1
|
Argante L, Prunas O, Medini D, Ypma E. Modeling the persistence of 4CMenB vaccine protection against real world meningococcal B disease in adolescents. NPJ Vaccines 2024; 9:239. [PMID: 39622848 PMCID: PMC11612355 DOI: 10.1038/s41541-024-01025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
The efficacy of the four-component 4CMenB vaccine is measured through the serum bactericidal antibody (SBA) assay on four meningococcal B (MenB) indicator strains. However, they are not epidemiologically relevant for disease, thus the real-world persistence of 4CMenB protection remains uncertain. Several mathematical models of waning immunity were fitted on longitudinal SBA data from persistence studies in adolescents, with up to eight years follow-up after 4CMenB priming vaccination. The best model was used to predict protection from indicator strains. MenB typing data from the United States were used to integrate antigen-level curves and predict the persistence of protection from real-world MenB strains, considering synergies between antigens. Models show that protection and its evolution varied by antigen and that 4CMenB likely elicits antibody-producing long-lived plasma cells. 4CMenB protection from real-world MenB disease persisted at 61.5% four years post-priming and 70.5% four years post-booster. This evidence could support decision-making on adolescent immunization programs.
Collapse
Affiliation(s)
| | - Ottavia Prunas
- GSK, Siena, Italy
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Duccio Medini
- GSK, Siena, Italy
- Toscana Life Sciences Foundation, Siena, Italy
| | | |
Collapse
|
2
|
Luo Z, Cheng X, Feng B, Fan D, Liu X, Xie R, Luo T, Wegner SV, Ma D, Chen F, Zeng W. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400049. [PMID: 38952055 PMCID: PMC11434149 DOI: 10.1002/advs.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Indexed: 07/03/2024]
Abstract
In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.
Collapse
Affiliation(s)
- Ziheng Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Bin Feng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ting Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of Münster48149MünsterGermany
| | - Dayou Ma
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Fei Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| |
Collapse
|
3
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Sadeghi L, Mohit E, Moallemi S, Ahmadi FM, Bolhassani A. Recent advances in various bio-applications of bacteria-derived outer membrane vesicles. Microb Pathog 2023; 185:106440. [PMID: 37931826 DOI: 10.1016/j.micpath.2023.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles released from gram-negative bacteria. OMVs were originally classified into native 'nOMVs' (produced naturally from budding of bacteria) and non-native (produced by mechanical means). nOMVs and detergent (dOMVs) are isolated from cell supernatant without any detergent cell disruption techniques and through detergent extraction, respectively. Growth stages and conditions e.g. different stress factors, including temperature, nutrition deficiency, and exposure to hazardous chemical agents can affect the yield of OMVs production and OMVs content. Because of the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), various proteins and the vesicle structure, OMVs have been developed in many biomedical applications. OMVs due to their size can be phagocytized by APCs, enter lymph vessels, transport antigens efficiently, and induce both T and B cells immune responses. Non-engineered OMVs have been frequently used as vaccines against different bacterial and viral infections, and various cancers. OMVs can also be used in combination with different antigens as an attractive vaccine adjuvant. Indeed, foreign antigens from target microorganisms can be trapped in the lumen of nonpathogenic vesicles or can be displayed on the surface through bacterial membrane protein to increase the immunogenicity of the antigens. In this review, different factors affecting OMV production including time of cultivation, growth media, stress conditions and genetic manipulations to enhance vesiculation will be described. Furthermore, recent advances in various biological applications of OMVs such as vaccine, drug delivery, cancer therapy, and enzyme carrier are discussed. Generally, the application of OMVs as vaccine carrier in three categories (i.e., non-engineered OMVs, OMVs as an adjuvant, recombinant OMVs (rOMVs)), as delivery system for small interfering RNA and therapeutic agents, and as enzymes carrier will be discussed.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Kassianos G, Barasheed O, Abbing-Karahagopian V, Khalaf M, Ozturk S, Banzhoff A, Badur S. Meningococcal B Immunisation in Adults and Potential Broader Immunisation Strategies: A Narrative Review. Infect Dis Ther 2023; 12:2193-2219. [PMID: 37428339 PMCID: PMC10581987 DOI: 10.1007/s40121-023-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recombinant vaccines against invasive meningococcal disease due to Neisseria meningitidis serogroup B (MenB) have shown substantial impact in reducing MenB disease in targeted populations. 4CMenB targets four key N. meningitidis protein antigens; human factor H binding protein (fHbp), Neisserial heparin binding antigen (NHBA), Neisseria adhesin A (NadA) and the porin A protein (PorA P1.4), with one or more of these expressed by most pathogenic MenB strains, while MenB-FHbp targets two distinct fHbp variants. While many countries recommend MenB immunisation in adults considered at high risk due to underlying medical conditions or immunosuppression, there are no recommendations for routine use in the general adult population. We reviewed the burden of MenB in adults, where, while incidence rates remain low (and far lower than in young children < 5 years of age at greatest risk), a substantial proportion of MenB cases (20% or more) is now observed in the adult population; evident in Europe, Australia, and in the United States. We also reviewed immunogenicity data in adults from clinical studies conducted during MenB vaccine development and subsequent post-licensure studies. A 2-dose schedule of 4CMenB generates hSBA titres ≥ 1:4 towards all four key vaccine target antigens in up to 98-100% of subjects. For MenB-FHbp, a ≥ fourfold rise in hSBA titres against the four primary representative test strains was observed in 70-95% of recipients following a 3-dose schedule. While this suggests potential benefits for MenB immunisation if used in adult populations, data are limited (especially for adults > 50 years) and key aspects relating to duration of protection remain unclear. Although a broader adult MenB immunisation policy could provide greater protection of the adult population, additional data are required to support policy decision-making.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London, UK
- The British Global and Travel Health Association, London, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Ozkocak DC, Phan TK, Poon IKH. Translating extracellular vesicle packaging into therapeutic applications. Front Immunol 2022; 13:946422. [PMID: 36045692 PMCID: PMC9420853 DOI: 10.3389/fimmu.2022.946422] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells in various (patho)physiological conditions. EVs can transfer effector molecules and elicit potent responses in recipient cells, making them attractive therapeutic agents and drug delivery platforms. In contrast to their tremendous potential, only a few EV-based therapies and drug delivery have been approved for clinical use, which is largely attributed to limited therapeutic loading technologies and efficiency. As EV cargo has major influence on their functionality, understanding and translating the biology underlying the packaging and transferring of biomolecule cargos (e.g. miRNAs, pathogen antigens, small molecule drugs) into EVs is key in harnessing their therapeutic potential. In this review, through recent insights into EVs’ content packaging, we discuss different mechanisms utilized by EVs during cargo packaging, and how one might therapeutically exploit this process. Apart from the well-characterized EVs like exosomes and microvesicles, we also cover the less-studied and other EV subtypes like apoptotic bodies, large oncosomes, bacterial outer membrane vesicles, and migrasomes to highlight therapeutically-diverse opportunities of EV armoury.
