1
|
Kim KH, Jung YJ, Lee Y, Park BR, Oh J, Lee YN, Kim MC, Jeeva S, Kang SM. Cross protection by inactivated recombinant influenza viruses containing chimeric hemagglutinin conjugates with a conserved neuraminidase or M2 ectodomain epitope. Virology 2020; 550:51-60. [PMID: 32882637 DOI: 10.1016/j.virol.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Influenza virus neuraminidase (NA) contains a universally conserved epitope (NAe, NA222-230). However, no studies have reported vaccines targeting this NA conserved epitope and inducing antibodies recognizing NAe. The extracellular domain of M2 (M2e) is considered as an attractive target for a universal influenza vaccine. We generated recombinant influenza H1N1 viruses expressing conserved epitopes in hemagglutinin (HA) molecules: NAe (NAe-HA) or M2e (M2e-HA) within the HA head domain. Inactivated recombinant NAe-HA and M2e-HA viruses were more effective in inducing IgG antibodies specific for an inserted conserved epitope than live recombinant virus. Recombinant inactivated M2e-HA virus vaccination induced cross protection against H3N2 virus with less weight loss compared to NAe-HA and was more effective in inducing humoral and cellular M2e immune responses. This study provides insight into developing recombinant influenza virus vaccines compatible with current platforms to induce antibody responses to conserved poorly immunogenic epitopes.
Collapse
Affiliation(s)
- Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Youri Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Judy Oh
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; CARESIDE Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Subbiah Jeeva
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Heterologous viral protein interactions within licensed seasonal influenza virus vaccines. NPJ Vaccines 2020; 5:3. [PMID: 31934357 PMCID: PMC6954117 DOI: 10.1038/s41541-019-0153-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/16/2019] [Indexed: 01/10/2023] Open
Abstract
Currently, licensed influenza virus vaccines are designed and tested only for their ability to elicit hemagglutinin (HA)-reactive, neutralizing antibodies. Despite this, the purification process in vaccine manufacturing often does not completely remove other virion components. In the studies reported here, we have examined the viral protein composition of a panel of licensed vaccines from different manufacturers and licensed in different years. Using western blotting, we found that, beyond HA proteins, there are detectable quantities of neuraminidase (NA), nucleoprotein (NP), and matrix proteins (M1) from both influenza A and influenza B viruses in the vaccines but that the composition differed by source and method of vaccine preparation. We also found that disparities in viral protein composition were associated with distinct patterns of elicited antibody specificities. Strikingly, our studies also revealed that many viral proteins contained in the vaccine form heterologous complexes. When H1 proteins were isolated by immunoprecipitation, NA (N1), M1 (M1-A), H3, and HA-B proteins were co-isolated with the H1. Further biochemical studies suggest that these interactions persist for at least 4 h at 37 °C and that the membrane/intracytoplasmic domains in the intact HA proteins are important for the intermolecular interactions detected. These studies indicate that, if such interactions persist after vaccines reach the draining lymph node, both dendritic cells and HA-specific B cells may take up multiple viral proteins simultaneously. Whether these interactions are beneficial or harmful to the developing immune response will depend on the functional potential of the elicited virus-specific CD4 T cells. Licensed influenza virus vaccines are evaluated for their ability to elicit neutralizing antibodies specific for hemagglutinin (HA), but the manufacturing process does not completely exclude other virion components from the formulations. Andrea Sant and colleagues now report the presence of several viral proteins, such as M1, NA, H3, and HA-B, in licensed formulations from different manufacturers and spanning stocks from several years. These viral proteins form heterologous complexes, and immunization of mice with some of the formulations analyzed elicited antibody responses specific to these viral proteins. These findings reveal heterogeneity across licensed influenza virus vaccine formulations, potentially due to variations in production processes, and raise the possibility that the presence of these additional viral protein complexes could influence the elicited immune responses following immunization, particularly in the context of multivalent strategies involving mixing of different formulations.
