1
|
Anti-Tn Monoclonal Antibody Ameliorates Hyperoxia-Induced Kidney Injury by Suppressing Oxidative Stress and Inflammation in Neonatal Mice. Mediators Inflamm 2021; 2021:1180543. [PMID: 34720748 PMCID: PMC8553484 DOI: 10.1155/2021/1180543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/09/2021] [Indexed: 01/27/2023] Open
Abstract
The Tn antigen, an N-acetylgalactosamine structure linked to serine or threonine, has been shown to induce high-specificity, high-affinity anti-Tn antibodies in mice. Maternal immunization with the Tn vaccine increases serum anti-Tn antibody titers and attenuates hyperoxia-induced kidney injury in neonatal rats. However, immunizing mothers to treat neonatal kidney disease is clinically impractical. This study is aimed at determining whether anti-Tn monoclonal antibody treatment ameliorates hyperoxia-induced kidney injury in neonatal mice. Newborn BALB/c mice were exposed to room air (RA) or normobaric hyperoxia (85% O2) for 1 week. On postnatal days 2, 4, and 6, the mice were injected intraperitoneally with PBS alone or with anti-Tn monoclonal antibodies at 25 μg/g body weight in 50 μL phosphate-buffered saline (PBS). The mice were divided into four study groups: RA + PBS, RA + anti-Tn monoclonal antibody, O2 + PBS, and O2 + anti-Tn monoclonal antibody. The kidneys were excised for histology, oxidative stress, cytokine, and Western blot analyses on postnatal day 7. The O2 + PBS mice exhibited significantly higher kidney injury scores, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear factor-κB (NF-κB) expression, and cytokine levels than did the RA + PBS mice or RA + anti-Tn mice. Anti-Tn monoclonal antibody treatment reduced kidney injury and cytokine levels to normoxic levels. The attenuation of kidney injury was accompanied by a reduction of oxidative stress and NF-κB expression. Therefore, we propose that anti-Tn monoclonal antibody treatment ameliorates hyperoxia-induced kidney injury by suppressing oxidative stress and inflammation in neonatal mice.
Collapse
|
2
|
Immunization with anti-Tn immunogen in maternal rats protects against hyperoxia-induced kidney injury in newborn offspring. Pediatr Res 2021; 89:476-482. [PMID: 32311698 DOI: 10.1038/s41390-020-0894-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neonatal hyperoxia increases oxidative stress and adversely disturbs glomerular and tubular maturity. Maternal Tn immunization induces anti-Tn antibody titer and attenuates hyperoxia-induced lung injury in neonatal rats. METHODS We intraperitoneally immunized female Sprague-Dawley rats (6 weeks old) with Tn immunogen (50 μg/dose) or carrier protein five times at biweekly intervals on 8, 6, 4, 2, and 0 weeks before the delivery day. The pups were reared for 2 weeks in either room air (RA) or in 85% oxygen-enriched atmosphere (O2), thus generating four study groups, namely carrier protein + RA, Tn vaccine + RA, carrier protein + O2, and Tn vaccine + O2. On postnatal day 14, the kidneys were harvested for the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), nuclear factor-κB (NF-κB), and collagen expression and histological analyses. RESULTS Hyperoxia reduced body weight, induced tubular and glomerular injuries, and increased 8-OHdG and NF-κB expression and collagen deposition in the kidneys. By contrast, maternal Tn immunization reduced kidney injury and collagen deposition in neonatal rats. Furthermore, kidney injury attenuation was accompanied by a reduction in 8-OHdG and NF-κB expression. CONCLUSION Maternal Tn immunization protects against hyperoxia-induced kidney injury in neonatal rats by attenuating oxidative stress and NF-κB activity. IMPACT Hyperoxia increased nuclear factor-κB (NF-κB) activity and collagen deposition in neonatal rat kidney. Maternal Tn immunization reduced kidney injury as well as collagen deposition in neonatal rats. Maternal Tn immunization reduced kidney injury and was associated with a reduction in 8-hydroxy-2'-deoxyguanosine and NF-κB activity. Tn vaccine can be a promising treatment modality against hyperoxia-induced kidney injury in neonates.
