1
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
Affiliation(s)
- Nathalie Yared
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Sonia Netzer
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Hanna Kaminski
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Laure Burguet
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Amandine Demeste
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Pacôme Colas
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Lea Mora-Charrot
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Benoit Rousseau
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Atika Zouine
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, FACSility, TBM Core, Bordeaux, France
| | - Xavier Gauthereau
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, OneCell, RT-PCR and Single Cell Libraries, TBM Core, Bordeaux, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO department, Walloon ExceLlence Research Institute, Wavre, Belgium
| | - Julie Déchanet-Merville
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Myriam Capone
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| |
Collapse
|
2
|
Tarasenko T, Banerjee P, Gomez-Rodriguez J, Gildea D, Zhang S, Wolfsberg T, Jenkins L, McGuire P. Pyruvate dehydrogenase complex integrates the metabolome and epigenome in CD8+ memory T cell differentiation in vitro. RESEARCH SQUARE 2023:rs.3.rs-2838359. [PMID: 37215014 PMCID: PMC10197744 DOI: 10.21203/rs.3.rs-2838359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Modulation of metabolic flux through pyruvate dehydrogenase complex (PDC) plays an important role in T cell activation and differentiation. PDC sits at the transition between glycolysis and the tricarboxylic acid cycle and is a major producer of acetyl-CoA, marking it as a potential metabolic and epigenetic node To understand the role of pyruvate dehydrogenase complex in T cell differentiation, we generated mice deficient in T cell pyruvate dehydrogenase E1A (Pdha) subunit using a CD4-cre recombinase-based strategy. Herein, we show that genetic ablation of PDC activity in T cells (TPdh-/-) leads to marked perturbations in glycolysis, the tricarboxylic acid cycle, and OXPHOS. TPdh-/- T cells became dependent upon substrate level phosphorylation via glycolysis, secondary to depressed OXPHOS. Due to the block of PDC activity, histone acetylation was also reduced, including H3K27, a critical site for CD8+ TM differentiation. Transcriptional and functional profiling revealed abnormal CD8+ TM differentiation in vitro. Collectively, our data indicate that PDC integrates the metabolome and epigenome in CD8+ memory T cell differentiation. Targeting this metabolic and epigenetic node can have widespread ramifications on cellular function.
Collapse
|
3
|
Tarasenko TN, Banerjee P, Gomez-Rodriguez J, Gildea D, Zhang S, Wolfsberg T, Jenkins LM, McGuire PJ. Pyruvate dehydrogenase complex integrates the metabolome and epigenome in memory T cell differentiation in vitro. RESEARCH SQUARE 2023:rs.3.rs-2464392. [PMID: 36789409 PMCID: PMC9928058 DOI: 10.21203/rs.3.rs-2464392/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background Modulation of metabolic flux through pyruvate dehydrogenase complex (PDC) plays an important role in T cell activation and differentiation. PDC sits at the transition between glycolysis and the tricarboxylic acid cycle and is a major producer of acetyl-CoA, marking it as a potential metabolic and epigenetic node. Methods To understand the role of pyruvate dehydrogenase complex in T cell differentiation, we generated mice deficient in T cell pyruvate dehydrogenase E1A (Pdha) subunit using a CD4-cre recombinase-based strategy. To control for the contribution of exogenous metabolites in vivo, we conducted our T cell functional studies in vitro. T cells were differentiated into memory and effector T cells using standardized protocols. Cells were analyzed using stable isotopic tracing studies, metabolomics, RNAseq, ATACseq, ChIPseq and histone proteomics. Results Herein, we show that genetic ablation of PDC activity in T cells (TPdh-/-) leads to marked perturbations in glycolysis, the tricarboxylic acid cycle, and OXPHOS. Due to depressed OXPHOS, TPdh-/-T cells became dependent upon substrate level phosphorylation via glycolysis. Due to the block of PDC activity, histone acetylation was reduced, as were most other types of post translational modifications. Transcriptional and functional profiling revealed abnormal CD8+ memory T cell differentiation in vitro. Conclusions Collectively, our data indicate that PDC integrates the metabolome and epigenome in memory T cell differentiation. Targeting this metabolic and epigenetic node can have widespread ramifications on cellular function.
