1
|
Liberati C, Sturniolo G, Brigadoi G, Cavinato S, Visentin S, Cosmi E, Donà D, Rampon O. Burden of Congenital CMV Infection: A Narrative Review and Implications for Public Health Interventions. Viruses 2024; 16:1311. [PMID: 39205285 PMCID: PMC11360585 DOI: 10.3390/v16081311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Cytomegalovirus causes the most common congenital infection worldwide. With most infants asymptomatic at birth, the few affected may present with variable clinical scenarios, from isolated hearing loss to severe neurologic impairment. Public health interventions include all actions at the health system, community, and individual levels that aim at reducing the burden of congenital Cytomegalovirus. This review examines the literature on maternal and neonatal screening programs in light of current evidence for treatment and the development of vaccines against Cytomegalovirus. Potential biases and benefits of these interventions are outlined, with the objective of increasing awareness about the problem and providing readers with data and critical tools to participate in this ongoing debate.
Collapse
Affiliation(s)
- Cecilia Liberati
- Department of Women’s and Children’s Health, Pediatric Infectious Disease, Padua University Hospital, 35126 Padua, Italy; (C.L.); (G.S.); (D.D.); (O.R.)
| | - Giulia Sturniolo
- Department of Women’s and Children’s Health, Pediatric Infectious Disease, Padua University Hospital, 35126 Padua, Italy; (C.L.); (G.S.); (D.D.); (O.R.)
| | - Giulia Brigadoi
- Department of Women’s and Children’s Health, Pediatric Infectious Disease, Padua University Hospital, 35126 Padua, Italy; (C.L.); (G.S.); (D.D.); (O.R.)
| | - Silvia Cavinato
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35126 Padua, Italy;
| | - Silvia Visentin
- Department of Women’s and Children’s Health, Gynecological and Obstetric Clinic, Padua University Hospital, 35126 Padua, Italy; (S.V.); (E.C.)
| | - Erich Cosmi
- Department of Women’s and Children’s Health, Gynecological and Obstetric Clinic, Padua University Hospital, 35126 Padua, Italy; (S.V.); (E.C.)
| | - Daniele Donà
- Department of Women’s and Children’s Health, Pediatric Infectious Disease, Padua University Hospital, 35126 Padua, Italy; (C.L.); (G.S.); (D.D.); (O.R.)
| | - Osvalda Rampon
- Department of Women’s and Children’s Health, Pediatric Infectious Disease, Padua University Hospital, 35126 Padua, Italy; (C.L.); (G.S.); (D.D.); (O.R.)
| |
Collapse
|
2
|
Ciesla J, Huang KL, Wagner EJ, Munger J. A UL26-PIAS1 complex antagonizes anti-viral gene expression during Human Cytomegalovirus infection. PLoS Pathog 2024; 20:e1012058. [PMID: 38768227 PMCID: PMC11142722 DOI: 10.1371/journal.ppat.1012058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/31/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Viral disruption of innate immune signaling is a critical determinant of productive infection. The Human Cytomegalovirus (HCMV) UL26 protein prevents anti-viral gene expression during infection, yet the mechanisms involved are unclear. We used TurboID-driven proximity proteomics to identify putative UL26 interacting proteins during infection to address this issue. We find that UL26 forms a complex with several immuno-regulatory proteins, including several STAT family members and various PIAS proteins, a family of E3 SUMO ligases. Our results indicate that UL26 prevents STAT phosphorylation during infection and antagonizes transcriptional activation induced by either interferon α (IFNA) or tumor necrosis factor α (TNFα). Additionally, we find that the inactivation of PIAS1 sensitizes cells to inflammatory stimulation, resulting in an anti-viral transcriptional environment similar to ΔUL26 infection. Further, PIAS1 is important for HCMV cell-to-cell spread, which depends on the presence of UL26, suggesting that the UL26-PIAS1 interaction is vital for modulating intrinsic anti-viral defense.
Collapse
Affiliation(s)
- Jessica Ciesla
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
3
|
Boppana SB, van Boven M, Britt WJ, Gantt S, Griffiths PD, Grosse SD, Hyde TB, Lanzieri TM, Mussi-Pinhata MM, Pallas SE, Pinninti SG, Rawlinson WD, Ross SA, Vossen ACTM, Fowler KB. Vaccine value profile for cytomegalovirus. Vaccine 2023; 41 Suppl 2:S53-S75. [PMID: 37806805 DOI: 10.1016/j.vaccine.2023.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 10/10/2023]
Abstract
Cytomegalovirus (CMV) is the most common infectious cause of congenital malformation and a leading cause of developmental disabilities such as sensorineural hearing loss (SNHL), motor and cognitive deficits. The significant disease burden from congenital CMV infection (cCMV) led the US National Institute of Medicine to rank CMV vaccine development as the highest priority. An average of 6.7/1000 live births are affected by cCMV, but the prevalence varies across and within countries. In contrast to other congenital infections such as rubella and toxoplasmosis, the prevalence of cCMV increases with CMV seroprevalence rates in the population. The true global burden of cCMV disease is likely underestimated because most infected infants (85-90 %) have asymptomatic infection and are not identified. However, about 7-11 % of those with asymptomatic infection will develop SNHL throughout early childhood. Although no licensed CMV vaccine exists, several candidate vaccines are in development, including one currently in phase 3 trials. Licensure of one or more vaccine candidates is feasible within the next five years. Various models of CMV vaccine strategies employing different target populations have shown to provide substantial benefit in reducing cCMV. Although CMV can cause end-organ disease with significant morbidity and mortality in immunocompromised individuals, the focus of this vaccine value profile (VVP) is on preventing or reducing the cCMV disease burden. This CMV VVP provides a high-level, comprehensive assessment of the currently available data to inform the potential public health, economic, and societal value of CMV vaccines. The CMV VVP was developed by a working group of subject matter experts from academia, public health groups, policy organizations, and non-profit organizations. All contributors have extensive expertise on various elements of the CMV VVP and have described the state of knowledge and identified the current gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics and Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, and Julius Center for Health Sciences and Primary Care, Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - William J Britt
- Departments of Pediatrics, Microbiology, and Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, USA
| | - Soren Gantt
- Centre de recherche du CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Paul D Griffiths
- Emeritus Professor of Virology, University College London, United Kingdom
| | - Scott D Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Terri B Hyde
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tatiana M Lanzieri
- Measles, Rubella, and Cytomegalovirus Epidemiology Team, Viral Vaccine Preventable Diseases Branch / Division of Viral Diseases. National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marisa M Mussi-Pinhata
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Sarah E Pallas
- Global Immunization Division, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Swetha G Pinninti
- Departments of Pediatrics and Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology Randwick, Prince of Wales Hospital, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, and School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Shannon A Ross
- Departments of Pediatrics and Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ann C T M Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karen B Fowler
- Departments of Pediatrics and Epidemiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Human cytomegalovirus pUL97 upregulates SOCS3 expression via transcription factor RFX7 in neural progenitor cells. PLoS Pathog 2023; 19:e1011166. [PMID: 36753521 PMCID: PMC9942973 DOI: 10.1371/journal.ppat.1011166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/21/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.
Collapse
|
5
|
Krauter S, Büscher N, Bräuchle E, Ortega Iannazzo S, Penner I, Krämer N, Gogesch P, Thomas S, Kreutz M, Dejung M, Freiwald A, Butter F, Waibler Z, Plachter B. An Attenuated Strain of Human Cytomegalovirus for the Establishment of a Subviral Particle Vaccine. Vaccines (Basel) 2022; 10:vaccines10081326. [PMID: 36016214 PMCID: PMC9413975 DOI: 10.3390/vaccines10081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe disease conditions either following congenital transmission of the virus or viral reactivation in immunosuppressed individuals. Consequently, the establishment of a protective vaccine is of high medical need. Several candidates have been tested in preclinical and clinical studies, yet no vaccine has been licensed. Subviral dense bodies (DB) are a promising vaccine candidate. We have recently provided a GMP-compliant protocol for the production of DB, based on a genetically modified version of the HCMV laboratory strain Towne, expressing the pentameric complex of envelope protein gH-gL-pUL128-131 (Towne-UL130rep). In this work, we genetically attenuated Towne-UL130rep by abrogating the expression of the tegument protein pUL25 and by fusing the destabilizing domain ddFKBP to the N-terminus of the IE1- and IE2-proteins of HCMV. The resulting strain, termed TR-VAC, produced high amounts of DB under IE1/IE2 repressive conditions and concomitant supplementation of the viral terminase inhibitor letermovir to the producer cell culture. TR-VAC DB retained the capacity to induce neutralizing antibodies. A complex pattern of host protein induction was observed by mass spectrometry following exposure of primary human monocytes with TR-VAC DB. Human monocyte-derived dendritic cells (DC) moderately increased the expression of activation markers and MHC molecules upon stimulation with TR-VAC DB. In a co-culture with autologous T cells, the TR-VAC DB-stimulated DC induced a robust HCMV-specific T cell-activation and –proliferation. Exposure of donor-derived monocytic cells to DB led to the activation of a rapid innate immune response. This comprehensive data set thus shows that TR-VAC is an optimal attenuated seed virus strain for the production of a DB vaccine to be tested in clinical studies.