Collapse
|
7
|
Rollier CS, Dold C, Blackwell L, Linder A, Silva-Reyes L, Clutterbuck E, Davis K, Ford K, Liu X, Holland A, Chan H, Harbinson H, O'Connor D, Borrow R, Snape MD, Pollard AJ. Immunogenicity of a single 4CMenB vaccine booster in adolescents 11 years after childhood immunisation. Vaccine 2022; 40:4453-4463. [PMID: 35697571 DOI: 10.1016/j.vaccine.2022.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
The clinical development of the meningococcal vaccine, 4CMenB, included 2 doses in vaccine-naïve adolescents, which was considered unlikely to be cost-effective for implementation. Theoretically, priming with 4CMenB in early childhood might drive strong immune responses after only a single booster dose in adolescents and reduce programmatic costs. To address this question, children over 11 years old who took part in previous trials involving the administration of 3-5 doses of 4CMenB at infant/preschool age from 2006 were recruited into a post licensure single-centre trial, and were divided into two groups: those who received their last dose at 12 months old (infant group) and those who received their last dose at 3 years old (infant + preschool group). Naïve age-matched controls were randomised to receive one (adolescent 1 group) or two doses at days 0 and 28 (adolescent 2 group) of 4CMenB. Serum bactericidal antibody (SBA) assays using human complement were performed against three reference strains prior to vaccination, and at 1, 6 and 12 months. Previous vaccination was associated with a higher response to a single booster dose at 11 years of age, one-month post-vaccination, when compared with a single dose in naïve age-matched controls. At day 180, the highest responses were observed in participants in the infant + preschool group against strain 5/99 (GMT 316.1 [CI 158.4 to 630.8]), as compared with naïve adolescents who received two doses (GMTs 84.5 [CI 57.7 to 123.6]). When the last dose was received at 12-months of age, responses to a single adolescent dose were not as robust (GMT 61.1 [CI 14.8 to 252.4] to strain 5/99). This descriptive study indicates that the highest SBA responses after a single dose in adolescence were observed in participants who received a preschool dose, suggesting that B cell memory responses are not sufficiently primed at less than 12 months of age. Trial registration EudraCT 2017-004732-11, ISRCTN16774163.
Collapse
Affiliation(s)
- Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Aline Linder
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Elizabeth Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Kimberly Davis
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Karen Ford
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Ann Holland
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Hannah Chan
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Holly Harbinson
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Ray Borrow
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| |
Collapse
|
8
|
Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022; 140:102-115. [PMID: 34896632 DOI: 10.1016/j.actbio.2021.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
Antibiotic therapy is one of the most important approaches against bacterial infections. However, the improper use of antibiotics and the emergence of drug resistance have compromised the efficacy of traditional antibiotic therapy. In this regard, it is of great importance and significance to develop more potent antimicrobial therapies, including the development of functionalized antibiotics delivery systems and antibiotics-independent antimicrobial agents. Outer membrane vesicles (OMVs), secreted by Gram-negative bacteria and with similar structure to cell-derived exosomes, are natural functional nanomaterials and known to play important roles in many bacterial life events, such as communication, biofilm formation and pathogenesis. Recently, more and more reports have demonstrated the use of OMVs as either active antibacterial agents or antibiotics delivery carriers, implying the great potentials of OMVs in antibacterial therapy. Herein, we aim to provide a comprehensive understanding of OMV and its antibacterial applications, including its biogenesis, biofunctions, isolation, purification and its potentials in killing bacteria, delivering antibiotics and developing vaccine or immunoadjuvants. In addition, the concerns in clinical use of OMVs and the possible solutions are discussed. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria has led to the failure of traditional antibiotic therapy, and thus become a big threat to human beings. In this regard, developing more potent antibacterial approaches is of great importance and significance. Recently, bacterial outer membrane vesicles (OMVs), which are natural functional nanomaterials secreted by Gram-negative bacteria, have been used as active agents, drug carriers and vaccine adjuvant for antibacterial therapy. This review provides a comprehensive understanding of OMVs and summarizes the recent progress of OMVs in antibacterial applications. The concerns of OMVs in clinical use and the possible solutions are also discussed. As such, this review may guide the future works in antibacterial OMVs and appeal to both scientists and clinicians.
Collapse
Affiliation(s)
- Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingxi Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Schaffer DeRoo S, Torres RG, Fu LY. Meningococcal disease and vaccination in college students. Hum Vaccin Immunother 2021; 17:4675-4688. [PMID: 34613863 PMCID: PMC8828137 DOI: 10.1080/21645515.2021.1973881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
Neisseria meningitidis is a bacterial pathogen capable of causing rapidly progressing illness from nonspecific symptoms to end-organ failure or death in a matter of hours to days. Despite the availability of meningococcal vaccines, there remains a notable disease incidence peak among individuals aged 18-19 years, with college students at increased risk for disease relative to non-college students. Between 2007 and 2017, as many as one in five colleges in the United States experienced an outbreak of meningococcal disease at their own or a nearby institution. Evidence-based strategies to promote meningococcal vaccination among students can be adapted for the college setting, but barriers exist that limit widespread implementation of these strategies by colleges. In this article, we review meningococcal disease characteristics and epidemiology among US college students, vaccination indications and coverage levels among US college students, as well as college vaccination policies and practices that can impact students' vaccine uptake.
Collapse
Affiliation(s)
| | - Rachel G. Torres
- Center for Translational Research, Children’s National Hospital, Washington, DC, USA
| | - Linda Y. Fu
- Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
- Center for Translational Research, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
10
|
Vesikari T, Brzostek J, Ahonen A, Paassilta M, Majda-Stanislawska E, Szenborn L, Virta M, Clifford R, Jackowska T, Kimmel M, Bindi I, Keshavan P, Pedotti P, Toneatto D. Immunogenicity and safety of different schedules of the meningococcal ABCWY vaccine, with assessment of long-term antibody persistence and booster responses - results from two phase 2b randomized trials in adolescents. Hum Vaccin Immunother 2021; 17:4689-4700. [PMID: 34582323 PMCID: PMC8828153 DOI: 10.1080/21645515.2021.1968214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The meningococcal serogroup B (MenB) protein vaccine, 4CMenB, combined with MenA, MenC, MenW and MenY polysaccharide-protein conjugates for a pentavalent MenABCWY vaccine, can potentially protect against most causative agents of invasive meningococcal disease worldwide. Two phase 2b, randomized, multicenter studies were conducted (NCT02212457, NCT02946385) to assess the immunogenicity and safety of the MenABCWY vaccine as well as antibody persistence and response to a booster dose 2 years after the last vaccination, compared to 4CMenB vaccination. Participants (10 − 18 years), randomized (3:3:2:2:2:2), received the 4-component 4CMenB vaccine according to a 0–2 month (M) schedule or MenABCWY according to a 0–2, 0–6, 0-2-6, 0–1, or 0–11 M schedule. All participants received 5 injections (at M0, M1, M2, M6 and M12) with either the study vaccines or placebo/hepatitis A vaccine. Follow-on participants (4CMenB-0-2, MenABCWY-0-2, MenABCWY-0-6 and MenABCWY-0-2-6 groups) received one dose of either 4CMenB (4CMenB-0-2 group) or MenABCWY and newly enrolled, age-matched, meningococcal vaccine-naïve adolescents (randomized 1:1) received 2 doses (0–2 M) of either 4CMenB or MenABCWY. MenABCWY vaccination was immunogenic against MenB test strains. Non-inferiority for all 4 components of the 4CMenB vaccine could not be demonstrated for the 0–2 M schedule. Antibodies persisted up to 2 years post-MenABCWY vaccination and a booster dose induced an anamnestic response as higher titers were observed in follow-on participants compared to the first-dose response in vaccine-naïve participants. MenABCWY had a clinically-acceptable safety profile, not different from that of 4CMenB.