Collapse
|
4
|
Xia S, Huang J, Yan L, Han J, Zhang W, Shao H, Shen H, Wang J, Wang J, Tao C, Wang D, Wu F. miR-150 promotes progressive T cell differentiation via inhibiting FOXP1 and RC3H1. Hum Immunol 2022; 83:778-788. [PMID: 35999072 DOI: 10.1016/j.humimm.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
T cells used in immune cell therapy, represented by T cell receptor therapy (TCR-T), are usually activated and proliferated in vitro and are induced to a terminally differentiated phenotype, with limited viability after transfusion back into the body. T cells exhibited a robust proliferative potential and in vivo viability in the early stages of progressive differentiation. In this study, we identified microRNAs that regulate T cell differentiation. After microRNA sequencing of the four subsets: Naïve T cells (TN), stem cell-like memory T cells (TSCM), central memory T cells (TCM), and effector memory T cells (TEM), miR-150 was identified as the most highly expressed miRNA among the four subsets and was lowly expressed in the TSCM cells. We predicted the target genes of miR-150 miRNA and performed Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analyses. We observed that the target genes of miR-150 were enriched in pathways associated with T-cell differentiation. FOXP1 and RC3H1 were identified as key target genes of miR-150 in the regulation of T-cell function. We examined the effects of miR-150 on the differentiation and function of healthy donor T-cells. We observed that miR-150 overexpression promoted T-cell differentiation to effector T-cells and effector memory T-cells, enhanced apoptosis, inhibited cell proliferation and increased secretion of pro-inflammatory cytokines such as IFN-γ and TNF-α. In addition, the expressions of early differentiation-related genes (ACTN1, CERS6, BCL2, and EOMES), advanced differentiation-related genes (KLRG1), and effector-function-related genes (PRF1 and GZMB) were significantly decreased after overexpression of miR-150. Collectively, our results suggested that miR-150 can promote progressive differentiation of T cells and the downmodulation of miR-150 expression while performing adoptive immunotherapy may inhibit T-cell differentiation and increase the proliferative potential of T cells.
Collapse
Affiliation(s)
- Shengfang Xia
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijun Yan
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayi Han
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dingding Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat Rev Rheumatol 2022; 18:232-244. [PMID: 35075294 DOI: 10.1038/s41584-021-00741-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections. Here, we review the molecular mechanisms that limit the duration of immune responses in health and discuss the factors that alter such regulation in the setting of systemic lupus erythematosus and rheumatoid arthritis. We highlight defects that could contribute to the development and progression of autoimmune disease and describe how chronic inflammation can alter the regulation of activated lymphocyte survival, promoting its perpetuation. These concepts might contribute to the understanding of the mechanisms that underlie the chronicity of inflammation in the context of autoimmunity.
Collapse
|
6
|
Meldgaard TS, Blengio F, Maffione D, Sammicheli C, Tavarini S, Nuti S, Kratzer R, Medini D, Siena E, Bertholet S. Single-Cell Analysis of Antigen-Specific CD8+ T-Cell Transcripts Reveals Profiles Specific to mRNA or Adjuvanted Protein Vaccines. Front Immunol 2021; 12:757151. [PMID: 34777370 PMCID: PMC8586650 DOI: 10.3389/fimmu.2021.757151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
CD8+ T cells play a key role in mediating protective immunity after immune challenges such as infection or vaccination. Several subsets of differentiated CD8+ T cells have been identified, however, a deeper understanding of the molecular mechanism that underlies T-cell differentiation is lacking. Conventional approaches to the study of immune responses are typically limited to the analysis of bulk groups of cells that mask the cells' heterogeneity (RNA-seq, microarray) and to the assessment of a relatively limited number of biomarkers that can be evaluated simultaneously at the population level (flow and mass cytometry). Single-cell analysis, on the other hand, represents a possible alternative that enables a deeper characterization of the underlying cellular heterogeneity. In this study, a murine model was used to characterize immunodominant hemagglutinin (HA533-541)-specific CD8+ T-cell responses to nucleic- and protein-based influenza vaccine candidates, using single-cell sorting followed by transcriptomic analysis. Investigation of single-cell gene expression profiles enabled the discovery of unique subsets of CD8+ T cells that co-expressed cytotoxic genes after vaccination. Moreover, this method enabled the characterization of antigen specific CD8+ T cells that were previously undetected. Single-cell transcriptome profiling has the potential to allow for qualitative discrimination of cells, which could lead to novel insights on biological pathways involved in cellular responses. This approach could be further validated and allow for more informed decision making in preclinical and clinical settings.
