1
|
Caniels TG, Medina-Ramìrez M, Zhang S, Kratochvil S, Xian Y, Koo JH, Derking R, Samsel J, van Schooten J, Pecetta S, Lamperti E, Yuan M, Carrasco MR, Del Moral Sánchez I, Allen JD, Bouhuijs JH, Yasmeen A, Ketas TJ, Snitselaar JL, Bijl TPL, Martin IC, Torres JL, Cupo A, Shirreff L, Rogers K, Mason RD, Roederer M, Greene KM, Gao H, Silva CM, Baken IJL, Tian M, Alt FW, Pulendran B, Seaman MS, Crispin M, van Gils MJ, Montefiori DC, McDermott AB, Villinger FJ, Koup RA, Moore JP, Klasse PJ, Ozorowski G, Batista FD, Wilson IA, Ward AB, Sanders RW. Germline-targeting HIV vaccination induces neutralizing antibodies to the CD4 binding site. Sci Immunol 2024; 9:eadk9550. [PMID: 39213338 DOI: 10.1126/sciimmunol.adk9550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/09/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Eliciting potent and broadly neutralizing antibodies (bnAbs) is a major goal in HIV-1 vaccine development. Here, we describe how germline-targeting immunogen BG505 SOSIP germline trimer 1.1 (GT1.1), generated through structure-based design, engages a diverse range of VRC01-class bnAb precursors. A single immunization with GT1.1 expands CD4 binding site (CD4bs)-specific VRC01-class B cells in knock-in mice and drives VRC01-class maturation. In nonhuman primates (NHPs), GT1.1 primes CD4bs-specific neutralizing serum responses. Selected monoclonal antibodies (mAbs) isolated from GT1.1-immunized NHPs neutralize fully glycosylated BG505 virus. Two mAbs, 12C11 and 21N13, neutralize subsets of diverse heterologous neutralization-resistant viruses. High-resolution structures revealed that 21N13 targets the same conserved residues in the CD4bs as VRC01-class and CH235-class bnAbs despite its low sequence similarity (~40%), whereas mAb 12C11 binds predominantly through its heavy chain complementarity-determining region 3. These preclinical data underpin the ongoing evaluation of GT1.1 in a phase 1 clinical trial in healthy volunteers.
Collapse
Affiliation(s)
- Tom G Caniels
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Max Medina-Ramìrez
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Shiyu Zhang
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Sven Kratochvil
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Ja-Hyun Koo
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Ronald Derking
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Jakob Samsel
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Jelle van Schooten
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Simone Pecetta
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Edward Lamperti
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - María Ríos Carrasco
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Iván Del Moral Sánchez
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Joey H Bouhuijs
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Jonne L Snitselaar
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Tom P L Bijl
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Isabel Cuella Martin
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | | | - Mario Roederer
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, USA
| | | | - Hongmei Gao
- Duke University Medical Center, Durham, NC, USA
| | - Catarina Mendes Silva
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Isabel J L Baken
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Ming Tian
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Marit J van Gils
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | | | - François J Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Richard A Koup
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Facundo D Batista
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
- Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Rogier W Sanders
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
2
|
Tiono AB, Plieskatt JL, Ouedraogo A, Soulama BI, Miura K, Bougouma EC, Naghizadeh M, Barry A, Yaro JBB, Ezinmegnon S, Henry N, Ofori EA, Adu B, Singh SK, Konkobo A, Lövgren Bengtsson K, Diarra A, Carnrot C, Reimer JM, Ouedraogo A, Tienta M, Long CA, Ouedraogo IN, Sagara I, Sirima SB, Theisen M. A randomized first-in-human phase I trial of differentially adjuvanted Pfs48/45 malaria vaccines in Burkinabé adults. J Clin Invest 2024; 134:e175707. [PMID: 38290009 PMCID: PMC10977980 DOI: 10.1172/jci175707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUNDMalaria transmission-blocking vaccines aim to interrupt the transmission of malaria from one person to another.METHODSThe candidates R0.6C and ProC6C share the 6C domain of the Plasmodium falciparum sexual-stage antigen Pfs48/45. R0.6C utilizes the glutamate-rich protein (GLURP) as a carrier, and ProC6C includes a second domain (Pfs230-Pro) and a short 36-amino acid circumsporozoite protein (CSP) sequence. Healthy adults (n = 125) from a malaria-endemic area of Burkina Faso were immunized with 3 intramuscular injections, 4 weeks apart, of 30 μg or 100 μg R0.6C or ProC6C each adsorbed to Alhydrogel (AlOH) adjuvant alone or in combination with Matrix-M (15 μg or 50 μg, respectively). The allocation was random and double-blind for this phase I trial.RESULTSThe vaccines were safe and well tolerated with no vaccine-related serious adverse events. A total of 7 adverse events, mild to moderate in intensity and considered possibly related to the study vaccines, were recorded. Vaccine-specific antibodies were highest in volunteers immunized with 100 μg ProC6C-AlOH with Matrix-M, and 13 of 20 (65%) individuals in the group showed greater than 80% transmission-reducing activity (TRA) when evaluated in the standard membrane feeding assay at 15 mg/mL IgG. In contrast, R0.6C induced sporadic TRA.CONCLUSIONAll formulations were safe and well tolerated in a malaria-endemic area of Africa in healthy adults. The ProC6C-AlOH/Matrix-M vaccine elicited the highest levels of functional antibodies, meriting further investigation.TRIAL REGISTRATIONPan-African Clinical Trials Registry (https://pactr.samrc.ac.za) PACTR202201848463189.FUNDINGThe study was funded by the European and Developing Countries Clinical Trials Partnership (grant RIA2018SV-2311).