Collapse
Affiliation(s)
| | - Jerzy Brzostek
- Health Care Establishment in Debica, Infectious Diseases Outpatient Clinic, Debica, Poland
| | - Anitta Ahonen
- Vaccine Research Center, Tampere University, Tampere, Finland
| | - Marita Paassilta
- Tampere University and Tampere University Hospital, Tampere, Finland
| | | | - Leszek Szenborn
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Miia Virta
- Vaccine Research Center, Tampere University, Tampere, Finland
| | | | - Teresa Jackowska
- Department of Pediatrics, The Medical Centre of Postgraduate Education, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
11
|
Low efficacy of vaccination against serogroup B meningococci in patients with atypical hemolytic uremic syndrome. Biosci Rep 2021; 40:222330. [PMID: 32159209 PMCID: PMC7098122 DOI: 10.1042/bsr20200177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background: The C5 complement inhibitor eculizumab is first-line treatment in atypical hemolytic uremic syndrome (aHUS) going along with a highly increased risk of meningococcal infections. Serogroup B meningococci (MenB) are the most frequently encountered cause for meningococcal infections in Europe. Efficacy of the protein-based MenB-vaccine Bexsero in aHUS has not been determined and testing is only possible in patients off-treatment with eculizumab as a human complement source is required. Methods: Patients with aHUS were vaccinated with two doses of the protein-based MenB-vaccine Bexsero. Serum bactericidal antibody (SBA) titers against factor H binding protein (fHbp) of MenB were determined in 14 patients with aHUS off-treatment with eculizumab. Results: Only 50% of patients showed protective human serum bactericidal antibody (hSBA) titers (≥1:4) against MenB following two vaccinations. Bactericidal antibody titers were relatively low (≤1:8) in three of seven patients with protective titers. While 71% of patients were on immunosuppressive treatment for either thrombotic microangiopathy or renal transplantation at either first or second vaccination, all four patients not receiving any immunosuppressive treatment showed protective bactericidal antibody response. Time between second vaccination and titer measurement was not significantly different between patients with protective titers compared with those with non-protective titers, while time between first and second vaccination was significantly longer in patients with protective titers going along with a tendency for reduction in immunosuppressive treatment. Conclusions: Efficacy of vaccination against MenB is insufficient in patients with aHUS. Response to vaccination seems to be hampered by immunosuppression. Therefore, implementation of adequate antibiotic prophylaxis seems pivotal.
Collapse
|
12
|
Mbaeyi SA, Bozio CH, Duffy J, Rubin LG, Hariri S, Stephens DS, MacNeil JR. Meningococcal Vaccination: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020. MMWR Recomm Rep 2020; 69:1-41. [PMID: 33417592 PMCID: PMC7527029 DOI: 10.15585/mmwr.rr6909a1] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This report compiles and summarizes all recommendations from CDC's Advisory Committee on Immunization Practices (ACIP) for use of meningococcal vaccines in the United States. As a comprehensive summary and update of previously published recommendations, it replaces all previously published reports and policy notes. This report also contains new recommendations for administration of booster doses of serogroup B meningococcal (MenB) vaccine for persons at increased risk for serogroup B meningococcal disease. These guidelines will be updated as needed on the basis of availability of new data or licensure of new meningococcal vaccines. ACIP recommends routine vaccination with a quadrivalent meningococcal conjugate vaccine (MenACWY) for adolescents aged 11 or 12 years, with a booster dose at age 16 years. ACIP also recommends routine vaccination with MenACWY for persons aged ≥2 months at increased risk for meningococcal disease caused by serogroups A, C, W, or Y, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor (e.g., eculizumab [Soliris] or ravulizumab [Ultomiris]); persons who have anatomic or functional asplenia; persons with human immunodeficiency virus infection; microbiologists routinely exposed to isolates of Neisseria meningitidis; persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroups A, C, W, or Y; persons who travel to or live in areas in which meningococcal disease is hyperendemic or epidemic; unvaccinated or incompletely vaccinated first-year college students living in residence halls; and military recruits. ACIP recommends MenACWY booster doses for previously vaccinated persons who become or remain at increased risk.In addition, ACIP recommends routine use of MenB vaccine series among persons aged ≥10 years who are at increased risk for serogroup B meningococcal disease, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor; persons who have anatomic or functional asplenia; microbiologists who are routinely exposed to isolates of N. meningitidis; and persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroup B. ACIP recommends MenB booster doses for previously vaccinated persons who become or remain at increased risk. In addition, ACIP recommends a MenB series for adolescents and young adults aged 16-23 years on the basis of shared clinical decision-making to provide short-term protection against disease caused by most strains of serogroup B N. meningitidis.
Collapse
|
13
|
Rivero-Calle I, Raguindin PF, Gómez-Rial J, Rodriguez-Tenreiro C, Martinón-Torres F. Meningococcal Group B Vaccine For The Prevention Of Invasive Meningococcal Disease Caused By Neisseria meningitidis Serogroup B. Infect Drug Resist 2019; 12:3169-3188. [PMID: 31632103 PMCID: PMC6793463 DOI: 10.2147/idr.s159952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a major public health concern because of its high case fatality, long-term morbidity, and potential to course with outbreaks. IMD caused by Nesseira meningitidis serogroup B has been predominant in different regions of the world like Europe and only recently broadly protective vaccines against B serogroup have become available. Two protein-based vaccines, namely 4CMenB (Bexsero®) and rLP2086 (Trumenba®) are currently licensed for use in different countries against MenB disease. These vaccines came from a novel technology on vaccine design (or antigen selection) using highly specific antigen targets identified through whole-genome sequence analysis. Moreover, it has the potential to confer protection against non-B meningococcus and against other Neisserial species such as gonococcus. Real-world data on the vaccine-use are rapidly accumulating from the UK and other countries which used the vaccine for control of outbreak or as part of routine immunization program, reiterating its safety and efficacy. Additional data on real-life effectiveness, long-term immunity, and eventual herd effects, including estimates on vaccine impact for cost-effectiveness assessment are further needed. Given the predominance of MenB in Europe and other parts of the world, these new vaccines are crucial for the prevention and public health control of the disease, and should be considered.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Peter Francis Raguindin
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| |
Collapse
|
14
|
Zhang Y, Fang Z, Li R, Huang X, Liu Q. Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091314. [PMID: 31500086 PMCID: PMC6769604 DOI: 10.3390/cancers11091314] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer vaccines have been extensively studied in recent years and have contributed to exceptional achievements in cancer treatment. They are some of the most newly developed vaccines, although only two are currently approved for use, Provenge and Talimogene laherparepvec (T-VEC). Despite the approval of these two vaccines, most vaccines have been terminated at the clinical trial stage, which indicates that although they are effective in theory, concerns still exist, including low antigenicity of targeting antigens and tumor heterogeneity. In recent years, with new understanding of the biological function and vaccine potential of outer membrane vesicles (OMVs), their potential application in cancer vaccine design deserves our attention. Therefore, this review focuses on the mechanisms, advantages, and prospects of OMVs as antigen-carrier vaccines in cancer vaccine development. We believe that OMV-based vaccines present a safe and effective cancer therapeutic option with broad application prospects.
