1
|
Prajeeth CK, Zdora I, Saletti G, Friese J, Gerlach T, Wilken L, Beicht J, Kubinski M, Puff C, Baumgärtner W, Kortekaas J, Wichgers Schreur PJ, Osterhaus ADME, Rimmelzwaan GF. Immune correlates of protection of the four-segmented Rift Valley fever virus candidate vaccine in mice. Emerg Microbes Infect 2024; 13:2373313. [PMID: 38946528 PMCID: PMC11238650 DOI: 10.1080/22221751.2024.2373313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by RVF virus (RVFV). RVFV infections in humans are usually asymptomatic or associated with mild febrile illness, although more severe cases of haemorrhagic disease and encephalitis with high mortality also occur. Currently, there are no licensed human vaccines available. The safety and efficacy of a genetically engineered four-segmented RVFV variant (hRVFV-4s) as a potential live-attenuated human vaccine has been tested successfully in mice, ruminants, and marmosets though the correlates of protection of this vaccine are still largely unknown. In the present study, we have assessed hRVFV-4s-induced humoral and cellular immunity in a mouse model of RVFV infection. Our results confirm that a single dose of hRVFV-4s is highly efficient in protecting naïve mice from developing severe disease following intraperitoneal challenge with a highly virulent RVFV strain and data show that virus neutralizing (VN) serum antibody titres in a prime-boost regimen are significantly higher compared to the single dose. Subsequently, VN antibodies from prime-boost-vaccinated recipients were shown to be protective when transferred to naïve mice. In addition, hRVFV-4s vaccination induced a significant virus-specific T cell response as shown by IFN-γ ELISpot assay, though these T cells did not provide significant protection upon passive transfer to naïve recipient mice. Collectively, this study highlights hRVFV-4s-induced VN antibodies as a major correlate of protection against lethal RVFV infection.
Collapse
MESH Headings
- Animals
- Rift Valley fever virus/immunology
- Rift Valley fever virus/genetics
- Rift Valley Fever/prevention & control
- Rift Valley Fever/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Disease Models, Animal
- Immunity, Cellular
- T-Lymphocytes/immunology
- Immunity, Humoral
- Mice, Inbred BALB C
- Interferon-gamma/immunology
- Vaccination
Collapse
Affiliation(s)
- Chittappen K Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Julia Friese
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Lucas Wilken
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
- Boehringer Ingelheim Animal Health, Global Innovation, Saint Priest, France
| | - Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
- BunyaVax B.V., Lelystad, The Netherlands
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Leroux-Roels I, Prajeeth CK, Aregay A, Nair N, Rimmelzwaan GF, Osterhaus ADME, Kardinahl S, Pelz S, Bauer S, D'Onofrio V, Alhatemi A, Jacobs B, De Boever F, Porrez S, Waerlop G, Punt C, Hendriks B, von Mauw E, van de Water S, Harders-Westerveen J, Rockx B, van Keulen L, Kortekaas J, Leroux-Roels G, Wichgers Schreur PJ. Safety and immunogenicity of the live-attenuated hRVFV-4s vaccine against Rift Valley fever in healthy adults: a dose-escalation, placebo-controlled, first-in-human, phase 1 randomised clinical trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1245-1253. [PMID: 39068957 DOI: 10.1016/s1473-3099(24)00375-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Rift Valley fever virus, a pathogen to ruminants, camelids, and humans, is an emerging mosquito-borne bunyavirus currently endemic to Africa and the Arabian Peninsula. Although animals are primarily infected via mosquito bites, humans mainly become infected following contact with infected tissues or fluids of infected animals. There is an urgent need for adequate countermeasures, especially for humans, because effective therapeutics or vaccines are not yet available. Here we assessed the safety, tolerability, and immunogenicity of a next-generation, four-segmented, live-attenuated vaccine candidate, referred to as hRVFV-4s, in humans. METHODS A first-in-human, single-centre, randomised, double-blind, placebo-controlled trial was done in Belgium in which a single dose of hRVFV-4s was administered to healthy volunteers aged 18-45 years. Participants were randomly assigned using an interactive web response system. The study population encompassed 75 participants naive to Rift Valley fever virus infection, divided over three dosage groups (cohorts) of 25 participants each. All participants were followed up until 6 months. Using a staggered dose escalating approach, 20 individuals of each cohort were injected in the deltoid muscle of the non-dominant arm with either 104 (low dose), 105 (medium dose), or 106 (high dose) of 50% tissue culture infectious dose of hRVFV-4s as based on animal data, and five individuals per cohort received formulation buffer as a placebo. Primary outcome measures in the intention-to-treat population were adverse events and tolerability. Secondary outcome measures were vaccine-induced viraemia, vaccine virus shedding, Rift Valley fever virus nucleocapsid antibody responses (with ELISA), and neutralising antibody titres. Furthermore, exploratory objectives included the assessment of cellular immune responses by ELISpot. The trial was registered with the EU Clinical Trials Register, 2022-501460-17-00. FINDINGS