Collapse
Affiliation(s)
- Steffi Krauter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Eric Bräuchle
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Samira Ortega Iannazzo
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Nadine Krämer
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Patricia Gogesch
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Simone Thomas
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Marina Kreutz
- Leibniz Institute for Immunotherapy, Regensburg and Klinik und Poliklinik für Innere Medizin III, Hämatologie und Internistische Onkologie, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Anja Freiwald
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Falk Butter
- Proteomics Core Facility, Institute of Molecular Biology, D-55128 Mainz, Germany
| | - Zoe Waibler
- Division of Immunology, Section 3/1 “Product Testing of Immunological Biomedicines”, Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-179232
| |
Collapse
|
6
|
García-Ríos E, Rodríguez MJ, Terrón MC, Luque D, Pérez-Romero P. Identification and Characterization of Epithelial Cell-Derived Dense Bodies Produced upon Cytomegalovirus Infection. Vaccines (Basel) 2022; 10:vaccines10081308. [PMID: 36016196 PMCID: PMC9412340 DOI: 10.3390/vaccines10081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dense bodies (DB) are complex, noninfectious particles produced during CMVinfection containing envelope and tegument proteins that may be ideal candidates as vaccines. Although DB were previously described in fibroblasts, no evidence of DB formation has been shown after propagating CMV in epithelial cells. In the present study, both fibroblast MRC-5 and epithelial ARPE-19 cells were used to study DB production during CMV infection. We demonstrate the formation of epithelial cell-derived DB, mostly located as cytoplasmic inclusions in the perinuclear area of the infected cell. DB were gradient-purified, and the nature of the viral particles was confirmed using CMV-specific immunelabeling. Epithelial cell-derived DB had higher density and more homogeneous size (200-300 nm) compared to fibroblast-derived DB (100-600 nm).In agreement with previous results characterizing DB from CMV-infected fibroblasts, the pp65 tegument protein was predominant in the epithelial cell-derived DB. Our results also suggest that epithelial cells had more CMV capsids in the cytoplasm and had spherical bodies compatible with nucleus condensation (pyknosis) in cells undergoing apoptosis that were not detected in MRC-5 infected cells at the tested time post-infection. Our results demonstrate the formation of DB in CMV-infected ARPE-19 epithelial cells that may be suitable candidate to develop a multiprotein vaccine with antigenic properties similar to that of the virions while not including the viral genome.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Department of Science, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - María Josefa Rodríguez
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - María Carmen Terrón
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - Daniel Luque
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| |
Collapse
|
7
|
Deciphering the Potential Coding of Human Cytomegalovirus: New Predicted Transmembrane Proteome. Int J Mol Sci 2022; 23:ijms23052768. [PMID: 35269907 PMCID: PMC8911422 DOI: 10.3390/ijms23052768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.
Collapse
|
8
|
Falci Finardi N, Kim H, Hernandez LZ, Russell MRG, Ho CMK, Sreenu VB, Wenham HA, Merritt A, Strang BL. Identification and characterization of bisbenzimide compounds that inhibit human cytomegalovirus replication. J Gen Virol 2021; 102. [PMID: 34882533 PMCID: PMC8744270 DOI: 10.1099/jgv.0.001702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.
Collapse
Affiliation(s)
- Nicole Falci Finardi
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Lee Z Hernandez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Catherine M-K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Vattipally B Sreenu
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Hannah A Wenham
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Andy Merritt
- Centre for Therapeutic Discovery, LifeArc, Stevenage, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK.,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Schleiss MR, Fernández-Alarcón C, Hernandez-Alvarado N, Wang JB, Geballe AP, McVoy MA. Inclusion of the Guinea Pig Cytomegalovirus Pentameric Complex in a Live Virus Vaccine Aids Efficacy against Congenital Infection but Is Not Essential for Improving Maternal and Neonatal Outcomes. Viruses 2021; 13:v13122370. [PMID: 34960639 PMCID: PMC8706200 DOI: 10.3390/v13122370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/17/2023] Open
Abstract
The development of a vaccine against congenital human cytomegalovirus (HCMV) infection is a major priority. The pentameric complex (PC) of virion envelope proteins gH, gL, UL128, UL130, and UL131A is a key vaccine target. To determine the importance of immunity to the homologous PC encoded by guinea pig cytomegalovirus (GPCMV) in preventing congenital CMV, PC-intact and PC-deficient live-attenuated vaccines were generated and directly compared for immunogenicity and efficacy against vertical transmission in a vertical transmission model. A virulent PC-intact GPCMV (PC/intact) was modified by galK mutagenesis either to abrogate PC expression (PC/null; containing a frame-shift mutation in GP129, homolog of UL128) or to delete genes encoding three MHC Class I homologs and a protein kinase R (PKR) evasin while retaining the PC (3DX/Δ145). Attenuated vaccines were compared to sham immunization in a two-dose preconception subcutaneous inoculation regimen in GPCMV seronegative Hartley guinea pigs. Vaccines induced transient, low-grade viremia in 5/12 PC/intact-, 2/12 PC/null-, and 1/11 3DX/Δ145-vaccinated animals. Upon completion of the two-dose vaccine series, ELISA titers for the PC/intact group (geometic mean titer (GMT) 13,669) were not significantly different from PC/null (GMT 8127) but were significantly higher than for the 3DX/Δ145 group (GMT 6185; p < 0.01). Dams were challenged with salivary gland-adapted GPCMV in the second trimester. All vaccines conferred protection against maternal viremia. Newborn weights were significantly lower in sham-immunized controls (84.5 ± 2.4 g) compared to PC/intact (96 ± 2.3 g), PC/null (97.6 ± 1.9 g), or 3DX/Δ145 (93 ± 1.7) pups (p < 0.01). Pup mortality in sham-immunized controls was 29/40 (73%) and decreased to 1/44 (2.3%), 2/46 (4.3%), or 4/40 (10%) in PC/intact, PC/null, or 3DX/Δ145 groups, respectively (all p < 0.001 compared to control). Congenital GPCMV transmission occurred in 5/44 (11%), 16/46 (35%), or 29/38 (76%) of pups in PC/intact, PC/null, or 3DX/Δ145 groups, versus 36/40 (90%) in controls. For infected pups, viral loads were lower in pups born to vaccinated dams compared to controls. Sequence analysis demonstrated that infected pups in the vaccine groups had salivary gland-adapted GPCMV and not vaccine strain-specific sequences, indicating that congenital transmission was due to the challenge virus and not vaccine virus. We conclude that inclusion of the PC in a live, attenuated preconception vaccine improves immunogenicity and reduces vertical transmission, but PC-null vaccines are equal to PC-intact vaccines in reducing maternal viremia and protecting against GPCMV-related pup mortality.
Collapse
Affiliation(s)
- Mark R. Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (C.F.-A.); (N.H.-A.)
- Correspondence: ; Tel.: +1-612-626-9913
| | - Claudia Fernández-Alarcón
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (C.F.-A.); (N.H.-A.)
| | - Nelmary Hernandez-Alvarado
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (C.F.-A.); (N.H.-A.)
| | - Jian Ben Wang
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.B.W.); (M.A.M.)
| | - Adam P. Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.B.W.); (M.A.M.)
| |
Collapse
|
10
|
Zhou Q, Wang Q, Shen H, Zhang Y, Zhang S, Li X, Acharya G. Seroprevalence of Cytomegalovirus and Associated Factors Among Preconception Women: A Cross-Sectional Nationwide Study in China. Front Public Health 2021; 9:631411. [PMID: 34513776 PMCID: PMC8425481 DOI: 10.3389/fpubh.2021.631411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cytomegalovirus seroconversion during pregnancy is common and has a substantial risk of congenital infection with longterm sequale. Screening during pregnancy or vaccination have not been shown to be effective for eliminating congenital infections. Preconception screening policy has not been evaluated adequately in a large scale. This nationwide study aimed to investigate epidemiological features of cytomegalovirus seropositivity and its geographic variation among Chinese women planning a pregnancy to gather epidemiological evidence as an essential for developing novel prevention strategies. Method: This cross-sectional sero-epidemiological survey enrolled women intending to become pregnant within 6 months in mainland China during 2010-2012. The primary outcomes in this study were cytomegalovirus Immunoglobulin G and M seropositivity. Secondary outcomes were the associations between Immunoglobulin G and Immunoglobulin M, with socio-demographic characteristics, including age, occupation, education level, place of residence, and ethnicity. The overall seropositivity and regional disparity was analyzed on the individual and regional level, respectively. Results: This study included data from 1,564,649 women from 31 provinces in mainland China. Among participants, 38.6% (n = 603,511) were cytomegalovirus immunoglobulin G+, 0.4% (n = 6,747) were immunoglobulin M+, and 0.2% (n = 2,879) were immunoglobulin M+ and immunoglobulin G+. On individual level, participant's age, ethnicity, and residing region were significantly associated with IgG+, IgM+, and IgM+IgG+ (P < 0.001), while occupation, education level, and place of residence were not statistically significant (P > 0.05). On regional level, cytomegalovirus immunoglobulin G and immunoglobulin M seropositivity was highest in the eastern region (49.5 and 0.5%, respectively), and lowest in the western region (26.9 and 0.4%, respectively). This geographic variation was also noted at the provincial level, characterized by higher provincial immunoglobulin M+ and immunoglobulin G+ rates associated with higher immunoglobulin G seropositivity. In the subgroup analysis of immunoglobulin G seropositivity, areas of higher immunoglobulin G positivity had a higher rate of immunoglobulin M+, indicating an expected increased risk of reinfection and primary infection. Conclusions: A substantial proportion of women (>60%) were susceptible to cytomegalovirus in preconception period in China, and immunoglobulin G seropositivity was seen at a low-medium level with substantial geographic variation. Integration of cytomegalovirus antibody testing in preconception screening program based on regional immunoglobulin G seropositivity, should be considered to promote strategies directed toward preventing sero-conversion during pregnancy to reduce the risk of this congenital infection.
