost-effective in countries with high burden. Continued evaluation of the effectiveness, impact, and cost-benefit of rotavirus vaccines, especially the new candidates that have been recently approved for global use, is a key factor for new vaccine introductions in countries, or for a switch of vaccine product in countries with limited resources.
Collapse
Affiliation(s)
- Tintu Varghese
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (G.K.)
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (G.K.)
| | - Andrew Duncan Steele
- Enteric and Diarrheal Disease, Bill & Melinda Gates Foundation, Seattle, WA 98102, USA
| |
Collapse
|
8
|
Sadiq A, Bostan N, Aziz A. Effect of rotavirus genetic diversity on vaccine impact. Rev Med Virol 2022; 32:e2259. [PMID: 34997676 DOI: 10.1002/rmv.2259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/05/2021] [Indexed: 11/07/2022]
Abstract
Group A rotaviruses (RVAs) are the leading cause of gastroenteritis, causing 0.2 million deaths and several million hospitalisations globally each year. Four rotavirus vaccines (RotarixTM , RotaTeqTM , Rotavac® and ROTASIIL® ) have been pre-qualified by the World Health Organization (WHO), but the two newly pre-qualified vaccines (Rotavac® and ROTASIIL® ) are currently only in use in Palestine and India, respectively. In 2009, WHO strongly proposed that rotavirus vaccines be included in the routine vaccination schedule of all countries around the world. By the end of 2019, a total of 108 countries had administered rotavirus vaccines, and 10 countries have currently been approved by Gavi for the introduction of rotavirus vaccine in the near future. With 39% of global coverage, rotavirus vaccines have had a substantial effect on diarrhoeal morbidity and mortality in different geographical areas, although efficacy appears to be higher in high income settings. Due to the segmented RNA genome, the pattern of RVA genotypes in the human population is evolving through interspecies transmission and/or reassortment events for which the vaccine might be less effective in the future. However, despite the relative increase in some particular genotypes after rotavirus vaccine use, the overall efficacy of rotavirus mass vaccination worldwide has not been affected. Some of the challenges to improve the effect of current rotavirus vaccines can be solved in the future by new rotavirus vaccines and by vaccines currently in progress.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, Molecular Virology Laboratory, COMSATS University, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, Molecular Virology Laboratory, COMSATS University, Islamabad, Pakistan
| | - Aamir Aziz
- Sarhad University of Science and Information Technology, Institute of Biological Sciences, Sarhad University, Peshawar, Pakistan
| |
Collapse
|
9
|
Mado S, Giwa F, Abdullahi S, Alfa A, Yaqub Y, Usman Y, Wammanda R, Mwenda J, Isiaka A, Yusuf K, Lawali N. Prevalence and characteristics of rotavirus acute gastroenteritis among under-five children in ahmadu bello university teaching hospital, Zaria, Nigeria. Ann Afr Med 2022; 21:283-287. [PMID: 36204917 PMCID: PMC9671188 DOI: 10.4103/aam.aam_31_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Rotavirus infection is a significant cause of gastroenteritis in developing countries and, in severe cases even leads to death. The impact of rotavirus vaccine introduction in reducing the rotavirus disease burden in children was well known. The study was aimed to determine the prevalence and clinical characteristics of rotavirus gastroenteritis before the introduction of rotavirus vaccine into Nigeria's routine immunization program. Materials and Methods: We conducted a cross-sectional hospital-based study involving 735 children aged 0–59 months with acute gastroenteritis hospitalized at the Ahmadu Bello University Teaching Hospital Zaria from September 2017 to August 2020. Relevant sociodemographic and clinical data were obtained and entered into the World Health Organization standardized case investigation forms. Stool specimens were tested for rotavirus Group A antigen using the ProSpecT™ Rotavirus Microplate Assay by Thermoscientific Oxoid Microbiology UK. Results: One hundred and fifty-three stool samples tested positive for rotavirus giving a prevalence of 20.8%. One hundred and two (66.7%) children with rotavirus gastroenteritis were infants. There were 87 males and 66 females with M: F ratio of 1.3:1. Only 30 (19.6%) children with rotavirus-associated diarrhea presented with severe dehydration. The presence of vomiting was significantly associated with rotavirus diarrhea (P = 0.001). More cases of rotavirus diarrhea occurred in September through February. None of the studied children were vaccinated against rotavirus. Conclusion: The prevalence of rotavirus diarrhea remains high in this study. Infants were recognized as a high-risk group, and none of them were vaccinated against rotavirus and this underscores the urgent need for implementing the rotavirus vaccine in the national vaccination program to reduce the disease burden in the country.
Collapse
|
10
|
Bergman H, Henschke N, Hungerford D, Pitan F, Ndwandwe D, Cunliffe N, Soares-Weiser K. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2021; 11:CD008521. [PMID: 34788488 PMCID: PMC8597890 DOI: 10.1002/14651858.cd008521.pub6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rotavirus is a common cause of diarrhoea, diarrhoea-related hospital admissions, and diarrhoea-related deaths worldwide. Rotavirus vaccines prequalified by the World Health Organization (WHO) include Rotarix (GlaxoSmithKline), RotaTeq (Merck), and, more recently, Rotasiil (Serum Institute of India Ltd.), and Rotavac (Bharat Biotech Ltd.). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO for their efficacy and safety in children. SEARCH METHODS On 30 November 2020, we searched PubMed, the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation Index-Science, Conference Proceedings Citation Index-Social Science & Humanities. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies, and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) conducted in children that compared rotavirus vaccines prequalified for use by the WHO with either placebo or no intervention. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility and assessed risk of bias. One author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analyses by under-five country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Sixty trials met the inclusion criteria and enrolled a total of 228,233 participants. Thirty-six trials (119,114 participants) assessed Rotarix, 15 trials RotaTeq (88,934 participants), five trials Rotasiil (11,753 participants), and four trials Rotavac (8432 participants). Rotarix Infants vaccinated and followed up for the first year of life In low-mortality countries, Rotarix prevented 93% of severe rotavirus diarrhoea cases (14,976 participants, 4 trials; high-certainty evidence), and 52% of severe all-cause diarrhoea cases (3874 participants, 1 trial; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 79% of severe rotavirus diarrhoea cases (31,671 participants, 4 trials; high-certainty evidence), and 36% of severe all-cause diarrhoea cases (26,479 participants, 2 trials; high-certainty evidence). In high-mortality countries, Rotarix prevented 58% of severe rotavirus diarrhoea cases (15,882 participants, 4 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, Rotarix prevented 90% of severe rotavirus diarrhoea cases (18,145 participants, 6 trials; high-certainty evidence), and 51% of severe all-cause diarrhoea episodes (6269 participants, 2 trials; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 77% of severe rotavirus diarrhoea cases (28,834 participants, 3 trials; high-certainty evidence), and 26% of severe all-cause diarrhoea cases (23,317 participants, 2 trials; moderate-certainty evidence). In high-mortality countries, Rotarix prevented 35% of severe rotavirus diarrhoea cases (13,768 participants, 2 trials; moderate-certainty evidence), and 17% of severe all-cause diarrhoea cases (2764 participants, 1 trial; high-certainty evidence). RotaTeq Infants vaccinated and followed up for the first year of life In low-mortality countries, RotaTeq prevented 97% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 57% of severe rotavirus diarrhoea cases (6775 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RotaTeq prevented 96% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 44% of severe rotavirus diarrhoea cases (6744 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (5977 participants, 2 trials; high-certainty evidence). We did not identify RotaTeq studies reporting on severe all-cause diarrhoea in low- or medium-mortality countries. Rotasiil Rotasiil has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotasiil prevented 48% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotasiil prevented 44% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Rotavac Rotavac has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotavac prevented 57% of severe rotavirus diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotavac prevented 54% of severe rotavirus diarrhoea cases (6541 participants, 1 trial; moderate-certainty evidence); no Rotavac studies have reported on severe all-cause diarrhoea at two-years follow-up. Safety No increased risk of serious adverse events (SAEs) was detected with Rotarix (103,714 participants, 31 trials; high-certainty evidence), RotaTeq (82,502 participants, 14 trials; moderate to high-certainty evidence), Rotasiil (11,646 participants, 3 trials; high-certainty evidence), or Rotavac (8210 participants, 3 trials; moderate-certainty evidence). Deaths were infrequent and the analysis had insufficient evidence to show an effect on all-cause mortality. Intussusception was rare. AUTHORS' CONCLUSIONS: Rotarix, RotaTeq, Rotasiil, and Rotavac prevent episodes of rotavirus diarrhoea. The relative effect estimate is smaller in high-mortality than in low-mortality countries, but more episodes are prevented in high-mortality settings as the baseline risk is higher. In high-mortality countries some results suggest lower efficacy in the second year. We found no increased risk of serious adverse events, including intussusception, from any of the prequalified rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Daniel Hungerford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council , Cape Town, South Africa
| | - Nigel Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
11
|
Sun ZW, Fu Y, Lu HL, Yang RX, Goyal H, Jiang Y, Xu HG. Association of Rotavirus Vaccines With Reduction in Rotavirus Gastroenteritis in Children Younger Than 5 Years: A Systematic Review and Meta-analysis of Randomized Clinical Trials and Observational Studies. JAMA Pediatr 2021; 175:e210347. [PMID: 33970192 PMCID: PMC8111566 DOI: 10.1001/jamapediatrics.2021.0347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE Rotavirus vaccines have been introduced worldwide, and the clinical association of different rotavirus vaccines with reduction in rotavirus gastroenteritis (RVGE) after introduction are noteworthy. OBJECTIVE To evaluate the comparative benefit, risk, and immunogenicity of different rotavirus vaccines by synthesizing randomized clinical trials (RCTs) and observational studies. DATA SOURCES Relevant studies published in 4 databases: Embase, PubMed, the Cochrane Library, and Web of Science were searched until July 1, 2020, using search terms including "rotavirus" and "vaccin*." STUDY SELECTION Randomized clinical trials and cohort and case-control studies involving more than 100 children younger than 5 years that reported the effectiveness, safety, or immunogenicity of rotavirus vaccines were included. DATA EXTRACTION AND SYNTHESIS A random-effects model was used to calculate relative risks (RRs), odds ratios (ORs), risk differences, and 95% CIs. Adjusted indirect treatment comparison was performed to assess the differences in the protection of Rotarix and RotaTeq. MAIN OUTCOMES AND MEASURES The primary outcomes were RVGE, severe RVGE, and RVGE hospitalization. Safety-associated outcomes involved serious adverse events, intussusception, and mortality. RESULTS A meta-analysis of 20 RCTs and 38 case-control studies revealed that Rotarix (RV1) significantly reduced RVGE (RR, 0.316 [95% CI, 0.224-0.345]) and RVGE hospitalization risk (OR, 0.347 [95% CI, 0.279-0.432]) among children fully vaccinated; RotaTeq (RV5) had similar outcomes (RVGE: RR, 0.350 [95% CI, 0.275-0.445]; RVGE hospitalization risk: OR, 0.272 [95% CI, 0.197-0.376]). Rotavirus vaccines also demonstrated higher protection against severe RVGE. Additionally, no significant differences in the protection of RV1 and RV5 against rotavirus disease were noted in adjusted indirect comparisons. Moderate associations were found between reduced RVGE risk and Rotavac (RR, 0.664 [95% CI, 0.548-0.804]), Rotasiil (RR, 0.705 [95% CI, 0.605-0.821]), and Lanzhou lamb rotavirus vaccine (RR, 0.407 [95% CI, 0.332-0.499]). All rotavirus vaccines demonstrated no risk of serious adverse events. A positive correlation was also found between immunogenicity and vaccine protection (eg, association of RVGE with RV1: coefficient, -1.599; adjusted R2, 99.7%). CONCLUSIONS AND RELEVANCE The high protection and low risk of serious adverse events for rotavirus vaccines in children who were fully vaccinated emphasized the importance of worldwide introduction of rotavirus vaccination. Similar protection provided by Rotarix and RotaTeq relieves the pressure of vaccines selection for health care authorities.