Collapse
|
3
|
Keitel WA, Voronca DC, Atmar RL, Paust S, Hill H, Wolff MC, Bellamy AR. Effect of recent seasonal influenza vaccination on serum antibody responses to candidate pandemic influenza A/H5N1 vaccines: A meta-analysis. Vaccine 2019; 37:5535-5543. [PMID: 31160101 DOI: 10.1016/j.vaccine.2019.04.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 01/02/2023]
Abstract
Recent studies have suggested that among those receiving seasonal influenza vaccine (SIV), reduced immunogenicity is observed in recently vaccinated (RV; within the past season or 2) persons when compared with those not recently vaccinated (NRV). We performed a meta-analysis to assess the effect of recent immunization with SIV on serum H5 hemagglutination inhibition (HAI) antibody responses after influenza A/H5N1 vaccination using data from a series of randomized controlled trials. The primary outcome was seroconversion measured by HAI assays following receipt of 2 doses of H5N1 vaccine. The geometric mean titer (GMT) of serum HAI antibody after vaccination was the secondary outcome. Analyses were performed using propensity score (PS) matching. The PS for each individual in the meta-analysis cohort was calculated using logistic regression and covariates included age, gender, race, antigen dose, adjuvant, statin use and vaccine manufacturer. 2015 subjects enrolled in 7 clinical trials were eligible for inclusion in the meta-analysis cohort; among these, 915 (45%) were RV. 901 RV subjects were matched (1:1) with replacement to a subject who was NRV. Subjects who received SIV within the previous season were significantly less likely to seroconvert following H5N1 vaccination (adjusted odds ratio 0.76; 95%CI 0.60-0.96; p = 0.024), and the GMT was 18% higher among NRV subjects (GM ratio of HAI antibody 1.18; 95%CI 1.04-1.33; p = 0.008). Further work is needed to better define the effects of, and mechanisms contributing to, reduced immune responses to H5N1 vaccine among RV subjects.
Collapse
Affiliation(s)
- W A Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States.
| | | | - R L Atmar
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - S Paust
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics-Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - H Hill
- Emmes, Rockville, MD, United States
| | | | | |
Collapse
|
4
|
Nelson SA, Sant AJ. Imprinting and Editing of the Human CD4 T Cell Response to Influenza Virus. Front Immunol 2019; 10:932. [PMID: 31134060 PMCID: PMC6514101 DOI: 10.3389/fimmu.2019.00932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Immunity to influenza is unique among pathogens, in that immune memory is established both via intermittent lung localized infections with highly variable influenza virus strains and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in the past decades have suggested that the B cell responses to influenza infection and vaccination are highly biased by an individual's early history of influenza infection. This reactivity likely reflects both the competitive advantage that memory B cells have in an immune response and the relatively limited diversity of epitopes in influenza hemagglutinin that are recognized by B cells. In contrast, CD4 T cells recognize a wide array of epitopes, with specificities that are heavily influenced by the diversity of influenza antigens available, and a multiplicity of functions that are determined by both priming events and subsequent confrontations with antigens. Here, we consider the events that prime and remodel the influenza-specific CD4 T cell response in humans that have highly diverse immune histories and how the CD4 repertoire may be edited in terms of functional potential and viral epitope specificity. We discuss the consequences that imprinting and remodeling may have on the potential of different human hosts to rapidly respond with protective cellular immunity to infection. Finally, these issues are discussed in the context of future avenues of investigation and vaccine strategies.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Zens KD, Chen JK, Farber DL. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 2018; 1:85832. [PMID: 27468427 DOI: 10.1172/jci.insight.85832] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are a recently defined, noncirculating subset with the potential for rapid in situ protective responses, although their generation and role in vaccine-mediated immune responses is unclear. Here, we assessed TRM generation and lung-localized protection following administration of currently licensed influenza vaccines, including injectable inactivated influenza virus (IIV, Fluzone) and i.n. administered live-attenuated influenza virus (LAIV, FluMist) vaccines. We found that, while IIV preferentially induced strain-specific neutralizing antibodies, LAIV generated lung-localized, virus-specific T cell responses. Moreover, LAIV but not IIV generated lung CD4+ TRM and virus-specific CD8+ TRM, similar in phenotype to those generated by influenza virus infection. Importantly, these vaccine-generated TRM mediated cross-strain protection, independent of circulating T cells and neutralizing antibodies, which persisted long-term after vaccination. Interestingly, intranasal administration of IIV or injection of LAIV failed to elicit T cell responses or provide protection against viral infection, demonstrating dual requirements for respiratory targeting and a live-attenuated strain to establish TRM. The ability of LAIV to generate lung TRM capable of providing long-term protection against nonvaccine viral strains, as demonstrated here, has important implications for protecting the population against emergent influenza pandemics by direct fortification of lung-specific immunity.