Collapse
Affiliation(s)
- Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Jordan L. Plieskatt
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
| | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Edith C. Bougouma
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Aissata Barry
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Sem Ezinmegnon
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Noelie Henry
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Susheel K. Singh
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Augustin Konkobo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | | | - Amidou Ouedraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Moussa Tienta
- Malaria Research and Training Center, Mali–National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Issa N. Ouedraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Issaka Sagara
- Malaria Research and Training Center, Mali–National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Plieskatt J, Bang P, Wood GK, Naghizadeh M, Singh SK, Jore MM, Theisen M. Clinical formulation development of Plasmodium falciparum malaria vaccine candidates based on Pfs48/45, Pfs230, and PfCSP. Vaccine 2024; 42:1980-1992. [PMID: 38388238 DOI: 10.1016/j.vaccine.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Two malaria transmission-blocking vaccine (TBV) candidates, R0.6C and ProC6C, have completed preclinical development including the selection of adjuvants, Alhydrogel® with or without the saponin based adjuvant Matrix-M™. Here, we report on the final drug product (formulation) design of R0.6C and ProC6C and evaluate their safety and biochemical stability in preparation for preclinical and clinical pharmacy handling. The point-of-injection stability studies demonstrated that both the R0.6C and ProC6C antigens are stable on Alhydrogel in the presence or absence of Matrix-M for up to 24 h at room temperature. As this is the first study to combine Alhydrogel and Matrix-M for clinical use, we also evaluated their potential interactions. Matrix-M adsorbs to Alhydrogel, while not displacing the > 95 % adsorbed protein. The R0.6C and ProC6C formulations were found to be safe and well tolerated in repeated dose toxicity studies in rabbits generating high levels of functional antibodies that blocked infection of mosquitoes. Further, the R0.6C and ProC6C drug products were found to be stable for minimally 24 months when stored at 2-8 °C, with studies ongoing through 36 months. Together, this data demonstrates the safety and suitability of the L. lactis expression system as well as supports the clinical testing of the R0.6C and ProC6C malaria vaccine candidates in First-In-Human clinical trials.
Collapse
Affiliation(s)
- Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Bang
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines (Basel) 2023; 11:vaccines11020446. [PMID: 36851323 PMCID: PMC9966924 DOI: 10.3390/vaccines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
Collapse
|
6
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
7
|
Singh SK, Naghizadeh M, Plieskatt J, Singh S, Theisen M. Cloning and Recombinant Protein Expression in Lactococcus lactis. Methods Mol Biol 2023; 2652:3-20. [PMID: 37093467 DOI: 10.1007/978-1-0716-3147-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Lactococcus lactis, a Gram-positive bacteria, is an ideal expression host for the overproduction of heterologous proteins in a properly folded and functional form. L. lactis has been identified as an efficient cell factory, generally recognized as safe (GRAS), has a long history of safe use in food production, and is known to have probiotic properties. Key desirable features of L. lactis include the following: (1) rapid growth to high cell densities, not requiring aeration which facilitates large-scale fermentation; (2) its Gram-positive nature precludes the presence of contaminating endotoxins; (3) the capacity to secrete stable recombinant protein into the growth medium with few proteases resulting in a properly folded, full-length protein; and (4) the availability of diverse expression vectors facilitating various cloning options. We have previously described production of several recombinant proteins with varying degrees of predicted structural complexities using the L. lactis pH-dependent P170 promoter. The purpose of this chapter is to provide a detailed protocol for facilitating wider application of L. lactis as a reliable platform for expression of heterologous recombinant proteins in soluble form. Here, we present details of the various steps involved such as cloning of the target gene in appropriate expression plasmid vector, determination of the expression levels of the heterologous protein, and initial purification of the expressed soluble recombinant protein of interest.
Collapse
Affiliation(s)
- Susheel K Singh
- Biotherapeutic and Vaccine Research Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Subhash Singh
- Biotherapeutic and Vaccine Research Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Lyons FMT, Gabriela M, Tham WH, Dietrich MH. Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Front Cell Infect Microbiol 2022; 12:945924. [PMID: 35899047 PMCID: PMC9309271 DOI: 10.3389/fcimb.2022.945924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.
Collapse
Affiliation(s)
- Frankie M. T. Lyons
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikha Gabriela
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Baptista BO, de Souza ABL, Riccio EKP, Bianco-Junior C, Totino PRR, Martins da Silva JH, Theisen M, Singh SK, Amoah LE, Ribeiro-Alves M, Souza RM, Lima-Junior JC, Daniel-Ribeiro CT, Pratt-Riccio LR. Naturally acquired antibody response to a Plasmodium falciparum chimeric vaccine candidate GMZ2.6c and its components (MSP-3, GLURP, and Pfs48/45) in individuals living in Brazilian malaria-endemic areas. Malar J 2022; 21:6. [PMID: 34983540 PMCID: PMC8729018 DOI: 10.1186/s12936-021-04020-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04020-6.