Collapse
Affiliation(s)
- Zi-Wei Sun
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Fu
- Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Ling Lu
- Department of Laboratory Medicine, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Rui-Xia Yang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hemant Goyal
- The Wright Center of Graduate Medical Education, Scranton, Pennsylvania
| | - Ye Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Wang Y, Li J, Dai P, Liu P, Zhu F. Effectiveness of the oral human attenuated pentavalent rotavirus vaccine (RotaTeq™) postlicensure: a meta-analysis-2006-2020. Expert Rev Vaccines 2021; 20:437-448. [PMID: 33709863 DOI: 10.1080/14760584.2021.1902808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Rotavirus (RV), which causes RV-associated gastroenteritis (RVGE), has accounted for considerable morbidity. We aimed to assess the effectiveness (VE) of the oral pentavalent RV vaccine (RotaTeq™) in real-world settings in children and infants with gastroenteritis. METHODS We performed a systematic search for peer-reviewed studies published between 1 January 2006 and 1 May 2020 and a meta-analysis to calculate the VE of RotaTeq™ vaccine. The primary outcome was the pooled three-dose vaccine VE. Stratified analysis of the vaccine VEs was performed according to dosages, study design, population age, socioeconomic status (SES), introduction condition, control group types, outcomes of RV disease, and RV strains. RESULTS After screening 2359 unique records, 28 studies were included and meta-analyzed. The overall VE estimate was 84% (95% confidence interval [CI], 80-87%). Stratified analyses revealed a nonnegligible impact of factors such as study design and SES. Other factors did not show great impart to VE with no significant differences between groups. CONCLUSIONS RotaTeq™ is effective against RV infection, especially in high-income countries. Adopting suitable study methods and expansion of RV surveillance in low-income regions is crucial to assess VE in real-life settings and provide feasible vaccine regimens to improve vaccine VE.
Collapse
Affiliation(s)
- Yuxiao Wang
- School of Public Health, Southeast University, Nanjing, China
| | - Jingxin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Pinyuan Dai
- School of Public Health, Southeast University, Nanjing, China
| | - Pei Liu
- School of Public Health, Southeast University, Nanjing, China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
13
|
Wang Y, Li J, Liu P, Zhu F. The performance of licensed rotavirus vaccines and the development of a new generation of rotavirus vaccines: a review. Hum Vaccin Immunother 2021; 17:880-896. [PMID: 32966134 DOI: 10.1080/21645515.2020.1801071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rotavirus, which causes acute gastroenteritis and severe diarrhea, has posed a great threat to children worldwide over the last 30 y. Since no specific drugs and therapies against rotavirus are available, vaccination is considered the most effective method of decreasing the morbidity and mortality related to rotavirus-associated gastroenteritis. To date, six rotavirus vaccines have been developed and licensed by local governments. Notably, Rotarix™ and RotaTeq™ have been recommended as universal agents against rotavirus infection by the World Health Organization; however, lower efficacies were found in less-developed and developing regions with medium and high child mortality than well-developed ones with low child mortality. For now, two promising novel vaccines, Rotavac™ and RotaSiil™ were pre-qualified by the World Health Organization in 2018. Other rotavirus vaccines in the pipeline including neonatal strain (RV3-BB) and several non-replicating rotavirus vaccines with a parenteral delivery strategy are currently undergoing investigation, with the potential to improve the performance of, and eliminate the safety concerns associated with, previous live oral rotavirus vaccines. This paper reviews the important developments in rotavirus vaccines in the last 20 y and discusses problems and challenges that require investigation in the future.
Collapse
Affiliation(s)
- Yuxiao Wang
- School of Public Health, Southeast University, Nanjing, China
| | - Jingxin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Pei Liu
- School of Public Health, Southeast University, Nanjing, China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
14
|
Rakau KG, Nyaga MM, Gededzha MP, Mwenda JM, Mphahlele MJ, Seheri LM, Steele AD. Genetic characterization of G12P[6] and G12P[8] rotavirus strains collected in six African countries between 2010 and 2014. BMC Infect Dis 2021; 21:107. [PMID: 33482744 PMCID: PMC7821174 DOI: 10.1186/s12879-020-05745-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND G12 rotaviruses were first observed in sub-Saharan Africa in 2004 and since then have continued to emerge and spread across the continent and are reported as a significant human rotavirus genotype in several African countries, both prior to and after rotavirus vaccine introduction. This study investigated the genetic variability of 15 G12 rotavirus strains associated with either P[6] or P[8] identified between 2010 and 2014 from Ethiopia, Kenya, Rwanda, Tanzania, Togo and Zambia. METHODS The investigation was carried out by comparing partial VP7 and partial VP4 sequences of the African G12P[6] and G12P[8] strains with the available GenBank sequences and exploring the recognized neutralization epitopes of these strains. Additionally, Bayesian evolutionary analysis was carried out using Markov Chain Monte Carlo (MCMC) implemented in BEAST to estimate the time to the most recent ancestor and evolutionary rate for these G12 rotavirus strains. RESULTS The findings suggested that the VP7 and VP4 nucleotide and amino acid sequences of the G12 strains circulating in African countries are closely related, irrespective of country of origin and year of detection, with the exception of the Ethiopian strains that clustered distinctly. Neutralization epitope analysis revealed that rotavirus VP4 P[8] genes associated with G12 had amino acid sequences similar to those reported globally including the vaccine strains in RotaTeq and Rotarix. The estimated evolutionary rate of the G12 strains was 1.016 × 10- 3 substitutions/site/year and was comparable to what has been previously reported. Three sub-clusters formed within the current circulating lineage III shows the diversification of G12 from three independent ancestries within a similar time frame in the late 1990s. CONCLUSIONS At present it appears to be unlikely that widespread vaccine use has driven the molecular evolution and sustainability of G12 strains in Africa. Continuous monitoring of rotavirus genotypes is recommended to assess the long-term impact of rotavirus vaccination on the dynamic nature of rotavirus evolution on the continent.
Collapse
Affiliation(s)
- Kebareng G Rakau
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Martin M Nyaga
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Next Generation Sequencing Unit and Department of Medical Microbiology and Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Maemu P Gededzha
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,National Health Laboratory Service, Department of Molecular Medicine and Haematology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Cluster, WHO African Regional Office, Brazzaville, Congo
| | - M Jeffrey Mphahlele
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,South African Medical Research Council, Soutpansberg Road, Pretoria, South Africa
| | - L Mapaseka Seheri
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - A Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, WHO AFRO Rotavirus Regional Reference Laboratory, Sefako Makgatho Health Sciences University, Pretoria, South Africa. .,Present address: Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
15
|
Real-world effectiveness of rotavirus vaccines, 2006-19: a literature review and meta-analysis. LANCET GLOBAL HEALTH 2020; 8:e1195-e1202. [PMID: 32827481 DOI: 10.1016/s2214-109x(20)30262-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since licensure in 2006, rotavirus vaccines have been introduced in more than 100 countries. The efficacy of rotavirus vaccines is variable in settings with different child mortality levels. We did an updated review of the published literature to assess the real-world effectiveness of rotavirus vaccines in a range of settings. METHODS In this literature review and meta-analysis, we included observational, post-licensure studies of rotavirus vaccines, published from Jan 1, 2006, to Dec 31, 2019, in English, with laboratory-confirmed rotavirus as the endpoint. In addition to product-specific results for Rotarix (GlaxoSmithKline Biologicals, Rixensart, Belgium) or RotaTeq (Merck, West Point, PA, USA), we included Rotarix and RotaTeq mixed series, and non-product-specific vaccine effectiveness estimates from countries where Rotarix and RotaTeq are both available. Studies of other infant rotavirus vaccines were excluded because little or no post-licensure data were available. We fitted random-effects regression models to estimate vaccine effectiveness among children younger than 12 months and aged 12-23 months. On the basis of 2017 UNICEF mortality estimates for children younger than 5 years, countries were stratified as having low (lowest quartile), medium (second quartile), or high mortality (third and fourth quartiles). FINDINGS We identified and screened 1703 articles, of which 60 studies from 32 countries were included. 31 studies were from countries with low child mortality, eight were from medium-mortality countries, and 21 were from high-mortality countries. Rotarix vaccine effectiveness against laboratory-confirmed rotavirus among children younger than 12 months old was 86% (95% CI 81-90) in low-mortality countries, 77% (66-85) in medium-mortality countries, and 63% (54-70) in high-mortality countries. Rotarix vaccine effectiveness among children aged 12-23 months was 86% (81-90) in low-mortality countries, 54% (23-73) in medium-mortality countries, and 58% (38-72) in high-mortality countries. RotaTeq vaccine effectiveness among children younger than 12 months was 86% (76-92) in low-mortality countries and 66% (51-76) in high-mortality countries. RotaTeq vaccine effectiveness among children aged 12-23 months was 84% (79-89) in low-mortality countries. There was no substantial heterogeneity (I2 range: 0-36%). Median vaccine effectiveness in low-mortality countries was similar for Rotarix (83%; IQR 78-91), RotaTeq (85%; 81-92), mixed series (86%; 70-91), and non-product-specific (89%; 75-91) vaccination. INTERPRETATION Rotavirus vaccines were effective in preventing rotavirus diarrhoea, with higher performance in countries with lower child mortality. FUNDING None.