Collapse
Affiliation(s)
- Kyra D Zens
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and
| | | | - Donna L Farber
- Columbia Center for Translational Immunology.,Department of Microbiology and Immunology, and.,Department of Surgery, Columbia University Medical Center (CUMC), New York, New York, USA
| |
Collapse
|
7
|
Richards KA, DiPiazza AT, Rattan A, Knowlden ZAG, Yang H, Sant AJ. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection. Front Immunol 2018; 9:655. [PMID: 29681900 PMCID: PMC5897437 DOI: 10.3389/fimmu.2018.00655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anthony T. DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Viral Pathogenesis Laboratory, Vaccine Research Center NIAID, Bethesda, MD, United States
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
8
|
Gu XX, Plotkin SA, Edwards KM, Sette A, Mills KHG, Levy O, Sant AJ, Mo A, Alexander W, Lu KT, Taylor CE. Waning Immunity and Microbial Vaccines-Workshop of the National Institute of Allergy and Infectious Diseases. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00034-17. [PMID: 28490424 PMCID: PMC5498725 DOI: 10.1128/cvi.00034-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since the middle of the 20th century, vaccines have made a significant public health impact by controlling infectious diseases globally. Although long-term protection has been achieved with some vaccines, immunity wanes over time with others, resulting in outbreaks or epidemics of infectious diseases. Long-term protection against infectious agents that have a complex life cycle and antigenic variation remains a key challenge. Novel strategies to characterize the short- and long-term immune responses to vaccines and to induce immune responses that mimic natural infection have recently emerged. New technologies and approaches in vaccinology, such as adjuvants, delivery systems, and antigen formulations, have the potential to elicit more durable protection and fewer adverse reactions; together with in vitro systems, these technologies have the capacity to model and accelerate vaccine development. The National Institute of Allergy and Infectious Diseases (NIAID) held a workshop on 19 September 2016 that focused on waning immunity to selected vaccines (for Bordetella pertussis, Salmonella enterica serovar Typhi, Neisseria meningitidis, influenza, mumps, and malaria), with an emphasis on identifying knowledge gaps, future research needs, and how this information can inform development of more effective vaccines for infectious diseases.
Collapse
Affiliation(s)
- Xin-Xing Gu
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, La Jolla, California, USA
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea J Sant
- University of Rochester Medical Center, Rochester, New York, USA
| | - Annie Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - William Alexander
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kristina T Lu
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christopher E Taylor
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
9
|
DiPiazza A, Richards K, Poulton N, Sant AJ. Avian and Human Seasonal Influenza Hemagglutinin Proteins Elicit CD4 T Cell Responses That Are Comparable in Epitope Abundance and Diversity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00548-16. [PMID: 28100497 PMCID: PMC5339641 DOI: 10.1128/cvi.00548-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
Avian influenza viruses remain a significant concern due to their pandemic potential. Vaccine trials have suggested that humans respond poorly to avian influenza vaccines relative to seasonal vaccines. It is important to understand, first, if there is a general deficiency in the ability of avian hemagglutinin (HA) proteins to generate immune responses and, if so, what underlies this defect. This question is of particular interest because it has been suggested that in humans, the poor immunogenicity of H7 vaccines may be due to a paucity of CD4 T cell epitopes. Because of the generally high levels of cross-reactive CD4 T cells in humans, it is not possible to compare the inherent immunogenicities of avian and seasonal HA proteins in an unbiased manner. Here, we empirically examine the epitope diversity and abundance of CD4 T cells elicited by seasonal and avian HA proteins. HLA-DR1 and HLA-DR4 transgenic mice were vaccinated with purified HA proteins, and CD4 T cells to specific epitopes were identified and quantified. These studies revealed that the diversity and abundance of CD4 T cells specific for HA do not segregate on the basis of whether the HA was derived from human seasonal or avian influenza viruses. Therefore, we conclude that failure in responses to avian vaccines in humans is likely due to a lack of cross-reactive CD4 T cell memory perhaps coupled with competition with or suppression of naive, HA-specific CD4 T cells by memory CD4 T cells specific for more highly conserved proteins.