Collapse
|
3
|
Chen CM, Hwang J, Chou HC, Chen C. Anti-Tn Monoclonal Antibody Attenuates Hyperoxia-Induced Lung Injury by Inhibiting Oxidative Stress and Inflammation in Neonatal Mice. Front Pharmacol 2020; 11:568502. [PMID: 33013407 PMCID: PMC7506044 DOI: 10.3389/fphar.2020.568502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal immunization with Tn vaccine increases serum anti-Tn antibody titers and attenuates hyperoxia-induced lung injury in neonatal rats. This study determined whether anti-Tn monoclonal antibody can protect against hyperoxia-induced lung injury in neonatal mice. Newborn BALB/c mice were exposed to room air (RA) or normobaric hyperoxia (85% O2) for 1 week, creating four study groups as follows: RA + phosphate-buffered saline (PBS), RA + anti-Tn monoclonal antibody, O2 + PBS, and O2 + anti-Tn monoclonal antibody. The anti-Tn monoclonal antibody at 25 μg/g body weight in 50 μl PBS was intraperitoneally injected on postnatal days 2, 4, and 6. Hyperoxia reduced body weight and survival rate, increased mean linear intercept (MLI) and lung tumor necrosis factor-α, and decreased vascular endothelial growth factor (VEGF) expression and vascular density on postnatal day 7. Anti-Tn monoclonal antibody increased neonatal serum anti-Tn antibody titers, reduced MLI and cytokine, and increased VEGF expression and vascular density to normoxic levels. The attenuation of lung injury was accompanied by a reduction in lung oxidative stress and nuclear factor-κB activity. Anti-Tn monoclonal antibody improves alveolarization and angiogenesis in hyperoxia-injured newborn mice lungs through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jaulang Hwang
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chinde Chen
- Department of Research and Development, Taivital Biopharmaceutical Co. LTD, Taoyuan, Taiwan
| |
Collapse
|
4
|
Chen CM, Hwang J, Chou HC. Maternal Tn Immunization Attenuates Hyperoxia-Induced Lung Injury in Neonatal Rats Through Suppression of Oxidative Stress and Inflammation. Front Immunol 2019; 10:681. [PMID: 31019509 PMCID: PMC6458300 DOI: 10.3389/fimmu.2019.00681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Hyperoxia therapy is often required to treat newborns with respiratory disorders. Prolonged hyperoxia exposure increases oxidative stress and arrests alveolar development in newborn rats. Tn antigen is N-acetylgalactosamine residue that is one of the most remarkable tumor-associated carbohydrate antigens. Tn immunization increases the serum anti-Tn antibody titers and attenuates hyperoxia-induced lung injury in adult mice. We hypothesized that maternal Tn immunizations would attenuate hyperoxia-induced lung injury through the suppression of oxidative stress in neonatal rats. Female Sprague-Dawley rats (6 weeks old) were intraperitoneally immunized five times with Tn (50 μg/dose) or carrier protein at biweekly intervals on 8, 6, 4, 2, and 0 weeks before the day of delivery. The pups were reared in room air (RA) or 2 weeks of 85% O2, creating the four study groups: carrier protein + RA, Tn vaccine + RA, carrier protein + O2, and Tn vaccine + O2. The lungs were excised for oxidative stress, cytokine, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, and histological analysis on postnatal day 14. Blood was withdrawn from dams and rat pups to check anti-Tn antibody using western blot. We observed that neonatal hyperoxia exposure reduced the body weight, increased 8-hydroxy-2-deoxyguanosine (8-OHdG) expression and lung cytokine (interleukin-4), increased mean linear intercept (MLI) values, and decreased vascular density and VEGF and PDGF-B expressions. By contrast, Tn immunization increased maternal and neonatal serum anti-Tn antibody titers on postnatal day 14, reduced MLI, and increased vascular density and VEGF and PDGF-B expressions to normoxic levels. Furthermore, the alleviation of lung injury was accompanied by a reduction in lung cytokine and 8-OHdG expression. Therefore, we propose that maternal Tn immunization attenuates hyperoxia-induced lung injury in neonatal rats through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jaulang Hwang
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Wang FS, Wu RW, Lain WS, Tsai TC, Chen YS, Sun YC, Ke HJ, Li JC, Hwang J, Ko JY. Sclerostin vaccination mitigates estrogen deficiency induction of bone mass loss and microstructure deterioration. Bone 2018; 112:24-34. [PMID: 29653294 DOI: 10.1016/j.bone.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