Collapse
Affiliation(s)
- Barbara Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Ana Beatriz Lopes de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Cesare Bianco-Junior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | | | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Medeiros Souza
- Laboratório de Doenças Infecciosas na Amazônia Ocidental, Universidade Federal do Acre, Acre, Brazil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil.
| |
Collapse
|
10
|
Singh SK, Singh V. Method for Production of Cysteine-Rich Proteins in Lactococcus lactis Expression System. Methods Mol Biol 2022; 2406:189-203. [PMID: 35089558 DOI: 10.1007/978-1-0716-1859-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Gram-positive bacterium Lactococcus lactis is an ideal expression host for the overproduction of heterologous proteins in a functional form. L. lactis has recently been identified as an efficient Gram-positive cell factory for the production of recombinant proteins and the safety of this production system has been confirmed in multiple clinical trials. Key desirable features of L. lactis include its generally recognized as safe (GRAS) status, long history of safe use in food production, probiotic properties, absence of endotoxins, capacity to secrete stable recombinant protein to the growth medium, the presence of few proteases, and a diverse selection of cloning and inducible expression vectors. Growth of lactococci is rapid, proceeds to high cell densities, and does not require aeration, which facilitates large-scale fermentation. We have previously described the production of several Plasmodium falciparum antigens with varying degrees of predicted structural complexities, those which are considered difficult-to-produce proteins by using L. lactis pH-dependent inducible promoter (P170). The purpose of this chapter is to provide a detailed protocol for the expression of difficult-to-produce proteins, mainly high cysteine-rich proteins, in the soluble form in L. lactis from cloning of the target gene to the determination of expression levels and purification.
Collapse
Affiliation(s)
- Susheel K Singh
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
| | - Vandana Singh
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
11
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
12
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Singh SK, Plieskatt J, Chourasia BK, Fabra-García A, Garcia-Senosiain A, Singh V, Bengtsson KL, Reimer JM, Sauerwein R, Jore MM, Theisen M. A Reproducible and Scalable Process for Manufacturing a Pfs48/45 Based Plasmodium falciparum Transmission-Blocking Vaccine. Front Immunol 2021; 11:606266. [PMID: 33505395 PMCID: PMC7832176 DOI: 10.3389/fimmu.2020.606266] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
The cysteine-rich Pfs48/45 protein, a Plasmodium falciparum sexual stage surface protein, has been advancing as a candidate antigen for a transmission-blocking vaccine (TBV) for malaria. However, Pfs48/45 contains multiple disulfide bonds, that are critical for proper folding and induction of transmission-blocking (TB) antibodies. We have previously shown that R0.6C, a fusion of the 6C domain of Pfs48/45 and a fragment of PfGLURP (R0), expressed in Lactococcus lactis, was properly folded and induced transmission-blocking antibodies. Here we describe the process development and technology transfer of a scalable and reproducible process suitable for R0.6C manufacturing under current Good Manufacturing Practices (cGMP). This process resulted in a final purified yield of 25 mg/L, sufficient for clinical evaluation. A panel of analytical assays for release and stability assessment of R0.6C were developed including HPLC, SDS-PAGE, and immunoblotting with the conformation-dependent TB mAb45.1. Intact mass analysis of R0.6C confirmed the identity of the product including the three disulfide bonds and the absence of post-translational modifications. Multi-Angle Light Scattering (MALS) coupled to size exclusion chromatography (SEC-MALS), further confirmed that R0.6C was monomeric (~70 kDa) in solution. Lastly, preclinical studies demonstrated that the R0.6C Drug Product (adsorbed to Alhydrogel®) elicited functional antibodies in small rodents and that adding Matrix-M™ adjuvant further increased the functional response. Here, building upon our past work, we filled the gap between laboratory and manufacturing to ready R0.6C for production under cGMP and eventual clinical evaluation as a malaria TB vaccine.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jordan Plieskatt
- PATH's Malaria Vaccine Initiative, Washington, DC, United States
| | - Bishwanath K Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Fabra-García
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Asier Garcia-Senosiain
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Vandana Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Cookenham T, Lanzer KG, Gage E, Lorenzo EC, Carter D, Coler RN, Baldwin SL, Haynes L, Reiley WW, Blackman MA. Vaccination of aged mice with adjuvanted recombinant influenza nucleoprotein enhances protective immunity. Vaccine 2020; 38:5256-5267. [PMID: 32540272 DOI: 10.1016/j.vaccine.2020.05.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Elderly individuals are highly susceptible to influenza virus (IAV) infection and respond poorly to influenza vaccines. Although the generally accepted correlate of protection following influenza vaccination is neutralizing antibody titers, cytotoxic T cell activity has been found to be a better correlate in the elderly. This suggests that vaccines designed to protect against influenza in the elderly should induce both humoral and cellular immunity. The co-induction of T cell immunity is additionally advantageous, as virus-specific T cells are frequently cross-reactive against different strains of IAV. Here, we tested the capacity of a synthetic TLR-4 adjuvant, SLA-SE (second-generation lipid adjuvant formulated in a squalene-based oil-in-water emulsion) to elicit T cell immunity to a recombinant influenza nucleoprotein (rNP), in both young and aged mice. IAV challenge of vaccinated mice resulted in a modest increase in the numbers of NP-specific CD4 and CD8 effector T cells in the spleen, but did not increase numbers of memory phenotype CD8 T cells generated following viral clearance (compared to control vaccinated mice). Cytotoxic activity of CD8, but not CD4 T cells was increased. In addition, SLA-SE adjuvanted vaccination specifically enhanced the production of NP-specific IgG2c antibodies in both young and aged mice. Although NP-specific antibodies are not neutralizing, they can cooperate with CD8 T cells and antigen-presenting cells to enhance protective immunity. Importantly, SLA-SE adjuvanted rNP-vaccination of aged mice resulted in significantly enhanced viral clearance. In addition, vaccination of aged mice resulted in enhanced survival after lethal challenge compared to control vaccination, that approached statistical significance. These data demonstrate the potential of SLA-SE adjuvanted rNP vaccines to (i) generate both cellular and humoral immunity to relatively conserved IAV proteins and (ii) elicit protective immunity to IAV in aged mice.