Collapse
Affiliation(s)
- Anthony DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Katherine Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas Poulton
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
10
|
DiPiazza A, Richards KA, Knowlden ZAG, Nayak JL, Sant AJ. The Role of CD4 T Cell Memory in Generating Protective Immunity to Novel and Potentially Pandemic Strains of Influenza. Front Immunol 2016; 7:10. [PMID: 26834750 PMCID: PMC4725218 DOI: 10.3389/fimmu.2016.00010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 11/24/2022] Open
Abstract
Recent events have made it clear that potentially pandemic strains of influenza regularly pose a threat to human populations. Therefore, it is essential that we develop better strategies to enhance vaccine design and evaluation to predict those that will be poor responders to vaccination and to identify those that are at particular risk of disease-associated complications following infection. Animal models have revealed the discrete functions that CD4 T cells play in developing immune response and to influenza immunity. However, humans have a complex immunological history with influenza through periodic infection and vaccination with seasonal variants, leading to the establishment of heterogeneous memory populations of CD4 T cells that participate in subsequent responses. The continual evolution of the influenza-specific CD4 T cell repertoire involves both specificity and function and overlays other restrictions on CD4 T cell activity derived from viral antigen handling and MHC class II:peptide epitope display. Together, these complexities in the influenza-specific CD4 T cell repertoire constitute a formidable obstacle to predicting protective immune response to potentially pandemic strains of influenza and in devising optimal vaccine strategies to potentiate these responses. We suggest that more precise efforts to identify and enumerate both the positive and negative contributors within the CD4 T cell compartment will aid significantly in the achievement of these goals.
Collapse
Affiliation(s)
- Anthony DiPiazza
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Katherine A Richards
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Zackery A G Knowlden
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Jennifer L Nayak
- Department of Pediatrics, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Andrea J Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| |
Collapse
|
11
|
Hervé PL, Lorin V, Jouvion G, Da Costa B, Escriou N. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology 2015; 486:134-45. [PMID: 26433051 DOI: 10.1016/j.virol.2015.08.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
Abstract
Highly pathogenic avian influenza A H5N1 viruses remain endemic in poultry in several countries and still constitute a pandemic threat. Since the early 20th century, we experienced four influenza A pandemics. H3N2 and H1N1pdm09 viruses that respectively emerged during 1968 and 2009 pandemics are still responsible for seasonal epidemics. These viruses evolve regularly by substitutions in antigenic sites of the hemagglutinin (HA), which prevent neutralization by antibodies directed against previous strains (antigenic drift). For seasonal H3N2 viruses, an addition of N-glycosylation sites (glycosites) on H3 contributed to this drift. Here, we questioned whether additional glycosites on H5 could induce an escape of H5N1 virus from neutralization, as it was observed for seasonal H3N2 viruses. Seven H5N1 mutants were produced by adding glycosites on H5. The most glycosylated virus escaped from neutralizing antibodies, in vitro and in vivo. Furthermore, a single additional glycosite was responsible for this escape.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Epitope Mapping
- Female
- Glycosylation
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza A Virus, H5N1 Subtype/chemistry
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/metabolism
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
Collapse
Affiliation(s)
- Pierre-Louis Hervé
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, 25-28 rue du Docteur Roux, F-75015 Paris, France; CNRS UMR 3569, 25-28 rue du Docteur Roux, F-75015 Paris, France; Université Paris Diderot, Sorbonne, Paris Cité, EA 302, 25-28 rue du Docteur Roux, Paris, France.
| | - Valérie Lorin
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, 25-28 rue du Docteur Roux, F-75015 Paris, France; CNRS UMR 3569, 25-28 rue du Docteur Roux, F-75015 Paris, France; Université Paris Diderot, Sorbonne, Paris Cité, EA 302, 25-28 rue du Docteur Roux, Paris, France
| | - Grégory Jouvion
- Institut Pasteur, Unité d'histopathologie Humaine et Modèles Animaux, 25-28 rue du Docteur Roux, F-75015 Paris, France
| | - Bruno Da Costa
- Institut National de la Recherche Agronomique (INRA), Molecular Virology and Immunology unit (VIM), UR892, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Nicolas Escriou
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, 25-28 rue du Docteur Roux, F-75015 Paris, France; CNRS UMR 3569, 25-28 rue du Docteur Roux, F-75015 Paris, France; Université Paris Diderot, Sorbonne, Paris Cité, EA 302, 25-28 rue du Docteur Roux, Paris, France.