Collapse
Affiliation(s)
- Yingxuan Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Zheyan Fang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Ruizhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
15
|
Davis K, Ford K, Craik R, Galal U, Rollier CS, Pollard AJ. The effect of a single 4CMenB vaccine booster in young people more than ten years after infant immunisation: protocol of an exploratory immunogenicity study. Trials 2019; 20:455. [PMID: 31340842 PMCID: PMC6657159 DOI: 10.1186/s13063-019-3494-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background and rationale The four-component capsular group B meningococcal vaccine (4CMenB) was introduced into the national immunisation schedule in the UK in September 2015 for infants in a 2 + 1 schedule at two, four and 12 months of age. A two-dose immunisation schedule for adolescents was also considered but was not found to be cost-effective in view of the relatively low rates of disease in this age group. Uncertainty about the longevity of protection induced by the vaccine and lack of certainty about an anamnestic response in primed individuals contributed to this decision. Methods/Design This study is an open-label, descriptive immunogenicity analysis. Up to 113 participants will be recruited, including up to 83 children who are now aged 11 years and took part in previous trials involving the administration of 4CMenB to infants, plus a group of 30 naïve age-matched controls. All previously immunised participants will receive one booster dose of 4CMenB. The 30 naïve participants will be randomised to receive two doses of 4CMenB either at 0 and 28 days or 0 and 365 days. Blood samples will be collected from all participants at 0, 28, 180 and 365 days. The primary endpoint will explore immunogenicity at day 0 and 180 in previously immunised and naïve participants. Secondary outcomes will include investigating the persistence of antibody protection in previously immunised participants at the beginning of the study, describing the characteristics of the memory B-cell responses in previously immunised participants, and measuring reactogenicity in all participants following 4CMenB doses. Discussion This study aims to describe whether or not a single booster dose of 4CMenB given to those who have received an infant course of 4CMenB induces a recall immune response, while concurrently describing immune responses in naïve children of the same age. If an anamnestic response is proven, a single dose adolescent booster could be envisaged as an addition to the current UK vaccination schedule. Trial registration EudraCT, 2017–004732-11. ISRCTN, ISRCTN16774163. Registered on 10 May 2018 (retrospectively registered). Electronic supplementary material The online version of this article (10.1186/s13063-019-3494-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kimberly Davis
- Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Karen Ford
- Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Rachel Craik
- Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
16
|
De Serres G, Billard MN, Gariépy MC, Roy MC, Boucher FD, Gagné H, Belley S, Toth E, Landry M, Skowronski DM. Nephrotic syndrome following four-component meningococcal B vaccination: Epidemiologic investigation of a surveillance signal. Vaccine 2019; 37:4996-5002. [PMID: 31307873 DOI: 10.1016/j.vaccine.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND In May 2014, a mass vaccination campaign with four-component meningococcal serogroup B (4CMenB) vaccine was launched in a localized region of Quebec, Canada experiencing high invasive meningococcal B disease endemicity. Active post-marketing surveillance identified several cases of nephrotic syndrome (NS) among ∼49,000 vaccinated individuals aged 2 months to 20 years. We report the epidemiologic investigation of this potential vaccine safety signal. METHODS Active vaccine safety surveillance was conducted electronically, with participants completing an online questionnaire prompted at 7 days after each dose and 6 months following the last dose. Additional NS cases were sought from provincial hospitalization and emergency room databases. RESULTS In the year following the first dose of 4CMenB vaccination, four confirmed NS cases (three hospitalized) were identified among vaccinated children 2-5-years-old with onset several months post-vaccination. None had renal biopsy but given their age, and positive response to steroids, idiopathic NS was presumptively diagnosed. Among vaccinated children 1-9-years-old, the NS incidence in the year post-vaccination was 17.7 per 100,000 (1 per 5650 vaccinees) with an NS hospitalization rate (i.e. excluding the outpatient case) that was 3.6-fold higher (95%CI = 0.7-11.8; p = 0.12) than the rest of the province for the same period, and 8.3-fold greater (95%CI = 1.1-62.0; p = 0.039) than during the eight years preceding the immunization campaign in the affected region. CONCLUSION Active safety surveillance identified an unexpected increase in NS incidence following 4CMenB vaccination. Further epidemiological investigation identified four vaccinated cases in total over a 12 month period of follow up. The greater risk in vaccinees had wide confidence intervals with he lower limit including or just above the nul value, an observation with no or marginal statistical significance. The temporal association with vaccination may be explained by other causes and/or chance clustering of a rare event unrelated to vaccination. To confirm or refute a potential link to vaccination, surveillance in other jurisdictions administering 4CMenB to children 1-9-years-old is needed.
Collapse
Affiliation(s)
- Gaston De Serres
- Institut national de santé publique du Québec, Quebec City, QC, Canada; CHU de Québec-Université Lav, Quebec City, QC, Canada.
| | | | | | | | | | - Hélène Gagné
- Direction de santé publique du CIUSSS du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - Sylvie Belley
- Direction de santé publique du CIUSSS du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - Eveline Toth
- Ministère de la Santé et des Services sociaux du Québec, Montreal, QC, Canada
| | - Monique Landry
- Ministère de la Santé et des Services sociaux du Québec, Montreal, QC, Canada
| | | |
Collapse
|
17
|
Martinón-Torres F, Nolan T, Toneatto D, Banzhoff A. Persistence of the immune response after 4CMenB vaccination, and the response to an additional booster dose in infants, children, adolescents, and young adults. Hum Vaccin Immunother 2019; 15:2940-2951. [PMID: 31246520 PMCID: PMC6930112 DOI: 10.1080/21645515.2019.1627159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The multicomponent meningococcal serogroup B vaccine, 4CMenB, has demonstrated effectiveness in preventing invasive MenB disease in infants and in controlling MenB outbreaks. The need for/timing of additional booster doses is not yet established. We reviewed eight studies that evaluated antibody persistence and booster following primary 4CMenB vaccination of infants, children, adolescents, and young adults. Putative seroprotective hSBA titers for ≥1 vaccine antigen were maintained by 76-100% of children 24-36 months after priming during infancy and in 84-100% after priming in the second year of life. hSBA levels were higher in vaccinees at 4 and 7.5 years following priming during adolescence than in vaccine-naïve individuals of a similar age. Antibodies persisted at higher levels to NHBA and NadA than to PorA or fHbp. Booster vaccination induced robust anamnestic responses, demonstrating effective priming by 4CMenB across age-groups. These data can inform decision-making to optimize vaccination strategies.
