1
|
Elliott S, Olufemi OT, Daly JM. Systematic Review of Equine Influenza A Virus Vaccine Studies and Meta-Analysis of Vaccine Efficacy. Viruses 2023; 15:2337. [PMID: 38140577 PMCID: PMC10747572 DOI: 10.3390/v15122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines against equine influenza have been available since the late 1960s, but outbreaks continue to occur periodically, affecting both vaccinated and unvaccinated animals. The aim of this study was to systematically evaluate the efficacy of vaccines against influenza A virus in horses (equine IAV). For this, PubMed, CAB abstracts, and Web of Science were searched for controlled trials of equine IAV vaccines published up to December 2020. Forty-three articles reporting equine IAV vaccination and challenge studies in previously naïve equids using an appropriate comparison group were included in a qualitative analysis of vaccine efficacy. A value for vaccine efficacy (VE) was calculated as the percentage reduction in nasopharyngeal virus shedding detected by virus isolation in embryonated hens' eggs from 38 articles. Among 21 studies involving commercial vaccines, the mean VE was 50.03% (95% CI: 23.35-76.71%), ranging from 0 to 100%. Among 17 studies reporting the use of experimental vaccines, the mean VE was 40.37% (95% CI: 19.64-62.44), and the range was again 0-100%. Overall, complete protection from virus shedding was achieved in five studies. In conclusion, although commercially available vaccines can, in some circumstances, offer complete protection from infection, the requirement for frequent vaccination in the field to limit virus shedding and hence transmission is apparent. Although most studies were conducted by a few centres, a lack of consistent study design made comparisons difficult.
Collapse
Affiliation(s)
| | | | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
2
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Whitlock F, Murcia PR, Newton JR. A Review on Equine Influenza from a Human Influenza Perspective. Viruses 2022; 14:v14061312. [PMID: 35746783 PMCID: PMC9229935 DOI: 10.3390/v14061312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) have a main natural reservoir in wild birds. IAVs are highly contagious, continually evolve, and have a wide host range that includes various mammalian species including horses, pigs, and humans. Furthering our understanding of host-pathogen interactions and cross-species transmissions is therefore essential. This review focuses on what is known regarding equine influenza virus (EIV) virology, pathogenesis, immune responses, clinical aspects, epidemiology (including factors contributing to local, national, and international transmission), surveillance, and preventive measures such as vaccines. We compare EIV and human influenza viruses and discuss parallels that can be drawn between them. We highlight differences in evolutionary rates between EIV and human IAVs, their impact on antigenic drift, and vaccine strain updates. We also describe the approaches used for the control of equine influenza (EI), which originated from those used in the human field, including surveillance networks and virological analysis methods. Finally, as vaccination in both species remains the cornerstone of disease mitigation, vaccine technologies and vaccination strategies against influenza in horses and humans are compared and discussed.
Collapse
Affiliation(s)
- Fleur Whitlock
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pablo R. Murcia
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
| | - J. Richard Newton
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Correspondence:
| |
Collapse
|
4
|
Redmann RK, Kaushal D, Golden N, Threeton B, Killeen SZ, Kuehl PJ, Roy CJ. Particle Dynamics and Bioaerosol Viability of Aerosolized Bacillus Calmette-Guérin Vaccine Using Jet and Vibrating Mesh Clinical Nebulizers. J Aerosol Med Pulm Drug Deliv 2022; 35:50-56. [PMID: 34619040 PMCID: PMC8867098 DOI: 10.1089/jamp.2021.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Bacillus Calmette-Guérin (BCG) is a vaccine used to protect against tuberculosis primarily in infants to stop early infection in areas of the world where the disease is endemic. Normally administered as a percutaneous injection, BCG is a live significantly attenuated bacteria that is now being investigated for its potential within an inhalable vaccine formulation. This study investigates the feasibility and performance of two jet and two vibrating mesh nebulizers aerosolizing BCG and the resulting particle characteristics and residual viability of the bacteria postaerosolization. Methods: A jet nebulizer (Collison), outfitted either with a 3- or 6-jet head, was compared with two clinical nebulizers, the vibrating mesh Omron MicroAir and Aerogen Solo devices. Particle characteristics, including aerodynamic particle sizing, was performed on all devices within a common aerosol chamber configuration and comparable BCG innocula concentrations. Integrated aerosol samples were collected for each generator and assayed for bacterial viability using conventional microbiological technique. Results: A batch lot of BCG (Danish) was grown to titer and used in all generator assessments. Aerosol particles within the respirable range were generated from all nebulizers at four different concentrations of BCG. The jet nebulizers produced a uniformly smaller particle size than the vibrating mesh devices, although particle concentrations by mass were similar across all devices tested with the exception of the Aerogen Solo, which resulted in a low concentration of BCG aerosols. Conclusions: The resulting measured viable BCG aerosol concentration fraction produced by each device approximated one another; however, a measurable decrease of efficiency and overall viability reduction in the jet nebulizer was observed in higher BCG inoculum starting concentrations, whereas the vibrating mesh nebulizer returned a remarkably stable viable aerosol fraction irrespective of inoculum concentration.
