1
|
Marasini B, Vyas HK, Lakhashe SK, Hariraju D, Akhtar A, Ratcliffe SJ, Ruprecht RM. Mucosal AIDS virus transmission is enhanced by antiviral IgG isolated early in infection. AIDS 2021; 35:2423-2432. [PMID: 34402452 PMCID: PMC8631165 DOI: 10.1097/qad.0000000000003050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Antibody-dependent enhancement (ADE) affects host-virus dynamics in fundamentally different ways: i) enhancement of initial virus acquisition, and/or ii) increased disease progression/severity. Here we address the question whether anti-HIV-1 antibodies can enhance initial infection. While cell-culture experiments hinted at this possibility, in-vivo proof remained elusive. DESIGN We used passive immunization in nonhuman primates challenged with simian-human immunodeficiency virus (SHIV), a chimera expressing HIV-1 envelope. We purified IgG from rhesus monkeys with early-stage SHIV infection - before cross-neutralizing anti-HIV-1 antibodies had developed - and screened for maximal complement-mediated antibody-dependent enhancement (C'-ADE) of viral replication with a SHIV strain phylogenetically distinct from that harbored by IgG donor macaques. IgG fractions with maximal C'-ADE but lacking neutralization were combined to yield enhancing anti-SHIV IgG (enSHIVIG). RESULTS We serially enrolled naive macaques (Group 1) to determine the minimal and 50% animal infectious doses required to establish persistent infection after intrarectal SHIV challenge. The first animal was inoculated with a 1 : 10 virus-stock dilution; after this animal's viral RNA load was >104copies/ml, the next macaque was challenged with 10x less virus, a process repeated until viremia no longer ensued. Group 2 was pretreated intravenously with enSHIVIG 24 h before SHIV challenge. Overall, Group 2 macaques required 3.4-fold less virus compared to controls (P = 0.002). This finding is consistent with enhanced susceptibility of the passively immunized animals to mucosal SHIV challenge. CONCLUSION These passive immunization data give proof of IgG-mediated enhanced virus acquisition after mucosal exposure - a potential concern for antibody-based AIDS vaccine development.
Collapse
Affiliation(s)
- Bishal Marasini
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
- Texas Biomedical Research Institute, San Antonio, Texas
| | | | | | - Dinesh Hariraju
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Akil Akhtar
- Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Ruth M. Ruprecht
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
- Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
2
|
Malherbe DC, Vang L, Mendy J, Barnette PT, Spencer DA, Reed J, Kareko BW, Sather DN, Pandey S, Wibmer CK, Robins H, Fuller DH, Park B, Lakhashe SK, Wilson JM, Axthelm MK, Ruprecht RM, Moore PL, Sacha JB, Hessell AJ, Alexander J, Haigwood NL. Modified Adenovirus Prime-Protein Boost Clade C HIV Vaccine Strategy Results in Reduced Viral DNA in Blood and Tissues Following Tier 2 SHIV Challenge. Front Immunol 2021; 11:626464. [PMID: 33658998 PMCID: PMC7917243 DOI: 10.3389/fimmu.2020.626464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Designing immunogens and improving delivery methods eliciting protective immunity is a paramount goal of HIV vaccine development. A comparative vaccine challenge study was performed in rhesus macaques using clade C HIV Envelope (Env) and SIV Gag antigens. One group was vaccinated using co-immunization with DNA Gag and Env expression plasmids cloned from a single timepoint and trimeric Env gp140 glycoprotein from one of these clones (DNA+Protein). The other group was a prime-boost regimen composed of two replicating simian (SAd7) adenovirus-vectored vaccines expressing Gag and one Env clone from the same timepoint as the DNA+Protein group paired with the same Env gp140 trimer (SAd7+Protein). The env genes were isolated from a single pre-peak neutralization timepoint approximately 1 year post infection in CAP257, an individual with a high degree of neutralization breadth. Both DNA+Protein and SAd7+Protein vaccine strategies elicited significant Env-specific T cell responses, lesser Gag-specific responses, and moderate frequencies of Env-specific TFH cells. Both vaccine modalities readily elicited systemic and mucosal Env-specific IgG but not IgA. There was a higher frequency and magnitude of ADCC activity in the SAd7+Protein than the DNA+Protein arm. All macaques developed moderate Tier 1 heterologous neutralizing antibodies, while neutralization of Tier 1B or Tier 2 viruses was sporadic and found primarily in macaques in the SAd7+Protein group. Neither vaccine approach provided significant protection from viral acquisition against repeated titered mucosal challenges with a heterologous Tier 2 clade C SHIV. However, lymphoid and gut tissues collected at necropsy showed that animals in both vaccine groups each had significantly lower copies of viral DNA in individual tissues compared to levels in controls. In the SAd7+Protein-vaccinated macaques, total and peak PBMC viral DNA were significantly lower compared with controls. Taken together, this heterologous Tier 2 SHIV challenge study shows that combination vaccination with SAd7+Protein was superior to combination DNA+Protein in reducing viral seeding in tissues in the absence of protection from infection, thus emphasizing the priming role of replication-competent SAd7 vector. Despite the absence of correlates of protection, because antibody responses were significantly higher in this vaccine group, we hypothesize that vaccine-elicited antibodies contribute to limiting tissue viral seeding.