| |
Collapse
|
12
|
Richards KA, Nayak J, Chaves FA, DiPiazza A, Knowlden ZAG, Alam S, Treanor JJ, Sant AJ. Seasonal Influenza Can Poise Hosts for CD4 T-Cell Immunity to H7N9 Avian Influenza. J Infect Dis 2015; 212:86-94. [PMID: 25492919 PMCID: PMC4481611 DOI: 10.1093/infdis/jiu662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/11/2014] [Indexed: 01/26/2023] Open
Abstract
The emergence of avian H7N9 viruses has raised concerns about its pandemic potential and prompted vaccine trials. At present, it is unknown whether there will be sufficient cross-reactive hemagglutinin (HA)-specific CD4 T-cell memory with seasonal influenza to facilitate antibody production to H7 HA. There has also been speculation that H7N9 will have few CD4 T-cell epitopes. In this study, we quantified the potential of seasonal influenza to provide memory CD4 T cells that can cross-reactively recognize H7 HA-derived peptides. These studies have revealed that many humans have substantial H7-reactive CD4 T cells, whereas up to 40% are lacking such reactivity. Correlation studies indicate that CD4 T cells reactive with H7 HA are drawn from reactivity generated from seasonal strains. Overall, our findings suggest that previous exposure of humans to seasonal influenza can poise them to respond to avian H7N9, but this is likely to be uneven across populations.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Jennifer Nayak
- Department of Pediatrics, and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, New York
| | - Francisco A. Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Anthony DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Zackery A. G. Knowlden
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | | | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| |
Collapse
|
13
|
Kim MC, Lee YN, Ko EJ, Lee JS, Kwon YM, Hwang HS, Song JM, Song BM, Lee YJ, Choi JG, Kang HM, Quan FS, Compans RW, Kang SM. Supplementation of influenza split vaccines with conserved M2 ectodomains overcomes strain specificity and provides long-term cross protection. Mol Ther 2014; 22:1364-1374. [PMID: 24590045 DOI: 10.1038/mt.2014.33] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/20/2014] [Indexed: 11/09/2022] Open
Abstract
Current influenza vaccines do not provide good protection against antigenically different influenza A viruses. As an approach to overcome strain specificity of protection, this study demonstrates significantly improved long-term cross protection by supplementing split vaccines with a conserved molecular target, a repeat of the influenza M2 ectodomain (M2e) expressed on virus-like particles (M2e5x VLPs) in a membrane-anchored form. Intramuscular immunization with H1N1 split vaccine (A/California/07/2009) supplemented with M2e5x VLPs induced M2e-specific humoral and cellular immune responses, and shaped the host responses to the vaccine in the direction of T-helper type 1 responses inducing dominant IgG2a isotype antibodies as well as interferon-γ (IFN-γ) producing cells in systemic and mucosal sites. Upon lethal challenge, M2e5x VLP-supplemented vaccination lowered lung viral loads and induced long-term cross protection against H3N2 or H5N1 subtype influenza viruses over 12 months. M2e antibodies, CD4 T cells, and CD8 T cells were found to contribute to improving heterosubtypic cross protection. In addition, improved cross protection by supplemented vaccination with M2e5x VLPs was mediated via Fc receptors. The results support evidence that supplementation with M2e5x VLPs is a promising approach for overcoming the limitation of strain-specific protection by current influenza vaccination.
Collapse
Affiliation(s)
- Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA; Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Jae-Min Song
- Department of Global medical Science, Sungshin Women's University, Seoul, Korea
| | - Byung-Min Song
- Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Korea
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Korea
| | - Jun-Gu Choi
- Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Korea
| | - Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Richard W Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
14
|
McElhaney JE, Coler RN, Baldwin SL. Immunologic correlates of protection and potential role for adjuvants to improve influenza vaccines in older adults. Expert Rev Vaccines 2014; 12:759-66. [DOI: 10.1586/14760584.2013.811193] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
CD4 T cell help is limiting and selective during the primary B cell response to influenza virus infection. J Virol 2013; 88:314-24. [PMID: 24155379 DOI: 10.1128/jvi.02077-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus vaccination strategies are focused upon the elicitation of protective antibody responses through administration of viral protein through either inactivated virions or live attenuated virus. Often overlooked in this strategy is the CD4 T cell response: how it develops into memory, and how it may support future primary B cell responses to heterologous infection. Through the utilization of a peptide-priming regimen, this study describes a strategy for developing CD4 T cell memory with the capacity to robustly expand in the lung-draining lymph node after live influenza virus infection. Not only were frequencies of antigen-specific CD4 T cells enhanced, but these cells also supported an accelerated primary B cell response to influenza virus-derived protein, evidenced by high anti-nucleoprotein (NP) serum antibody titers early, while there is still active viral replication ongoing in the lung. NP-specific antibody-secreting cells and heightened frequencies of germinal center B cells and follicular T helper cells were also readily detectable in the draining lymph node. Surprisingly, a boosted memory CD4 T cell response was not sufficient to provide intermolecular help for antibody responses. Our study demonstrates that CD4 T cell help is selective and limiting to the primary antibody response to influenza virus infection and that preemptive priming of CD4 T cell help can promote effective and rapid conversion of naive B cells to mature antibody-secreting cells.