Collapse
Affiliation(s)
- Rachel K. Redmann
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Nadia Golden
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Breeanna Threeton
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Stephanie Z. Killeen
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Chad J. Roy
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA.,Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, Louisiana, USA.,Address correspondence to: Chad J. Roy, PhD, Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| |
Collapse
|
5
|
Abstract
Horses are the third major mammalian species, along with humans and swine, long known to be subject to acute upper respiratory disease from influenza A virus infection. The viruses responsible are subtype H7N7, which is believed extinct, and H3N8, which circulates worldwide. The equine influenza lineages are clearly divergent from avian influenza lineages of the same subtypes. Their genetic evolution and potential for interspecies transmission, as well as clinical features and epidemiology, are discussed. Equine influenza is spread internationally and vaccination is central to control efforts. The current mechanism of international surveillance and virus strain recommendations for vaccines is described.
Collapse
Affiliation(s)
- Thomas M Chambers
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
6
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
7
|
Chang C, Sun J, Hayashi H, Suzuki A, Sakaguchi Y, Miyazaki H, Nishikawa T, Nakagami H, Yamashita K, Kaneda Y. Stable Immune Response Induced by Intradermal DNA Vaccination by a Novel Needleless Pyro-Drive Jet Injector. AAPS PharmSciTech 2019; 21:19. [PMID: 31820256 PMCID: PMC6901418 DOI: 10.1208/s12249-019-1564-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022] Open
Abstract
DNA vaccination can be applied to the treatment of various infectious diseases and cancers; however, technical difficulties have hindered the development of an effective delivery method. The efficacy of a DNA vaccine depends on optimal antigen expression by the injected plasmid DNA. The pyro-drive jet injector (PJI) is a novel system that allows for adjustment of injection depth and may, thus, provide a targeted delivery approach for various therapeutic or preventative compounds. Herein, we investigated its potential for use in delivering DNA vaccines. This study evaluated the optimal ignition powder dosage, as well as its delivery effectiveness in both rat and mouse models, while comparing the results of the PJI with that of a needle syringe delivery system. We found that the PJI effectively delivered plasmid DNA to intradermal regions in both rats and mice. Further, it efficiently transfected plasmid DNA directly into the nuclei, resulting in higher protein expression than that achieved via needle syringe injection. Moreover, results from animal ovalbumin (OVA) antigen induction models revealed that animals receiving OVA expression plasmids (pOVA) via PJI exhibited dose-dependent (10 μg, 60 μg, and 120 μg) production of anti-OVA antibodies; while only low titers (< 1/100) of OVA antibodies were detected when 120 μg of pOVA was injected via needle syringe. Thus, PJI is an effective, novel method for delivery of plasmid DNA into epidermal and dermal cells suggesting its promise as a tool for DNA vaccination.