Between August and December, 2022, all 75 participants were vaccinated. No serious adverse events or vaccine-related severe adverse events were reported. Pain at the injection site (51 [85%] of 60 participants) was most frequently reported as solicited local adverse event, and headache (28 [47%] of 60) and fatigue (28 [47%] of 60) as solicited systemic adverse events in the active group. No vaccine virus RNA was detected in any of the blood, saliva, urine, or semen samples. Rift Valley fever virus nucleocapsid antibody responses were detected in most participants who were vaccinated with hRVFV-4s (43 [72%] of 60 on day 14) irrespective of the administered dose. In contrast, a clear dose-response relationship was observed for neutralising antibodies on day 28 with four (20%) of 20 participants responding in the low-dose group, 13 (65%) of 20 responding in the medium-dose group, and all participants (20 [100%] of 20) responding in the high-dose group. Consistent with the antibody responses, cellular immune responses against the nucleocapsid protein were detected in all dose groups, whereas a more dose-dependent response was observed for the Gn and Gc surface glycoproteins. Neutralising antibody titres declined over time, whereas nucleocapsid antibody responses remained relatively stable for at least 6 months. INTERPRETATION The hRVFV-4s vaccine showed a high safety profile and excellent tolerability across all tested dose regimens, eliciting robust immune responses, particularly with the high-dose administration. The findings strongly support further clinical development of this candidate vaccine for human use. FUNDING The Coalition for Epidemic Preparedness Innovations with support from the EU Horizon 2020 programme.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Amare Aregay
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Niranjana Nair
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany; CR2O, Maarssen, Netherlands
| | | | | | | | - Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Azhar Alhatemi
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Bart Jacobs
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fien De Boever
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sharon Porrez
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | - Barry Rockx
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | | | | | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | |
Collapse
|
3
|
Kandiyil PC. Quantification of RVFV Specific T Cell Responses in Mice Pre-immunized with Potential Vaccine Candidates. Methods Mol Biol 2024; 2824:385-395. [PMID: 39039425 DOI: 10.1007/978-1-0716-3926-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever (RVF) caused by Rift Valley fever virus (RVFV) is a major health concern for both domesticated animals and humans in certain endemic areas of Africa. With changing environmental conditions and identification of vectors capable of transmitting the virus, there is high risk of RVFV spreading into other parts of the world. Furthermore, unavailability of effective vaccines in the event of an outbreak can be a major challenge as witnessed recently in case of SARS-CoV2 pandemic. Hence, identifying potential vaccines and testing their protective efficacy in preclinical models before clinical testing is the absolute need of the hour. Here, we describe methods used to quantify virus-specific T cell responses in mice that were immunized with RVFV strains or antigens.
Collapse
Affiliation(s)
- Prajeeth Chittappen Kandiyil
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
4
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
6
|
Wichgers Schreur PJ, Bird BH, Ikegami T, Bermúdez-Méndez E, Kortekaas J. Perspectives of Next-Generation Live-Attenuated Rift Valley Fever Vaccines for Animal and Human Use. Vaccines (Basel) 2023; 11:vaccines11030707. [PMID: 36992291 DOI: 10.3390/vaccines11030707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Live-attenuated Rift Valley fever (RVF) vaccines transiently replicate in the vaccinated host, thereby effectively initiating an innate and adaptive immune response. Rift Valley fever virus (RVFV)-specific neutralizing antibodies are considered the main correlate of protection. Vaccination with classical live-attenuated RVF vaccines during gestation in livestock has been associated with fetal malformations, stillbirths, and fetal demise. Facilitated by an increased understanding of the RVFV infection and replication cycle and availability of reverse genetics systems, novel rationally-designed live-attenuated candidate RVF vaccines with improved safety profiles have been developed. Several of these experimental vaccines are currently advancing beyond the proof-of-concept phase and are being evaluated for application in both animals and humans. We here provide perspectives on some of these next-generation live-attenuated RVF vaccines and highlight the opportunities and challenges of these approaches to improve global health.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- BunyaVax B.V., 8221 RA Lelystad, The Netherlands
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Intranasal Exposure to Rift Valley Fever Virus Live-Attenuated Strains Leads to High Mortality Rate in Immunocompetent Mice. Viruses 2022; 14:v14112470. [PMID: 36366567 PMCID: PMC9694885 DOI: 10.3390/v14112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.