Collapse
|
16
|
Vaccine-induced boosting of influenza virus-specific CD4 T cells in younger and aged humans. PLoS One 2013; 8:e77164. [PMID: 24155927 PMCID: PMC3796569 DOI: 10.1371/journal.pone.0077164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/07/2013] [Indexed: 01/11/2023] Open
Abstract
Current yearly influenza virus vaccines induce strain-specific neutralizing antibody (NAb) responses providing protective immunity to closely matched viruses. However, these vaccines are often poorly effective in high-risk groups such as the elderly and challenges exist in predicting yearly or emerging pandemic influenza virus strains to include in the vaccines. Thus, there has been considerable emphasis on understanding broadly protective immunological mechanisms for influenza virus. Recent studies have implicated memory CD4 T cells in heterotypic immunity in animal models and in human challenge studies. Here we examined how influenza virus vaccination boosted CD4 T cell responses in younger versus aged humans. Our results demonstrate that while the magnitude of the vaccine-induced CD4 T cell response and number of subjects responding on day 7 did not differ between younger and aged subjects, fewer aged subjects had peak responses on day 14. While CD4 T cell responses were inefficiently boosted against NA, both HA and especially nucleocaspid protein- and matrix-(NP+M) specific responses were robustly boosted. Pre-existing CD4 T cell responses were associated with more robust responses to influenza virus NP+M, but not H1 or H3. Finally pre-existing strain-specific NAb decreased the boosting of CD4 T cell responses. Thus, accumulation of pre-existing influenza virus-specific immunity in the form of NAb and cross-reactive T cells to conserved virus proteins (e.g. NP and M) over a lifetime of exposure to infection and vaccination may influence vaccine-induced CD4 T cell responses in the aged.
Collapse
|
17
|
Standard trivalent influenza virus protein vaccination does not prime antibody-dependent cellular cytotoxicity in macaques. J Virol 2013; 87:13706-18. [PMID: 24109221 DOI: 10.1128/jvi.01666-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Yearly vaccination with the trivalent inactivated influenza vaccine (TIV) is recommended, since current vaccines induce little cross neutralization to divergent influenza strains. Whether the TIV can induce antibody-dependent cellular cytotoxicity (ADCC) responses that can cross-recognize divergent influenza virus strains is unknown. We immunized 6 influenza-naive pigtail macaques twice with the 2011-2012 season TIV and then challenged the macaques, along with 12 control macaques, serially with H1N1 and H3N2 viruses. We measured ADCC responses in plasma to a panel of H1 and H3 hemagglutinin (HA) proteins and influenza virus-specific CD8 T cell (CTL) responses using a sensitive major histocompatibility complex (MHC) tetramer reagent. The TIV was weakly immunogenic and, although binding antibodies were detected by enzyme-linked immunosorbent assay (ELISA), did not induce detectable influenza virus-specific ADCC or CTL responses. The H1N1 challenge elicited robust ADCC to both homologous and heterologous H1 HA proteins, but not influenza virus HA proteins from different subtypes (H2 to H7). There was no anamnestic influenza virus-specific ADCC or CTL response in vaccinated animals. The subsequent H3N2 challenge did not induce or boost ADCC either to H1 HA proteins or to divergent H3 proteins but did boost CTL responses. ADCC or CTL responses were not induced by TIV vaccination in influenza-naive macaques. There was a marked difference in the ability of infection compared to that of vaccination to induce cross-reactive ADCC and CTL responses. Improved vaccination strategies are needed to induce broad-based ADCC immunity to influenza.