Collapse
Affiliation(s)
- Trine Sundebo Meldgaard
- Research & Development, GSK, Siena, Italy
- Biochemistry & Molecular Biology, University of Siena, Siena, Italy
| | - Fabiola Blengio
- Chemical & Biological Sciences, University of Torino, Torino, Italy
| | - Denise Maffione
- Chemical & Biological Sciences, University of Torino, Torino, Italy
| | | | | | - Sandra Nuti
- Research & Development, GSK, Siena, Italy
- Research & Development, GSK, Rockville, MD, United States
| | | | | | | | - Sylvie Bertholet
- Research & Development, GSK, Siena, Italy
- Research & Development, GSK, Rockville, MD, United States
| |
Collapse
|
7
|
Xu T, Pereira RM, Martinez GJ. An Updated Model for the Epigenetic Regulation of Effector and Memory CD8 + T Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1497-1505. [PMID: 34493604 DOI: 10.4049/jimmunol.2100633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Naive CD8+ T cells, upon encountering their cognate Ag in vivo, clonally expand and differentiate into distinct cell fates, regulated by transcription factors and epigenetic modulators. Several models have been proposed to explain the differentiation of CTLs, although none fully recapitulate the experimental evidence. In this review article, we will summarize the latest research on the epigenetic regulation of CTL differentiation as well as provide a combined model that contemplates them.
Collapse
Affiliation(s)
- Tianhao Xu
- Discipline of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL; and
| | - Renata M Pereira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo J Martinez
- Discipline of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL; and
| |
Collapse
|
8
|
Jenkins MM, Bachus H, Botta D, Schultz MD, Rosenberg AF, León B, Ballesteros-Tato A. Lung dendritic cells migrate to the spleen to prime long-lived TCF1 hi memory CD8 + T cell precursors after influenza infection. Sci Immunol 2021; 6:eabg6895. [PMID: 34516781 DOI: 10.1126/sciimmunol.abg6895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Meagan M Jenkins
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly Bachus
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael D Schultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol 2021; 361:104273. [PMID: 33422699 DOI: 10.1016/j.cellimm.2020.104273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to a newly discovered subset of memory T (TM) cells-stem cell-like memory T (TSCM) cells for their high self-renewal ability, multi-differentiation potential and long-term effector function in adoptive therapy against tumors. Despite their application in cancer therapy, an excess of TSCM cells also contributes to the persistence of autoimmune diseases for their immune memory and HIV infection as a long-lived HIV reservoir. Signaling pathways Wnt, AMPK/mTOR and NF-κB are key determinants for TM cell generation, maintenance and proinflammatory effect. In this review, we focus on the phenotypic and functional characteristics of TSCM cells and discuss their role in autoimmune diseases and HIV-1 chronic infection. Also, we explore the potential mechanism and signaling pathways involved in immune memory and look into the future therapy strategies of targeting long-lived TM cells to suppress pathogenic immune memory.
Collapse
|
10
|
Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol 2019; 142:728-743. [PMID: 30195378 DOI: 10.1016/j.jaci.2018.07.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
During the last decade, advances in sequencing technologies allowed production of a wealth of information on epigenetic modifications in T cells. Epigenome maps, in combination with mechanistic studies, have demonstrated that T cells undergo extensive epigenome remodeling in response to signals, which has a strong effect on phenotypic stability and function of lymphocytes. In this review we focus on DNA methylation, histone modifications, and chromatin structure as important epigenetic mechanisms involved in controlling T-cell responses. In particular, we discuss epigenetic processes in light of the development, activation, and differentiation of CD4+ T helper (TH), regulatory T, and CD8+ T cells. As central aspects of the adaptive immune system, we review mechanisms that ensure molecular memory, stability, plasticity, and exhaustion of T cells. We further discuss the effect of the tissue environment on imprinting T-cell epigenomes with potential implications for immunotherapy.