Collapse
Affiliation(s)
- Qiongjie Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, China
| | - Haiping Shen
- Department of Maternal and Child Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, China
| | - Shikun Zhang
- Department of Maternal and Child Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ganesh Acharya
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Obstetrics and Gynecology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Hassett KJ, Higgins J, Woods A, Levy B, Xia Y, Hsiao CJ, Acosta E, Almarsson Ö, Moore MJ, Brito LA. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release 2021; 335:237-246. [PMID: 34019945 DOI: 10.1016/j.jconrel.2021.05.021] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023]
Abstract
Lipid nanoparticles (LNP) are effective delivery vehicles for messenger RNA (mRNA) and have shown promise for vaccine applications. Yet there are no published reports detailing how LNP biophysical properties can impact vaccine performance. In our hands, a retrospective analysis of mRNA LNP vaccine in vivo studies revealed a relationship between LNP particle size and immunogenicity in mice using LNPs of various compositions. To further investigate this, we designed a series of studies to systematically change LNP particle size without altering lipid composition and evaluated biophysical properties and immunogenicity of the resulting LNPs. While small diameter LNPs were substantially less immunogenic in mice, all particle sizes tested yielded a robust immune response in non-human primates (NHP).
Collapse
Affiliation(s)
- Kimberly J Hassett
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Jaclyn Higgins
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Angela Woods
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Becca Levy
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Yan Xia
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Chiaowen Joyce Hsiao
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Edward Acosta
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Örn Almarsson
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Melissa J Moore
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America
| | - Luis A Brito
- Moderna, Inc, 200 Technology Square, Cambridge, MA 02139, United States of America.
| |
Collapse
|
12
|
Krstanović F, Britt WJ, Jonjić S, Brizić I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses 2021; 13:1078. [PMID: 34200083 PMCID: PMC8227981 DOI: 10.3390/v13061078] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe disease in immunocompromised individuals and immunologically immature fetuses and newborns. Most infected newborns are able to resolve the infection without developing sequelae. However, in severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent damage of organ systems that possess a low regenerative capacity. Despite the severity of the problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus (MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the development of widespread histopathology and inflammation. Effector functions from both resident cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However, host-mediated inflammatory factors can also mediate the development of immunopathologies during CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the brain, local immune response to infection, and mechanisms leading to CNS sequelae.
Collapse
Affiliation(s)
- Fran Krstanović
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - William J. Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stipan Jonjić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - Ilija Brizić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| |
Collapse
|
13
|
Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines (Basel) 2021; 9:vaccines9050523. [PMID: 34069321 PMCID: PMC8158681 DOI: 10.3390/vaccines9050523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) is the most common cause of congenital infection and non-genetic sensorineural hearing loss in childhood. Up to 2% of neonates, with the highest percentages found in developing countries, are congenitally infected with CMV. At birth, most of these infants are asymptomatic. However, approximately 10% have signs and symptoms of the disease, and 40–60% of symptomatic neonates will later develop permanent neurologic sequelae. To reduce congenital CMV (cCMV) infection, a vaccine able to prevent primary infection is essential. In this narrative review, actual ongoing research about the development of a CMV vaccine is discussed. The progressive increase in knowledge on the ways in which the host’s immune system and CMV relate has made it possible to clarify that the development of a vaccine that is certainly capable of reducing the risk of cCMV infection, and preventing both primary and nonprimary infections is extremely difficult. Many of the ways in which the virus evades the immune system and causes cCMV infection are not yet fully understood, especially in cases of nonprimary infection. Moreover, the schedule that should be recommended and that subjects must be vaccinated to obtain the greatest effect have not been precisely defined. Further studies are needed before the problem of cCMV infection and its related challenges can be totally solved.
Collapse
|
14
|
McDonald JA, Cherubin S, Goldberg M, Wei Y, Chung WK, Schwartz LA, Knight JA, Schooling CM, Santella RM, Bradbury AR, Buys SS, Andrulis IL, John EM, Daly MB, Terry MB. Common Childhood Viruses and Pubertal Timing: The LEGACY Girls Study. Am J Epidemiol 2021; 190:766-778. [PMID: 33128063 DOI: 10.1093/aje/kwaa240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Earlier pubertal development is only partially explained by childhood body mass index; the role of other factors, such as childhood infections, is less understood. Using data from the LEGACY Girls Study (North America, 2011-2016), we prospectively examined the associations between childhood viral infections (cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus (HSV) 1, HSV2) and pubertal timing. We measured exposures based on seropositivity in premenarcheal girls (n = 490). Breast and pubic hair development were classified based on mother-reported Tanner Stage (TS) (TS2+ compared with TS1), adjusting for age, body mass index, and sociodemographic factors. The average age at first blood draw was 9.8 years (standard deviation, 1.9 years). The prevalences were 31% CMV+, 37% EBV+, 14% HSV1+, 0.4% HSV2+, and 16% for both CMV+/EBV+ coinfection. CMV+ infection without coinfection was associated with developing breasts an average of 7 months earlier (hazard ratio (HR) = 2.12, 95% confidence interval (CI): 1.32, 3.40). CMV infection without coinfection and HSV1 and/or HSV2 infection were associated with developing pubic hair 9 months later (HR = 0.41, 95% CI: 0.24, 0.71, and HR = 0.42, 95% CI: 0.22, 0.81, respectively). Infection was not associated with menarche. If replicated in larger cohorts with blood collection prior to any breast development, this study supports the hypothesis that childhood infections might play a role in altering pubertal timing.
Collapse
|
15
|
Lanzieri TM, Gastañaduy PA, Gambhir M, Plotkin SA. Review of Mathematical Models of Vaccination for Preventing Congenital Cytomegalovirus Infection. J Infect Dis 2021; 221:S86-S93. [PMID: 32134475 DOI: 10.1093/infdis/jiz402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Several cytomegalovirus (CMV) vaccine candidates are under development. To reduce the burden of congenital CMV infection, potential strategies under consideration include vaccination of adult women, adolescent girls, and/or young children (both sexes). METHODS We reviewed 5 studies that used infectious disease modeling to assess the potential impact of vaccination for preventing congenital CMV infection. All models assumed CMV vaccination would prevent primary infection and 2 models also assumed prevention of reinfections and reactivations. RESULTS Despite differences in structure, assumptions, and population data, infant vaccination (both sexes) was the optimal strategy in all models, but in 1 model vaccinating seronegative women at 19-21 years of age was also optimal (for duration of vaccine protection ≥8 years). In 3 models, infant vaccination increased average age at primary infection as a result of decreased secondary transmission (herd immunity) combined with waning vaccine-induced immunity. This effect could increase the risk of congenital CMV infections in populations where primary CMV infection occurs early in childhood but could be minimized by administering a second dose of vaccine during adolescence. CONCLUSIONS Understanding vaccine efficacy and duration of immunity, and how these might vary depending on CMV serostatus and age at vaccination, will be key to defining CMV vaccination strategies.
Collapse
Affiliation(s)
- Tatiana M Lanzieri
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Paul A Gastañaduy
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | |
Collapse
|
16
|
Abstract
The way to a successful vaccine against human cytomegalovirus is hampered by the peculiar biology of this infection. However, some candidate vaccines have been shown to protect seronegative women and transplant recipients, and we should know soon whether they can prevent congenital infection.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania, USA
| |
Collapse
|
17
|
Ali MG, Zhang Z, Gao Q, Pan M, Rowan EG, Zhang J. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunol Res 2020; 68:325-339. [PMID: 33161557 PMCID: PMC7648849 DOI: 10.1007/s12026-020-09159-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Antibodies are considered as an excellent foundation to neutralize pathogens and as highly specific therapeutic agents. Antibodies are generated in response to a vaccine but little use as immunotherapy to combat virus infections. A new generation of broadly cross-reactive and highly potent antibodies has led to a unique chance for them to be used as a medical intervention. Neutralizing antibodies (monoclonal and polyclonal antibodies) are desirable for pharmaceutical products because of their ability to target specific epitopes with their variable domains by precise neutralization mechanisms. The isolation of neutralizing antiviral antibodies has been achieved by Phage displayed antibody libraries, transgenic mice, B cell approaches, and hybridoma technology. Antibody engineering technologies have led to efficacy improvements, to further boost antibody in vivo activities. "Although neutralizing antiviral antibodies have some limitations that hinder their full development as therapeutic agents, the potential for prevention and treatment of infections, including a range of viruses (HIV, Ebola, MERS-COV, CHIKV, SARS-CoV, and SARS-CoV2), are being actively pursued in human clinical trials."
Collapse
Affiliation(s)
- Manasik Gumah Ali
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhening Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University Strathclyde, Glasgow, UK
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
18
|
Sweet C. Lessons from studies with murine cytomegalovirus that could lead to a safe live attenuated vaccine for human cytomegalovirus. Access Microbiol 2020; 2:acmi000147. [PMID: 33195979 PMCID: PMC7656186 DOI: 10.1099/acmi.0.000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Studies with a murine cytomegalovirus mutant tsm5 suggested two possible approaches to producing a live attenuated human cytomegalovirus vaccine. One approach would be to use a combination of five to six mutants where an attenuating mutation in the gene of one mutant is compensated by the wild-type version in a second mutant, which in turn has a mutation in a different gene compensated by the wild-type version in a third mutant, etc. Important genes in this approach could include those involved in DNA replication. The importance of the carboxy terminase of the primase gene (M70/UL70) for its function suggested a second approach where some of the natural codons in this region could be substituted with synonymous non-preferred (minor) codons that would reduce the replication fitness of the mutant.