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases Section, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Terry Nolan
- School of Population and Global Health, The University of Melbourne, and Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
18
|
McDaniel A, Dempsey A, Srivastava A. A physician's guide to the 2-dose schedule of MenB-FHbp vaccine. Hum Vaccin Immunother 2019; 15:2729-2737. [PMID: 30932730 PMCID: PMC6930067 DOI: 10.1080/21645515.2019.1596711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 11/24/2022] Open
Abstract
Meningococcal serogroup B (MenB) is the predominant cause of invasive meningococcal disease in the United States, with older adolescents and young adults attending college at increased risk. Notably, MenB caused all meningococcal disease outbreaks at US colleges between 2011 and 2018. MenB disease is vaccine-preventable. The MenB-FHbp vaccine can be administered on a 2-dose (0 and 6 months) schedule to healthy adolescents and young adults or as a tailored 3-dose (0, 1-2, and 6 months) schedule for individuals at increased risk. This review focuses on the 2-dose schedule (0 and 6 months) of MenB-FHbp. Clinical evidence demonstrating strong and broadly protective immunogenicity in adolescents after primary vaccination, immune persistence up to 48 months post-primary vaccination (18-61% of subjects across schedules), and immune memory evidenced by robust response to a single booster dose are described. Implementation approaches to ensure adolescents and young adults are fully vaccinated against meningococcal disease are discussed.
Collapse
Affiliation(s)
- Angee McDaniel
- Medical Development, Scientific & Clinical Affairs, Pfizer Vaccines, Pfizer Inc, Collegeville, PA, USA
| | - Amanda Dempsey
- University of Colorado Denver, Anschutz Medical Campus, Denver, CO, USA
| | - Amit Srivastava
- Medical Development, Scientific & Clinical Affairs, Pfizer Vaccines, Pfizer Inc, Cambridge, MA, USA
| |
Collapse
|
19
|
Watson PS, Novy P, Bekkat-Berkani R, Strubbe F, Banzhoff A. Optimizing the timing of 4CMenB vaccination in adolescents and young adults based on immune persistence and booster response data. Expert Rev Vaccines 2019; 18:343-352. [PMID: 30741040 DOI: 10.1080/14760584.2019.1580579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Meningococcal disease has an incidence peak spread over several years during adolescence and young adulthood in the United States. Meningococcal serogroup B (MenB) vaccines have been introduced relatively recently and may help protect individuals in these age groups. Currently there is insufficient long-term experience to determine the duration of disease protection after any MenB vaccine. Understanding antibody persistence after primary vaccination and responses to booster can help inform MenB vaccination strategies and optimize disease prevention. Areas covered: Four studies in adolescents/young adults vaccinated with meningococcal B vaccine 4CMenB were reviewed with the aim to compare findings across studies and draw key learnings. The studies varied by geographic location, population characteristics, and timing of antibody measurement relative to primary vaccination. Expert opinion: Antibody persistence data for 4CMenB are substantial, extending 7.5 years post-primary vaccination. Vaccination at age 16-18 years may help protect adolescents throughout their highest age-based risk period. Similar robust responses to a single booster dose were observed 4 and 7.5 years after primary vaccination. In outbreak settings it is beneficial to have received prior vaccination; residual circulating antibodies may provide protection, and a single dose induces booster responses within 7 days, which is quicker than administration of a 2-dose series to vaccine-naïve individuals.
Collapse
|
20
|
Antibody persistence and booster response in adolescents and young adults 4 and 7.5 years after immunization with 4CMenB vaccine. Vaccine 2019; 37:1209-1218. [PMID: 30691980 DOI: 10.1016/j.vaccine.2018.12.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Data on duration of protection against invasive meningococcal disease post-vaccination with the recombinant, 4-component, meningococcal serogroup B vaccine (4CMenB) are limited. We evaluated bactericidal activity persistence in adolescents/young adults up to 7.5 years post-primary vaccination with 4CMenB, and response to a booster dose compared with vaccine-naïve controls. METHODS This open-label, multicenter study (NCT02446743) enrolled 15-24 year-old-previously vaccinated participants from Canada, Australia (group Primed_4y) 4 years post-priming with 4CMenB (2 doses; 0,1-month schedule), and Chile (Primed_7.5y) 7.5 years after priming with 4CMenB (2 doses; 0,1/0,2/0,6-month schedule) and vaccine-naïve participants of similar age (Naïve_4y and Naïve_7.5y groups). Primed participants received a booster dose; vaccine-naïve participants received 2 catch-up doses of 4CMenB, 1 month apart. We evaluated antibody persistence and immune responses using hSBA in terms of geometric mean titers and percentages of participants with hSBA titers ≥4, the kinetics of bactericidal activity post-booster (previously vaccinated) or post-2 doses (vaccine-naïve), and safety. RESULTS Antibody levels declined at 4 (Primed_4y) and 7.5 (Primed_7.5y) years post-primary vaccination, but remained higher than in vaccine-naïve participants at baseline (≤44% vs ≤ 13% [fHbp]; ≤84% vs ≤ 24% [NadA]; ≤29% vs ≤ 14% [PorA]) for all vaccine antigens except NHBA (≤81% vs ≤ 79%). One month post-booster and post-second dose, 93-100% of primed and 79-100% of vaccine-naïve participants had hSBA titers ≥4 for all antigens. Kinetics of the antibody response were similar across groups with an early robust response observed 7 days post-booster/second dose. No vaccine-related serious adverse event was reported. CONCLUSION For all antigens except NHBA, a higher proportion of primed participants had hSBA titers ≥4, at 4 and 7.5 years post-vaccination, compared with vaccine-naïve participants. A more robust immune response after booster compared to a first dose in vaccine-naïve individuals, showed effective priming in an adolescent/young adult population. No safety or new reactogenicity issues were identified.