Collapse
Affiliation(s)
- Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Lo Vang
- Emergent BioSolutions, San Diego, CA, United States
| | - Jason Mendy
- Emergent BioSolutions, San Diego, CA, United States
| | - Philip T Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - David A Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Jason Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Bettie W Kareko
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - D Noah Sather
- Department of Pediatrics, University of Washington, Seattle, WA, United States.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Constantinos K Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases, of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Harlan Robins
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Byung Park
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Samir K Lakhashe
- Department of Virology and Immunology, Southwest National Primate Research Center, San Antonio, TX, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Southwest National Primate Research Center, San Antonio, TX, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Medical Virology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States.,Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States.,Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Dave RS, Ali H, Sil S, Knight LA, Pandey K, Madduri LSV, Qiu F, Ranga U, Buch S, Byrareddy SN. NF-κB Duplications in the Promoter-Variant HIV-1C LTR Impact Inflammation Without Altering Viral Replication in the Context of Simian Human Immunodeficiency Viruses and Opioid-Exposure. Front Immunol 2020; 11:95. [PMID: 32076422 PMCID: PMC7006833 DOI: 10.3389/fimmu.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Recent spread of the promoter variant (4-κB) Human immunodeficiency virus-1 clade C (HIV-1C) strain is attributed to duplication of the Nuclear Factor Kappa B (NF-κB) binding sites and potential increased heroin consumption in India. To study the underlying biology of 4-κB HIV-1C in rhesus macaques, we engineered a promoter-chimera variant (4NF-κB) Simian Human Immunodeficiency Virus (SHIV) by substituting the HIV-1C Long Terminal Repeat (LTR) region consisting of 4 NF-κB and 3 Sp-1 sites with the corresponding segment in the LTR of SHIV AD8EO. The wild-type (3NF-κB) promoter-chimera SHIV was generated by inactivating the 5' proximal NF-κB binding site in SHIV 4NF-κB. CD8-depleted rhesus macaque PBMCs (RM-PBMCs) were infected with the promoter-chimera and AD8EO SHIVs to determine the effects of opioid-exposure on inflammation, NF-κB activation, neurotoxicity in neuronal cells and viral replication. Morphine-exposure of RM-PBMCs infected with SHIVs 4NF-κB, 3NF-κB, and AD8EO altered cellular transcript levels of monocyte chemoattractant protein 1, interleukin 6, interleukin 1β, and Tumor Necrosis Factor α. Of note, divergent alteration of the cytokine transcript levels was observed with these promoter-chimera wild-type and variant SHIVs. NF-κB activation was observed during infection of all three SHIVs with morphine-exposure. Finally, we observed that SHIV AD8EO infection and exposure to both morphine and naloxone had the greatest impact on the neurotoxicity. The promoter-chimera SHIV 4NF-κB and SHIV 3NF-κB did not have a similar effect on neurotoxicity as compared to SHIV AD8EO. All SHIVs replicated efficiently at comparable levels in RM-PBMCs and morphine-exposure did not alter viral replication kinetics. Future in vivo studies in rhesus macaques will provide greater understanding of 4-κB HIV-1C viral immunopathogenesis and onset of disease in the central nervous system during morphine-exposure.
Collapse
Affiliation(s)
- Rajnish S. Dave
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Haider Ali
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lindsey A. Knight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lepakshe S. V. Madduri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Qiu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
4
|
Vaccination against Clostridium difficile by Use of an Attenuated Salmonella enterica Serovar Typhimurium Vector (YS1646) Protects Mice from Lethal Challenge. Infect Immun 2019; 87:IAI.00089-19. [PMID: 31138615 PMCID: PMC6652760 DOI: 10.1128/iai.00089-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile disease is mediated primarily by toxins A and B (TcdA and TcdB, respectively). The receptor binding domains (RBD) of TcdA and TcdB are immunogenic, and anti-RBD antibodies are protective. Since these toxins act locally, an optimal C. difficile vaccine would generate both systemic and mucosal responses. We have repurposed an attenuated Salmonella enterica serovar Typhimurium strain (YS1646) to produce such a vaccine. Plasmid-based candidates expressing either the TcdA or TcdB RBD were screened. Different vaccine routes and schedules were tested to achieve detectable serum and mucosal antibody titers in C57BL/6J mice. When given in a multimodality schedule over 1 week (intramuscularly and orally [p.o.] on day 0 and p.o. on days 2 and 4), several candidates provided 100% protection against lethal challenge. Substantial protection (82%) was achieved with combined p.o. TcdA and TcdB vaccination alone (days 0, 2, and 4). These data demonstrate the potential of the YS1646-based vaccines for C. difficile and strongly support their further development.