Collapse
|
16
|
Overview of the Development, Impacts, and Challenges of Live-Attenuated Oral Rotavirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030341. [PMID: 32604982 PMCID: PMC7565912 DOI: 10.3390/vaccines8030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Safety, efficacy, and cost-effectiveness are paramount to vaccine development. Following the isolation of rotavirus particles in 1969 and its evidence as an aetiology of severe dehydrating diarrhoea in infants and young children worldwide, the quest to find not only an acceptable and reliable but cost-effective vaccine has continued until now. Four live-attenuated oral rotavirus vaccines (LAORoVs) (Rotarix®, RotaTeq®, Rotavac®, and RotaSIIL®) have been developed and licensed to be used against all forms of rotavirus-associated infection. The efficacy of these vaccines is more obvious in the high-income countries (HIC) compared with the low- to middle-income countries (LMICs); however, the impact is far exceeding in the low-income countries (LICs). Despite the rotavirus vaccine efficacy and effectiveness, more than 90 countries (mostly Asia, America, and Europe) are yet to implement any of these vaccines. Implementation of these vaccines has continued to suffer a setback in these countries due to the vaccine cost, policy, discharging of strategic preventive measures, and infrastructures. This review reappraises the impacts and effectiveness of the current live-attenuated oral rotavirus vaccines from many representative countries of the globe. It examines the problems associated with the low efficacy of these vaccines and the way forward. Lastly, forefront efforts put forward to develop initial procedures for oral rotavirus vaccines were examined and re-connected to today vaccines.
Collapse
|
17
|
Khagayi S, Omore R, Otieno GP, Ogwel B, Ochieng JB, Juma J, Apondi E, Bigogo G, Onyango C, Ngama M, Njeru R, Owor BE, Mwanga MJ, Addo Y, Tabu C, Amwayi A, Mwenda JM, Tate JE, Parashar UD, Breiman RF, Nokes DJ, Verani JR. Effectiveness of Monovalent Rotavirus Vaccine Against Hospitalization With Acute Rotavirus Gastroenteritis in Kenyan Children. Clin Infect Dis 2020; 70:2298-2305. [PMID: 31326980 PMCID: PMC7245145 DOI: 10.1093/cid/ciz664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Rotavirus remains a leading cause of pediatric diarrheal illness and death worldwide. Data on rotavirus vaccine effectiveness in sub-Saharan Africa are limited. Kenya introduced monovalent rotavirus vaccine (RV1) in July 2014. We assessed RV1 effectiveness against rotavirus-associated hospitalization in Kenyan children. METHODS Between July 2014 and December 2017, we conducted surveillance for acute gastroenteritis (AGE) in 3 Kenyan hospitals. From children age-eligible for ≥1 RV1 dose, with stool tested for rotavirus and confirmed vaccination history we compared RV1 coverage among rotavirus positive (cases) vs rotavirus negative (controls) using multivariable logistic regression and calculated effectiveness based on adjusted odds ratio. RESULTS Among 677 eligible children, 110 (16%) were rotavirus positive. Vaccination data were available for 91 (83%) cases; 51 (56%) had 2 RV1 doses and 33 (36%) 0 doses. Among 567 controls, 418 (74%) had vaccination data; 308 (74%) had 2 doses and 69 (16%) 0 doses. Overall 2-dose effectiveness was 64% (95% confidence interval [CI], 35%-80%); effectiveness was 67% (95% CI, 30%-84%) for children aged <12 months and 72% (95% CI, 10%-91%) for children aged ≥12 months. Significant effectiveness was seen in children with normal weight for age, length/height for age and weight for length/height; however, no protection was found among underweight, stunted, or wasted children. CONCLUSIONS RV1 in the Kenyan immunization program provides significant protection against rotavirus-associated hospitalization which persisted beyond infancy. Malnutrition appears to diminish vaccine effectiveness. Efforts to improve rotavirus uptake and nutritional status are important to maximize vaccine benefit.
Collapse
Affiliation(s)
- Sammy Khagayi
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu
| | - Richard Omore
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu
| | - Grieven P Otieno
- Centre for Geographic Medicine Research–Coast, KEMRI–Wellcome Trust Research Programme, Kilifi, and
| | - Billy Ogwel
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu
| | - John B Ochieng
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu
| | - Jane Juma
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu
| | - Evans Apondi
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu
| | - Godfrey Bigogo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), Kisumu
| | - Clayton Onyango
- Division of Global Health Protection, Centers for Disease Control and Prevention (CDC)–Kenya, Kisumu, Kenya
| | - Mwanajuma Ngama
- Centre for Geographic Medicine Research–Coast, KEMRI–Wellcome Trust Research Programme, Kilifi, and
| | - Regina Njeru
- Centre for Geographic Medicine Research–Coast, KEMRI–Wellcome Trust Research Programme, Kilifi, and
| | - Betty E Owor
- Centre for Geographic Medicine Research–Coast, KEMRI–Wellcome Trust Research Programme, Kilifi, and
| | - Mike J Mwanga
- Centre for Geographic Medicine Research–Coast, KEMRI–Wellcome Trust Research Programme, Kilifi, and
| | - Yaw Addo
- Emory Global Health Institute, Emory University, Atlanta, Georgia
| | - Collins Tabu
- National Vaccines and Immunisations Programme, and
| | - Anyangu Amwayi
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya
| | - Jason M Mwenda
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Jacqueline E Tate
- Viral Gastroenteritis Branch, Division of Viral Diseases, CDC, Atlanta, Georgia
| | - Umesh D Parashar
- Viral Gastroenteritis Branch, Division of Viral Diseases, CDC, Atlanta, Georgia
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, Georgia
| | - D James Nokes
- Centre for Geographic Medicine Research–Coast, KEMRI–Wellcome Trust Research Programme, Kilifi, and
- School of Life Sciences, and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Jennifer R Verani
- Division of Global Health Protection, CDC–Kenya, Nairobi, Kenya; and
- Division of Global Health Protection, CDC, Atlanta, Georgia
| |
Collapse
|
18
|
Soares‐Weiser K, Bergman H, Henschke N, Pitan F, Cunliffe N. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2019; 2019:CD008521. [PMID: 31684685 PMCID: PMC6816010 DOI: 10.1002/14651858.cd008521.pub5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac. RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence). RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence). Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up. Children vaccinated and followed up for two years Rotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence). There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events. 21 October 2019 Up to date All studies incorporated from most recent search All published trials found in the last search (4 Apr, 2018) were included and 15 ongoing studies are currently awaiting completion (see 'Characteristics of ongoing studies').
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| | | |
Collapse
|
19
|
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac.RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence).RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence).Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up.Children vaccinated and followed up for two yearsRotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence).There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events.
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| |
Collapse
|
20
|
Steele A, Victor J, Carey M, Tate J, Atherly D, Pecenka C, Diaz Z, Parashar U, Kirkwood C. Experiences with rotavirus vaccines: can we improve rotavirus vaccine impact in developing countries? Hum Vaccin Immunother 2019; 15:1215-1227. [PMID: 30735087 PMCID: PMC6663148 DOI: 10.1080/21645515.2018.1553593] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Rotavirus vaccines have been introduced into over 95 countries globally and demonstrate substantial impact in reducing diarrheal mortality and diarrheal hospitalizations in young children. The vaccines are also considered by WHO as "very cost effective" interventions for young children, particularly in countries with high diarrheal disease burden. Yet the full potential impact of rotavirus immunization is yet to be realized. Large countries with big birth cohorts and where disease burden is high in Africa and Asia have not yet implemented rotavirus vaccines at all or at scale. Significant advances have been made demonstrating the impact of the vaccines in low- and lower-middle income countries, yet the modest effectiveness of the vaccines in these settings is challenging. Current research highlights these challenges and considers alternative strategies to overcome them, including alternative immunization schedules and host factors that may inform us of new opportunities.
Collapse
Affiliation(s)
- A.D. Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - J.C. Victor
- Policy, Access and Innovation, Center for Vaccine Innovation and Access, Seattle, WA, USA
| | - M.E. Carey
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - J.E. Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - D.E. Atherly
- Policy, Access and Innovation, Center for Vaccine Innovation and Access, Seattle, WA, USA
| | - C. Pecenka
- Policy, Access and Innovation, Center for Vaccine Innovation and Access, Seattle, WA, USA
| | - Z. Diaz
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - U.D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C.D. Kirkwood
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
21
|
Kieser S, Sarker SA, Sakwinska O, Foata F, Sultana S, Khan Z, Islam S, Porta N, Combremont S, Betrisey B, Fournier C, Charpagne A, Descombes P, Mercenier A, Berger B, Brüssow H. Bangladeshi children with acute diarrhoea show faecal microbiomes with increased Streptococcus abundance, irrespective of diarrhoea aetiology. Environ Microbiol 2018; 20:2256-2269. [PMID: 29786169 DOI: 10.1111/1462-2920.14274] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
We report streptococcal dysbiosis in acute diarrhoea irrespective of aetiology. Compared with 20 healthy local controls, 71 Bangladeshi children hospitalized with acute diarrhoea (AD) of viral, mixed viral/bacterial, bacterial and unknown aetiology showed a significantly decreased bacterial diversity with loss of pathways characteristic for the healthy distal colon microbiome (mannan degradation, methylerythritol phosphate and thiamin biosynthesis), an increased proportion of faecal streptococci belonging to the Streptococcus bovis and Streptococcus salivarius species complexes, and an increased level of E. coli-associated virulence genes. No enteropathogens could be attributed to a subgroup of patients. Elevated lytic coliphage DNA was detected in 2 out of 5 investigated enteroaggregative E. coli (EAEC)-infected patients. Streptococcal outgrowth in AD is discussed as a potential nutrient-driven consequence of glucose provided with oral rehydration solution.