Collapse
Affiliation(s)
- Clive Sweet
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Abassi L, Cicin-Sain L. The avid competitors of memory inflation. Curr Opin Virol 2020; 44:162-168. [PMID: 33039898 DOI: 10.1016/j.coviro.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
Cytomegaloviruses (CMV) coevolve with their hosts and latently persist in the vast majority of adult mammals. Therefore, persistent T-cell responses to CMV antigens during virus latency offer a fascinating perspective on the evolution of the T-cell repertoire in natural settings. We addressed here the life-long interactions between CMV antigens presented on MHC-I molecules and the CD8 T-cell response. We present the mechanistic evidence from the murine model of CMV infection and put it in context of clinical laboratory results. We will highlight the remarkable parallels in T-cell responses between the two biological systems, and focus in particular on memory inflation as a result of competitive processes, both between viral antigenic peptides and between T-cell receptors on the host's cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Leila Abassi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Germany; Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Germany; German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Germany.
| |
Collapse
|
20
|
Mabilangan C, Burton C, O’Brien S, Plitt S, Eurich D, Preiksaitis J. Using blood donors and solid organ transplant donors and recipients to estimate the seroprevalence of cytomegalovirus and Epstein-Barr virus in Canada: A cross-sectional study. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2020; 5:158-176. [PMID: 36341316 PMCID: PMC9608736 DOI: 10.3138/jammi-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections are common, causing significant morbidity in pregnancy (congenital CMV) and transplant recipients (CMV, EBV). Canadian prevalence data are needed to model disease burden and develop strategies for future vaccines. We estimated prevalence using screening data from blood donors and solid organ transplant (SOT) donors and recipients. METHODS We retrospectively analyzed CMV and EBV serology from Alberta SOT donors (n = 3,016) and recipients (n = 4,614) (1984-2013) and Canadian Blood Services blood donors (n = 1,253,350) (2005-2014), studying associations with age, sex, organ, year, and geographic region. RESULTS CMV seroprevalence rises gradually with age. By age 70, CMV seropositivity ranged from 67% (blood donors) to 73% (SOT recipients). Significant proportions of women of child-bearing age were CMV-seronegative (organ donors, 44%; SOT recipients, 43%; blood donors, 61%). Blood donor CMV seroprevalence decreased from 48% in Western Canada to 30% in Eastern Canada. Women were more likely to be CMV-seropositive (ORs = 1.58, 1.45, and 1.11 for organ donors, SOT recipients, and blood donors, respectively) and EBV-seropositive (ORs = 1.87 and 1.46 for organ donors and SOT recipients, respectively). EBV prevalence rises rapidly, and by age 17-29 years, 81% of SOT recipients and 90% of organ donors were seropositive. CONCLUSIONS Canada has relatively low and perhaps decreasing age-specific EBV and CMV prevalence, making Canadians vulnerable to primary infection-associated morbidity and suggesting benefit from future vaccines. Collection and analysis of routine serology screening data are useful for observing trends.
Collapse
Affiliation(s)
- Curtis Mabilangan
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sheila O’Brien
- Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabrina Plitt
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Dean Eurich
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Jutta Preiksaitis
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Correspondence: Jutta Preiksaitis, Division of Infectious Diseases, Department of Medicine, 1-125 CSB, 11350 83 Avenue, Edmonton, Alberta T6G 2G3, Canada. Telephone: 780-492-8164. Fax: 780-492-8050. E-mail:
| |
Collapse
|
21
|
Pomplun NL, Vosler L, Weisgrau KL, Furlott J, Weiler AM, Abdelaal HM, Evans DT, Watkins DI, Matano T, Skinner PJ, Friedrich TC, Rakasz EG. Immunophenotyping of Rhesus CMV-Specific CD8 T-Cell Populations. Cytometry A 2020; 99:278-288. [PMID: 32713108 PMCID: PMC7855655 DOI: 10.1002/cyto.a.24197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
A vaccine to ameliorate cytomegalovirus (CMV)-related pathogenicity in transplantation patients is considered a top priority. A therapeutic vaccine must include components that elicit both neutralizing antibodies, and highly effective CD8 T-cell responses. The most important translational model of vaccine development is the captive-bred rhesus macaque (Macaca mulatta) of Indian origin. There is a dearth of information on rhesus cytomegalovirus (rhCMV)-specific CD8 T cells due to the absence of well-defined CD8 T-cell epitopes presented by classical MHC-I molecules. In the current study, we defined two CD8 T-cell epitopes restricted by high-frequency Mamu alleles: the Mamu-A1*002:01 restricted VY9 (VTTLGMALY aa291-299) epitope of protein IE-1, and the Mamu-A1*008:01 restricted NP8 (NPTDRPIP aa96-103) epitope of protein phosphoprotein 65-2. We developed tetramers and determined the level, phenotype, and functional capability of the two epitope-specific T-cell populations in circulation and various tissues. We demonstrated the value of these tetramers for in situ tetramer staining. Here, we first provided critical reagents and established a flow cytometric staining strategy to study rhCMV-specific T-cell responses in up to 40% of captive-bred rhesus macaques. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Nicholas L Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Logan Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hadia M Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - David T Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David I Watkins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Garinot M, Piras-Douce F, Probeck P, Chambon V, Varghese K, Liu Y, Luna E, Drake D, Haensler J. A potent novel vaccine adjuvant based on straight polyacrylate. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100054. [PMID: 32776001 PMCID: PMC7398942 DOI: 10.1016/j.ijpx.2020.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 02/03/2023]
Abstract
A structure-activity study was conducted to identify the structural characteristics underlying the adjuvant activity of straight (i.e. non-crosslinked) polyacrylate polymers (PAAs) in order to select a new PAA adjuvant candidate for future clinical development. The study revealed that the adjuvant effect of PAA was mainly influenced by polymer size (Mw) and dose. Maximal effects were obtained with large PAAs above 350 kDa and doses above 100 μg in mice. Small PAAs below 10 kDa had virtually no adjuvant effect. HPSEC analysis revealed that PAA polydispersity index and ramification had less impact on adjuvanticity. Heat stability studies indicated that residual persulfate could be detrimental to PAA stability. Hence, this impurity was systematically eliminated by diafiltration along with small Mw PAAs and residual acrylic acid that could potentially affect product safety, potency and stability. The selected PAA, termed SPA09, displayed an adjuvant effect that was superior to that of a standard emulsion adjuvant when tested with CMV-gB in mice, even in the absence of binding to the antigen. The induced immune response was dominated by strong IFNγ, IgG2c and virus neutralizing titers. The activity of SPA09 was then confirmed on human cells via the innate immune module of the human MIMIC® system. Straight polyacrylate (350 kDa < Mw < 650 kDa; termed SPA09) is a strong adjuvant easy to formulate with vaccine antigens SPA09 induces Th-1 type immune responses in mice, dominated by strong IFN-γ, IgG2c and virus neutralizing titers SPA09 can activate human antigen presenting cells when tested via the innate immune module (PTE) of the human MIMIC® system SPA09 constitutes a straightforward new adjuvant candidate for future clinical development
Collapse
Affiliation(s)
- Marie Garinot
- Research and External Innovation, Sanofi Pasteur, Marcy L'Etoile, France
| | | | | | | | - Kucku Varghese
- Global Clinical Immunology, Sanofi Pasteur, Swiftwater, PA, USA
| | - Yuanqing Liu
- Research and External Innovation, Sanofi Pasteur, Marcy L'Etoile, France
| | | | | | - Jean Haensler
- Research and External Innovation, Sanofi Pasteur, Marcy L'Etoile, France
| |
Collapse
|
23
|
Rozhnova G, E Kretzschmar M, van der Klis F, van Baarle D, Korndewal M, C Vossen A, van Boven M. Short- and long-term impact of vaccination against cytomegalovirus: a modeling study. BMC Med 2020; 18:174. [PMID: 32611419 PMCID: PMC7331215 DOI: 10.1186/s12916-020-01629-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infection with cytomegalovirus (CMV) is highly prevalent worldwide and can cause severe disease in immunocompromised persons and congenitally infected infants. The disease burden caused by congenital CMV infection is high, especially in resource-limited countries. Vaccines are currently under development for various target groups. METHODS We evaluated the impact of vaccination strategies and hygiene intervention using transmission models. Model parameters were estimated from a cross-sectional serological population study (n=5179) and a retrospective birth cohort (n=31,484), providing information on the age- and sex-specific CMV prevalence and on the birth prevalence of congenital CMV (cCMV). RESULTS The analyses show that vertical transmission and infectious reactivation are the main drivers of transmission. Vaccination strategies aimed at reducing transmission from mother to child (vaccinating pregnant women or women of reproductive age) can yield substantial reductions of cCMV in 20 years (31.7-71.4% if 70% of women are effectively vaccinated). Alternatively, hygiene intervention aimed at preventing CMV infection and re-infection of women of reproductive age from young children is expected to reduce cCMV by less than 2%. The effects of large-scale vaccination on CMV prevalence can be substantial, owing to the moderate transmissibility of CMV at the population level. However, as CMV causes lifelong infection, the timescale on which reductions in CMV prevalence are expected is in the order of several decades. Elimination of CMV infection in the long run is only feasible for a vaccine with a long duration of protection and high vaccination coverage. CONCLUSIONS Vaccination is an effective intervention to reduce the birth prevalence of cCMV. Population-level reductions in CMV prevalence can only be achieved on a long timescale. Our results stress the value of vaccinating pregnant women and women of childbearing age and provide support for the development of CMV vaccines and early planning of vaccination scenarios and rollouts.