Sclerostin (SOST) is a Wnt signaling inhibitor detrimental to osteogenic differentiation and bone mineral acquisition. While control of SOST action delays the pathogenesis of skeletal disorders, the effects of SOST vaccination on the estrogen deficiency-induced bone deterioration remain elusive. In this study, we generated a SOST-Fc fusion protein which was composed of a SOST peptide Pro-Asn-Ala-Ile-Gly along with an IgG Fc fragment. SOST-Fc vaccination increased serum anti-SOST antibody levels and reduced serum SOST concentrations in mice. In vitro, anti-SOST serum attenuated the SOST-induced inhibition of osteogenic gene expression in osteoblast cultures. Administration with SOST-Fc increased serum levels of bone formation marker osteocalcin and alleviated the ovariectomy escalation of serum resorption markers CTX-1 and TRAP5b concentrations. It remarkably lessened the estrogen deficiency-mediated deterioration of bone mineral density, morphometric characteristics of trabecular bone, and mechanical strength of femurs and lumbar spines. The SOST-Fc-treated skeletal tissue exhibited moderate responses to the adverse actions of ovariectomy to bone mineral accretion, osteoclast surface, trabecular separation, and fatty marrow histopathology. SOST-Fc treatment increased serum osteoclast-inhibitory factor osteoprotegrin levels in conjunction with strong Wnt3a, β-catenin, and TCF4 immunostaining in osteoblasts, whereas it weakened the estrogen deficiency enhancement of osteoclast-promoting factor receptor activator of nuclear factor-κB ligand. Taken together, blockade of SOST action by SOST-Fc vaccination sustains Wnt signaling, which harmonizes bone mineral accretion and resorption reactions and thereby ameliorates ovariectomy-induced bone loss. This study highlights SOST-Fc fusion protein as a new molecular therapeutic potential for preventing from osteoporotic disorders.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Shiung Lain
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsai-Chen Tsai
- Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jui-Chen Li
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jaulang Hwang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Chen CM, Hwang J, Chou HC, Shiah HS. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity. Int Immunopharmacol 2018; 59:261-268. [DOI: 10.1016/j.intimp.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
|
7
|
Ho CW, Lin CY, Liaw YW, Chiang HL, Chin YT, Huang RL, Lai HC, Hsu YW, Kuo PJ, Chen CE, Lin HY, Whang-Peng J, Nieh S, Fu E, Liu LF, Hwang J. The cytokine-cosmc signaling axis upregulates the tumor-associated carbohydrate antigen Tn. Oncotarget 2016; 7:61930-61944. [PMID: 27542280 PMCID: PMC5308701 DOI: 10.18632/oncotarget.11324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/16/2016] [Indexed: 12/27/2022] Open
Abstract
Tn antigen (GalNAc-α-O-Ser/Thr), a mucin-type O-linked glycan, is a well-established cell surface marker for tumors and its elevated levels have been correlated with cancer progression and prognosis. There are also reports that Tn is elevated in inflammatory tissues. However, the molecular mechanism for its elevated levels in cancer and inflammation is unclear. In the current studies, we have explored the possibility that cytokines may be one of the common regulatory molecules for elevated Tn levels in both cancer and inflammation. We showed that the Tn level is elevated by the conditioned media of HrasG12V-transformed-BEAS-2B cells. Similarly, the conditioned media obtained from LPS-stimulated monocytes also elevated Tn levels in primary human gingival fibroblasts, suggesting the involvement of cytokines and/or other soluble factors. Indeed, purified inflammatory cytokines such as TNF-α and IL-6 up-regulated Tn levels in gingival fibroblasts. Furthermore, TNF-α was shown to down-regulate the COSMC gene as evidenced by reduced levels of the COSMC mRNA and protein, as well as hypermethylation of the CpG islands of the COSMC gene promoter. Since Cosmc, a chaperone for T-synthase, is known to negatively regulate Tn levels, our results suggest elevated Tn levels in cancer and inflammation may be commonly regulated by the cytokine-Cosmc signaling axis.