Collapse
Affiliation(s)
- Silas Kieser
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Shafiqul A Sarker
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Olga Sakwinska
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Francis Foata
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Shamima Sultana
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Zeenat Khan
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Shoheb Islam
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Nadine Porta
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Séverine Combremont
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Bertrand Betrisey
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Coralie Fournier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Aline Charpagne
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Annick Mercenier
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Bernard Berger
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Harald Brüssow
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| |
Collapse
|
22
|
Jonesteller CL, Burnett E, Yen C, Tate JE, Parashar UD. Effectiveness of Rotavirus Vaccination: A Systematic Review of the First Decade of Global Postlicensure Data, 2006-2016. Clin Infect Dis 2018; 65:840-850. [PMID: 28444323 DOI: 10.1093/cid/cix369] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Two rotavirus vaccines, Rotarix (RV1) and RotaTeq (RV5), were licensed for global use in 2006. A systematic review of 48 peer- reviewed articles with postlicensure data from 24 countries showed a median RV1 vaccine effectiveness (VE) of 84%, 75%, and 57% in countries with low, medium, and high child mortality, respectively, and RV5 VE of 90% and 45% in countries with low and high child mortality, respectively. A partial vaccine series provided considerable protection, but not to the same level as a full series. VE tended to decline in the second year of life, particularly in medium- and high-mortality settings, and tended to be greater against more severe rotavirus disease. Postlicensure data from countries across geographic regions and with different child mortality levels demonstrate that under routine use, both RV1 and RV5 are effective against rotavirus disease, supporting the World Health Organization recommendation that all countries introduce rotavirus vaccine into their national immunization program.
Collapse
Affiliation(s)
| | - Eleanor Burnett
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Catherine Yen
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | |
Collapse
|
23
|
Deen J, Lopez AL, Kanungo S, Wang XY, Anh DD, Tapia M, Grais RF. Improving rotavirus vaccine coverage: Can newer-generation and locally produced vaccines help? Hum Vaccin Immunother 2017; 14:495-499. [PMID: 29135339 PMCID: PMC5806648 DOI: 10.1080/21645515.2017.1403705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
There are two internationally available WHO-prequalified oral rotavirus vaccines (Rotarix and RotaTeq), two rotavirus vaccines licensed in India (Rotavac and Rotasiil), one in China (Lanzhou lamb rotavirus vaccine) and one in Vietnam (Rotavin-M1), and several candidates in development. Rotavirus vaccination has been rolled out in Latin American countries and is beginning to be deployed in sub-Saharan African countries but middle- and low-income Asian countries have lagged behind in rotavirus vaccine introduction. We provide a mini-review of the leading newer-generation rotavirus vaccines and compare them with Rotarix and RotaTeq. We discuss how the development and future availability of newer-generation rotavirus vaccines that address the programmatic needs of poorer countries may help scale-up rotavirus vaccination where it is needed.
Collapse
Affiliation(s)
- Jacqueline Deen
- a Institute of Child Health and Human Development, University of the Philippines Manila-National Institutes of Health , Manila , Philippines
| | - Anna Lena Lopez
- a Institute of Child Health and Human Development, University of the Philippines Manila-National Institutes of Health , Manila , Philippines
| | - Suman Kanungo
- b Division of Epidemiology , ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata , Kolkata , West Bengal , India
| | - Xuan-Yi Wang
- c Key Laboratory of Medical Molecular Virology of MoE & MoH, and Institutes of Biomedical Sciences , Fudan University , Shanghai , China
| | - Dang Duc Anh
- d National Institute of Hygiene and Epidemiology , Hanoi , Vietnam
| | - Milagritos Tapia
- e Center for Vaccine Development, University School of Medicine , Baltimore , MD , USA
| | | |
Collapse
|
24
|
The Need for Rotavirus Vaccine Introduction in the National Immunization Program of More Than 100 Countries around the World. Infect Control Hosp Epidemiol 2017; 39:124-125. [PMID: 29157329 DOI: 10.1017/ice.2017.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Shah MP, Tate JE, Mwenda JM, Steele AD, Parashar UD. Estimated reductions in hospitalizations and deaths from childhood diarrhea following implementation of rotavirus vaccination in Africa. Expert Rev Vaccines 2017; 16:987-995. [PMID: 28832219 PMCID: PMC6829907 DOI: 10.1080/14760584.2017.1371595] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rotavirus is the leading cause of hospitalizations and deaths from diarrhea. 33 African countries had introduced rotavirus vaccines by 2016. We estimate reductions in rotavirus hospitalizations and deaths for countries using rotavirus vaccination in national immunization programs and the potential of vaccine introduction across the continent. Areas covered: Regional rotavirus burden data were reviewed to calculate hospitalization rates, and applied to under-5 population to estimate baseline hospitalizations. Rotavirus mortality was based on 2013 WHO estimates. Regional pre-licensure vaccine efficacy and post-introduction vaccine effectiveness studies were used to estimate summary effectiveness, and vaccine coverage was applied to calculate prevented hospitalizations and deaths. Uncertainties around input parameters were propagated using boot-strapping simulations. In 29 African countries that introduced rotavirus vaccination prior to end 2014, 134,714 (IQR 112,321-154,654) hospitalizations and 20,986 (IQR 18,924-22,822) deaths were prevented in 2016. If all African countries had introduced rotavirus vaccines at benchmark immunization coverage, 273,619 (47%) (IQR 227,260-318,102) hospitalizations and 47,741 (39%) (IQR 42,822-52,462) deaths would have been prevented. Expert commentary: Rotavirus vaccination has substantially reduced hospitalizations and deaths in Africa; further reductions are anticipated as additional countries implement vaccination. These estimates bolster wider introduction and continued support of rotavirus vaccination programs.
Collapse
Affiliation(s)
- Minesh P. Shah
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| | - A. Duncan Steele
- Enteric and Diarrheal Diseases, Bill and Melinda Gates Foundation, Seattle, USA
| | - Umesh D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
26
|
Mo Z, Mo Y, Li M, Tao J, Yang X, Kong J, Wei D, Fu B, Liao X, Chu J, Qiu Y, Hille DA, Nelson M, Kaplan SS. Efficacy and safety of a pentavalent live human-bovine reassortant rotavirus vaccine (RV5) in healthy Chinese infants: A randomized, double-blind, placebo-controlled trial. Vaccine 2017; 35:5897-5904. [PMID: 28935470 DOI: 10.1016/j.vaccine.2017.08.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND A randomized, double-blind, placebo-controlled multicenter trial was conducted in healthy Chinese infants to assess the efficacy and safety of a pentavalent live human-bovine reassortant rotavirus vaccine (RotaTeq™, RV5) against rotavirus gastroenteritis (RVGE). METHODS 4040 participants aged 6-12weeks were enrolled and randomly assigned to either 3 oral doses of RV5 (n=2020) or placebo (n=2020), administered ∼4weeks apart. The participants also received OPV and DTaP in a concomitant or staggered fashion. The primary objective was to evaluate vaccine efficacy (VE) against naturally-occurring RVGE at least 14days following the third dose. Key secondary objectives included: VE against naturally-occurring severe RVGE and VE against severe and any-severity RVGE caused by rotavirus serotypes contained in the vaccine, occurring at least 14days after the third dose. All adverse events (AEs) were collected for 30days following each dose. Serious AEs (SAEs) and intussusception cases were collected during the entire study. (ClinicalTrials.gov registry: NCT02062385). RESULTS VE against RVGE of any-severity caused by any serotype was 69.3% (95% CI: 54.5, 79.7). The secondary efficacy analysis showed an efficacy of: 78.9% (95% CI: 59.1, 90.1) against severe RVGE caused by any serotype; 69.9% (95% CI: 55.2, 80.3) and 78.9% (95% CI: 59.1, 90.1) against any-severity and severe RVGE caused by serotypes contained in the vaccine, respectively. Within 30days following any vaccination, 53.5% (1079/2015) and 53.3% (1077/2019) of participants reported at least one AE, and 5.8% (116/2015) and 5.7% (116/2019) reported SAEs in the vaccine and placebo groups, respectively. No SAEs were considered vaccine-related in recipients of RV5. Two intussusception cases were reported in recipients of RV5 who recovered after receiving treatment. Neither was considered vaccine-related. CONCLUSIONS In Chinese infants, RV5 was efficacious against any-severity and severe RVGE caused by any serotype and generally well-tolerated with respect to AEs.
Collapse
Affiliation(s)
- Zhaojun Mo
- Guangxi Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Yi Mo
- Guangxi Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Mingqiang Li
- Liuzhou City Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Junhui Tao
- Liujiang County Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Xu Yang
- Sanjiang County Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Jilian Kong
- Liucheng County Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Dingkai Wei
- Rongan County Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Botao Fu
- Luzhai County Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Xueyan Liao
- Merck Sharp & Dohme R&D (China) Co., Ltd., Beijing, China
| | - Jianli Chu
- Merck Sharp & Dohme R&D (China) Co., Ltd., Beijing, China
| | - Yuanzheng Qiu
- Merck Sharp & Dohme R&D (China) Co., Ltd., Beijing, China
| | | | | | | |
Collapse
|
27
|
Sultana S, Sarker SA, Brüssow H. What happened toKoch's postulates in diarrhoea? Environ Microbiol 2017; 19:2926-2934. [DOI: 10.1111/1462-2920.13787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Shamima Sultana
- Clinical Sciences DepartmentInternational Center for Diarrhoeal Disease ResearchDhaka Bangladesh
| | - Shafiqul A. Sarker
- Clinical Sciences DepartmentInternational Center for Diarrhoeal Disease ResearchDhaka Bangladesh
| | - Harald Brüssow
- Department of Gut Ecology, Host‐Microbe Interaction GroupNestlé Research CenterLausanne Switzerland
| |
Collapse
|
28
|
Gasparinho C, Piedade J, Mirante MC, Mendes C, Mayer C, Vaz Nery S, Brito M, Istrate C. Characterization of rotavirus infection in children with acute gastroenteritis in Bengo province, Northwestern Angola, prior to vaccine introduction. PLoS One 2017; 12:e0176046. [PMID: 28422995 PMCID: PMC5397047 DOI: 10.1371/journal.pone.0176046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rotavirus group A (RVA) is considered the leading cause of pediatric diarrhea, responsible for the high burden of diarrheal diseases in sub-Saharan Africa. Despite recent studies, the existent data are scarce for some African countries like Angola, a country with one of the highest RVA-related death estimates. The aim of this study was to determine the RVA detection rate and circulating genotypes in children less than five years of age with acute gastroenteritis attended at the Bengo General Hospital in Caxito, Bengo province, Angola, before vaccine introduction. METHODS Between September 2012 and December 2013, 342 fecal specimens were collected from children enrolled. Positive samples for RVA by immunochromatographic rapid test were G and P-typed by hemi-nested type-specific multiplex PCR, and subgrouped for the VP6 gene. VP4 and VP7 genes from a subset of samples were sequenced for phylogenetic analysis. RESULTS During the study period, a high RVA detection rate was registered (25.1%, 86/342). The age group most affected by RVA infection includes children under 6 months of age (p<0.01). Vomiting was highly associated with RVA infection (72.1%; p<0.001). From the 86 RVA-positive samples, 72 (83.7%) were genotyped. The most prevalent genotype was G1P[8] (34/72; 47.2%), followed by the uncommon G1P[6] (21/72; 29.2%), and G2P[4] (9/72; 12.5%). Only two G-types were found: G1 (60/72; 83.3%) and G2 (11/72; 15.3%). Among the P-genotypes, P[8] was the most prevalent (34/72; 47.2%), followed by P[6] (22/72; 30.6%) and P[4] (9/72; 12.5%). In the phylogenetic trees, the identified G and P-types clustered tightly together and with reference sequences in specific monophyletic groups, with highly significant bootstrap values (≥92%). CONCLUSION This pre-vaccination study revealed, for the first time for Bengo province (Angola), the RVA genotype profile, including phylogenetic relationships, and a high RVA detection rate, supporting the immediate introduction of a RVA vaccine in the national immunization programme.