Collapse
|
8
|
Blanco-Lobo P, Rodriguez L, Reedy S, Oladunni FS, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. A Bivalent Live-Attenuated Vaccine for the Prevention of Equine Influenza Virus. Viruses 2019; 11:v11100933. [PMID: 31614538 PMCID: PMC6832603 DOI: 10.3390/v11100933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Vaccination remains the most effective approach for preventing and controlling equine influenza virus (EIV) in horses. However, the ongoing evolution of EIV has increased the genetic and antigenic differences between currently available vaccines and circulating strains, resulting in suboptimal vaccine efficacy. As recommended by the World Organization for Animal Health (OIE), the inclusion of representative strains from clade 1 and clade 2 Florida sublineages of EIV in vaccines may maximize the protection against presently circulating viral strains. In this study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N8 (Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs, fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs for the control and protection against other EIV strains of epidemiological relevance to horses.
Collapse
Affiliation(s)
- Pilar Blanco-Lobo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
- Agencia Española de Medicamentos y Productos Sanitarios, E28022 Madrid, Spain.
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Fatai S Oladunni
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
- Center for Animal Health Research- National Institute for Agricultural and Food Research and Technology, Valdeolmos, 28130 Madrid, Spain.
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1AF, UK.
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Stachyra A, Góra-Sochacka A, Radomski JP, Sirko A. Sequential DNA immunization of chickens with bivalent heterologous vaccines induce highly reactive and cross-specific antibodies against influenza hemagglutinin. Poult Sci 2019; 98:199-208. [PMID: 30184142 DOI: 10.3382/ps/pey392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/05/2018] [Indexed: 12/18/2022] Open
Abstract
Vaccines against avian influenza are mostly based on hemagglutinin (HA), which is the main antigen of this virus and a target for neutralizing antibodies. Traditional vaccines are known to be poorly efficient against newly emerging strains, which is an increasing worldwide problem for human health and for the poultry industry. As demonstrated by research and clinical data, sequential exposure to divergent influenza HAs can boost induction of universal antibodies which recognize conserved epitopes. In this work, we have performed sequential immunization of laying hens using monovalent or bivalent compositions of DNA vaccines encoding HAs from distant groups 1 and 2 (H5, H1, and H3 subtypes, respectively). This strategy gave promising results, as it led to induction of polyclonal antibodies against HAs from both groups. These polyclonal antibodies showed cross-reactivity between different HA strains in ELISA, especially when bivalent formulations were used for immunization of birds. However, cross-reactivity of antibodies induced against H3 and H5 HA subtypes was rather limited against each other after homologous immunization. Using a cocktail of HA sequences and/or sequential DNA vaccination with different strains presents a good strategy to overcome the limited effectiveness of vaccines and induce broader immunity against avian influenza. Such a strategy could be adapted for vaccinating laying hens or parental flocks of different groups of poultry.
Collapse
Affiliation(s)
- Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jan P Radomski
- Interdisciplinary Center for Mathematical and Computational Modeling, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
11
|
Ibañez LI, Caldevilla CA, Paredes Rojas Y, Mattion N. Genetic and subunit vaccines based on the stem domain of the equine influenza hemagglutinin provide homosubtypic protection against heterologous strains. Vaccine 2018; 36:1592-1598. [PMID: 29454522 DOI: 10.1016/j.vaccine.2018.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
H3N8 influenza virus strains have been associated with infectious disease in equine populations throughout the world. Although current vaccines for equine influenza stimulate a protective humoral immune response against the surface glycoproteins, disease in vaccinated horses has been frequently reported, probably due to poor induction of cross-reactive antibodies against non-matching strains. This work describes the performance of a recombinant protein vaccine expressed in prokaryotic cells (ΔHAp) and of a genetic vaccine (ΔHAe), both based on the conserved stem region of influenza hemagglutinin (HA) derived from A/equine/Argentina/1/93 (H3N8) virus. Sera from mice inoculated with these immunogens in different combinations and regimes presented reactivity in vitro against highly divergent influenza virus strains belonging to phylogenetic groups 1 and 2 (H1 and H3 subtypes, respectively), and conferred robust protection against a lethal challenge with both the homologous equine strain (100%) and the homosubtypic human strain A/Victoria/3/75 (H3N2) (70-100%). Animals vaccinated with the same antigens but challenged with the human strain A/PR/8/34 (H1N1), belonging to the phylogenetic group 1, were not protected (0-33%). Combination of protein and DNA immunogens showed higher reactivity to non-homologous strains than protein alone, although all vaccines were permissive for lung infection.