Collapse
|
11
|
Gautam S, Fioravanti J, Zhu W, Le Gall JB, Brohawn P, Lacey NE, Hu J, Hocker JD, Hawk NV, Kapoor V, Telford WG, Gurusamy D, Yu Z, Bhandoola A, Xue HH, Roychoudhuri R, Higgs BW, Restifo NP, Bender TP, Ji Y, Gattinoni L. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat Immunol 2019; 20:337-349. [PMID: 30778251 PMCID: PMC6489499 DOI: 10.1038/s41590-018-0311-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.
Collapse
Affiliation(s)
- Sanjivan Gautam
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica Fioravanti
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhu
- Department of Bioinformatics, Inova Translational Medicine Institute, Fairfax, VA, USA
| | - John B Le Gall
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Neal E Lacey
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jinhui Hu
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nga Voong Hawk
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William G Telford
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Devikala Gurusamy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | | | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Timothy P Bender
- Department of Microbiology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Cellular Biomedicine Group, Gaithersburg, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
12
|
Abstract
Upon stimulation, small numbers of naive CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types. CD8+ T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8+ T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8+ T cell function in individuals with chronic infections and cancer.
Collapse
Affiliation(s)
- Amanda N Henning
- Center for Cell-Based Therapy, National Cancer Institute (NCI)
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Nicholas P Restifo
- Center for Cell-Based Therapy, National Cancer Institute (NCI)
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Vizcardo R, Klemen ND, Islam SMR, Gurusamy D, Tamaoki N, Yamada D, Koseki H, Kidder BL, Yu Z, Jia L, Henning AN, Good ML, Bosch-Marce M, Maeda T, Liu C, Abdullaev Z, Pack S, Palmer DC, Stroncek DF, Ito F, Flomerfelt FA, Kruhlak MJ, Restifo NP. Generation of Tumor Antigen-Specific iPSC-Derived Thymic Emigrants Using a 3D Thymic Culture System. Cell Rep 2018; 22:3175-3190. [PMID: 29562175 PMCID: PMC5930030 DOI: 10.1016/j.celrep.2018.02.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived T cells may provide future therapies for cancer patients, but those generated by current methods, such as the OP9/DLL1 system, have shown abnormalities that pose major barriers for clinical translation. Our data indicate that these iPSC-derived CD8 single-positive T cells are more like CD4+CD8+ double-positive T cells than mature naive T cells because they display phenotypic markers of developmental arrest and an innate-like phenotype after stimulation. We developed a 3D thymic culture system to avoid these aberrant developmental fates, generating a homogeneous subset of CD8αβ+ antigen-specific T cells, designated iPSC-derived thymic emigrants (iTEs). iTEs exhibit phenotypic and functional similarities to naive T cells both in vitro and in vivo, including the capacity for expansion, memory formation, and tumor suppression. These data illustrate the limitations of current methods and provide a tool to develop the next generation of iPSC-based antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Raul Vizcardo
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Nicholas D Klemen
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - S M Rafiqul Islam
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Devikala Gurusamy
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naritaka Tamaoki
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daisuke Yamada
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Benjamin L Kidder
- Department of Oncology and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhiya Yu
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Li Jia
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Amanda N Henning
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Meghan L Good
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Marta Bosch-Marce
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Takuya Maeda
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zied Abdullaev
- Experimental Pathology Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Svetlana Pack
- Experimental Pathology Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Douglas C Palmer
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Fumito Ito
- Department of Surgical Oncology, Roswell Park Cancer Center, Buffalo, NY 14263, USA; Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Francis A Flomerfelt
- Experimental Transplantation and Immunology Branch, NIH Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Snow AL, Larsen SE. Different death destinies: relative apoptosis sensitivity shapes the human effector CD8 + T-cell response derived from distinct memory subsets. Cell Death Dis 2017; 8:e3030. [PMID: 29048429 PMCID: PMC5596603 DOI: 10.1038/cddis.2017.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Sasha E Larsen
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| |
Collapse
|
15
|
Igarashi K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol 2017; 17:437-450. [PMID: 28461702 DOI: 10.1038/nri.2017.26] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4+ regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama 230-0045, Japan
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
16
|
Abstract
ABSTRACT
Immunological memory is a central feature of the adaptive immune system and a prerequisite for generating effective vaccines. Understanding long-term memory responses to
Mycobacterium tuberculosis
will thus provide us with valuable insights that can guide us in the search for a novel vaccine against tuberculosis (TB). For many years, triggering CD4 T cells and, in particular, those secreting interferon-γ has been the goal of most TB vaccine research, and numerous data from animals and humans support the key role of this subset in protective immunity. More recently, we have learned that the memory response required for effective control of
M. tuberculosis
is much more complex, probably involving several phenotypically different CD4 T cell subsets as well as other cell types that are yet to be defined. Herein, we describe recent insights into memory immunity to TB in the context of both animal models and the human infection. With the increasing amount of data generated from clinical testing of novel TB vaccines, we also summarize recent knowledge of vaccine-induced memory immunity.