Collapse
|
21
|
Beitelshees M, Hill A, Rostami P, Jones CH, Pfeifer BA. A Transition to Targeted or ‘Smart’ Vaccines: How Understanding Commensal Colonization Can Lead to Selective Vaccination. Pharmaceut Med 2018. [DOI: 10.1007/s40290-018-0225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Flacco ME, Manzoli L, Rosso A, Marzuillo C, Bergamini M, Stefanati A, Cultrera R, Villari P, Ricciardi W, Ioannidis JPA, Contopoulos-Ioannidis DG. Immunogenicity and safety of the multicomponent meningococcal B vaccine (4CMenB) in children and adolescents: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2018; 18:461-472. [PMID: 29371070 DOI: 10.1016/s1473-3099(18)30048-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The multicomponent meningococcal serogroup B vaccine (4CMenB) has been licensed in more than 35 countries. However, uncertainties remain about the lowest number of doses required to induce satisfactory, persistent immune responses. We did a systematic review and meta-analysis to provide quantitative estimates for the immunogenicity, persistence of immunogenicity, and safety of 4CMenB vaccine in children and adolescents. METHODS For this systematic review and meta-analyses (proportion, head to head, and network), we searched MEDLINE, Scopus, Embase, and ClinicalTrials.gov from database inception to June 30, 2017, for randomised trials that compared the immunogenicity or safety of the 4CMenB vaccine with its originator meningococcal B recombinant vaccine or routine vaccines in children or adolescents. For proportion meta-analyses, we also included single arm trials and follow-up studies of randomised controlled trials. Trials that assessed immunogenicity against at least one of four Neisseria meningitidis serogroup B reference strains (44-76/SL, 5/99, NZ98/254, and M10713) and included participants younger than 18 years who had received two or more doses of the 4CMenB vaccine were eligible for inclusion. We requested individual patient-level data from study authors and extracted data from published reports and online trial registries. We did meta-analyses to assess 4CMenB safety and immunogenicity against the four reference strains 30 days after a primary immunisation course (three doses for children, two doses for adolescents), 30 days after the primary course plus one booster dose (children only), 6 months or more after primary course, and 6 months or more after the booster dose. FINDINGS 736 non-duplicate records were screened, and ten randomised trials and eight follow-on extension trials on 4CMenB met the inclusion criteria. In intention-to-treat analyses, the overall proportion of children and adolescents who achieved seroconversion 30 days after the primary course of 4CMenB was 92% (95% CI 89-95 [I2=95%, p<0·0001]) for the 44/76-SL strain, 91% (87-95 [I2=95%, p<0·0001]) for the 5/99 strain, 84% (77-90 [I2=97%, p<0·0001]) for the NZ98-254 strain, and 87% (68-99 [I2=97%, p<0·0001]) for the M10713 strain. 6 months after the primary course, the immunogenicity remained adequate to high against all three tested strains (5/99, 44/76-SL, and NZ98/254) in adolescents (≥77%), and against two of four strains (5/99 and 44/76-SL) in children (≥67%): the proportion of patients who achieved seroconversion substantially declined for M10713 (<50%) and NZ98/254 (<35%). A booster dose re-enhanced the proportion of patients who achieved seroconversion (≥93% for all strains). However, immunogenicity remained high 6 months after the booster dose for strains 5/99 (95%) and M10713 (75%) only, whereas the proportion of patients who achieved seroconversion against strains 44/76-SL and NZ98/254 returned to similar proportions recorded 6 months after the primary course (62% for 44/76-SL, 35% for NZ98/254). The incidence of potentially vaccine-related, acute serious adverse events in individuals receiving 4CMenB was low (5·4 per 1000 individuals), but was significantly higher than routine vaccines (1·2 per 1000 individuals). INTERPRETATION 4CMenB has an acceptable short-term safety profile. The primary course is sufficient to achieve a satisfactory immune response within 30 days of vaccination. A booster dose is required for children to prolong the protection against strain M10713, and the long-term immunogenicity against strain NZ98/254 remains suboptimal. FUNDING None.
Collapse
Affiliation(s)
- Maria Elena Flacco
- Department of Preventive Services, Local Health Authority of South Tyrol, Bolzano, Italy; Regional Healthcare Agency of Abruzzo, Pescara, Italy
| | - Lamberto Manzoli
- Regional Healthcare Agency of Abruzzo, Pescara, Italy; Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| | - Annalisa Rosso
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mauro Bergamini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Armando Stefanati
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Rosario Cultrera
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Walter Ricciardi
- Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy; Italian National Institute of Health, Rome, Italy
| | - John P A Ioannidis
- Stanford Prevention Research Center, Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA; Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA; Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, CA, USA
| | - Despina G Contopoulos-Ioannidis
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA; Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Immunogenicity of Nontypeable Haemophilus influenzae Outer Membrane Vesicles and Protective Ability in the Chinchilla Model of Otitis Media. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00138-17. [PMID: 28768669 DOI: 10.1128/cvi.00138-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are enriched in several outer membrane components, including major and minor outer membrane proteins and lipooligosaccharide. We assessed the functional activity of nontypeable Haemophilus influenzae (NTHi) OMV-specific antisera and the protective ability of NTHi OMVs as vaccine antigens in the chinchilla otitis media model. OMVs were purified from three HMW1/HMW2-expressing NTHi strains, two of which were also engineered to overexpress Hia proteins. OMV-specific antisera raised in guinea pigs were assessed for their ability to mediate killing of representative NTHi in an opsonophagocytic assay. The three OMV-specific antisera mediated killing of 18 of 65, 24 of 65, and 30 of 65 unrelated HMW1/HMW2-expressing NTHi strains. Overall, they mediated killing of 39 of 65 HMW1/HMW2-expressing strains. The two Hia-expressing OMV-specific antisera mediated killing of 17 of 25 and 14 of 25 unrelated Hia-expressing NTHi strains. Overall, they mediated killing of 20 of 25 Hia-expressing strains. OMVs from prototype NTHi strain 12 were used to immunize chinchillas and the course of middle ear infection was monitored following intrabullar challenge with the homologous strain. All control animals developed culture-positive otitis media, as did two of three HMW1/HMW2-immunized animals. All OMV-immunized animals, with or without supplemental HMW1/HMW2 immunization, were completely protected against otitis media. NTHi OMVs are the first immunogens examined in this model that provided complete protection with sterile immunity after NTHi strain 12 challenge. These data suggest that NTHi OMVs hold significant potential as components of protective NTHi vaccines, possibly in combination with HMW1/HMW2 proteins.
Collapse
|
24
|
Duffy J, Johnsen P, Ferris M, Miller M, Leighton K, McGilvray M, McNamara L, Breakwell L, Yu Y, Bhavsar T, Briere E, Patel M. Safety of a meningococcal group B vaccine used in response to two university outbreaks. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2017; 65:380-388. [PMID: 28362241 PMCID: PMC6574050 DOI: 10.1080/07448481.2017.1312418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
OBJECTIVE To assess the safety of meningococcal group B (MenB)-4C vaccine. PARTICIPANTS Undergraduates, dormitory residents, and persons with high-risk medical conditions received the MenB-4C vaccine two-dose series during mass vaccination clinics from 12/2013 through 11/2014. METHODS Adverse events (AEs) were identified by 15 minutes of observation postvaccination, spontaneous reports, surveys, and hospital surveillance. Causality was assessed for serious adverse events (SAEs). RESULTS 16,974 persons received 31,313 MenB-4C doses. The incidence of syncope during the 15-minutes post-dose 1 was 0.88/1000 persons. 2% of participants spontaneously reported an AE (most common were arm pain and fever). 3 SAEs were suspected of being caused by the vaccine, including one case of anaphylaxis. CONCLUSIONS Most AEs reported were nonserious and consistent with previous clinical trial findings. Measures to prevent injury from syncope and to treat anaphylaxis should be available wherever vaccines are administered. Our safety evaluation supports the use of MenB-4C in response to outbreaks.