Collapse
|
5
|
Del Prete GQ, Lifson JD, Keele BF. Nonhuman primate models for the evaluation of HIV-1 preventive vaccine strategies: model parameter considerations and consequences. Curr Opin HIV AIDS 2016; 11:546-554. [PMID: 27559710 PMCID: PMC5100008 DOI: 10.1097/coh.0000000000000311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of AIDS are powerful systems for evaluating HIV vaccine approaches in vivo. Authentic features of HIV-1 transmission, dissemination, target cell tropism, and pathogenesis, and aspects of anti-HIV-1 immune responses, can be recapitulated in NHPs provided the appropriate, specific model parameters are considered. Here, we discuss key model parameter options and their implications for HIV-1 vaccine evaluation. RECENT FINDINGS With the availability of several different NHP host species/subspecies, different challenge viruses and challenge stock production methods, and various challenge routes and schemata, multiple NHP models of AIDS exist for HIV vaccine evaluation. The recent development of multiple new challenge viruses, including chimeric simian-human immunodeficiency viruses and simian immunodeficiency virus clones, improved characterization of challenge stocks and production methods, and increased insight into specific challenge parameters have resulted in an increase in the number of available models and a better understanding of the implications of specific study design choices. SUMMARY Recent progress and technical developments promise new insights into basic disease mechanisms and improved models for better preclinical evaluation of interventions to prevent HIV transmission.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
6
|
Loret EP, Darque A, Jouve E, Loret EA, Nicolino-Brunet C, Morange S, Castanier E, Casanova J, Caloustian C, Bornet C, Coussirou J, Boussetta J, Couallier V, Blin O, Dussol B, Ravaux I. Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cART interruption in a phase I/II randomized controlled clinical trial. Retrovirology 2016; 13:21. [PMID: 27036656 PMCID: PMC4818470 DOI: 10.1186/s12977-016-0251-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A Tat Oyi vaccine preparation was administered with informed consent to 48 long-term HIV-1 infected volunteers whose viral loads had been suppressed by antiretroviral therapy (cART). These volunteers were randomized in double-blind method into four groups (n = 12) that were injected intradermally with 0, 11, 33, or 99 µg of synthetic Tat Oyi proteins in buffer without adjuvant at times designated by month 0 (M0), M1 and M2, respectively. The volunteers then underwent a structured treatment interruption between M5 and M7. RESULTS The primary outcomes of this phase I/IIa clinical trial were the safety and lowering the extent of HIV RNA rebound after cART interruption. Only one undesirable event possibly due to vaccination was observed. The 33 µg dose was most effective at lowering the extent of HIV RNA and DNA rebound (Mann and Whitney test, p = 0.07 and p = 0.001). Immune responses against Tat were increased at M5 and this correlated with a low HIV RNA rebound at M6 (p = 0.01). CONCLUSION This study suggests in vivo that extracellular Tat activates and protects HIV infected cells. The Tat Oyi vaccine in association with cART may provide an efficient means of controlling the HIV-infected cell reservoir.
Collapse
Affiliation(s)
- Erwann P Loret
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France.
| | - Albert Darque
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France.,Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Elisabeth Jouve
- Centre de Pharmacologie Clinique et Evaluations Thérapeutiques (AP-HM), UHC «la Timone», 28 Boulevard Jean Moulin, 13385, Marseille, France
| | - Elvenn A Loret
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Corinne Nicolino-Brunet
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Sophie Morange
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Elisabeth Castanier
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Josiane Casanova
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Christine Caloustian
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Charléric Bornet
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Julie Coussirou
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Jihen Boussetta
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Vincent Couallier
- Unité Mixte de Recherche CNRS 5251, Institut de Mathématique de Bordeaux, CNRS, Bordeaux 2 University, 33000, Bordeaux, France
| | - Olivier Blin
- Centre de Pharmacologie Clinique et Evaluations Thérapeutiques (AP-HM), UHC «la Timone», 28 Boulevard Jean Moulin, 13385, Marseille, France
| | - Bertrand Dussol
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Isabelle Ravaux
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| |
Collapse
|
7
|
Vaccine-Induced Linear Epitope-Specific Antibodies to Simian Immunodeficiency Virus SIVmac239 Envelope Are Distinct from Those Induced to the Human Immunodeficiency Virus Type 1 Envelope in Nonhuman Primates. J Virol 2015; 89:8643-50. [PMID: 26018159 DOI: 10.1128/jvi.03635-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/17/2015] [Indexed: 01/04/2023] Open
Abstract
To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.
Collapse
|