Collapse
Affiliation(s)
- Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
| | - Mirjam E Kretzschmar
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Fiona van der Klis
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Debbie van Baarle
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Marjolein Korndewal
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Ann C Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel van Boven
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
24
|
Saccoccio FM, Jenks JA, Itell HL, Li SH, Berry M, Pollara J, Casper C, Gantt S, Permar SR. Humoral Immune Correlates for Prevention of Postnatal Cytomegalovirus Acquisition. J Infect Dis 2020; 220:772-780. [PMID: 31107951 DOI: 10.1093/infdis/jiz192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Development of a cytomegalovirus (CMV) vaccine is a high priority. However, the ability of antibodies to protect against CMV infection is not well characterized. Studies of maternal antibodies in infants offer the potential to identify humoral correlates of protection against postnatal acquisition. METHODS This hypothesis-generating study analyzed 29 Ugandan mother-infant pairs that were followed weekly for CMV acquisition. Seventeen mothers and no infants were infected with human immunodeficiency virus (HIV). We evaluated the association between CMV-specific immunoglobulin G (IgG) responses in mothers at the time of delivery and their infants' CMV status at 6 months of age. We also assessed levels of CMV-specific IgG in infants at 6 weeks of age. CMV-specific IgG responses in the mother-infant pairs were then analyzed on the basis of perinatal HIV exposure. RESULTS We found similar levels of multiple CMV glycoprotein-specific IgG binding specificities and functions in mothers and infants, irrespective of perinatal HIV exposure or infant CMV status at 6 months of age. However, the glycoprotein B-specific IgG titer, measured by 2 distinct assays, was higher in infants without CMV infection and was moderately associated with delayed CMV acquisition. CONCLUSIONS These data suggest that high levels of glycoprotein B-specific IgG may contribute to the partial protection against postnatal CMV infection afforded by maternal antibodies, and they support the continued inclusion of glycoprotein B antigens in CMV vaccine candidates.
Collapse
Affiliation(s)
- Frances M Saccoccio
- Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Hannah L Itell
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Shuk Hang Li
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Duke University, Durham, North Carolina
| | - Corey Casper
- Infectious Disease Research Institute, Seattle, Washington
| | - Soren Gantt
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Sallie R Permar
- Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina.,Duke Human Vaccine Institute, Duke University, Durham, North Carolina
| |
Collapse
|
25
|
Cui X, Cao Z, Wang S, Adler SP, McVoy MA, Snapper CM. Immunization with Human Cytomegalovirus Core Fusion Machinery and Accessory Envelope Proteins Elicit Strong Synergistic Neutralizing Activities. Vaccines (Basel) 2020; 8:vaccines8020179. [PMID: 32294946 PMCID: PMC7348949 DOI: 10.3390/vaccines8020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) core fusion machinery proteins gB and gH/gL, and accessory proteins UL128/UL130/UL131A, are the key envelope proteins that mediate HCMV entry into and infection of host cells. To determine whether these HCMV envelope proteins could elicit neutralizing activities synergistically, we immunized rabbits with individual or various combinations of these proteins adsorbed to aluminum hydroxide mixed with CpG-ODN. We then analyzed serum neutralizing activities with multiple HCMV laboratory strains and clinical isolates. HCMV trimeric gB and gH/gL elicited high and moderate titers of HCMV neutralizing activity, respectively. HCMV gB in combination with gH/gL elicited up to 17-fold higher HCMV neutralizing activities compared to the sum of neutralizing activity elicited by the individual proteins analyzed with both fibroblasts and epithelial cells. HCMV gB+gH/gL+UL128/UL130/UL131A in combination increased the neutralizing activity up to 32-fold compared to the sum of neutralizing activities elicited by the individual proteins analyzed with epithelial cells. Adding UL128/UL130/UL131A to gB and gH/gL combination did not increase further the HCMV neutralizing activity analyzed with fibroblasts. These data suggest that the combination of HCMV core fusion machinery envelope proteins gB+gH/gL or the combination of gB and pentameric complex could be ideal vaccine candidates that would induce optimal immune responses against HCMV infection.
Collapse
Affiliation(s)
- Xinle Cui
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3498
| | - Zhouhong Cao
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Clifford M. Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
26
|
Krause PR, Roberts J. Scientific and Regulatory Considerations for Efficacy Studies of Cytomegalovirus Vaccines. J Infect Dis 2020; 221:S103-S108. [PMID: 32134485 DOI: 10.1093/infdis/jiz523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The considerable public health burden due to cytomegalovirus (CMV) supports current interest in vaccine development. Clinical studies intended to support regulatory action should be designed to demonstrate substantial evidence of effectiveness. However, design and conduct of clinical endpoint studies may be hampered by low incidence of disease, especially for congenital CMV. Discussion and experience from other vaccines directed against congenital disease (including rubella and Zika) may be instructive. This article summarizes current scientific and US regulatory considerations related to design of studies of vaccines intended to prevent congenital CMV and complications of CMV in transplantation, as discussed at the 2018 workshop entitled "Cytomegalovirus Infection: Advancing Strategies for Prevention and Treatment."
Collapse
Affiliation(s)
- Philip R Krause
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Silver Spring, Maryland, USA
| | - Jeff Roberts
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Silver Spring, Maryland, USA
| |
Collapse
|
27
|
Griffiths P. The direct and indirect consequences of cytomegalovirus infection and potential benefits of vaccination. Antiviral Res 2020; 176:104732. [PMID: 32081353 DOI: 10.1016/j.antiviral.2020.104732] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Active infection with cytomegalovirus (CMV) occurs in patients who are immunocompromised and may produce the high viral loads required to cause end-organ disease. Such patients have complex medical histories and many experienced physicians have speculated that CMV may, additionally, contribute to adverse clinical outcomes. In 1989, Dr Bob Rubin coined the term "indirect effects" to describe this potential relationship between virus and patient. Examples include accelerated atherosclerosis in patients after heart transplant or with underlying HIV infection, the number of days patients require ventilation after admission to intensive care units, the development of immunosenescence in the elderly and mortality in many groups of patients, including the general population. It is difficult to distinguish between CMV acting as causal contributor to such diverse pathology or simply having a benign bystander effect. However, recruitment of patients into placebo-controlled randomised trials of antiviral drugs with activity against CMV offers such a potential. This article describes the studies that have been conducted to date and emphasises that mortality after stem cell transplant (not attributed to CMV end-organ disease) has recently become the first proven indirect effect of CMV now that letermovir has significantly reduced non-relapse deaths. The implications for CMV vaccines are then discussed. Vaccines are already predicted to be highly cost-effective if they can reduce CMV end-organ disease. Health planners should now consider that cost effectiveness is likely to be enhanced further through reduction of the indirect effects of CMV. A prototype scheme for assessing this possibility is provided in order to stimulate discussion within the field. This article forms part of an online symposium on the prevention and therapy of DNA virus infections, dedicated to the memory of Mark Prichard.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity & Transplantation, Royal Free Campus, University College London, London, NW3 2PF, United Kingdom.
| |
Collapse
|
28
|
Lazzarotto T, Blázquez-Gamero D, Delforge ML, Foulon I, Luck S, Modrow S, Leruez-Ville M. Congenital Cytomegalovirus Infection: A Narrative Review of the Issues in Screening and Management From a Panel of European Experts. Front Pediatr 2020; 8:13. [PMID: 32083040 PMCID: PMC7006044 DOI: 10.3389/fped.2020.00013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal primary and non-primary cytomegalovirus (CMV) infection during pregnancy can result in in utero transmission to the developing fetus. Congenital CMV (cCMV) can result in significant morbidity, mortality or long-term sequelae, including sensorineural hearing loss, the most common sequela. As a leading cause of congenital infections worldwide, cCMV infection meets many of the criteria for screening. However, currently there are no universal programs that offer maternal or neonatal screening to identify infected mothers and infants, no vaccines to prevent infection, and no efficacious and safe therapies available for the treatment of maternal or fetal CMV infection. Data has shown that there are several maternal and neonatal screening strategies, and diagnostic methodologies, that allow the identification of those at risk of developing sequelae and adequately detect cCMV. Nevertheless, many questions remain unanswered in this field. Well-designed clinical trials to address several facets of CMV treatment (in pregnant women, CMV-infected fetuses and both symptomatic and asymptomatic neonates and children) are required. Prevention (vaccines), biology and transmission factors associated with non-primary CMV, and the cost-effectiveness of universal screening, all demand further exploration to fully realize the ultimate goal of preventing cCMV. In the meantime, prevention of primary infection during pregnancy should be championed to all by means of hygiene education.
Collapse
Affiliation(s)
- Tiziana Lazzarotto
- Virology Lab, Polyclinic St. Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Daniel Blázquez-Gamero
- Pediatric Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Universidad Complutense, Instituto de Investigación Hospital 12 de Octubre (Imas12), Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | | | - Ina Foulon
- Department of Otolaryngology - Head and Neck Surgery, Vrije Universiteit Brussel, Brussels, Belgium
| | - Suzanne Luck
- Kingston Hospital NHS Trust, Kingston upon Thames, United Kingdom.,Paediatric Infectious Diseases Research Group, St George's University of London, London, United Kingdom
| | - Susanne Modrow
- Institute of Medical Microbiology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
29
|
Quinzo MJ, Lafuente EM, Zuluaga P, Flower DR, Reche PA. Computational assembly of a human Cytomegalovirus vaccine upon experimental epitope legacy. BMC Bioinformatics 2019; 20:476. [PMID: 31823715 PMCID: PMC6905002 DOI: 10.1186/s12859-019-3052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/23/2019] [Indexed: 01/05/2023] Open
Abstract
Background Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus affecting approximately 90% of the world population. HCMV causes disease in immunologically naive and immunosuppressed patients. The prevention, diagnosis and therapy of HCMV infection are thus crucial to public health. The availability of effective prophylactic and therapeutic treatments remain a significant challenge and no vaccine is currently available. Here, we sought to define an epitope-based vaccine against HCMV, eliciting B and T cell responses, from experimentally defined HCMV-specific epitopes. Results We selected 398 and 790 experimentally validated HCMV-specific B and T cell epitopes, respectively, from available epitope resources and apply a knowledge-based approach in combination with immunoinformatic predictions to ensemble a universal vaccine against HCMV. The T cell component consists of 6 CD8 and 6 CD4 T cell epitopes that are conserved among HCMV strains. All CD8 T cell epitopes were reported to induce cytotoxic activity, are derived from early expressed genes and are predicted to provide population protection coverage over 97%. The CD4 T cell epitopes are derived from HCMV structural proteins and provide a population protection coverage over 92%. The B cell component consists of just 3 B cell epitopes from the ectodomain of glycoproteins L and H that are highly flexible and exposed to the solvent. Conclusions We have defined a multiantigenic epitope vaccine ensemble against the HCMV that should elicit T and B cell responses in the entire population. Importantly, although we arrived to this epitope ensemble with the help of computational predictions, the actual epitopes are not predicted but are known to be immunogenic.