Collapse
|
18
|
Impact of prior seasonal H3N2 influenza vaccination or infection on protection and transmission of emerging variants of influenza A(H3N2)v virus in ferrets. J Virol 2013; 87:13480-9. [PMID: 24089569 DOI: 10.1128/jvi.02434-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza H3N2 A viruses continue to circulate in swine and occasionally infect humans, resulting in outbreaks of variant influenza H3N2 [A(H3N2)v] virus. It has been previously demonstrated in ferrets that A(H3N2)v viruses transmit as efficiently as seasonal influenza viruses, raising concern over the pandemic potential of these viruses. However, A(H3N2)v viruses have not acquired the ability to transmit efficiently among humans, which may be due in part to existing cross-reactive immunity to A(H3N2)v viruses. Although current seasonal H3N2 and A(H3N2)v viruses are antigenically distinct from one another, historical H3N2 viruses have some antigenic similarity to A(H3N2)v viruses and previous exposure to these viruses may provide a measure of immune protection sufficient to dampen A(H3N2)v virus transmission. Here, we evaluated whether prior seasonal H3N2 influenza virus vaccination or infection affects virus replication and transmission of A(H3N2)v virus in the ferret animal model. We found that the seasonal trivalent inactivated influenza virus vaccine (TIV) or a monovalent vaccine prepared from an antigenically related 1992 seasonal influenza H3N2 (A/Beijing/32/1992) virus failed to substantially reduce A(H3N2)v (A/Indiana/08/2011) virus shedding and subsequent transmission to naive hosts. Conversely, ferrets primed by seasonal H3N2 virus infection displayed reduced A(H3N2)v virus shedding following challenge, which blunted transmission to naive ferrets. A higher level of specific IgG and IgA antibody titers detected among infected versus vaccinated ferrets was associated with the degree of protection offered by seasonal H3N2 virus infection. The data demonstrate in ferrets that the efficiency of A(H3N2)v transmission is disrupted by preexisting immunity induced by seasonal H3N2 virus infection.
Collapse
|
19
|
Nayak JL, Alam S, Sant AJ. Cutting edge: Heterosubtypic influenza infection antagonizes elicitation of immunological reactivity to hemagglutinin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1001-5. [PMID: 23794632 PMCID: PMC6728918 DOI: 10.4049/jimmunol.1203520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza-specific immunity in humans is unique because there are repeated exposures to viral strains containing genetically conserved epitopes recruiting memory CD4 T cells and novel epitopes stimulating naive CD4 T cells, possibly resulting in competition between memory and naive lymphocytes. In this study, we evaluated the effect of this competition on CD4 T cell and B cell response specificity using a murine model of sequential influenza infection. We found striking and selective decreases in CD4 T cell reactivity to nonconserved hemagglutinin (HA) epitopes following secondary influenza infection. Surprisingly, this shift in CD4 T cell specificity was associated with dramatic decreases in HA-specific Ab. These results suggest that repeated exposure to influenza viruses and vaccines containing conserved internal proteins may have unintended and negative consequences on the ability to induce HA-specific Ab to novel pandemic strains of influenza. These finding could have important implications on pandemic influenza preparedness strategies.
Collapse
Affiliation(s)
- Jennifer L. Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, 601 Elmwood Ave, Box 690, Rochester, NY 14642
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Box 609, Rochester, NY 14642
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Box 609, Rochester, NY 14642
| |
Collapse
|
20
|
Terajima M, Babon JAB, Co MDT, Ennis FA. Cross-reactive human B cell and T cell epitopes between influenza A and B viruses. Virol J 2013; 10:244. [PMID: 23886073 PMCID: PMC3726517 DOI: 10.1186/1743-422x-10-244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/24/2013] [Indexed: 01/26/2023] Open
Abstract
Influenza A and B viruses form different genera, which were originally distinguished by antigenic differences in their nucleoproteins and matrix 1 proteins. Cross-protection between these two genera has not been observed in animal experiments, which is consistent with the low homology in viral proteins common to both viruses except for one of three polymerase proteins, polymerase basic 1 (PB1). Recently, however, antibody and CD4+ T cell epitopes conserved between the two genera were identified in humans. A protective antibody epitope was located in the stalk region of the surface glycoprotein, hemagglutinin, and a CD4+ T cell epitope was located in the fusion peptide of the hemagglutinin. The fusion peptide was also found to contain antibody epitopes in humans and animals. A short stretch of well-conserved peptide was also identified in the other surface glycoprotein, neuraminidase, and antibodies binding to this peptide were generated by peptide immunization in rabbits. Although PB1, the only protein which has relatively high overall sequence homology between influenza A and B viruses, is not considered an immunodominant protein in the T cell responses to influenza A virus infection, amino acid sequence comparisons show that a considerable number of previously identified T cell epitopes in the PB1 of influenza A viruses are conserved in the PB1 of influenza B viruses. These data indicate that B and T cell cross-reactivity exists between influenza A and B viruses, which may have modulatory effects on the disease process and recovery. Although the antibody titers and the specific T cell frequencies induced by natural infection or standard vaccination may not be high enough to provide cross protection in humans, it might be possible to develop immunization strategies to induce these cross-reactive responses more efficiently.