Collapse
Affiliation(s)
- Carolina Gasparinho
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Província do Bengo, Angola
| | - João Piedade
- Global Health and Tropical Medicine (GHTM), Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Maria Clara Mirante
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Província do Bengo, Angola
| | - Cristina Mendes
- Global Health and Tropical Medicine (GHTM), Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Carlos Mayer
- Hospital Geral do Bengo, Caxito, Província do Bengo, Angola
| | - Susana Vaz Nery
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Província do Bengo, Angola
- Research School of Population Health, The Australian National University, Canberra, Australia
| | - Miguel Brito
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Província do Bengo, Angola
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisbon, Portugal
| | - Claudia Istrate
- Global Health and Tropical Medicine (GHTM), Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
29
|
Velázquez RF, Linhares AC, Muñoz S, Seron P, Lorca P, DeAntonio R, Ortega-Barria E. Efficacy, safety and effectiveness of licensed rotavirus vaccines: a systematic review and meta-analysis for Latin America and the Caribbean. BMC Pediatr 2017; 17:14. [PMID: 28086819 PMCID: PMC5237165 DOI: 10.1186/s12887-016-0771-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/30/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND RotaTeq™ (RV5; Merck & Co. Inc., USA) and Rotarix™ (RV1, GlaxoSmithKline, Belgium) vaccines, developed to prevent rotavirus diarrhea in children under five years old, were both introduced into national immunization programs in 2006. As many countries in Latin America and the Caribbean have included either RV5 or RV1 in their routine childhood vaccination programs, we conducted a systematic review and meta-analysis to analyze efficacy, safety and effectiveness data from the region. METHODS We conducted a systematic search in PubMed, EMBASE, Scielo, Lilacs and the Cochrane Central Register, for controlled efficacy, safety and effectiveness studies published between January 2000 until December 2011, on RV5 and RV1 across Latin America (where both vaccines are available since 2006). The primary outcome measures were: rotavirus-related gastroenteritis of any severity; rotavirus emergency department visits and hospitalization; and severe adverse events. RESULTS The results of the meta-analysis for efficacy show that RV1 reduced the risk of any-severity rotavirus-related gastroenteritis by 65% (relative risk (RR) 0.35, 95% confidence interval (CI) 0.25; 0.50), and of severe gastroenteritis by 82% (RR 0.18, 95%CI 0.12; 0.26) versus placebo. In trials, both vaccines significantly reduced the risk of hospitalization and emergency visits by 85% (RR 0.15, 95%CI 0.09; 0.25) for RV1 and by 90% (RR 0.099, 95%CI 0.012; 0.77) for RV5. Vaccination with RV5 or RV1 did not increase the risk of death, intussusception, or other severe adverse events which were previously associated with the first licensed rotavirus vaccine. Real-world effectiveness studies showed that both vaccines reduced rotavirus hospitalization in the region by around 45-50% for RV5 (for 1 to 3 doses, respectively), and, by around 50-80% for RV1 (for 1 to 2 doses, respectively). For RV1, effectiveness against hospitalization was highest (around 80-96%) for children vaccinated before 12 months of age, compared with 5-60% effectiveness in older children. Both vaccines were most effective in preventing more severe gastroenteritis (70% for RV5 and 80-90% for RV1) and severe gastroenteritis (50% for RV5 and 70-80% for RV1). CONCLUSION This systematic literature review confirms rotavirus vaccination has been proven effective and well tolerated in protecting children in Latin America and the Caribbean.
Collapse
Affiliation(s)
- Raúl F. Velázquez
- Unidad de Investigación Médica en Enfermedades Infecciosas, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Alexandre C. Linhares
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Virology Section, Av. Almirante Barroso 492, 66.090-000 Belém, Pará Brazil
| | - Sergio Muñoz
- Centro de Excelencia Capacitación, Investigación y Gestión para la Salud basada en Evidencias CIGES, Universidad de La Frontera, Temuco, Chile
| | - Pamela Seron
- Centro de Excelencia Capacitación, Investigación y Gestión para la Salud basada en Evidencias CIGES, Universidad de La Frontera, Temuco, Chile
| | - Pedro Lorca
- Centro de Excelencia Capacitación, Investigación y Gestión para la Salud basada en Evidencias CIGES, Universidad de La Frontera, Temuco, Chile
| | | | | |
Collapse
|
30
|
Muhsen K, Kassem E, Rubenstein U, Goren S, Ephros M, Cohen D, Shulman LM. Incidence of rotavirus gastroenteritis hospitalizations and genotypes, before and five years after introducing universal immunization in Israel. Vaccine 2016; 34:5916-5922. [PMID: 27771186 DOI: 10.1016/j.vaccine.2016.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Uncertainty exists about the sustainability of the reduction in rotavirus gastroenteritis (RVGE) following the introduction of rotavirus vaccines into national immunization programs, and on its potential impact on circulating genotypes. RotaTeq was introduced into the Israeli national immunization program in December 2010, and vaccination coverage is around 80%. AIMS To examine the change in incidence of RVGE hospitalization and rotavirus genotypes, during the five years after introduction of RotaTeq into the Israeli national immunization program. METHODS Data were obtained prospectively on hospitalization of children aged 0-59months due to acute gastroenteritis (N=7346) from three hospitals in northern Israel. Stool samples were tested for rotavirus by immunochromatography. Rotavirus was genotyped (N=506) by RT-PCR and/or sequencing. RESULTS The average incidence of RVGE hospitalization declined by 61.0% (95% CI 49.0-73.4%), from 5.6 per 1000 (95% CI 5.0-6.2) in the pre-universal immunization period (2008-2010) to 2.2 per 1000 (95% CI 1.8-2.5) during the universal immunization period (2012-2015), but yearly fluctuations were still observed. The most common genotypes in the pre-universal immunization period were G1P[8] (35.3%) followed by G2P[4] (15.5%), G3P[8] (8.8%), G4P[8] (4.3%) and G9P[8] (4.3%), and 19.5% were mixed infections. The dominance of G1P[8] continued into the universal immunization period (48.6%), followed by G3P[8] (21.5%), G9P[8] (15.9%) and G12P[8] (4.7%), while mixed rotavirus infections were no longer detected. CONCLUSIONS Universal immunization with RotaTeq in Israel was associated a sustained reduction in RVGE hospitalization. It is unclear whether changes in the circulating rotavirus genotypes are due to vaccine-induced selective pressure. Assessment of the long-term impact of rotavirus vaccination on the incidence of rotavirus gastroenteritis and continued strain surveillance is warranted.
Collapse
Affiliation(s)
- Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| | - Eias Kassem
- Department of Pediatrics, Hillel Yaffe Medical Center, Hadera, Israel
| | - Uri Rubenstein
- Department of Pediatrics, Laniado Medical Center, Netanya, Israel
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Moshe Ephros
- Department of Pediatrics, Carmel Medical Center, Haifa, Israel; Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Lester M Shulman
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel; Central Virology Laboratory, Ministry of Health, Tel Hashomer, Israel
| |
Collapse
|
31
|
Phan MVT, Anh PH, Cuong NV, Munnink BBO, van der Hoek L, My PT, Tri TN, Bryant JE, Baker S, Thwaites G, Woolhouse M, Kellam P, Rabaa MA, Cotten M. Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. Virus Evol 2016; 2:vew027. [PMID: 28748110 PMCID: PMC5522372 DOI: 10.1093/ve/vew027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coordinated and synchronous surveillance for zoonotic viruses in both human clinical cases and animal reservoirs provides an opportunity to identify interspecies virus movement. Rotavirus (RV) is an important cause of viral gastroenteritis in humans and animals. In this study, we document the RV diversity within co-located humans and animals sampled from the Mekong delta region of Vietnam using a primer-independent, agnostic, deep sequencing approach. A total of 296 stool samples (146 from diarrhoeal human patients and 150 from pigs living in the same geographical region) were directly sequenced, generating the genomic sequences of sixty human rotaviruses (all group A) and thirty-one porcine rotaviruses (thirteen group A, seven group B, six group C, and five group H). Phylogenetic analyses showed the co-circulation of multiple distinct RV group A (RVA) genotypes/strains, many of which were divergent from the strain components of licensed RVA vaccines, as well as considerable virus diversity in pigs including full genomes of rotaviruses in groups B, C, and H, none of which have been previously reported in Vietnam. Furthermore, the detection of an atypical RVA genotype constellation (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1) in a human patient and a pig from the same region provides some evidence for a zoonotic event.