Collapse
Affiliation(s)
- Jonathan Duffy
- Immunization Safety Office, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Peter Johnsen
- University Health Services, Princeton University, Princeton, New Jersey, USA
| | - Mary Ferris
- Student Health Service, University of California Santa Barbara, Santa Barbara, California, USA
| | - Mary Miller
- Student Health Service, University of California Santa Barbara, Santa Barbara, California, USA
| | - Kevin Leighton
- University Health Services, Princeton University, Princeton, New Jersey, USA
| | - Mark McGilvray
- Student Health Service, University of California Santa Barbara, Santa Barbara, California, USA
| | - Lucy McNamara
- Meningitis and Vaccine-Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucy Breakwell
- Meningitis and Vaccine-Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yon Yu
- Regulatory Affairs, Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tina Bhavsar
- Regulatory Affairs, Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth Briere
- Meningitis and Vaccine-Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Manisha Patel
- Meningitis and Vaccine-Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Contribution of factor H-Binding protein sequence to the cross-reactivity of meningococcal native outer membrane vesicle vaccines with over-expressed fHbp variant group 1. PLoS One 2017; 12:e0181508. [PMID: 28742866 PMCID: PMC5526518 DOI: 10.1371/journal.pone.0181508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
Factor H-binding protein (fHbp) is an important meningococcal vaccine antigen. Native outer membrane vesicles with over-expressed fHbp (NOMV OE fHbp) have been shown to induce antibodies with broader functional activity than recombinant fHbp (rfHbp). Improved understanding of this broad coverage would facilitate rational vaccine design. We performed a pair-wise analysis of 48 surface-exposed amino acids involved in interacting with factor H, among 383 fHbp variant group 1 sequences. We generated isogenic NOMV-producing meningococcal strains from an African serogroup W isolate, each over-expressing one of four fHbp variant group 1 sequences (ID 1, 5, 9, or 74), including those most common among invasive African meningococcal isolates. Mice were immunised with each NOMV, and sera tested for IgG levels against each of the rfHbp ID and for ability to kill a panel of heterologous meningococcal isolates. At the fH-binding site, ID pairs differed by a maximum of 13 (27%) amino acids. ID 9 shared an amino acid sequence common to 83 ID types. The selected ID types differed by up to 6 amino acids, in the fH-binding site. All NOMV and rfHbp induced high IgG levels against each rfHbp. Serum killing from mice immunised with rfHbp was generally less efficient and more restricted compared to NOMV, which induced antibodies that killed most meningococci tested, with decreased stringency for ID type differences. Breadth of killing was mostly due to anti-fHbp antibodies, with some restriction according to ID type sequence differences. Nevertheless, under our experimental conditions, no relationship between antibody cross-reactivity and variation fH-binding site sequence was identified. NOMV over-expressing different fHbp IDs belonging to variant group 1 induce antibodies with fine specificities against fHbp, and ability to kill broadly meningococci expressing heterologous fHbp IDs. The work reinforces that meningococcal NOMV with OE fHbp is a promising vaccine strategy, and provides a basis for rational selection of antigen sequence types for over-expression on NOMV.
Collapse
|
26
|
Toneatto D, Pizza M, Masignani V, Rappuoli R. Emerging experience with meningococcal serogroup B protein vaccines. Expert Rev Vaccines 2017; 16:433-451. [PMID: 28375029 DOI: 10.1080/14760584.2017.1308828] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The successful development of two broadly protective vaccines targeting Neisseria meningitidis serogroup B (MenB); 4CMenB and rLP2086, is the most significant recent advance in meningococcal disease prevention. Areas covered: Here we review the principles underlying the development of each vaccine and the novel methods used to estimate vaccine coverage. We update clinical and post-licensure experience with 4CMenB and rLP2086. Expert commentary: The immunogenicity and acceptable safety profile of 4CMenB and rLP2086 has been demonstrated in clinical trials. Continuing uncertainties exist around the appropriate age groups to be immunized, the degree and duration of efficacy, and the impact on nasopharyngeal carriage which has implications for strategies to interrupt transmission and maximize herd protection effects. Universal vaccination programs such as those undertaken in Quebec and the United Kingdom are providing important information on these issues. The potential for MenB vaccines to prevent infection by other serogroups appears promising, and the impact of MenB vaccines on other pathogenic neisserial species with similar surface proteins warrants further investigation.
Collapse
|
27
|
Banzhoff A. Multicomponent meningococcal B vaccination (4CMenB) of adolescents and college students in the United States. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:3-14. [PMID: 28344804 PMCID: PMC5349334 DOI: 10.1177/2051013616681365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meningococcal disease is rare, easily misdiagnosed, and potentially deadly. Diagnosis in the early stages is difficult and the disease often progresses extremely rapidly. In North America, the incidence of invasive meningococcal disease (IMD) is highest in infants and young children, with a secondary peak in adolescents, a population predominantly responsible for the carriage of disease. Neisseria meningitidis serogroup B (MenB) accounts for a large proportion of meningococcal disease in North America, with documented outbreaks in three universities in the United States (US) during 2008-2013. Vaccination is the most effective way to protect against this aggressive disease that has a narrow timeframe for diagnosis and treatment. 4CMenB is a multi-component vaccine against MenB which contains four antigenic components. We describe in detail the immunogenicity and safety profile of 4CMenB based on results from four clinical trials; the use of 4CMenB to control MenB outbreaks involving vaccination at two US colleges during outbreaks in 2013-2014; and the use of 4CMenB in a Canadian mass vaccination campaign to control the spread of MenB disease. We discuss the reasons why adolescents should be vaccinated against MenB, by examining both the peak in disease incidence and carriage. We consider whether herd protection may be attained for MenB, by discussing published models and comparing with meningitis C (MenC) vaccines. In conclusion, MenB vaccines are now available in the US for people aged 10-25 years, representing an important opportunity to reduce the incidence of IMD in the country across the whole population, and more locally to combat MenB outbreaks.
Collapse
|
28
|
Serum Bactericidal Antibody Responses of Adults Immunized with the MenB-4C Vaccine against Genetically Diverse Serogroup B Meningococci. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00430-16. [PMID: 27847367 DOI: 10.1128/cvi.00430-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
MenB-4C is a meningococcal vaccine for the prevention of serogroup B disease. The vaccine contains factor H binding protein (FHbp) and three other antigens that can elicit serum bactericidal antibodies (SBA). For vaccine licensure, efficacy was inferred from the SBA responses against three antigen-specific indicator strains. The relation between those results and broad protection against circulating genetically diverse strains is not known. Twenty adults were immunized with two doses of MenB-4C given 1 to 2 months apart. SBA activity against 3 reference strains and 15 serogroup B test strains (6 from college outbreaks) was measured. Compared to the preimmunization titers, 70%, 95%, and 95% of subjects had ≥4-fold increases in the titers of anti-PorA P1.4, anti-NadA, and anti-FHbp antibodies against the reference strains, respectively. In contrast, only 25 to 45% of the subjects had ≥4-fold increases in responses to 10 of the 15 test strains, including 8 that expressed one to three of the antigens in the vaccine. At 1 month, the majority of subjects with <4-fold titer increases had serum titers of ≥1:4, which are considered sufficient for protection. However, the titers against four strains declined to <1:4 by 4 to 6 months in one-third to greater than 50% of the subjects tested. Clinically relevant isolates are often more resistant to SBA than the indicator strains used to measure antigen-specific SBA. A working model is that the percentage of subjects with titers of ≥1:4 at 1 month postimmunization correlates with short-term protection against that strain, whereas the percentage of subjects with ≥4-fold titer increases represents a more robust response. (The protocol used at the Oxford Vaccine Group has been registered at ClinicalTrials.gov under registration no. NCT02398396.).