Collapse
|
17
|
Sander FE, Rydström A, Bernson E, Kiffin R, Riise R, Aurelius J, Anderson H, Brune M, Foà R, Hellstrand K, Thorén FB, Martner A. Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia. Oncotarget 2016; 7:7586-96. [PMID: 26863635 PMCID: PMC4884940 DOI: 10.18632/oncotarget.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Preventing relapse after chemotherapy remains a challenge in acute myeloid leukemia (AML). Eighty-four non-transplanted AML patients in first complete remission received relapse-preventive immunotherapy with histamine dihydrochloride and low-dose interleukin-2 in an international phase IV trial (ClinicalTrials.gov; NCT01347996). Blood samples were drawn during cycles of immunotherapy and analyzed for CD8+ (cytotoxic) T cell phenotypes in blood. During the first cycle of therapy, a re-distribution of cytotoxic T cells was observed comprising a reduction of T effector memory cells and a concomitant increase of T effector cells. The dynamics of T cell subtypes during immunotherapy prognosticated relapse and survival, in particular among older patients and remained significantly predictive of clinical outcome after correction for potential confounders. Presence of CD8+ T cells with specificity for leukemia-associated antigens identified patients with low relapse risk. Our results point to novel aspects of T cell-mediated immunosurveillance in AML and provide conceivable biomarkers in relapse-preventive immunotherapy.
Collapse
Affiliation(s)
- Frida Ewald Sander
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rydström
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca Riise
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Johan Aurelius
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Harald Anderson
- Department of Cancer Epidemiology, University of Lund, Lund, Sweden
| | - Mats Brune
- Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Robin Foà
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Sriram U, Hill BL, Cenna JM, Gofman L, Fernandes NC, Haldar B, Potula R. Impaired Subset Progression and Polyfunctionality of T Cells in Mice Exposed to Methamphetamine during Chronic LCMV Infection. PLoS One 2016; 11:e0164966. [PMID: 27760221 PMCID: PMC5070876 DOI: 10.1371/journal.pone.0164966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 01/23/2023] Open
Abstract
Methamphetamine (METH) is a widely used psychostimulant that severely impacts the host’s innate and adaptive immune systems and has profound immunological implications. T cells play a critical role in orchestrating immune responses. We have shown recently how chronic exposure to METH affects T cell activation using a murine model of lymphocytic choriomeningitis virus (LCMV) infection. Using the TriCOM (trinary state combinations) feature of GemStone™ to study the polyfunctionality of T cells, we have analyzed how METH affected the cytokine production pattern over the course of chronic LCMV infection. Furthermore, we have studied in detail the effects of METH on splenic T cell functions, such as cytokine production and degranulation, and how they regulate each other. We used the Probability State Modeling (PSM) program to visualize the differentiation of effector/memory T cell subsets during LCMV infection and analyze the effects of METH on T cell subset progression. We recently demonstrated that METH increased PD-1 expression on T cells during viral infection. In this study, we further analyzed the impact of PD-1 expression on T cell functional markers as well as its expression in the effector/memory subsets. Overall, our study indicates that analyzing polyfunctionality of T cells can provide additional insight into T cell effector functions. Analysis of T cell heterogeneity is important to highlight changes in the evolution of memory/effector functions during chronic viral infections. Our study also highlights the impact of METH on PD-1 expression and its consequences on T cell responses.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Beth L. Hill