Collapse
Affiliation(s)
- My V T Phan
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Pham Hong Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Bas B Oude Munnink
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phuc Tran My
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tue Ngo Tri
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,London School of Tropical Medicine and Hygiene, London, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mark Woolhouse
- Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK
| | - Paul Kellam
- Kymab Inc., Cambridge, UK.,Imperial College, London, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew Cotten
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
32
|
Dbaibo G, Tatochenko V, Wutzler P. Issues in pediatric vaccine-preventable diseases in low- to middle-income countries. Hum Vaccin Immunother 2016; 12:2365-77. [PMID: 27322436 PMCID: PMC5027713 DOI: 10.1080/21645515.2016.1181243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 11/25/2022] Open
Abstract
The highest burden of pediatric vaccine-preventable disease is found in developing nations where resource constraints pose the greatest challenge, impacting disease diagnosis and surveillance as well as the implementation of large scale vaccination programmes. In November 2012, a Working Group Meeting convened in Casablanca to describe and discuss the status with respect to 8 vaccine-preventable diseases (pertussis, pneumococcal disease, measles-mumps-rubella-varicella (MMRV), rotavirus and meningococcal meningitis) to identify and consider ways of overcoming obstacles to pediatric vaccine implementation. Experts from Europe, Russia, the Commonwealth of Independent States, the Middle East, Africa and South East Asia participated in the meeting. A range of region-specific needs and barriers to uptake were discussed. The aim of this article is to provide a summary of the ongoing status with respect to pediatric vaccine preventable disease in the countries represented, and the experts' opinions and recommendations with respect to pediatric vaccine implementation.
Collapse
Affiliation(s)
- Ghassan Dbaibo
- Center for Infectious Diseases Research, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | | | - Peter Wutzler
- Friedrich Schiller University of Jena, Institute of Virology and Antiviral Therapy, Jena, Germany
| |
Collapse
|
33
|
Epidemiology, Seasonality and Factors Associated with Rotavirus Infection among Children with Moderate-to-Severe Diarrhea in Rural Western Kenya, 2008-2012: The Global Enteric Multicenter Study (GEMS). PLoS One 2016; 11:e0160060. [PMID: 27494517 PMCID: PMC4975461 DOI: 10.1371/journal.pone.0160060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate factors associated with rotavirus diarrhea and to describe severity of illness among children <5 years old with non-dysenteric, moderate-to-severe diarrhea (MSD) in rural western Kenya. Methods We analyzed data from children <5 years old with non-dysenteric MSD enrolled as cases in the Global Enteric Multicenter Study (GEMS) in Kenya. A non-dysenteric MSD case was defined as a child with ≥3 loose stools in 24 hrs. and one or more of the following: sunken eyes, skin tenting, intravenous rehydration, or hospitalization, who sought care at a sentinel health center within 7 days of illness onset. Rotavirus antigens in stool samples were detected by ELISA. Demographic and clinical information was collected at enrollment and during a single follow-up home visit at approximately 60 days. We analyzed diarrhea severity using a GEMS 17 point numerical scoring system adapted from the Vesikari score. We used logistic regression to evaluate factors associated with rotavirus infection. Results From January 31, 2008 to September 30, 2012, among 1,637 (92%) non-dysenteric MSD cases, rotavirus was detected in stools of 245 (15.0%). Rotavirus-positive compared with negative cases were: younger (median age, 8 vs. 13 months; p<0.0001), had more severe illness (median severity score, 9 vs 8; p<0.0001) and had to be hospitalized more frequently (37/245 [15.1%] vs. 134/1,392 [9.6%]), p <0.013). Independent factors associated with rotavirus infection included age 0–11 months old (aOR = 5.29, 95% CI 3.14–8.89) and presenting with vomiting ≥3 times/24hrs (aOR = 2.58, 95% CI [1.91–3.48]). Rotavirus was detected more commonly in warm and dry months than in the cool and rainy months (142/691 [20%] vs 70/673 [10%]) p<0.0001). Conclusions Diarrhea caused by rotavirus is associated with severe symptoms leading to hospitalization. Consistent with other settings, infants had the greatest burden of disease.
Collapse
|
34
|
Heylen E, Zeller M, Ciarlet M, Lawrence J, Steele D, Van Ranst M, Matthijnssens J. Human P[6] Rotaviruses From Sub-Saharan Africa and Southeast Asia Are Closely Related to Those of Human P[4] and P[8] Rotaviruses Circulating Worldwide. J Infect Dis 2016; 214:1039-49. [PMID: 27471320 DOI: 10.1093/infdis/jiw247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND P[6] rotaviruses have been circulating with a high prevalence in African and, to a more limited extent, Asian countries, but they have not been highly prevalent in other parts of the world. METHODS To investigate the genomic relationship between African and Asian human P[6] rotaviruses and P[4] and P[8] rotaviruses circulating worldwide, we sequenced 39 P[6] strains, collected in Ghana, Mali, Kenya and Bangladesh, providing the largest data set of P[6] rotavirus genomes isolated in low-income countries or anywhere else in the world that has been published thus far. RESULTS Overall, the data indicate that the genetic backbone of human P[6] strains from the low-income countries are similar to those of P[4] or P[8] strains circulating worldwide. CONCLUSIONS The observation that gene segment 4 is the main differentiator between human P[6] and non-P[6] strains suggests that the VP4 spike protein is most likely one of the main reasons preventing the rapid spread of P[6] strains to the rest of the world despite multiple introductions. These observations reinforce previous findings about the receptor specificity of P[6] rotavirus strains.
Collapse
Affiliation(s)
- Elisabeth Heylen
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Mark Zeller
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Max Ciarlet
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Jody Lawrence
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Duncan Steele
- Vaccines and Immunization, PATH, Seattle, Washington
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| |
Collapse
|
35
|
Tennant SM, Steele AD, Pasetti MF. Highlights of the 8th International Conference on Vaccines for Enteric Diseases: the Scottish Encounter To Defeat Diarrheal Diseases. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:272-81. [PMID: 26936100 PMCID: PMC4820512 DOI: 10.1128/cvi.00082-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diarrhea is a leading cause of morbidity and of mortality; the burden of disease affects individuals of all ages but particularly young children, especially those living in poor regions where the disease is endemic. It is also a health concern for international travelers to these areas. Experts on vaccines and enteric infections and advocates for global health improvement gathered in Scotland from 8 to 10 July 2015 to discuss recent advances in the assessment and understanding of the burden of enteric diseases and progress in the development and implementation of strategies to prevent these infections. Highlights of the meeting included description of advances in molecular assays to estimate pathogen-specific prevalence, methods to model epidemiologic trends, novel approaches to generate broad-spectrum vaccines, new initiatives to evaluate vaccine performance where they are most needed, renewed interest in human challenge models, immunological readouts as predictors of vaccine efficacy, maternal immunization to prevent enteric infections, and the impact of maternal immunity on the vaccine take of infants. A follow-up scientific gathering to advance Shigella and enterotoxigenic Escherichia coli (ETEC) vaccine efforts will be held from 28 to 30 June 2016 in Washington, DC.
Collapse
Affiliation(s)
- Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Esteves A, Nordgren J, Pereira J, Fortes F, Dimbu R, Saraiva N, Mendes C, Istrate C. Molecular epidemiology of rotavirus in four provinces of Angola before vaccine introduction. J Med Virol 2016; 88:1511-20. [DOI: 10.1002/jmv.24510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Aida Esteves
- Global Health and Tropical Medicine (GHTM), Medical Microbiology Unit, Institute of Hygiene and Tropical Medicine; NOVA University of Lisbon; Lisbon Portugal
| | - Johan Nordgren
- Medical Faculty, Division of Molecular Virology, Department of Clinical and Experimental Medicine; Linkoping University; Linkoping Sweden
| | - Joana Pereira
- Global Health and Tropical Medicine (GHTM), Medical Microbiology Unit, Institute of Hygiene and Tropical Medicine; NOVA University of Lisbon; Lisbon Portugal
| | - Filomeno Fortes
- Department of Disease Control, National Institute of Public Health; National Program for Malaria Control; Luanda Angola
| | - Rafael Dimbu
- Department of Disease Control, National Institute of Public Health; National Program for Malaria Control; Luanda Angola
| | - Nilton Saraiva
- Department of Disease Control, National Institute of Public Health; National Program for Malaria Control; Luanda Angola
| | - Cristina Mendes
- Global Health and Tropical Medicine (GHTM), Medical Microbiology Unit, Institute of Hygiene and Tropical Medicine; NOVA University of Lisbon; Lisbon Portugal
| | - Claudia Istrate
- Global Health and Tropical Medicine (GHTM), Medical Microbiology Unit, Institute of Hygiene and Tropical Medicine; NOVA University of Lisbon; Lisbon Portugal
| |
Collapse
|
37
|
Comparative analysis of pentavalent rotavirus vaccine strains and G8 rotaviruses identified during vaccine trial in Africa. Sci Rep 2015; 5:14658. [PMID: 26440913 PMCID: PMC4594120 DOI: 10.1038/srep14658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023] Open
Abstract
RotaTeqTM is a pentavalent rotavirus vaccine based on a bovine rotavirus genetic backbone in vitro reassorted with human outer capsid genes. During clinical trials of RotaTeqTM in Sub-Saharan Africa, the vaccine efficacy over a 2-year follow-up was lower against the genotypes contained in the vaccine than against the heterotypic G8P[6] and G8P[1] rotavirus strains of which the former is highly prevalent in Africa. Complete genome analyses of 43 complete rotavirus genomes collected during phase III clinical trials of RotaTeqTM in Sub-Saharan Africa, were conducted to gain insight into the high level of cross-protection afforded by RotaTeqTM against these G8 strains. Phylogenetic analysis revealed the presence of a high number of bovine rotavirus gene segments in these human G8 strains. In addition, we performed an in depth analysis on the individual amino acid level which showed that G8 rotaviruses were more similar to the RotaTeqTM vaccine than non-G8 strains. Because RotaTeqTM possesses a bovine genetic backbone, the high vaccine efficacy against G8 strains might be partially explained by the fact that all these strains contain a complete or partial bovine-like backbone. Altogether, this study supports the hypothesis that gene segments other than VP7 and VP4 play a role in vaccine-induced immunity.
Collapse
|
38
|
Ma X, Li DD, Sun XM, Guo YQ, Xiang JY, Wang WH, Zhang LX, Gu QJ, Duan ZJ. Binding Patterns of Rotavirus Genotypes P[4], P[6], and P[8] in China with Histo-Blood Group Antigens. PLoS One 2015; 10:e0134584. [PMID: 26274396 PMCID: PMC4537235 DOI: 10.1371/journal.pone.0134584] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/10/2015] [Indexed: 01/20/2023] Open
Abstract
Rotaviruses (RVs) are an important cause of severe gastroenteritis in children. It has been found that RV may recognize the histo-blood group antigens (HBGAs) as ligands or receptors and bind HBGAs in a type-dependent manner. In this study, we investigated the binding specificity of VP8* proteins from human rotaviruses (RV) that are prevalent in China including genotypes P[4], P[6], and P[8]. Through the saliva- and oligosaccharide-based binding assays, we found that the VP8* proteins of P[4] and P[8] RV showed similar reactivity with the Leb and H type 1 antigens, while P[6] RV weakly bound the Leb antigen. These findings may facilitate further research into RV host specificity and vaccine development.