Collapse
Affiliation(s)
| | | | - Emily Gage
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Erica C Lorenzo
- University of Connecticut School of Medicine, Department of Immunology and Center on Aging, Farmington, CT, USA
| | | | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Laura Haynes
- University of Connecticut School of Medicine, Department of Immunology and Center on Aging, Farmington, CT, USA
| | | | | |
Collapse
|
15
|
Miura K, Tachibana M, Takashima E, Morita M, Kanoi BN, Nagaoka H, Baba M, Torii M, Ishino T, Tsuboi T. Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development. Expert Rev Vaccines 2019; 18:1017-1027. [PMID: 31566026 PMCID: PMC11000147 DOI: 10.1080/14760584.2019.1674145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Highly effective malaria vaccines are essential component toward malaria elimination. Although the leading malaria vaccine, RTS,S/AS01, with modest efficacy is being evaluated in a pilot feasibility trial, development of a malaria transmission-blocking vaccine (TBV) could make a major contribution toward malaria elimination. Only a few TBV antigens have reached pre-clinical or clinical development but with several challenges including difficulties in the expression of malaria recombinant proteins and low immunogenicity in humans. Therefore, novel approaches to accelerate TBV research to preclinical development are critical to generate an efficacious TBV.Areas covered: PubMed was searched to review the progress and future prospects of malaria TBV research and development. We also reviewed registered trials at ClinicalTrials.gov as well as post-genome TBV candidate discovery research including our efforts.Expert opinion: Wheat germ cell-free protein synthesis technology can accelerate TBV development by overcoming some current challenges of TBV research.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
16
|
Buckley PR, Alden K, Coccia M, Chalon A, Collignon C, Temmerman ST, Didierlaurent AM, van der Most R, Timmis J, Andersen CA, Coles MC. Application of Modeling Approaches to Explore Vaccine Adjuvant Mode-of-Action. Front Immunol 2019; 10:2150. [PMID: 31572370 PMCID: PMC6751289 DOI: 10.3389/fimmu.2019.02150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Novel adjuvant technologies have a key role in the development of next-generation vaccines, due to their capacity to modulate the duration, strength and quality of the immune response. The AS01 adjuvant is used in the malaria vaccine RTS,S/AS01 and in the licensed herpes-zoster vaccine (Shingrix) where the vaccine has proven its ability to generate protective responses with both robust humoral and T-cell responses. For many years, animal models have provided insights into adjuvant mode-of-action (MoA), generally through investigating individual genes or proteins. Furthermore, modeling and simulation techniques can be utilized to integrate a variety of different data types; ranging from serum biomarkers to large scale “omics” datasets. In this perspective we present a framework to create a holistic integration of pre-clinical datasets and immunological literature in order to develop an evidence-based hypothesis of AS01 adjuvant MoA, creating a unified view of multiple experiments. Furthermore, we highlight how holistic systems-knowledge can serve as a basis for the construction of models and simulations supporting exploration of key questions surrounding adjuvant MoA. Using the Systems-Biology-Graphical-Notation, a tool for graphical representation of biological processes, we have captured high-level cellular behaviors and interactions, and cytokine dynamics during the early immune response, which are substantiated by a series of diagrams detailing cellular dynamics. Through explicitly describing AS01 MoA we have built a consensus of understanding across multiple experiments, and so we present a framework to integrate modeling approaches into exploring adjuvant MoA, in order to guide experimental design, interpret results and inform rational design of vaccines.
Collapse
Affiliation(s)
- Paul R Buckley
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Department of Electronic Engineering, University of York, York, United Kingdom
| | - Kieran Alden
- Department of Electronic Engineering, University of York, York, United Kingdom
| | | | | | | | | | | | | | - Jon Timmis
- Department of Electronic Engineering, University of York, York, United Kingdom.,Faculty of Technology, University of Sunderland, Sunderland, United Kingdom
| | | | - Mark C Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Mamedov T, Cicek K, Miura K, Gulec B, Akinci E, Mammadova G, Hasanova G. A Plant-Produced in vivo deglycosylated full-length Pfs48/45 as a Transmission-Blocking Vaccine Candidate against malaria. Sci Rep 2019; 9:9868. [PMID: 31285498 PMCID: PMC6614448 DOI: 10.1038/s41598-019-46375-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Pfs48/45 is a leading antigen candidate for a transmission blocking (TB) vaccine. However, efforts to produce affordable, safe and correctly folded full-length Pfs48/45 using different protein expression systems have not produced an antigen with satisfactory TB activity. Pfs48/45 has 16 cysteines involved in disulfide bond formation, and the correct formation is critical for proper folding and induction of TB antibodies. Moreover, Pfs48⁄45 is not a glycoprotein in the native hosts, but contains potential glycosylation sites, which are aberrantly glycosylated during expression in eukaryotic systems. Here, we demonstrate for the first time that full length, Endo H in vivo enzymatic deglycosylated Pfs48/45 antigen is produced at a high level in plants and is structurally stable at elevated temperatures. Sera from mice immunized with this antigen showed strong inhibition in SMFA. Thus, Endo H in vivo enzymatic deglycosylated Pfs48/45 is a promising candidate for the development of an affordable TB vaccine, which may have the potential to save millions.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey.