Collapse
|
29
|
Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response. Infect Immun 2016; 84:3024-33. [PMID: 27481244 DOI: 10.1128/iai.00635-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen-associated molecular patterns, including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an extremely potent hexa-acylated LPS, leading to adverse effects when its OMVs are applied as vaccines. To create safe OMV vaccines, detergent treatment is generally used to reduce the LPS content. While effective, this method also leads to loss of protective antigens such as lipoproteins. Alternatively, genetic modification of LPS can reduce its toxicity. In the present study, we have compared the effects of standard OMV isolation methods using detergent or EDTA with those of genetic modifications of LPS to yield a penta-acylated lipid A (lpxL1 and pagL) on the in vitro induction of innate immune responses. The use of detergent decreased both Toll-like receptor 4 (TLR4) and TLR2 activation by OMVs, while the LPS modifications reduced only TLR4 activation. Mutational removal of PorB or lipoprotein factor H binding protein (fHbp), two proteins known to trigger TLR2 signaling, had no effect, indicating that multiple TLR2 ligands are removed by detergent treatment. Detergent-treated OMVs and lpxL1 OMVs showed similar reductions of cytokine profiles in the human monocytic cell line MM6 and human dendritic cells (DCs). OMVs with the alternative penta-acylated LPS structure obtained after PagL-mediated deacylation showed reduced induction of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β but not of IP-10, a typical TRIF-dependent chemokine. Taken together, these data show that lipid A modification can be used to obtain OMVs with reduced activation of innate immunity, similar to what is found after detergent treatment.
Collapse
|
30
|
Affiliation(s)
- Jerome H Kim
- From the International Vaccine Institute, Seoul, South Korea
| |
Collapse
|
31
|
Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence. PLoS Pathog 2016; 12:e1005678. [PMID: 27304426 PMCID: PMC4909234 DOI: 10.1371/journal.ppat.1005678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. We discovered an immune modulatory mechanism of Bacillus anthracis mediated by the spore surface protein BclA. We showed for the first time that BclA mediated the binding of complement factor H, a major negative regulator of complement, to the surface of spores. The binding led to the down-regulation of complement activities in vitro and in an animal model. Using mice deficient in complement components, we further showed that BclA promoted spore persistence in the mouse lungs and impaired antibody responses against spores in a complement-dependent manner. We further provided evidence suggesting a role of BclA in the development of protective immunity against lethal B. anthracis challenges. These findings draw attention to a previously understudied aspect of the complement system. They suggest that in addition to conferring resistance to complement-mediated killing and phagocytosis, complement inhibition by pathogens have long-term consequences with respect to persistent infections and development of protective immunity. Considering a growing list of microbial pathogens capable of modulating complement activities, our findings have broad implications.
Collapse
|
32
|
Parrella A, Braunack-Mayer A, Collins J, Clarke M, Tooher R, Ratcliffe J, Marshall H. Prioritizing government funding of adolescent vaccinations: recommendations from young people on a citizens' jury. Vaccine 2016; 34:3592-7. [PMID: 27195757 DOI: 10.1016/j.vaccine.2016.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Adolescents' views, and preferences are often over-looked when public health policies that affect them are designed and implemented. The purpose of this study was to describe young people's views and preferences for determining government funding priorities for adolescent immunization programs. METHODS In 2015 we conducted a youth jury in metropolitan Adelaide, South Australia to deliberate on the question "What criteria should we use to decide which vaccines for young people in Australia should receive public funding?" Fifteen youth aged 15-19 years participated in the jury. Jury members were recruited from the general community through a market research company using a stratified sampling technique. RESULTS The jury's key priorities for determining publically funded vaccines were: Disease severity - whether the vaccine preventable disease (VPD) was life threatening and impacted on quality of life. Transmissibility - VPDs with high/fast transmission and high prevalence. Demonstration of cost-effectiveness, taking into account purchase price, program administration, economic and societal gain. The jury's recommendations for vaccine funding policy were strongly underpinned by the belief that it was critical to ensure that funding was targeted to not only population groups who would be medically at risk from vaccine preventable diseases, but also to socially and economically disadvantaged population groups. A novel recommendation proposed by the jury was that there should be a process for establishing criteria to remove vaccines from publically funded programs as a complement to the process for adding new vaccines. CONCLUSIONS Young people have valuable contributions to make in priority setting for health programs and their views should be incorporated into the framing of health policies that directly affect them.
Collapse
Affiliation(s)
- Adriana Parrella
- Discipline of Paediatrics, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Annette Braunack-Mayer
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Joanne Collins
- Discipline of Paediatrics, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Michelle Clarke
- Discipline of Paediatrics, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Rebecca Tooher
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Julie Ratcliffe
- Flinders Health Economics Group, Flinders University, A Block, Repatriation General Hospital, 202-16 Daws Road, Daw Park, Adelaide, South Australia 5041, Australia.
| | - Helen Marshall
- Discipline of Paediatrics, School of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
33
|
Immunogenicity and safety of a multicomponent meningococcal serogroup B vaccine in healthy adolescents in Korea—A randomised trial. Vaccine 2016; 34:1180-6. [DOI: 10.1016/j.vaccine.2016.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
|
34
|
MacNeil JR, Rubin L, Folaranmi T, Ortega-Sanchez IR, Patel M, Martin SW. Use of Serogroup B Meningococcal Vaccines in Adolescents and Young Adults: Recommendations of the Advisory Committee on Immunization Practices, 2015. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2015; 64:1171-6. [PMID: 26492381 DOI: 10.15585/mmwr.mm6441a3] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
At its June 2015 meeting, the Advisory Committee on Immunization Practices (ACIP) recommended that adolescents and young adults aged 16–23 years may be vaccinated with a serogroup B meningococcal (MenB) vaccine to provide short-term protection against most strains of serogroup B meningococcal disease. This report summarizes the deliberations of ACIP, the rationale for its decision, and recommendations for use of MenB vaccines in adolescents and young adults. Two MenB vaccines have recently been licensed by the Food and Drug Administration (FDA) for use in the United States and approved for use in persons aged 10–25 years: MenB-FHbp (Trumenba, Wyeth Pharmaceuticals, Inc.) and MenB-4C (Bexsero, Novartis Vaccines). Both MenB vaccines were licensed based on statutory regulations for accelerated approval, which enabled FDA to approve the MenB vaccines for serious or life-threatening diseases based on safety and demonstration that vaccine effectiveness, as measured by bactericidal antibody responses with assays using several MenB test strains that were representative of prevalent strains in the United States, is reasonably likely to predict clinical benefit. As a requirement for accelerated approval, confirmatory studies in the postmarketing period will be conducted to verify and further describe the effectiveness of the vaccines against an extended number of MenB strains that represent a broader diversity of endemic disease. Additional postlicensure safety data are also needed and will be reviewed by ACIP as they become available.
Collapse
|