- Verity Software House, Topsham, Maine, United States of America
| | - Jonathan M. Cenna
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Nicole C. Fernandes
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, United States of America
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Roychoudhuri R, Clever D, Li P, Wakabayashi Y, Quinn KM, Klebanoff CA, Ji Y, Sukumar M, Eil RL, Yu Z, Spolski R, Palmer DC, Pan JH, Patel SJ, Macallan DC, Fabozzi G, Shih HY, Kanno Y, Muto A, Zhu J, Gattinoni L, O'Shea JJ, Okkenhaug K, Igarashi K, Leonard WJ, Restifo NP. BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers. Nat Immunol 2016; 17:851-860. [PMID: 27158840 PMCID: PMC4918801 DOI: 10.1038/ni.3441] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/16/2016] [Indexed: 12/14/2022]
Abstract
T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.
Collapse
Affiliation(s)
- Rahul Roychoudhuri
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - David Clever
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
- Medical Scientist Training Program, Ohio State University College of Medicine, Columbus, OH., USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | | | - Kylie M Quinn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD., USA
| | | | - Yun Ji
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | | | - Robert L Eil
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Zhiya Yu
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | - Douglas C Palmer
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Jenny H Pan
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Shashank J Patel
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Derek C Macallan
- Institute for Infection & Immunity, St. George's University of London, London, UK
| | - Giulia Fabozzi
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Jun Zhu
- Systems Biology Center, NHLBI, NIH, Bethesda, MD., USA
| | - Luca Gattinoni
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | - Nicholas P Restifo
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| |
Collapse
|
20
|
Abstract
T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
21
|
Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia. Exp Hematol 2015; 43:1001-1014.e5. [PMID: 26384559 DOI: 10.1016/j.exphem.2015.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/03/2015] [Accepted: 08/08/2015] [Indexed: 11/20/2022]
Abstract
Adoptive therapy with chimeric antigen receptor (CAR) T cells (CART cells) has exhibited great promise in clinical trials, with efficient response correlated with CART-cell expansion and persistence. Despite extensive clinical use, the mechanisms regulating CART-cell expansion and persistence have not been completely elucidated. We have examined the antileukemia potency of CART cells targeting CD19 antigen using second-generation CAR containing a CD28 co-stimulatory domain cloned into piggyBac-transposon vector and patient-derived chemoresistant pediatric acute lymphoblastic leukemia samples. In the presence of large numbers of target cells characteristic of patients with high leukemia burden, excessive proliferation of CART cells leads to differentiation into short-lived effector cells. Transient leukemia growth delay was induced by CART-cell infusion in mice xenografted with rapidly growing CD19+ acute lymphoblastic leukemia cells and was followed by rapid CART-cell extinction. Conditioning with the hypomethylating agent 5-aza-2'-deoxycytidine-activating caspase 3 and promotion of apoptosis in leukemia cells maximized the effect of CART cells and improved CART-cell persistence. These data suggest that the clinical use of 5-aza-2'-deoxycytidine before CART cells could be considered. Coculture of leukemia cells with bone marrow stroma cells reduced target cell loss, suggesting that leukemia cell mobilization into circulation may help to remove the protective effect of bone marrow stroma and increase the efficacy of CART-cell therapy.