Collapse
Affiliation(s)
- Monica J Quinzo
- Faculty of Medicine, University Complutense of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Esther M Lafuente
- Faculty of Medicine, University Complutense of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Pilar Zuluaga
- Faculty of Medicine, University Complutense of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Darren R Flower
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Pedro A Reche
- Faculty of Medicine, University Complutense of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain.
| |
Collapse
|
30
|
MVA-Vectored Pentameric Complex (PC) and gB Vaccines Improve Pregnancy Outcome after Guinea Pig CMV Challenge, but Only gB Vaccine Reduces Vertical Transmission. Vaccines (Basel) 2019; 7:vaccines7040182. [PMID: 31739399 PMCID: PMC6963609 DOI: 10.3390/vaccines7040182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/04/2023] Open
Abstract
(1) Background: A congenital cytomegalovirus (cCMV) vaccine is a major research priority, but the essential glycoprotein target(s) remain unclear. We compared CMV gB (gpgB), gH/gL (gp75/gL), and pentameric complex (gpPC, composed of gH/gL/GP129/GP131/GP133) vaccines in a guinea pig CMV (GPCMV) congenital infection model. (2) Methods: Modified vaccinia virus Ankara (MVA) vaccines expressing GPCMV glycoproteins were used to immunize GPCMV-seronegative, female Hartley guinea pigs (three-dose series, 3 × 107 pfu/dose). After pregnancy was established, the dams underwent an early third-trimester challenge with salivary gland (SG)-adapted GPCMV. (3) Results: All vaccines elicited GPCMV-specific binding and neutralizing antibodies. Preconception immunization resulted in 19.5-, 4.9-, and 698-fold reductions in maternal DNAemia in MVA-gp75/gL, MVA-gpPC and MVA-gpgB groups, respectively, at day 14, post-SG challenge. Vaccination improved pups’ birth weight and reduced mortality and congenital CMV transmission. In controls, cCMV infection was observed in 100% of pups (mean viral load in all visceral organs, 2.4 × 104 genomes/mg), versus 50% in the gB group (visceral viral load, 9.4 × 102 genomes/mg; p < 0.05). No significant reductions in congenital transmission were noted in the MVA-gp75/gL and MVA-gpPC groups. (4) Conclusions: MVA-vectored gB, gH/gL, and PC vaccines were immunogenic, and protected against maternal DNAemia and pup mortality. These results support the inclusion of multiple glycoprotein complexes in a cCMV vaccine.
Collapse
|
31
|
Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030104. [PMID: 31480520 PMCID: PMC6789746 DOI: 10.3390/vaccines7030104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Infections with the human cytomegalovirus (HCMV) are associated with severe clinical manifestations in children following prenatal transmission and after viral reactivation in immunosuppressed individuals. The development of an HCMV vaccine has long been requested but there is still no licensed product available. Subviral dense bodies (DB) are immunogenic in pre-clinical models and are thus a promising HCMV vaccine candidate. Recently, we established a virus based on the laboratory strain Towne that synthesizes large numbers of DB containing the pentameric protein complex gH/gL/UL128-131 (Towne-UL130repΔGFP). The work presented here focuses on providing strategies for the production of a safe vaccine based on that strain. A GMP-compliant protocol for DB production was established. Furthermore, the DB producer strain Towne-UL130rep was attenuated by deleting the UL25 open reading frame. Additional genetic modifications aim to abrogate its capacity to replicate in vivo by conditionally expressing pUL51 using the Shield-1/FKBP destabilization system. We further show that the terminase inhibitor letermovir can be used to reduce infectious virus contamination of a DB vaccine by more than two orders of magnitude. Taken together, strategies are provided here that allow for the production of a safe and immunogenic DB vaccine for clinical testing.
Collapse
|
32
|
Dense Bodies of a gH/gL/UL128/UL130/UL131 Pentamer-Repaired Towne Strain of Human Cytomegalovirus Induce an Enhanced Neutralizing Antibody Response. J Virol 2019; 93:JVI.00931-19. [PMID: 31189713 DOI: 10.1128/jvi.00931-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody (NT-abs) responses, a PC-positive variant of the HCMV laboratory strain Towne was established by bacterial artificial chromosome (BAC) mutagenesis (Towne-UL130rep). This strain synthesized PC-positive DBs upon infection of fibroblasts. These DBs were used in side-by-side immunizations with PC-negative Towne DBs. Mouse and rabbit sera were tested to address the impact of the PC on DB immunogenicity. The neutralizing antibody response to PC-positive DBs was superior to that of PC-negative DBs, as tested on fibroblasts, epithelial cells, and endothelial cells and for both animal species used. The experiments revealed the potential of the PC to enhance the antibody response against HCMV. Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles.IMPORTANCE Infections with the human cytomegalovirus (HCMV) may cause severe and even life-threatening disease manifestations in newborns and immunosuppressed individuals. Several strategies for the development of a vaccine against this virus are currently pursued. A critical question in this respect refers to the antigenic composition of a successful vaccine. Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. We further show for the first time that this not only relates to the infection of epithelial or endothelial cells; the presence of the PC in the particles also enhanced the neutralizing antibody response against the infection of fibroblasts by HCMV. Together, these findings argue in favor of including the PC in strategies for HCMV vaccine development.
Collapse
|
33
|
Gomes AC, Griffiths PD, Reeves MB. The Humoral Immune Response Against the gB Vaccine: Lessons Learnt from Protection in Solid Organ Transplantation. Vaccines (Basel) 2019; 7:E67. [PMID: 31319553 PMCID: PMC6789498 DOI: 10.3390/vaccines7030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (hCMV) is considered to be the highest priority for vaccine development. This view is underscored by the significant morbidity associated with congenital hCMV infection and viraemia in transplant patients. Although a number of vaccines have been trialed, none have been licensed. The hCMV vaccine candidate that has performed best in clinical trials to date is the recombinant glycoprotein B (gB) vaccine that has demonstrated protection, ranging from a 43% to 50% efficacy in three independent phase II trials. In this review, we focus on data from the phase II trial performed in solid organ transplant patients and the outcomes of follow-up studies attempting to identify immunological and mechanistic correlates of protection associated with this vaccine strategy. We relate this to other vaccine studies of gB as well as other vaccine strategies to determine areas of commonality and divergence. Finally, through the review, we discuss the unique challenges and opportunities presented with vaccine studies in transplant populations with recommendations that could empower subsequent trials.
Collapse
Affiliation(s)
- Ariane C Gomes
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|
34
|
Cui X, Cao Z, Wang S, Flora M, Adler SP, McVoy MA, Snapper CM. Immunization of Rabbits with Recombinant Human Cytomegalovirus Trimeric versus Monomeric gH/gL Protein Elicits Markedly Higher Titers of Antibody and Neutralization Activity. Int J Mol Sci 2019; 20:ijms20133158. [PMID: 31261659 PMCID: PMC6651862 DOI: 10.3390/ijms20133158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection and HCMV infection of immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. HCMV envelope glycoproteins gB, gH, and gL, which constitute the core fusion machinery, play critical roles in HCMV fusion and entry into host cells. HCMV gB and gH/gL have been reported to elicit potent neutralizing antibodies. Recently, the gB/gH/gL complex was identified in the envelope of HCMV virions, and 16–50% of the total gH/gL bound to gB, forming the gB/gH/gL complex. These findings make the gB/gH/gL a unique HCMV vaccine candidate. We previously reported the production of HCMV trimeric gB and gH/gL heterodimers, and immunization with a combination of trimeric gB and gH/gL heterodimers elicited strong synergistic HCMV-neutralizing activity. To further improve the immunogenicity of gH/gL, we produced trimeric gH/gL. Rabbits immunized with HCMV trimeric gH/gL induced up to 38-fold higher serum titers of gH/gL-specific IgG relative to HCMV monomeric gH/gL, and elicited ~10-fold higher titers of complement-dependent and complement-independent HCMV-neutralizing activity for both epithelial cells and fibroblasts. HCMV trimeric gH/gL in combination with HCMV trimeric gB would be a novel promising HCMV vaccine candidate that could induce highly potent neutralizing activities.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Zhouhong Cao
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shuishu Wang
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Michael Flora
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
35
|
Abstract
Congenital human cytomegalovirus (HCMV) infection and HCMV infection of the immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. Efforts to develop HCMV vaccines have been ongoing for 50 y, though no HCMV vaccine has been licensed; encouraging and promising results have obtained from both preclinical and clinical trials. HCMV infection induces a wide range of humoral and T cell-mediated immune responses, and both branches of immunity are correlated with protection. In recent years, there have been novel approaches toward the development of HCMV vaccines and demonstrated that vaccine candidates could potentially provide superior protection over natural immunity acquired following HCMV infection. Further, rationally designed HCMV protein antigens that express native conformational epitopes could elicit optimal immune response. HCMV vaccine candidates, using a multi-antigen approach, to maximize the elicited protective immunity will most likely be successful in development of HCMV vaccine.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
36
|
Affiliation(s)
- Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
37
|
McBride JM, Sheinson D, Jiang J, Lewin-Koh N, Werner BG, Chow JKL, Wu X, Tavel JA, Snydman DR. Correlation of Cytomegalovirus (CMV) Disease Severity and Mortality With CMV Viral Burden in CMV-Seropositive Donor and CMV-Seronegative Solid Organ Transplant Recipients. Open Forum Infect Dis 2019; 6:ofz003. [PMID: 30775403 PMCID: PMC6366655 DOI: 10.1093/ofid/ofz003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/16/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background The rate of cytomegalovirus (CMV) viral load increase and peak viral loads are associated with CMV disease in kidney and liver transplant recipients, but relationships to disease severity or mortality have not been shown. Methods Using stored serial serum specimens from renal (n = 59) and liver (n = 35) transplant recipients (D+R-; CMV-seropositive donors, CMV-seronegative recipients) from 2 prospective, randomized, controlled, interventional prophylaxis trials of CMV immune globulin (CMVIG), CMV viral load was measured using the COBAS quantitative polymerase chain reaction assay and the World Health Organization CMV standard. Patients with severe CMV-associated disease were classified according to trial definitions. Pairwise comparisons of mean viral load among deceased, surviving diseased, and nondiseased patients were analyzed by 2-way analysis of variance. To determine if viral load could predict mortality, receiver operating characteristic (ROC) curves were constructed using area under the curve (AUC) of the viral load and peak viral concentration (Vmax). Results Viral load (mean log10 [AUC], peak viral load [Vmax]) for patients with severe CMV disease was significantly higher compared with nondiseased patients (P < .001). Similarly, higher viral burden was significantly associated with mortality (P < .001). Viral load AUC and Vmax AUROCs for predicting mortality were 0.796 and 0.824, respectively, for renal patients, and 0.769 and 0.807, respectively, for liver patients. Conclusions Using specimens from studies preceding the antiviral prophylaxis era, CMV viral load was associated with severe CMV disease and death, supporting CMV viral load quantification as a proxy for CMV disease severity and disease-associated mortality end points in solid organ transplantation.