Collapse
Affiliation(s)
- Lorena Itatí Ibañez
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Cecilia Andrea Caldevilla
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Yesica Paredes Rojas
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Nora Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
12
|
|
13
|
Hinkula J, Petkov S, Ljungberg K, Hallengärd D, Bråve A, Isaguliants M, Falkeborn T, Sharma S, Liakina V, Robb M, Eller M, Moss B, Biberfeld G, Sandström E, Nilsson C, Markland K, Blomberg P, Wahren B. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV. Heliyon 2017; 3:e00339. [PMID: 28721397 PMCID: PMC5496381 DOI: 10.1016/j.heliyon.2017.e00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Background In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. Methods HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. Results Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. Conclusions HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.
Collapse
Affiliation(s)
- J Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden.,Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - S Petkov
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Ljungberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - D Hallengärd
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - A Bråve
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - M Isaguliants
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - T Falkeborn
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - S Sharma
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - V Liakina
- Faculty of Medicine, Vilnius University 2, 08661 Vilnius, Lithuania
| | - M Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - M Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - G Biberfeld
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - E Sandström
- Department of South Hospital, Karolinska Institutet, 11883 Stockholm, Sweden
| | - C Nilsson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Markland
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - P Blomberg
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - B Wahren
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
14
|
|
15
|
Stachyra A, Redkiewicz P, Kosson P, Protasiuk A, Góra-Sochacka A, Kudla G, Sirko A. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens. Virol J 2016; 13:143. [PMID: 27562235 PMCID: PMC5000471 DOI: 10.1186/s12985-016-0599-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/12/2016] [Indexed: 01/12/2023] Open
Abstract
Background Highly pathogenic avian influenza viruses are a serious threat to domestic poultry and can be a source of new human pandemic and annual influenza strains. Vaccination is the main strategy of protection against influenza, thus new generation vaccines, including DNA vaccines, are needed. One promising approach for enhancing the immunogenicity of a DNA vaccine is to maximize its expression in the immunized host. Methods The immunogenicity of three variants of a DNA vaccine encoding hemagglutinin (HA) from the avian influenza virus A/swan/Poland/305-135V08/2006 (H5N1) was compared in two animal models, mice (BALB/c) and chickens (broilers and layers). One variant encoded the wild type HA while the other two encoded HA without proteolytic site between HA1 and HA2 subunits and differed in usage of synonymous codons. One of them was enriched for codons preferentially used in chicken genes, while in the other modified variant the third position of codons was occupied in almost 100 % by G or C nucleotides. Results The variant of the DNA vaccine containing almost 100 % of the GC content in the third position of codons stimulated strongest immune response in two animal models, mice and chickens. These results indicate that such modification can improve not only gene expression but also immunogenicity of DNA vaccine. Conclusion Enhancement of the GC content in the third position of the codon might be a good strategy for development of a variant of a DNA vaccine against influenza that could be highly effective in distant hosts, such as birds and mammals, including humans. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0599-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul., Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Patrycja Redkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul., Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Piotr Kosson
- Mossakowski Medical Research Centre Polish Academy of Sciences, ul., Pawinskiego 5, 02-106, Warsaw, Poland
| | - Anna Protasiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul., Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul., Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, Scotland, UK
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul., Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
16
|