- Azerbaijan National Academy of Science, Department of Biology and Medical Science, 24 Istiglaliyyat Street, Baku, Azerbaijan.
| | - Kader Cicek
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, USA
| | - Burcu Gulec
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Ersin Akinci
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Gunay Mammadova
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Gulnara Hasanova
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| |
Collapse
|
18
|
Nascimento LFMD, Moura LDD, Lima RT, Cruz MDSPE. Novos adjuvantes vacinais: importante ferramenta para imunoterapia da leishmaniose visceral. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atualmente, muitas das vacinas em desenvolvimento são aquelas compostas de proteínas antigênicas individuais de parasitas ou uma combinação de vários antígenos individuais que são produzidos como produtos recombinantes obtidos por técnicas de biologia molecular. Dentre elas a Leish-111f e sua variação Leish-110f tem ganhado destaque na proteção contra a LV e LC e alcançaram estudos de fase II em seres humanos. A eficácia de uma vacina é otimizada pela adição de adjuvantes imunológicos. No entanto, embora os adjuvantes tenham sido usados por mais de um século, até o momento, apenas alguns adjuvantes são aprovados para o uso em humanos, a maioria destinada a melhorar a eficácia da vacina e a produção de anticorpos protetores específicos do antígeno. Os mecanismos de ação dos adjuvantes imunológicos são diversos, dependendo da sua natureza química e molecular sendo capazes de ativar células imunes especificas que conduzem a respostas imunes inatas e adaptativas melhoradas. Embora o mecanismo de ação molecular detalhado de muitos adjuvantes ainda seja desconhecido, a descoberta de receptores Toll-like (TLRs) forneceu informações críticas sobre o efeito imunoestimulador de numerosos componentes bacterianos que envolvem interação com receptores TLRs, mostrando que estes ligantes melhoram tanto a qualidade como a quantidade de respostas imunes adaptativas do hospedeiro quando utilizadas em formulações de vacinais direcionadas para doenças. O potencial desses adjuvantes de TLR em melhorar o design e os resultados de várias vacinas está em constante evolução, à medida que novos agonistas são descobertos e testados em modelos experimentais e estudos clínicos de vacinação. Nesta revisão, é apresentado um resumo do progresso recente no desenvolvimento de proteínas recombinantes de segunda geração e adjuvantes de TLR, sendo o foco principal nos TLR4 e suas melhorias.
Collapse
|
19
|
The TLR4 agonist adjuvant SLA-SE promotes functional mucosal antibodies against a parenterally delivered ETEC vaccine. NPJ Vaccines 2019; 4:19. [PMID: 31149350 PMCID: PMC6538625 DOI: 10.1038/s41541-019-0116-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Many pathogens establish infection at mucosal surfaces such as the enteric pathogen Enterotoxigenic E. coli (ETEC). Thus, there is a pressing need for effective vaccination strategies that promote protective immunity at mucosal surfaces. Toll-like receptor (TLR) ligands have been extensively developed as vaccine adjuvants to promote systemic immunity, whereas attenuated bacterial toxins including cholera toxin and heat-labile toxin (LT) have initially been developed to promote mucosal immunity. Here we evaluate the ability of the TLR4 agonist second-generation lipid adjuvant formulated in a stable emulsion (SLA-SE) to augment functional mucosal antibodies elicited by intramuscular immunization with a recombinant ETEC vaccine antigen. We find that, in mice, parenterally delivered SLA-SE is at least as effective as the double-mutant LT (LTR192G/L211A, dmLT) adjuvant in promoting functional antibodies and eliciting intestinal IgA responses to the vaccine antigen. In addition, SLA-SE enhanced both the IgG2a response in the mucosa and serum, and the production of LT neutralizing serum antibodies elicited by dmLT four to eightfold. These results reveal unexpected mucosal adjuvant properties of this TLR4 agonist adjuvant when delivered intramuscularly. This may have a substantial impact on the development of vaccines against enteric and other mucosal pathogens. Although offering great potential for generating intestinal immunity, vaccination by the oral route suffers from several barriers such as the breakdown of protein vaccines in the stomach and/or the induction of oral tolerance. To investigate whether these barriers can be circumvented, Mark T. Orr and colleagues at the Infectious Disease Research Institute use a parenteral (intramuscular) vaccination protocol in mice. Intramuscular immunization with an enterotoxigenic E. coli (ETEC) vaccine plus a Toll-like receptor 4 adjuvant in stable emulsion (SLA-SE) elicits a functional antibody response in both the gut and serum. Importantly, this intramuscular vaccination triggers robust production of IgA in the gut. These findings suggest that with the right adjuvant combination it might possible to generate potent protective mucosal immunity following parenteral immunization.
Collapse
|
20
|
Wilson KL, Flanagan KL, Prakash MD, Plebanski M. Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 2019; 18:133-151. [PMID: 30601095 DOI: 10.1080/14760584.2019.1561289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The challenge to eradicate malaria is an enormous task that will not be achieved by current control measures, thus an efficacious and long-lasting malaria vaccine is required. The licensing of RTS, S/AS01 is a step forward in providing some protection, but a malaria vaccine that protects across multiple transmission seasons is still needed. To achieve this, inducing beneficial immune responses while minimising deleterious non-targeted effects will be essential. AREAS COVERED This article discusses the current challenges and advances in malaria vaccine development and reviews recent human clinical trials for each stage of infection. Pubmed and ScienceDirect were searched, focusing on cell mediated immunity and how T cell subsets might be targeted in future vaccines using novel adjuvants and emerging vaccine technologies. EXPERT COMMENTARY Despite decades of research there is no highly effective licensed malaria vaccine. However, there is cause for optimism as new adjuvants and vaccine systems emerge, and our understanding of correlates of protection increases, especially regarding cellular immunity. The new field of heterologous (non-specific) effects of vaccines also highlights the broader consequences of immunization. Importantly, the WHO led Malaria Vaccine Technology Roadmap illustrates that there is a political will among the global health community to make it happen.