Collapse
Affiliation(s)
- Xin Ma
- China Railway Construction Corporation, Beijing Tiejian Hospital, Beijing, 100039, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Dan-di Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
- * E-mail: (DDL); (ZJD)
| | - Xiao-man Sun
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Yan-qing Guo
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Jing-yao Xiang
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Wei-huan Wang
- Beijing Railway Center for Disease Control and Prevention, Beijing, 100038, China
| | - Li-xia Zhang
- China Railway Construction Corporation, Beijing Tiejian Hospital, Beijing, 100039, China
| | - Qing-jiu Gu
- China Railway Construction Corporation, Beijing Tiejian Hospital, Beijing, 100039, China
| | - Zhao-jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
- * E-mail: (DDL); (ZJD)
| |
Collapse
|
39
|
Rudd C, Mwenda J, Chilengi R. Rotavirus landscape in Africa-Towards prevention and control: A report of the 8th African rotavirus symposium, Livingstone, Zambia. Vaccine 2015; 33:3263-7. [PMID: 25957665 DOI: 10.1016/j.vaccine.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022]
Abstract
The 8th African Rotavirus Symposium was held in Livingstone, Zambia from the 12-13 June 2014. Over 130 delegates from 35 countries - 28 from African nations - participated in this symposium, which included scientists, clinicians, immunisation managers, public health officials, policymakers and vaccine manufacturers. The theme for the symposium was Rotavirus Landscape in Africa-Towards Prevention and Control. At the time of the symposium, a total of 21 African countries had introduced the rotavirus vaccine into their national immunisation schedules. This meeting was particularly timely and relevant to review early data on vaccine adoption and impact from these countries. The concluding panel discussion proposed several recommendations for areas of focus moving forward in rotavirus advocacy and research.
Collapse
Affiliation(s)
- Cheryl Rudd
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.
| | | | - Roma Chilengi
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| |
Collapse
|
40
|
Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, Goyal N, Kawade A, Kang G, Rathore SS, Juvekar S, Muliyil J, Arya A, Shaikh H, Abraham V, Vrati S, Proschan M, Kohberger R, Thiry G, Glass R, Greenberg HB, Curlin G, Mohan K, Harshavardhan GVJA, Prasad S, Rao TS, Boslego J, Bhan MK. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian children in the second year of life. Vaccine 2015; 32 Suppl 1:A110-6. [PMID: 25091663 DOI: 10.1016/j.vaccine.2014.04.079] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UNLABELLED Rotavirus gastroenteritis is one of the leading causes of diarrhea in Indian children less than 2 years of age. The 116E rotavirus strain was developed as part of the Indo-US Vaccine Action Program and has undergone efficacy trials. This paper reports the efficacy and additional safety data in children up to 2 years of age. In a double-blind placebo controlled multicenter trial, 6799 infants aged 6-7 weeks were randomized to receive three doses of an oral human-bovine natural reassortant vaccine (116E) or placebo at ages 6, 10, and 14 weeks. The primary outcome was severe (≥11 on the Vesikari scale) rotavirus gastroenteritis. Efficacy outcomes and adverse events were ascertained through active surveillance. We randomly assigned 4532 and 2267 subjects to receive vaccine and placebo, respectively, with over 96% subjects receiving all three doses of the vaccine or placebo. The per protocol analyses included 4354 subjects in the vaccine and 2187 subjects in the placebo group. The overall incidence of severe RVGE per 100 person years was 1.3 in the vaccine group and 2.9 in the placebo recipients. Vaccine efficacy against severe rotavirus gastroenteritis in children up to 2 years of age was 55.1% (95% CI 39.9 to 66.4; p<0.0001); vaccine efficacy in the second year of life of 48.9% (95% CI 17.4 to 68.4; p=0.0056) was only marginally less than in the first year of life [56.3% (95% CI 36.7 to 69.9; p<0.0001)]. The number of infants needed to be immunized to prevent one episode of severe RVGE in the first 2 years of life was 40 (95% CI 28.0 to 63.0) and for RVGE of any severity, it was 21 (95% CI 16.0 to 32.0). Serious adverse events were observed at the same rates in the two groups. None of the eight intussusception events occurred within 30 days of a vaccine dose and all were reported only after the third dose. The sustained efficacy of the 116E in the second year of life is reassuring. CLINICAL TRIAL REGISTRY The trial is registered with Clinical Trial Registry-India (# CTRI/2010/091/000102) and Clinicaltrials.gov (# NCT01305109).
Collapse
Affiliation(s)
- Nita Bhandari
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | | | | | - Jacob John
- Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Sunita Taneja
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Nidhi Goyal
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Anand Kawade
- KEM Hospital Research Centre, Pune, Maharashtra, India
| | | | - Sudeep Singh Rathore
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | | | | | - Alok Arya
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Hanif Shaikh
- KEM Hospital Research Centre, Pune, Maharashtra, India
| | - Vinod Abraham
- Christian Medical College, Vellore, Tamil Nadu, India
| | - Sudhanshu Vrati
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India; National Institute of Immunology, New Delhi, India
| | | | | | - Georges Thiry
- Advancing Rotavirus Vaccines Development Project, PATH, France
| | - Roger Glass
- National Institutes of Health, Bethesda, MD, USA
| | | | | | - Krishna Mohan
- Bharat Biotech International Limited, Genome Valley, Andhra Pradesh, India
| | | | - Sai Prasad
- Bharat Biotech International Limited, Genome Valley, Andhra Pradesh, India
| | - T S Rao
- Department of Biotechnology, Ministry of Science and Technology, Government of India, India
| | | | | | | |
Collapse
|
41
|
A proposed framework for evaluating and comparing efficacy estimates in clinical trials of new rotavirus vaccines. Vaccine 2015; 32 Suppl 1:A179-84. [PMID: 25091673 DOI: 10.1016/j.vaccine.2014.04.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral rotavirus vaccines have yielded different point estimates of efficacy when tested in different populations. While population and environmental factors may account for these differences, study design characteristics should also be considered. We review the study design elements of rotavirus vaccine trials that may affect point estimates of efficacy, and propose a framework for evaluating new rotavirus vaccines.
Collapse
|
42
|
Premkumar PS, Parashar UD, Gastanaduy PA, McCracken JP, de Oliveira LH, Payne DC, Patel MM, Tate JE, Lopman BA. Reduced rotavirus vaccine effectiveness among children born during the rotavirus season: a pooled analysis of 5 case-control studies from the Americas. Clin Infect Dis 2014; 60:1075-8. [PMID: 25452592 DOI: 10.1093/cid/ciu956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using data from rotavirus vaccine effectiveness (VE) studies, we assessed whether rotavirus season modifies rotavirus VE in infants. In the first year of life, adjusted VE was 72% for children born during rotavirus season and 84% for children born in other months (P = .01). Seasonal factors may interfere with vaccine performance.
Collapse
Affiliation(s)
- Prasanna S Premkumar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Umesh D Parashar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Paul A Gastanaduy
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John P McCracken
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City
| | | | - Daniel C Payne
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Manish M Patel
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline E Tate
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ben A Lopman
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
43
|
Strain diversity plays no major role in the varying efficacy of rotavirus vaccines: An overview. INFECTION GENETICS AND EVOLUTION 2014; 28:561-71. [DOI: 10.1016/j.meegid.2014.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/22/2014] [Accepted: 10/09/2014] [Indexed: 12/22/2022]
|
44
|
Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? INFECTION GENETICS AND EVOLUTION 2014; 28:446-61. [PMID: 25224179 DOI: 10.1016/j.meegid.2014.08.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
Abstract
Comprehensive reviews of pre licensure rotavirus strain prevalence data indicated the global importance of six rotavirus genotypes, G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]. Since 2006, two vaccines, the monovalent Rotarix (RV1) and the pentavalent RotaTeq (RV5) have been available in over 100 countries worldwide. Of these, 60 countries have already introduced either RV1 or RV5 in their national immunization programs. Post licensure vaccine effectiveness is closely monitored worldwide. This review aimed at describing the global changes in rotavirus strain prevalence over time. The genotype distribution of the nearly 47,000 strains that were characterized during 2007-2012 showed similar picture to that seen in the preceding period. An intriguing finding was the transient predominance of heterotypic strains, mainly in countries using RV1. Unusual and novel antigen combinations continue to emerge, including some causing local outbreaks, even in vaccinated populations. In addition, vaccine strains have been found in both vaccinated infants and their contacts and there is evidence for genetic interaction between vaccine and wild-type strains. In conclusion, the post-vaccine introduction strain prevalence data do not show any consistent pattern indicative of selection pressure resulting from vaccine use, although the increased detection rate of heterotypic G2P[4] strains in some countries following RV1 vaccination is unusual and this issue requires further monitoring.