Borggren M, Nielsen J, Karlsson I, Dalgaard TS, Trebbien R, Williams JA, Fomsgaard A. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs. Vaccine 2016; 34:3634-40. [PMID: 27211039 PMCID: PMC4940207 DOI: 10.1016/j.vaccine.2016.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pigs are natural hosts for influenza A viruses, and the infection is widely prevalent in swine herds throughout the world. Current commercial influenza vaccines for pigs induce a narrow immune response and are not very effective against antigenically diverse viruses. To control influenza in pigs, the development of more effective swine influenza vaccines inducing broader cross-protective immune responses is needed. Previously, we have shown that a polyvalent influenza DNA vaccine using vectors containing antibiotic resistance genes induced a broadly protective immune response in pigs and ferrets using intradermal injection followed by electroporation. However, this vaccination approach is not practical in large swine herds, and DNA vaccine vectors containing antibiotic resistance genes are undesirable. OBJECTIVES To investigate the immunogenicity of an optimized version of our preceding polyvalent DNA vaccine, characterized by a next-generation expression vector without antibiotic resistance markers and delivered by a convenient needle-free intradermal application approach. METHODS The humoral and cellular immune responses induced by three different doses of the optimized DNA vaccine were evaluated in groups of five to six pigs. The DNA vaccine consisted of six selected influenza genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase. RESULTS Needle-free vaccination of growing pigs with the optimized DNA vaccine resulted in specific, dose-dependent immunity down to the lowest dose (200μg DNA/vaccination). Both the antibody-mediated and the recall lymphocyte immune responses demonstrated high reactivity against vaccine-specific strains and cross-reactivity to vaccine-heterologous strains. CONCLUSION The results suggest that polyvalent DNA influenza vaccination may provide a strong tool for broad protection against swine influenza strains threatening animal as well as public health. In addition, the needle-free administration technique used for this DNA vaccine will provide an easy and practical approach for the large-scale vaccination of swine.
Collapse
Affiliation(s)
- Marie Borggren
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Jens Nielsen
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ingrid Karlsson
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Tina S Dalgaard
- Immunology and Microbiology Laboratory, Department of Animal Science, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Ramona Trebbien
- National Influenza Center Denmark, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - James A Williams
- Nature Technology Corporation, 4701 Innovation Dr, Lincoln, NE 68521, USA
| | - Anders Fomsgaard
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark; Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Sdr. Boulevard 29, DK-5000 Odense C, Denmark
| |
Collapse
|
17
|
Borggren M, Nielsen J, Bragstad K, Karlsson I, Krog JS, Williams JA, Fomsgaard A. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans. Hum Vaccin Immunother 2016; 11:1983-90. [PMID: 25746201 DOI: 10.1080/21645515.2015.1011987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines.
Collapse
Key Words
- BSA, bovine serum albumin
- DK, Denmark
- DNA vaccine
- DNA, DeoxyriboNucleic Acid
- ELISA, Enzyme Linked Immunosorbent Assay
- EP, electroporation
- FCS, fetal calf serum
- HA, hemagglutinin
- HAI, hemagglutination inhibition assay
- HAU, hemagglutination units
- HI, hemagglutination inhibition
- IDAL®, IntraDermal Application of Liquids®
- IgG, immunoglobulin G
- M, matrix protein
- MDCK cells, Madin-Darby Canine Kidney epithelial cells
- NA, neuraminidase
- NP, nucleoprotein
- NTC8385-VA1
- NTC9385R
- NZW, New Zealand White
- PBS, phosphate buffered saline
- RDE, receptor destroying enzyme
- SEM, standard error mean
- TMB, tetramethylbenzidine
- US, the United States
- WHO, world health organization
- bp, base pair
- i.d., intra-dermal
- influenza
- needle-free
- polyvalent
- tPA, tissue plasminogen activator
Collapse
Affiliation(s)
- Marie Borggren
- a Virus Research and Development Laboratory ; Department of Microbiological Diagnostic and Virology; Statens Serum Institut ; Copenhagen , Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
Coughlin MM, Collins M, Saxon G, Jarrahian C, Zehrung D, Cappello C, Dhere R, Royals M, Papania M, Rota PA. Effect of jet injection on infectivity of measles, mumps, and rubella vaccine in a bench model. Vaccine 2015; 33:4540-7. [DOI: 10.1016/j.vaccine.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/11/2015] [Accepted: 07/07/2015] [Indexed: 11/25/2022]
|
19
|
|
20
|
A Systematic Review of Recent Advances in Equine Influenza Vaccination. Vaccines (Basel) 2014; 2:797-831. [PMID: 26344892 PMCID: PMC4494246 DOI: 10.3390/vaccines2040797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 01/28/2023] Open
Abstract
Equine influenza (EI) is a major respiratory disease of horses, which is still causing substantial outbreaks worldwide despite several decades of surveillance and prevention. Alongside quarantine procedures, vaccination is widely used to prevent or limit spread of the disease. The panel of EI vaccines commercially available is probably one of the most varied, including whole inactivated virus vaccines, Immuno-Stimulating Complex adjuvanted vaccines (ISCOM and ISCOM-Matrix), a live attenuated equine influenza virus (EIV) vaccine and a recombinant poxvirus-vectored vaccine. Several other strategies of vaccination are also evaluated. This systematic review reports the advances of EI vaccines during the last few years as well as some of the mechanisms behind the inefficient or sub-optimal response of horses to vaccination.