Collapse
Affiliation(s)
- K L Wilson
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - K L Flanagan
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia.,c School of Medicine, Faculty of Health Sciences , University of Tasmania , Launceston , Australia
| | - M D Prakash
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - M Plebanski
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|
21
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
22
|
Reed SG, Carter D, Casper C, Duthie MS, Fox CB. Correlates of GLA family adjuvants' activities. Semin Immunol 2018; 39:22-29. [PMID: 30366662 PMCID: PMC6289613 DOI: 10.1016/j.smim.2018.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Malcolm S Duthie
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| |
Collapse
|
23
|
Carter D, van Hoeven N, Baldwin S, Levin Y, Kochba E, Magill A, Charland N, Landry N, Nu K, Frevol A, Ashman J, Sagawa ZK, Beckmann AM, Reed SG. The adjuvant GLA-AF enhances human intradermal vaccine responses. SCIENCE ADVANCES 2018; 4:eaas9930. [PMID: 30221194 PMCID: PMC6136895 DOI: 10.1126/sciadv.aas9930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
Adjuvants are key to shaping the immune response to vaccination, but to date, no adjuvant suitable for human use has been developed for intradermal vaccines. These vaccines could be self-administered and sent through the mail as they do not require long needles or technical expertise in immunization. In the event of a pandemic outbreak, this approach could alleviate the congregation of patients in health centers and thus reduce the potential of these centers to enhance the spread of lethal infection. A reliable and potent vaccine system for self-administration would provide an effective countermeasure for delivery through existing product distribution infrastructure. We report results from preclinical and clinical trials that demonstrate the feasibility of an adjuvanted, intradermal vaccine that induced single shot protection in ferrets and seroprotection in humans against one of the more lethal strains of pandemic flu, Indonesia H5N1. In the human trial, the vaccine was safe and clinical responses were above approvable endpoints for a protective flu vaccine. Inclusion of a modern TLR4 (Toll-like receptor 4) agonist-based adjuvant was critical to the development of the response in the intradermal groups. In humans, this is the first report of a safe and effective intradermal adjuvant, GLA-AF (aqueous formulation of glucopyranosyl lipid adjuvant), and provides a future path for developing a vaccine-device combination for distribution by mail and self-administration in case of a pandemic.
Collapse
MESH Headings
- 1,2-Dipalmitoylphosphatidylcholine/adverse effects
- 1,2-Dipalmitoylphosphatidylcholine/immunology
- 1,2-Dipalmitoylphosphatidylcholine/pharmacology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/pharmacology
- Adult
- Animals
- Drug Combinations
- Female
- Ferrets
- Guinea Pigs
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/pharmacology
- Injections, Intradermal
- Lipid A/adverse effects
- Lipid A/analogs & derivatives
- Lipid A/immunology
- Lipid A/pharmacology
- Male
- Mice, Inbred C57BL
- Toll-Like Receptor 4/agonists
Collapse
Affiliation(s)
- Darrick Carter
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
- PAI Life Sciences Inc., Seattle, WA 98102, USA
- Corresponding author.
| | - Neal van Hoeven
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Susan Baldwin
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Yotam Levin
- NanoPass Technologies Ltd., Nes Ziona, Israel
| | | | - Al Magill
- Defense Advanced Research Projects Agency, Arlington,
VA 22203, USA
| | | | | | - Khin Nu
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Aude Frevol
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | - Jill Ashman
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| | | | | | - Steven G. Reed
- Infectious Diseases Research Institute, Seattle, WA
98102, USA
| |
Collapse
|
24
|
Khatri V, Chauhan N, Vishnoi K, von Gegerfelt A, Gittens C, Kalyanasundaram R. Prospects of developing a prophylactic vaccine against human lymphatic filariasis - evaluation of protection in non-human primates. Int J Parasitol 2018; 48:773-783. [PMID: 29885437 DOI: 10.1016/j.ijpara.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
Abstract
Lymphatic filariasis (LF) affects 120 million people around the world and another 856 million people are at risk of acquiring the infection. Mass Drug Administration (MDA) spearheaded by the World Health Organization is the only current strategy to control this infection. Recent reports suggest that despite several rounds of MDA, elimination has not been achieved and there is a need for more stringent control strategies for control of LF. An effective prophylactic vaccine combined with MDA has significant potential. Initial trials using a prophylactic trivalent recombinant Brugia malayi heat shock protein 12.6, abundant larval transcript -2 and tetraspanin large extra-cellular loop (rBmHAT) vaccine developed in our laboratory conferred only 35% protection in macaques. Therefore, the focus of the present study was to improve the current vaccine formulation to obtain better protection in non-human primates. We made two modifications to the current formulation: (i) the addition of another antigen, thioredoxin peroxidase-2 (TPX-2) to make it a tetravalent vaccine (rBmHAXT) and (ii) the inclusion of an adjuvant; AL019 (alum plus glucopyranosyl lipid adjuvant-stable emulsion) that is known to promote a balanced Th1/Th2 response. A double-blinded vaccination trial was performed with 40 macaques that were divided into three treatment groups and one control group (n = 10/group). Vaccinated animals received 4 immunisations at 1 month intervals with 150 µg/ml of rBmHAT plus alum, rBmHAT plus AL019 or rBmHAXT plus AL019. Control animals received AL019 only. All vaccinated macaques developed significant (P ≤ 0.003) titers of antigen-specific IgG antibodies (1:20,000) compared with the controls. One month after the last dose, all macaques were challenged s.c. with 130-180 B. malayi L3s. Our results showed that seven out of 10 (70%) of macaques given the improved rBmHAXT vaccine did not develop the infection compared with AL019 controls, of which seven out of 10 macaques developed the infection. Titers of antigen-specific IgG1 and IgG2 antibodies were significantly (P ≤ 0.01) higher in vaccinated animals and there was an increase in the percentage of IL-4 and IFN-γ secreting antigen-responding memory T cells. These studies demonstrated that the improved formulation (rBmHAXT plus AL019) is a promising vaccine candidate against human lymphatic filariasis.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Kanchan Vishnoi
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Developing new vaccines against emerging pathogens or pathogens where variability of antigenic sites presents a challenge, the inclusion of stimulators of the innate immune system is critical to mature the immune response in a way that allows high avidity recognition while preserving the ability to react to drifted serovars. The innate immune system is an ancient mechanism for recognition of nonself and the first line of defense against pathogen insult. By triggering innate receptors, adjuvants can boost responses to vaccines and enhance the quality and magnitude of the resulting immune response. This chapter: (1) describes the innate immune system, (2) provides examples of how adjuvants are formulated to optimize their effectiveness, and (3) presents examples of how adjuvants can improve outcomes of immunization.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., 1616 Eastlake Ave E, Suite 550, Seattle, WA, 98102, USA.