Collapse
Affiliation(s)
| | | | - Jenny Jiang
- Genentech, Inc., South San Francisco, California
| | | | - Barbara G Werner
- Department of Medicine and the Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, and Tufts University School of Medicine, Boston, Masschusetts
| | - Jennifer K L Chow
- Department of Medicine and the Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, and Tufts University School of Medicine, Boston, Masschusetts
| | - Xiaoning Wu
- Roche Molecular Systems, Pleasanton, California
| | | | - David R Snydman
- Department of Medicine and the Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, and Tufts University School of Medicine, Boston, Masschusetts
| |
Collapse
|
38
|
Kaur A, Itell HL, Ehlinger EP, Varner V, Gantt S, Permar SR. Natural history of postnatal rhesus cytomegalovirus shedding by dams and acquisition by infant rhesus monkeys. PLoS One 2018; 13:e0206330. [PMID: 30356332 PMCID: PMC6200253 DOI: 10.1371/journal.pone.0206330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Human infants frequently acquire human cytomegalovirus (HCMV) through breastfeeding, resulting in persistent high-level viral shedding in saliva and urine and infectivity to others, including pregnant women. Thus, vaccination to interrupt postnatal HCMV transmission is an attractive strategy to prevent HCMV spread and congenital infection. Rhesus CMV (RhCMV) in nonhuman primates is a valuable model for the study of immune strategies to prevent CMV transmission. Although rhesus monkeys typically acquire RhCMV before 1 year of age, the timing and mode of natural infant RhCMV transmission remain unknown. METHODS We followed 5 RhCMV-seropositive dams and their infants from birth until weaning, approximately 6 months later. RhCMV DNA levels in plasma, breast milk, saliva, and urine were measured every 2 weeks by quantitative PCR. RhCMV-specific T cell responses in peripheral blood and breast milk were measured by interferon gamma ELISpot assays. Serum IgG antibody levels were measured by ELISA. RESULTS Four of five postpartum RhCMV-seropositive mothers had intermittent, low-level RhCMV shedding in breast milk, whereas all had high-magnitude RhCMV shedding in saliva and urine. The kinetics of maternal blood RhCMV-specific T cell responses and viral shedding in urine and saliva did not strongly associate, though dams with consistently high systemic RhCMV-specific T cell responses tended to have undetectable RhCMV shedding in breast milk. All RhCMV-exposed infants had intermittent, low-level RhCMV shedding in saliva during the lactation period, with minimal systemic RhCMV-specific T cell responses. CONCLUSIONS Despite exposure to RhCMV shedding in breast milk and other maternal fluids, postnatal mother-to-child RhCMV transmission appears to be less efficient than that of HCMV. A greater understanding of the determinants of RhCMV transmission and its usefulness as a model of HCMV mucosal acquisition may provide insight into strategies to prevent HCMV infections in humans.
Collapse
Affiliation(s)
- Amitinder Kaur
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - E. Peek Ehlinger
- Alaska Family Medicine Residency, Anchorage, Alaska, United States of America
| | - Valerie Varner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soren Gantt
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
39
|
Fortner KB, Nieuwoudt C, Reeder CF, Swamy GK. Infections in Pregnancy and the Role of Vaccines. Obstet Gynecol Clin North Am 2018; 45:369-388. [PMID: 29747736 DOI: 10.1016/j.ogc.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pregnant women are at risk for infection and may have significant morbidity or mortality. Influenza, pertussis, zika, and cytomegalovirus produce mild or asymptomatic illness in the mother, but have profound implications for her fetus. Maternal immunization can prevent or mitigate infections in pregnant women and their infants. The Advisory Committee of Immunization Practices recommends 2 vaccines during pregnancy: inactivated influenza, and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis during pregnancy. The benefits of MMR, varicella, and other vaccines are reviewed. Novel vaccine studies for use during pregnancy for prevention of illness are explored.
Collapse
Affiliation(s)
- Kimberly B Fortner
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine, University of Tennessee Medical Center, 1924 Alcoa Highway, Box 96, Knoxville, TN 37919, USA.
| | - Claudia Nieuwoudt
- Department of Obstetrics and Gynecology, University of Tennessee Medical Center, 1924 Alcoa Highway, Box U27, Knoxville, TN 37920, USA
| | - Callie F Reeder
- Department of Obstetrics and Gynecology, University of Tennessee Medical Center, 1924 Alcoa Highway, Box U27, Knoxville, TN 37920, USA
| | - Geeta K Swamy
- Department of Obstetrics and Gynecology, Obstetrics Clinical Research, Duke University Medical System, Durham, NC, USA
| |
Collapse
|
40
|
Cui X, Cao Z, Wang S, Lee RB, Wang X, Murata H, Adler SP, McVoy MA, Snapper CM. Novel trimeric human cytomegalovirus glycoprotein B elicits a high-titer neutralizing antibody response. Vaccine 2018; 36:5580-5590. [PMID: 30082162 PMCID: PMC6556890 DOI: 10.1016/j.vaccine.2018.07.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV) is a major cause of disability in congenitally infected infants and in the immunosuppressed. There is currently no licensed prophylactic HCMV vaccine. The HCMV envelope glycoprotein B (gB) is considered a major vaccine target antigen based on its critical role in mediating viral-host cell fusion and thus viral entry. The natural conformation of HCMV gB within the viral envelope is a trimer, but there has been no reported success in producing a recombinant trimeric gB suitable for vaccine use. Phase II clinical trials of a monomeric recombinant gB protein demonstrated 50% efficacy in preventing HCMV infection in seronegative women of reproductive age, and in reducing viremia in solid organ transplantation recipients. We now report the production of a uniformly trimeric recombinant HCMV gB protein in Chinese ovary cells, as demonstrated by Western blot analysis under modified non-reducing conditions and size exclusion chromatography with multi-angle scattering. Immunization of mice with trimeric HCMV gB induced up to 11-fold higher serum titers of total gB-specific IgG relative to monomeric HCMV gB using Alum + CpG as adjuvants. Further, trimeric HCMV gB elicited 50-fold higher complement-independent and 20-fold higher complement-dependent HCMV neutralizing titers compared to monomeric HCMV gB using the fibroblast cell line, MRC-5, and up to 6-fold higher complement-independent and -dependent HCMV neutralizing titers using the epithelial cell line, ARPE-19. The markedly enhanced HCMV neutralizing activity in response to trimeric HCMV gB was also observed using an additional four distinct clinical HCMV isolates. These data support a role for trimeric HCMV gB as an important component for clinical testing of a prophylactic HCMV vaccine.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States.
| | - Zhouhong Cao
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Shuishu Wang
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Ronzo B Lee
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Xiao Wang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Haruhiko Murata
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Stuart P Adler
- CMV Research Foundation, Richmond VA 23229, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| |
Collapse
|
41
|
Britt WJ. Maternal Immunity and the Natural History of Congenital Human Cytomegalovirus Infection. Viruses 2018; 10:v10080405. [PMID: 30081449 PMCID: PMC6116058 DOI: 10.3390/v10080405] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) is the most common viral infection of the developing fetus, and a significant cause of neurodevelopmental abnormalities in infants and children. Congenital HCMV infections account for an estimated 25% of all cases of hearing loss in the US. It has long been argued that maternal adaptive immune responses to HCMV can modify both the likelihood of intrauterine transmission of HCMV, and the severity of fetal infection and risk of long term sequelae in infected infants. Over the last two decades, multiple studies have challenged this paradigm, including findings that have demonstrated that the vast majority of infants with congenital HCMV infections in most populations are born to women with established immunity prior to conception. Furthermore, the incidence of clinically apparent congenital HCMV infection in infants born to immune and non-immune pregnant women appears to be similar. These findings from natural history studies have important implications for the design, development, and testing of prophylactic vaccines and biologics for this perinatal infection. This brief overview will provide a discussion of existing data from human natural history studies and animal models of congenital HCMV infections that have described the role of maternal immunity in the natural history of this perinatal infection.