Collapse
|
21
|
Abstract
This special issue is focused on DNA vaccines, marking the two decades since the first demonstration of pre-clinical protection was published in Science (Ulmer et al.; Heterologous protection against influenza by injection of DNA encoding a viral protein. 1993). This introductory article provides an overview of the field and highlights the observations of the articles in this special issue while placing them in the context of other recent publications.
Collapse
|
22
|
Williams JA. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines (Basel) 2013; 1:225-49. [PMID: 26344110 PMCID: PMC4494225 DOI: 10.3390/vaccines1030225] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.
Collapse
Affiliation(s)
- James A Williams
- Nature Technology Corporation/Suite 103, 4701 Innovation Drive, Lincoln, NE 68521, USA.
| |
Collapse
|
23
|
Bragstad K, Vinner L, Hansen MS, Nielsen J, Fomsgaard A. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection. Vaccine 2013; 31:2281-8. [PMID: 23499598 DOI: 10.1016/j.vaccine.2013.02.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/15/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components. We found that pigs challenged with a virus homologous to the HA and NA DNA vaccine components were well protected from infection. In addition, heterologous challenge virus was cleared rapidly compared to the unvaccinated control pigs. Immunisation by electroporation induced HI antibodies >40 HAU/ml seven days after second vaccination. Heterologous virus challenge as long as ten weeks after last immunisation was able to trigger a vaccine antibody HI response 26 times higher than in the control pigs. The H3N2 DNA vaccine HA and NA genes also triggered an effective vaccine response with protective antibody titres towards heterologous H3N2 virus. The described influenza DNA vaccine is able to induce broadly protective immune responses even in a larger animal, like the pig, against both heterologous and homologous virus challenges despite relatively low HI titres after vaccination. The ability of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the risk for epidemics and pandemics to evolve.
Collapse
Affiliation(s)
- Karoline Bragstad
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Stack JC, Murcia PR, Grenfell BT, Wood JLN, Holmes EC. Inferring the inter-host transmission of influenza A virus using patterns of intra-host genetic variation. Proc Biol Sci 2012; 280:20122173. [PMID: 23135678 DOI: 10.1098/rspb.2012.2173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza A viruses (IAVs) cause acute, highly transmissible infections in a wide range of animal species. Understanding how these viruses are transmitted within and between susceptible host populations is critical to the development of effective control strategies. While viral gene sequences have been used to make inferences about IAV transmission dynamics at the epidemiological scale, their utility in accurately determining patterns of inter-host transmission in the short-term--i.e. who infected whom--has not been strongly established. Herein, we use intra-host sequence data from the viral HA1 (hemagglutinin) gene domain from two transmission studies employing different IAV subtypes in their natural hosts--H3N8 in horses and H1N1 in pigs-to determine how well these data recapitulate the known pattern of inter-host transmission. Although no mutations were fixed over the course of either experimental transmission chain, we show that some minor, transient alleles can provide evidence of host-to-host transmission and, importantly, can be distinguished from those that cannot.
Collapse
Affiliation(s)
- J Conrad Stack
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|