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA.
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA.
| | - Malcolm S Duthie
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Steven G Reed
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| |
Collapse
|
26
|
Acquah FK, Obboh EK, Asare K, Boampong JN, Nuvor SV, Singh SK, Theisen M, Williamson KC, Amoah LE. Antibody responses to two new Lactococcus lactis-produced recombinant Pfs48/45 and Pfs230 proteins increase with age in malaria patients living in the Central Region of Ghana. Malar J 2017; 16:306. [PMID: 28764709 PMCID: PMC5540549 DOI: 10.1186/s12936-017-1955-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/22/2017] [Indexed: 12/19/2022] Open
Abstract
Background Recent advances in malaria control efforts have led to an increased number of national malaria control programmes implementing pre-elimination measures and demonstrated the need to develop new tools to track and control malaria transmission. Key to understanding transmission is monitoring the prevalence and immune response against the sexual stages of the parasite, known as gametocytes, which are responsible for transmission. Sexual-stage specific antigens, Pfs230 and Pfs48/45, have been identified and shown to be targets for transmission blocking antibodies, but they have been difficult to produce recombinantly in the absence of a fusion partner. Methods Regions of Pfs48/45 and Pfs230 known to contain transmission blocking epitopes, 6C and C0, respectively, were produced in a Lactococcus lactis expression system and used in enzyme linked immunosorbent assays to determine the seroreactivity of 95 malaria patients living in the Central Region of Ghana. Results Pfs48/45.6C and Pfs230.C0 were successfully produced in L. lactis in the absence of a fusion partner using a simplified purification scheme. Seroprevalence for L. lactis-produced Pfs48/45.6C and Pfs230.C0 in the study population was 74.7 and 72.8%, respectively. Conclusions A significant age-dependent increase in antibody titers was observed, which suggests a vaccine targeting these antigens could be boosted during a natural infection in the field. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1955-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Festus K Acquah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evans K Obboh
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kwame Asare
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Johnson N Boampong
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kim C Williamson
- Loyola University Chicago, Chicago, IL, USA.,Uniform Services University of the Health Sciences, Bethesda, MD, USA
| | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
27
|
Theisen M, Adu B, Mordmüller B, Singh S. The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 2017; 16:907-917. [PMID: 28699823 DOI: 10.1080/14760584.2017.1355246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital Disorders , Statens Serum Institut , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Bright Adu
- d Noguchi Memorial Institute for Medical Research , University of Ghana , Legon , Ghana
| | - Benjamin Mordmüller
- e Institute of Tropical Medicine and Center for Infection Research, partner site Tübingen , University of Tübingen , Tübingen , Germany
| | - Subhash Singh
- f Indian Institute of Integrative Medicine , Jammu , India
| |
Collapse
|
28
|
Mistarz UH, Singh SK, Nguyen TTTN, Roeffen W, Yang F, Lissau C, Madsen SM, Vrang A, Tiendrebeogo RW, Kana IH, Sauerwein RW, Theisen M, Rand KD. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite. Pharm Res 2017. [PMID: 28646324 DOI: 10.1007/s11095-017-2208-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. METHODS GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. RESULTS CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. CONCLUSION GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.
Collapse
Affiliation(s)
- Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tam T T N Nguyen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Fen Yang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Casper Lissau
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | | | | | - Régis W Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ikhlaq H Kana
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark. .,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| |
Collapse
|
29
|
Sungwa M, Susan T, Mikkel JC, Adolph KR, Boniface MS, Grundtvig TT, Ali S, Agertoug NM, Frederik SA. A VAR2CSA:CSP conjugate capable of inducing dual specificity antibody responses. Afr Health Sci 2017; 17:373-381. [PMID: 29062332 DOI: 10.4314/ahs.v17i2.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vaccine antigens targeting specific P. falciparum parasite stages are under pre-clinical and clinical development. It seems plausible that vaccine with multiple specificities will offer higher protection. With this hypothesis, we exploited the Spy-Tag/SpyCatcher conjugation system to make a, post expression, dual antigen conjugate vaccine, comprising two clinically tested antigen candidates (CSP and VAR2CSA). METHODS The DBL1x-DBL2x-ID2a region of VAR2CSA was genetically fused with SpyTag at N-terminus. The full-length CSP antigen was genetically fused to C-terminal SpyCatcher peptide. The covalent interaction between SpyTag/SpyCatcher enables the formation of DBL1x-DBL2x-ID2a:CSP conjugate vaccine. Immunogenicity and quality of antibody responses induced by the conjugate vaccine, as well as a control CSP-SpyCatcher vaccine, was tested in BALB/c mice. RESULTS Serum samples obtained from mice immunized with the conjugate vaccine were able to recognize both untagged DBL1x-DBL2x-ID2a as well as CSP antigen. Moreover, the geometric mean anti-CSP antibody titer was 1.9-fold higher in serum (at day 35 and 55 post-first immunization) from mice immunized with the conjugate vaccine, as compared to mice receiving the control vaccine. CONCLUSION The data obtained in this study serves as proof-of-concept for the simultaneous induction of antibodies directed against individual antigen components in a dual stage anti-malaria vaccine.