Collapse
|
45
|
Effect of withholding breastfeeding on the immune response to a live oral rotavirus vaccine in North Indian infants. Vaccine 2014; 32 Suppl 1:A134-9. [DOI: 10.1016/j.vaccine.2014.04.078] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, Goyal N, Kawade A, Kang G, Rathore SS, Juvekar S, Muliyil J, Arya A, Shaikh H, Abraham V, Vrati S, Proschan M, Kohberger R, Thiry G, Glass R, Greenberg HB, Curlin G, Mohan K, Harshavardhan GVJA, Prasad S, Rao TS, Boslego J, Bhan MK. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial. Lancet 2014; 383:2136-43. [PMID: 24629994 PMCID: PMC4532697 DOI: 10.1016/s0140-6736(13)62630-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Rotavirus is the most common cause of severe dehydrating gastroenteritis in developing countries. Safe, effective, and affordable rotavirus vaccines are needed in these countries. We aimed to assess the efficacy and tolerability of a monovalent human-bovine rotavirus vaccine for severe rotavirus gastroenteritis in low-resource urban and rural settings in India. METHODS We did a randomised double-blind, placebo-controlled, multicentre trial at three sites in Delhi (urban), Pune (rural), and Vellore (urban and rural) between March 11, 2011, and Nov 5, 2012. Infants aged 6-7 weeks were randomly assigned (2:1), via a central interactive voice or web response system with a block size of 12, to receive either three doses of oral human-bovine natural reassortant vaccine (116E) or placebo at ages 6-7 weeks, 10 weeks, and 14 weeks. Infants' families, study investigators, paediatricians in referral hospitals, laboratory staff, and committee members were all masked to treatment allocation. The primary outcome was incidence of severe rotavirus gastroenteritis (≥11 on the Vesikari scale). Efficacy outcomes and adverse events were ascertained through active surveillance. Analysis was by intention to treat and per protocol. The trial is registered with Clinical Trial Registry-India (CTRI/2010/091/000102) and ClinicalTrials.gov (NCT01305109). FINDINGS 4532 infants were assigned to receive the 116E vaccine and 2267 to receive placebo, of whom 4354 (96%) and 2187 (96%) infants, respectively, were included in the primary per-protocol efficacy analysis. 71 events of severe rotavirus gastroenteritis were reported in 4752 person-years in infants in the vaccine group compared with 76 events in 2360 person-years in those in the placebo group; vaccine efficacy against severe rotavirus gastroenteritis was 53·6% (95% CI 35·0-66·9; p=0·0013) and 56·4% (36·6-70·1; p<0·0001) in the first year of life. The number of infants needed to be immunised to prevent one severe rotavirus gastroenteritis episode was 55 (95% CI 37-97). The incidence of severe rotavirus gastroenteritis per 100 person-years was 1·5 in the vaccine group and 3·2 in the placebo group, with an incidence rate ratio of 0·46 (95% CI 0·33-0·65). Prevalence of immediate, solicited, and serious adverse events was similar in both groups. One case of urticaria in the vaccine group and one each of acute gastroenteritis and suspected sepsis in the placebo group were regarded as related to the study product. We recorded six cases of intussusception in the vaccine group and two in the placebo group, all of which happened after the third dose. 25 (<1%) infants in the vaccine group and 17 (<1%) in the placebo group died; no death was regarded as related to the study product. INTERPRETATION Monovalent human-bovine (116E) rotavirus vaccine is effective and well tolerated in Indian infants. FUNDING Department of Biotechnology and the Biotechnology Industry Research Assistance Council, Government of India; Bill & Melinda Gates Foundation to PATH, USA; Research Council of Norway; UK Department for International Development; National Institutes of Health, Bethesda, USA; and Bharat Biotech International, Hyderabad, India.
Collapse
Affiliation(s)
- Nita Bhandari
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | | | | | - Jacob John
- Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Sunita Taneja
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Nidhi Goyal
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Anand Kawade
- KEM Hospital Research Centre, Pune, Maharashtra, India
| | | | - Sudeep Singh Rathore
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | | | | | - Alok Arya
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Hanif Shaikh
- KEM Hospital Research Centre, Pune, Maharashtra, India
| | - Vinod Abraham
- Christian Medical College, Vellore, Tamil Nadu, India
| | - Sudhanshu Vrati
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | | | | | - Georges Thiry
- Advancing Rotavirus Vaccines Development Project, PATH, France
| | - Roger Glass
- National Institutes of Health, Bethesda, MD, USA
| | | | | | - Krishna Mohan
- Bharat Biotech International, Genome Valley, Andhra Pradesh, India
| | | | - Sai Prasad
- Bharat Biotech International, Genome Valley, Andhra Pradesh, India
| | - T S Rao
- Department of Biotechnology, Government of India, India
| | | | | |
Collapse
|
47
|
Freedman SB, Williamson-Urquhart S, Schuh S, Sherman PM, Farion KJ, Gouin S, Willan AR, Goeree R, Johnson DW, Black K, Schnadower D, Gorelick MH. Impact of emergency department probiotic treatment of pediatric gastroenteritis: study protocol for the PROGUT (Probiotic Regimen for Outpatient Gastroenteritis Utility of Treatment) randomized controlled trial. Trials 2014; 15:170. [PMID: 24885220 PMCID: PMC4037747 DOI: 10.1186/1745-6215-15-170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/29/2014] [Indexed: 01/01/2023] Open
Abstract
Background The burden of acute gastroenteritis on children and their families continues to be enormous. Probiotics, defined as viable microbial preparations that have a beneficial effect on the health of the host, represent a rapidly expanding field. Although clinical trials in children with gastroenteritis have been performed, most have significant flaws, and guidelines do not consistently endorse their use. Methods/Design PROGUT is a randomized, placebo-controlled, double-blind, five-center, Canadian, emergency department trial. Children aged 3 months to 48 months who present between November 2013 and June 2017 with <72 hours of gastroenteritis symptoms will be assessed for eligibility. A total of 886 children will be randomized (1:1 allocation via an internet based, third party, randomization service) to receive 5 days of a combination probiotic agent (Lactobacillus rhamnosus and L. helveticus) or placebo. All participants, caregivers, and outcome assessors will be blinded to group assignment. The study includes three key outcomes: 1) clinical - the development of moderate to severe disease following an emergency department (ED) evaluation that employs a validated clinical score (Modified Vesikari Scale); 2) safety - side effect; and 3) mechanism - fecal secretory immunoglobulin A levels. Discussion Definitive data are lacking to guide the clinical use of probiotics in children with acute gastroenteritis. Hence, probiotics are rarely prescribed by North American physicians. However, the following current trends obligate an urgent assessment: 1) probiotics are sold as food supplements, and manufacturers can encourage their use while their relevance has yet to be established; 2) North American and European government agencies remain concerned about their value and safety; 3) some institutions are now recommending the routine use of probiotics; and 4) parents of affected children are often providing probiotics. With probiotic consumption increasing in the absence of solid evidence, there is a need to conduct this definitive trial to overcome the limitations of prior work in this field. Trial registration ClinicalTrials.gov: NCT01853124; first registered 9 May 2013.
Collapse
Affiliation(s)
- Stephen B Freedman
- Sections of Paediatric Emergency Medicine and Gastroenterology, Alberta Children's Hospital, Alberta Children's Hospital Research Institute, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Trang N, Le Nguyen NT, Dao HT, Ho VL, Tran DT, Loewen J, Jiang J, Jiang B, Parashar U, Dang AD, Patel MM. Incidence and Epidemiology of Intussusception among Infants in Ho Chi Minh City, Vietnam. J Pediatr 2014; 164:366-71. [PMID: 24238857 DOI: 10.1016/j.jpeds.2013.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/05/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate rates of intussusception hospitalization among infants in Vietnam before the introduction of rotavirus vaccine. STUDY DESIGN Between 2009 and 2011, we identified intussusception hospitalizations among infants using the International Statistical Classification of Diseases and Related Health Problems, 10th Revision, Clinical Modification code K56.1 at 2 large pediatric hospitals in Ho Chi Minh City, Vietnam that treat most of the intussusception cases in the city. We reviewed all medical records to confirm a Brighton level 1 case definition for intussusception. RESULTS We identified a total of 869 intussusception cases in Ho Chi Minh City during the 3-year study period, for an annual rate of 296 per 100,000 infants. The mean age of intussusception was ∼ 37 weeks (8.6 months), with <2% of the cases occurring before age 15 weeks. Cases of intussusception were observed year-round in these hospitals with no evident seasonal pattern. Ultrasonography was used to diagnose most cases (97%), and reduction was performed by air enema in >95% of the cases, with only 1% of cases at 1 hospital and 5% at the other hospital requiring surgical intervention. Ultrasound diagnosis was confirmed by an independent radiologist in 94% of a randomly selected group of intussusception cases at 1 of the 2 hospitals. No mortality was reported. CONCLUSION Vietnam has a substantially higher rate of intussusception in children aged >15 weeks compared with most other regions of the world. Most of our cases were diagnosed by ultrasound, and only a small proportion required surgical intervention with no fatalities, suggesting that the higher rates may be related in part to better and earlier detection of intussusception.
Collapse
Affiliation(s)
| | - Nhan Thanh Le Nguyen
- Department of Network Coordination, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - Hieu Trung Dao
- Department of Network Coordination, Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - Viet Lu Ho
- Department of Network Coordination, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Dieu Thi Tran
- Department of Network Coordination, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Jonathan Loewen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA
| | - James Jiang
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Baoming Jiang
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Umesh Parashar
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Anh Duc Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Manish M Patel
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA.
| |
Collapse
|
49
|
Whole-genome sequence analysis of a Korean G11P[25] rotavirus strain identifies several porcine-human reassortant events. Arch Virol 2013; 158:2385-93. [DOI: 10.1007/s00705-013-1720-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/07/2013] [Indexed: 12/11/2022]
|
50
|
Lack of nonspecific protection against all-cause nonrotavirus gastroenteritis by vaccination with orally administered rotavirus vaccine. J Pediatr Gastroenterol Nutr 2013; 56:635-40. [PMID: 23343932 DOI: 10.1097/mpg.0b013e318287c5cc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Acute gastroenteritis (AGE) is recognized as a global, common threat to child survival, especially in developing countries. Rotavirus, in particular, has been implicated as a leading cause of severe AGE; however, there are numerous other pathogens that also cause AGE. Several studies have demonstrated that oral vaccination against rotavirus has generated the unanticipated benefit of protecting against AGE caused by nonrotavirus pathogens. METHODS Safety and efficacy of the pentavalent bovine-human reassortant rotavirus vaccine were studied in multiple populations, including children of the Navajo and White Mountain Apache tribes in the southwestern United States. Stool specimens were collected from children with AGE and tested for rotavirus using an enzyme immunoassay. Analyses were conducted to detect the presence or absence of a vaccine effect on incidence, severity, and duration of AGE in which rotavirus was not detected. RESULTS The majority of AGE (N = 558: 472 nonrotavirus vs 86 rotavirus) occurred between August 2002 and March 2004 among children ranging from ages 4 to 23 months. The incidence of nonrotavirus AGE was similar by vaccine groups with an incidence rate ratio of 1.07 (incidence rate ratio = vaccinated/unvaccinated, 95% confidence interval 0.89-1.29). The hazards of first, second, third, or any AGE in which rotavirus was not detected differed little by vaccination status (P > 0.05). Duration of symptoms and severity of nonrotavirus AGE were similar by vaccine group. CONCLUSIONS There was no vaccine effect on frequency or severity of nonrotavirus AGE.
Collapse
|