Collapse
|
22
|
The Nucleoprotein Is Required for Lymphocytic Choriomeningitis Virus-Based Vaccine Vector Immunogenicity. J Virol 2015; 89:11734-8. [PMID: 26355095 DOI: 10.1128/jvi.01613-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/06/2015] [Indexed: 12/14/2022] Open
Abstract
Recombinant glycoprotein-deficient lymphocytic choriomeningitis virus-based vaccine vectors (rLCMV/ΔGP) are potent CD8(+) T cell inducers. To investigate the underlying molecular requirements, we generated a nucleoprotein-deficient vector counterpart (rLCMV/ΔNP). NP but not GP is a minimal trans-acting factor for viral transcription and genome replication. We found that, unlike rLCMV/ΔGP, rLCMV/ΔNP failed to elicit detectable CD8(+) T cell responses unless NP was trans complemented in a transgenic host. Hence, NP-dependent intracellular gene expression is essential for LCMV vector immunogenicity.
Collapse
|
23
|
Maertzdorf J, Kaufmann S, Weiner J. Molecular signatures for vaccine development. Vaccine 2015; 33:5256-61. [DOI: 10.1016/j.vaccine.2015.03.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/23/2015] [Indexed: 01/12/2023]
|
24
|
Cotugno N, De Armas L, Pallikkuth S, Rossi P, Palma P, Pahwa S. Paediatric HIV infection in the ‘omics era: defining transcriptional signatures of viral control and vaccine responses. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30507-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Cotugno N, De Armas L, Pallikkuth S, Rossi P, Palma P, Pahwa S. Paediatric HIV infection in the 'omics era: defining transcriptional signatures of viral control and vaccine responses. J Virus Erad 2015; 1:153-158. [PMID: 26807446 PMCID: PMC4721557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Modern technologies and their increased accessibility have shifted 'benchtop' medical research to the larger dimension of 'omics. The huge amount of data derived from gene expression and sequencing experiments has propelled physicians, basic scientists and bioinformaticians towards a common goal to transform 'big data' into predictive constructs that are readily available and will offer clinical utility. Although most of the studies available in the literature have been performed on healthy subjects and in peripheral blood mononuclear cells (PBMC), which are a heterogenous and extremely variable pool of cells, scientists are now trying to address mechanistic questions in purified cell subsets in pathological conditions. In the field of HIV, few attempts have been made to comprehensively evaluate gene-expression profiles of infected patients with different disease status. With the view of discovering a path towards remission or viral eradication, perinatally HIV-infected children represent a unique model. In fact the well-defined time of infection and the resulting opportunity to start early treatment, thereby generating a smaller size of viral reservoir and a more intact immune system, allow for investigation of therapeutic strategies to defeat the virus. In this scenario, 'transcriptomic' or gene expression technologies and supporting bioinformatics applications need to be strategically integrated to provide novel information about immune correlates of virus control following treatment interruption. Here we review modern techniques for gene expression analysis and discuss the best transcriptomic strategies applicable to the field of functional cure in paediatric HIV infection.
Collapse
Affiliation(s)
- Nicola Cotugno
- University Department of Pediatrics, DPUO, Unit of Immune and Infectious Diseases,
Bambino Gesù Children's Hospital,
Rome,
Italy,Department of Systems Medicine,
University of Rome,‘Tor Vergata’,
Italy
| | - Lesley De Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine,
University of Miami,
Miami,
Florida,
USA
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine,
University of Miami,
Miami,
Florida,
USA
| | - Paolo Rossi
- University Department of Pediatrics, DPUO, Unit of Immune and Infectious Diseases,
Bambino Gesù Children's Hospital,
Rome,
Italy,Department of Systems Medicine,
University of Rome,‘Tor Vergata’,
Italy
| | - Paolo Palma
- University Department of Pediatrics, DPUO, Unit of Immune and Infectious Diseases,
Bambino Gesù Children's Hospital,
Rome,
Italy
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, Miller School of Medicine,
University of Miami,
Miami,
Florida,
USA,Corresponding author: Savita Pahwa,
Department of Microbiology and Immunology, Miller School of Medicine,
University of Miami1580 NW 10th Avenue,
Miami,
FL33136,
USA
| |
Collapse
|
26
|
Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol 2015; 6:310. [PMID: 26167163 PMCID: PMC4481276 DOI: 10.3389/fimmu.2015.00310] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells.
Collapse
Affiliation(s)
- Silvia A. Fuertes Marraco
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Natalie J. Neubert
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Grégory Verdeil
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Daniel E. Speiser
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|