Collapse
Affiliation(s)
- Matondo Sungwa
- Kilimanjaro Christian Medical University-College, and Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Thrane Susan
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Janitzek Christoph Mikkel
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Kavishe Reginald Adolph
- Kilimanjaro Christian Medical University-College, and Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Mwakalinga Steven Boniface
- Kilimanjaro Christian Medical University-College, and Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Theander Thor Grundtvig
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Salanti Ali
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Nielsen Morten Agertoug
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Sander Adam Frederik
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
| |
Collapse
|
30
|
Singh SK, Roeffen W, Mistarz UH, Chourasia BK, Yang F, Rand KD, Sauerwein RW, Theisen M. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine. Microb Cell Fact 2017; 16:97. [PMID: 28569168 PMCID: PMC5452637 DOI: 10.1186/s12934-017-0710-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/26/2017] [Indexed: 01/10/2023] Open
Abstract
Background The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis. Results A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats. Conclusions The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0710-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Fen Yang
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark. .,Department of International Health, Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
31
|
Pollet J, Versteeg L, Rezende W, Strych U, Gusovsky F, Hotez PJ, Bottazzi ME. A simple fluorescence-based assay for quantification of the Toll-Like Receptor agonist E6020 in vaccine formulations. Vaccine 2017; 35:1410-1416. [PMID: 28190745 DOI: 10.1016/j.vaccine.2017.01.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 11/16/2022]
Abstract
Despite the generally accepted immunostimulatory effect of Toll-Like Receptor 4 (TLR4) agonists and their value as vaccine adjuvants, there remains a demand for fast and easy quantification assays for these TLR4 agonists in order to accelerate and improve vaccine formulation studies. A new medium-throughput method was developed for the quantification of the TLR4 agonist, E6020, independent of the formulation composition. The assay uses a fluorescent hydrazide (DCCH) to label the synthetic lipopolysaccharide (LPS) analog E6020 through its diketone groups. This novel, low-cost, and fluorescence based assay may obviate the need for traditional approaches that primarily rely on Fourier transform infrared spectroscopy (FTIR) or mass spectrometry. The experiments were performed in a wide diversity of vaccine formulations containing E6020 to assess method robustness and accuracy. The assay was also expanded to evaluate the loading efficiency of E6020 in poly(lactic-co-glycolic acid) (PLGA) micro-particles.
Collapse
Affiliation(s)
- Jeroen Pollet
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX 77030, USA
| | - Leroy Versteeg
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX 77030, USA
| | - Wanderson Rezende
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX 77030, USA
| | - Ulrich Strych
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX 77030, USA
| | | | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX 77030, USA; Department of Biology, Baylor University, Waco, TX, USA
| | - Maria Elena Bottazzi
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX 77030, USA; Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
32
|
Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate. Sci Rep 2017; 7:40312. [PMID: 28091576 PMCID: PMC5238395 DOI: 10.1038/srep40312] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Humoral immune responses have the potential to maintain protective antibody levels for years due to the immunoglobulin-secreting activity of long-lived plasma cells (LLPCs). However, many subunit vaccines under development fail to generate robust LLPC responses, and therefore a variety of strategies are being employed to overcome this limitation, including conjugation to carrier proteins and/or formulation with potent adjuvants. Pfs25, an antigen expressed on malaria zygotes and ookinetes, is a leading transmission blocking vaccine (TBV) candidate for Plasmodium falciparum. Currently, the conjugate vaccine Pfs25-EPA/Alhydrogel is in Phase 1 clinical trials in the USA and Africa. Thus far, it has proven to be safe and immunogenic, but it is expected that a more potent formulation will be required to establish antibody titers that persist for several malaria transmission seasons. We sought to determine the contribution of carrier determinants and adjuvants in promoting high-titer, long-lived antibody responses against Pfs25. We found that both adjuvants and carrier proteins influence the magnitude and capacity of Pfs25-specific humoral responses to remain above a protective level. Furthermore, a liposomal adjuvant with QS21 and a TLR4 agonist (GLA-LSQ) was especially effective at inducing T follicular helper (Tfh) and LLPC responses to Pfs25 when coupled to immunogenic carrier proteins.
Collapse
|
33
|
Theisen M, Jore MM, Sauerwein R. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine. Expert Rev Vaccines 2017; 16:329-336. [PMID: 28043178 DOI: 10.1080/14760584.2017.1276833] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital disorders , State Serum Institute , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital, Rigshospitalet , Copenhagen , Denmark
| | - Matthijs M Jore
- d Department of Medical Microbiology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Robert Sauerwein
- d Department of Medical Microbiology , Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|