Collapse
Affiliation(s)
- Chia-Wen Ho
- Center for Cancer Research, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yu Lin
- Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wei Liaw
- Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ling Chiang
- Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yaw-Wen Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Chiao-En Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin Nieh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Earl Fu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Leroy F. Liu
- Center for Cancer Research, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jaulang Hwang
- Center for Cancer Research, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Liaw YW, Lin CY, Lai YS, Yang TC, Wang CJ, Whang-Peng J, Liu LF, Lin CP, Nieh S, Lu SC, Hwang J. A vaccine targeted at CETP alleviates high fat and high cholesterol diet-induced atherosclerosis and non-alcoholic steatohepatitis in rabbit. PLoS One 2014; 9:e111529. [PMID: 25486007 PMCID: PMC4259298 DOI: 10.1371/journal.pone.0111529] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/28/2014] [Indexed: 01/22/2023] Open
Abstract
Low HDL-C levels are associated with atherosclerosis and non-alcoholic steatohepatitis, and increased levels may reduce the risk of these diseases. Inhibition of cholesteryl ester transfer protein (CETP) activity is considered a promising strategy for increasing HDL-C levels. Since CETP is a self-antigen with low immunogenicity, we developed a novel CETP vaccine (Fc-CETP6) to overcome the low immunogenicity of CETP and for long-term inhibition of CETP activity. The vaccine consists of a rabbit IgG Fc domain for antigen delivery to antigen-presenting cells fused to a linear array of 6 repeats of a CETP epitope to efficiently activate B cells. Rabbits were fed a high fat/cholesterol (HFC) diet to induce atherosclerosis and NASH, and immunized with Fc-CETP6 vaccine. The Fc-CETP6 vaccine successfully elicited anti-CETP antibodies and lowered plasma CETP activity. The levels of plasma HDL-C and ApoA-I were higher, and plasma ox-LDL lower, in the Fc-CETP6-immunized rabbits as compared to the unimmunized HFC diet-fed rabbits. Pathological analyses revealed less lipid accumulation and inflammation in the aorta and liver of the Fc-CETP6-immunized rabbits. These results show that the Fc-CETP6 vaccine efficiently elicited antibodies against CETP and reduced susceptibility to both atherosclerosis and steatohepatitis induced by the HFC diet. Our findings suggest that the Fc-CETP6 vaccine may improve atherosclerosis and NASH and has high potential for clinical use.
Collapse
Affiliation(s)
- Yi-Wei Liaw
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yu Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Chung Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Jacqueline Whang-Peng
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Leroy F. Liu
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, The University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Chia-Po Lin
- Division of Drug Biology, Bureau of Food and Drug Analysis, Department of Health, Executive Yuan, Taiwan
| | - Shin Nieh
- Department of Pathology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (JH); (SCL)
| | - Jaulang Hwang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
- * E-mail: (JH); (SCL)
| |
Collapse
|
9
|
Lin CY, Ho JY, Hsieh MT, Chiang HL, Chuang JM, Whang-Peng J, Chang YC, Tseng YH, Chen SF, Nieh S, Hwang J. Reciprocal relationship of Tn/NF-κB and sTn as an indicator of the prognosis of oral squamous cell carcinoma. Histopathology 2013; 64:713-21. [PMID: 24117943 DOI: 10.1111/his.12309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
Abstract
AIMS In order to determine whether the expression of tumour-associated carbohydrate antigens (Tn/sTn) and a representative inflammation marker, nuclear factor-κB (NF-κB), is associated with the invasiveness of oral squamous cell carcinoma (OSCC), this study has attempted to investigate the correlation of the aforementioned markers with the well-established invasive pattern grading score (IPGS) and clinicopathological parameters. METHODS AND RESULTS Specimens from 143 OSCC patients with classified clinicopathological parameters and IPGS were stained immunohistochemically using anti-Tn, sTn and NF-κB antibodies. Our results showed that the expression of both Tn and NF-κB was correlated positively with staging (P = 0.036; P = 0.015), recurrence (P < 0.001; P < 0.001) and distant metastasis (P = 0.005; P = 0.009), as well as with IPGS, while the expression of sTn was correlated inversely. In addition, poor survival was associated with overexpression of Tn and NF-κB but not with expression of sTn. CONCLUSIONS Our results indicate that a reciprocal relationship between Tn and sTn expression may serve as a reliable indicator for OSCC prognostic evaluation. In addition, expression of Tn rather than sTn may play an important role in deeply invasive OSCC via regulation of NF-κB signalling.
Collapse
Affiliation(s)
- Chi-Yu Lin
- Graduate Institute of Life Sciences, National Defense Medical Centre, Taipei, Taiwan; Department of Biochemistry, Medical College, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|