Collapse
Affiliation(s)
- William J Britt
- Departments of Pediatrics, Microbiology, and Neurobiology, University of Alabama School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
42
|
Strang BL, Asquith CRM, Moshrif HF, Ho CMK, Zuercher WJ, Al-Ali H. Identification of lead anti-human cytomegalovirus compounds targeting MAP4K4 via machine learning analysis of kinase inhibitor screening data. PLoS One 2018; 13:e0201321. [PMID: 30048526 PMCID: PMC6062112 DOI: 10.1371/journal.pone.0201321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 01/29/2023] Open
Abstract
Chemogenomic approaches involving highly annotated compound sets and cell based high throughput screening are emerging as a means to identify novel drug targets. We have previously screened a collection of highly characterized kinase inhibitors (Khan et al., Journal of General Virology, 2016) to identify compounds that increase or decrease expression of a human cytomegalovirus (HCMV) protein in infected cells. To identify potential novel anti-HCMV drug targets we used a machine learning approach to relate our phenotypic data from the aforementioned screen to kinase inhibition profiling of compounds used in this screen. Several of the potential targets had no previously reported role in HCMV replication. We focused on one potential anti-HCMV target, MAPK4K, and identified lead compounds inhibiting MAP4K4 that have anti-HCMV activity with little cellular cytotoxicity. We found that treatment of HCMV infected cells with inhibitors of MAP4K4, or an siRNA that inhibited MAP4K4 production, reduced HCMV replication and impaired detection of IE2-60, a viral protein necessary for efficient HCMV replication. Our findings demonstrate the potential of this machine learning approach to identify novel anti-viral drug targets, which can inform the discovery of novel anti-viral lead compounds.
Collapse
Affiliation(s)
- Blair L. Strang
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Christopher R. M. Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hanan F. Moshrif
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Catherine M-K Ho
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
- Katz Drug Discovery Center, University of Miami, Miami, Florida, United States of America
- Department of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
43
|
Schüller SS, Kramer BW, Villamor E, Spittler A, Berger A, Levy O. Immunomodulation to Prevent or Treat Neonatal Sepsis: Past, Present, and Future. Front Pediatr 2018; 6:199. [PMID: 30073156 PMCID: PMC6060673 DOI: 10.3389/fped.2018.00199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Despite continued advances in neonatal medicine, sepsis remains a leading cause of death worldwide in neonatal intensive care units. The clinical presentation of sepsis in neonates varies markedly from that in older children and adults, and distinct acute inflammatory responses results in age-specific inflammatory and protective immune response to infection. This review first provides an overview of the neonatal immune system, then covers current mainstream, and experimental preventive and adjuvant therapies in neonatal sepsis. We also discuss how the distinct physiology of the perinatal period shapes early life immune responses and review strategies to reduce neonatal sepsis-related morbidity and mortality. A summary of studies that characterize immune ontogeny and neonatal sepsis is presented, followed by discussion of clinical trials assessing interventions such as breast milk, lactoferrin, probiotics, and pentoxifylline. Finally, we critically appraise future treatment options such as stem cell therapy, other antimicrobial protein and peptides, and targeting of pattern recognition receptors in an effort to prevent and/or treat sepsis in this highly vulnerable neonatal population.
Collapse
Affiliation(s)
- Simone S. Schüller
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Precision Vaccines Program, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Boris W. Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Andreas Spittler
- Department of Surgery, Research Labs & Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Boston, MA, United States
| |
Collapse
|
44
|
Abstract
Congenital cytomegalovirus is the most common viral congenital infection, and affects up to 2% of neonates. Significant sequelae may develop after congenital cytomegalovirus, including hearing loss, cognitive defects, seizures, and death. Zika virus is an emerging virus with perinatal implications; a congenital Zika virus syndrome has been identified, and includes findings such as microcephaly, fetal nervous system abnormalities, and neurologic sequelae after birth. Screening, diagnosis, prevention, and treatment of these perinatal infections are reviewed in this article.
Collapse
|
45
|
Abstract
Each year, thousands of children are born with or develop permanent disabilities such as hearing loss, vision loss, motor and cognitive deficits from congenital CMV infection (cCMV). However, awareness of cCMV and its associated sequelae is very low in pregnant women and healthcare providers. Both targeted and universal approaches to screen newborns for CMV infection are now achievable due to recent scientific advances including the development of a rapid, high-throughput method for detecting CMV in saliva, the efficacy of antiviral treatment in symptomatic infants, and the demonstration of cost effectiveness of CMV screening. Future studies are needed to address gaps in our understanding on the role of non-primary maternal CMV infections, the evaluation of antiviral treatment in asymptomatic infants, and the implementation of prevention strategies for cCMV.
Collapse
Affiliation(s)
- Karen B Fowler
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL.
| | - Suresh B Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
46
|
Advancing Our Understanding of Protective Maternal Immunity as a Guide for Development of Vaccines To Reduce Congenital Cytomegalovirus Infections. J Virol 2018; 92:JVI.00030-18. [PMID: 29343580 DOI: 10.1128/jvi.00030-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenitally transmitted pathogen worldwide, impacting an estimated 1 million newborns annually. Congenital HCMV (cCMV) infection is a major global contributor to long-term neurologic deficits, including deafness, microcephaly, and neurodevelopmental delay, as well as to fetal loss and occasional infant mortality. Accordingly, design of a maternal vaccine to prevent cCMV continues to be a top public health priority. Nevertheless, we remain without a licensed vaccine. Maternal immunity provides partial protection, as the risk of vertical HCMV transmission from chronically infected mothers is reduced compared to settings in which the mother is newly infected during pregnancy. Therefore, an understanding of the maternal immune correlates of protection against cCMV is critical to informing design of an efficacious maternal vaccine. Although vaccine development is being assiduously pursued by a large number of pharmaceutical manufacturers, biotechnology organizations, and academic researchers, some pessimism has been expressed regarding the issue of whether a vaccine to protect against cCMV is possible. This pessimism is based on observations that natural immunity is not completely protective against maternal reinfection and congenital transmission. However, we assert that optimism regarding vaccine development is indeed justified, on the basis of accruing evidence of immune correlates of protection-readily achievable by vaccination-that are associated with reduced transmission of HCMV to the fetus in seronegative women. In light of the substantial burden on society conferred by cCMV infection, even a modest reduction in the occurrence of this fetal disease is an important public health goal and justifies aggressive clinical evaluation of vaccines currently in the pipeline.
Collapse
|
47
|
|
48
|
Humanes Cytomegalievirus (HCMV). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:116-128. [DOI: 10.1007/s00103-017-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Abstract
The development of a cytomegalovirus (CMV) vaccine has become a top priority due to its potential cost-effectiveness and associated public health benefits. However, there are a number of challenges facing vaccine development including the following: (1) CMV has many mechanisms for evading immune responses , and natural immunity is not perfect, (2) the immune correlates for protection are unclear, (3) a narrow range of CMV hosts limits the value of animal models, and (4) the placenta is a specialized organ formed transiently and its immunological status changes with time. In spite of these limitations, several types of CMV vaccine candidate, including live-attenuated, DISC , subunit, DNA, vectored, and peptide vaccines, have been developed or are currently under development. The recognition of the pentameric complex as the major neutralization target and identification of various strategies to block viral immune response evasion mechanisms have opened new avenues to CMV vaccine development. Here, we discuss the immune correlates for protection, the characteristics of the various vaccine candidates and their clinical trials, and the relevant animal models.
Collapse
|
50
|
Moylan DC, Pati SK, Ross SA, Fowler KB, Boppana SB, Sabbaj S. Breast Milk Human Cytomegalovirus (CMV) Viral Load and the Establishment of Breast Milk CMV-pp65-Specific CD8 T Cells in Human CMV Infected Mothers. J Infect Dis 2017; 216:1176-1179. [PMID: 28968907 DOI: 10.1093/infdis/jix457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 11/14/2022] Open
Abstract
The role of human cytomegalovirus (HCMV)-specific T-cell responses in breast milk of HCMV-seropositive mothers is not well defined. In these studies, we demonstrate that the frequency of cytomegalovirus (CMV)-pp65-specific T-cell responses in peripheral blood mononuclear cells (PBMCs) and breast milk cells (BMCs) is increased for CD8+ T cells in both sample sources when compared with CD4+ T cells. The frequency of pp55-specific CD8 T cells producing interferon γ (IFN-γ) alone or dual IFN-γ/granzyme rB producers is increased in breast milk compared with PBMCs. Lastly, we observed a positive correlation between breast milk viral load and the CD8 pp65-specific response, suggesting that local virus replication drives antigen-specific CD8 T cells into the breast.
Collapse
Affiliation(s)
- David C Moylan
- Department of Medicine, University of Alabama at Birmingham
| | - Sunil K Pati
- Department of Pediatrics, University of Alabama at Birmingham
| | - Shannon A Ross
- Department of Pediatrics, University of Alabama at Birmingham
| | - Karen B Fowler
- Department of Pediatrics, University of Alabama at Birmingham
| | - Suresh B Boppana
- Department of Pediatrics, University of Alabama at Birmingham.,Department of Microbiology, University of Alabama at Birmingham
| | | |
Collapse
|