Collapse
Affiliation(s)
- Masanori Terajima
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
21
|
HLA targeting efficiency correlates with human T-cell response magnitude and with mortality from influenza A infection. Proc Natl Acad Sci U S A 2013; 110:13492-7. [PMID: 23878211 DOI: 10.1073/pnas.1221555110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Experimental and computational evidence suggests that HLAs preferentially bind conserved regions of viral proteins, a concept we term "targeting efficiency," and that this preference may provide improved clearance of infection in several viral systems. To test this hypothesis, T-cell responses to A/H1N1 (2009) were measured from peripheral blood mononuclear cells obtained from a household cohort study performed during the 2009-2010 influenza season. We found that HLA targeting efficiency scores significantly correlated with IFN-γ enzyme-linked immunosorbent spot responses (P = 0.042, multiple regression). A further population-based analysis found that the carriage frequencies of the alleles with the lowest targeting efficiencies, A*24, were associated with pH1N1 mortality (r = 0.37, P = 0.031) and are common in certain indigenous populations in which increased pH1N1 morbidity has been reported. HLA efficiency scores and HLA use are associated with CD8 T-cell magnitude in humans after influenza infection. The computational tools used in this study may be useful predictors of potential morbidity and identify immunologic differences of new variant influenza strains more accurately than evolutionary sequence comparisons. Population-based studies of the relative frequency of these alleles in severe vs. mild influenza cases might advance clinical practices for severe H1N1 infections among genetically susceptible populations.
Collapse
|
22
|
McKinstry KK, Dutton RW, Swain SL, Strutt TM. Memory CD4 T cell-mediated immunity against influenza A virus: more than a little helpful. Arch Immunol Ther Exp (Warsz) 2013; 61:341-53. [PMID: 23708562 DOI: 10.1007/s00005-013-0236-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/13/2013] [Indexed: 12/22/2022]
Abstract
Recent observations have uncovered multiple pathways whereby CD4 T cells can contribute to protective immune responses against microbial threats. Incorporating the generation of memory CD4 T cells into vaccine strategies thus presents an attractive approach toward improving immunity against several important human pathogens, especially those against which antibody responses alone are inadequate to confer long-term immunity. Here, we review how memory CD4 T cells provide protection against influenza viruses. We discuss the complexities of protective memory CD4 T cell responses observed in animal models and the potential challenges of translating these observations into the clinic. Specifically, we concentrate on how better understanding of organ-specific heterogeneity of responding cells and defining multiple correlates of protection might improve vaccine-generated memory CD4 T cells to better protect against seasonal, and more importantly, pandemic influenza.
Collapse
Affiliation(s)
- K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01583, USA,
| | | | | | | |
Collapse
|
23
|
MacLeod MKL, David A, Jin N, Noges L, Wang J, Kappler JW, Marrack P. Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza A virus that expresses an altered nucleoprotein sequence. PLoS One 2013; 8:e61775. [PMID: 23613928 PMCID: PMC3629017 DOI: 10.1371/journal.pone.0061775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes.
Collapse
Affiliation(s)
- Megan K. L. MacLeod
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- * E-mail: (PM); (MKLM)
| | - Alexandria David
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Niyun Jin
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Laura Noges
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - John W. Kappler
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Program in Biomolecular Structure, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
| | - Philippa Marrack
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Program in Biomolecular Structure, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, Colorado, United States of America
- * E-mail: (PM); (MKLM)
| |
Collapse
|