Collapse
|
8
|
Intact Type I Interferon Receptor Signaling Prevents Hepatocellular Necrosis but Not Encephalitis in a Dose-Dependent Manner in Rift Valley Fever Virus Infected Mice. Int J Mol Sci 2022; 23:ijms232012492. [DOI: 10.3390/ijms232012492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic and emerging disease, caused by the RVF virus (RVFV). In ruminants, it leads to “abortion storms” and enhanced mortality rates in young animals, whereas in humans it can cause symptoms like severe hemorrhagic fever or encephalitis. The role of the innate and adaptive immune response in disease initiation and progression is still poorly defined. The present study used the attenuated RVFV strain clone 13 to investigate viral spread, tissue tropism, and histopathological lesions after intranasal infection in C57BL/6 wild type (WT) and type I interferon (IFN-I) receptor I knockout (IFNAR−/−) mice. In WT mice, 104 PFU RVFV (high dose) resulted in a fatal encephalitis, but no hepatitis 7–11 days post infection (dpi), whereas 103 PFU RVFV (low dose) did not cause clinical disease or significant histopathological lesions in liver and the central nervous system (CNS). In contrast, IFNAR−/− mice infected with 103 PFU RVFV developed hepatocellular necrosis resulting in death at 2–5 dpi and lacked encephalitis. These results show that IFNAR signaling prevents systemic spread of the attenuated RVFV strain clone 13, but not the dissemination to the CNS and subsequent fatal disease. Consequently, neurotropic viruses may be able to evade antiviral IFN-I signaling pathways by using the transneuronal instead of the hematogenous route.
Collapse
|
9
|
Safety and immunogenicity of four-segmented Rift Valley fever virus in the common marmoset. NPJ Vaccines 2022; 7:54. [PMID: 35585071 PMCID: PMC9117246 DOI: 10.1038/s41541-022-00476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging mosquito-borne bunyavirus that is highly pathogenic to wild and domesticated ruminants, camelids, and humans. While animals are exclusively infected via mosquito bites, humans can also be infected via contact with contaminated tissues or blood. No human vaccine is available and commercialized veterinary vaccines do not optimally combine efficacy with safety. We previously reported the development of two novel live-attenuated RVF vaccines, created by splitting the M genome segment and deleting the major virulence determinant NSs. The vaccine candidates, referred to as the veterinary vaccine vRVFV-4s and the human vaccine hRVFV-4s, were shown to induce protective immunity in multiple species after a single vaccination. Anticipating accidental exposure of humans to the veterinary vaccine and the application of hRVFV-4s to humans, the safety of each vaccine was evaluated in the most susceptible nonhuman primate model, the common marmoset (Callithrix jacchus). Marmosets were inoculated with high doses of each vaccine and were monitored for clinical signs as well as for vaccine virus dissemination, shedding, and spreading to the environment. To accurately assess the attenuation of both vaccine viruses, separate groups of marmosets were inoculated with the parent wild-type RVFV strains. Both wild-type strains induced high viremia and disseminated to primary target organs, associated with mild-to-severe morbidity. In contrast, both vaccines were well tolerated with no evidence of dissemination and shedding while inducing potent neutralizing antibody responses. The results of the studies support the unprecedented safety profile of both vaccines for animals and humans.
Collapse
|
10
|
A single vaccination with four-segmented rift valley fever virus prevents vertical transmission of the wild-type virus in pregnant ewes. NPJ Vaccines 2021; 6:8. [PMID: 33420095 PMCID: PMC7794363 DOI: 10.1038/s41541-020-00271-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-transmitted bunyavirus that causes severe outbreaks among wild and domesticated ruminants, of which sheep are the most susceptible. Outbreaks are characterised by high mortality rates among new-born lambs and abortion storms, in which all pregnant ewes in a flock may abort their foetuses. In endemic areas, Rift Valley fever (RVF) can be controlled by vaccination with either inactivated or live-attenuated vaccines. Inactivated vaccines are safe for animals during all physiological stages, including pregnancy. However, optimal efficacy of these vaccines depends on multiple vaccinations and yearly re-vaccination. Live-attenuated vaccines are generally highly efficacious after a single vaccination, but currently available live-attenuated vaccines may transmit to the ovine foetus, resulting in stillbirths, congenital malformations or abortion. We have previously reported the development of a novel live-attenuated RVFV vaccine, named RVFV-4s. This vaccine virus was created by splitting the M genome segment and deleting the major virulence determinant NSs, and was shown to be safe even for the most susceptible species, including pregnant ewes. The demonstrated efficacy and safety profile suggests that RVFV-4s holds promise for veterinary and human application. The RVFV-4s vaccine for veterinary application, here referred to as vRVFV-4s, was shown to provide complete protection after a single vaccination of lambs, goats and cattle. In this work, we evaluated the efficacy of the vRVFV-4s vaccine in pregnant ewes. Anticipating on the extremely high susceptibility of pregnant ewes for RVFV, both a single vaccination and double vaccination were evaluated in two independent experiments. The combined results suggest that a single vaccination with vRVFV-4s is sufficient to protect pregnant ewes and to prevent transmission to the ovine foetus.
Collapse
|
11
|
Moreno S, Calvo-Pinilla E, Devignot S, Weber F, Ortego J, Brun A. Recombinant Rift Valley fever viruses encoding bluetongue virus (BTV) antigens: Immunity and efficacy studies upon a BTV-4 challenge. PLoS Negl Trop Dis 2020; 14:e0008942. [PMID: 33275608 PMCID: PMC7744063 DOI: 10.1371/journal.pntd.0008942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/16/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background Many ruminant diseases of viral aetiology can be effectively prevented using appropriate vaccination measures. For diseases such as Rift Valley fever (RVF) the long inter-epizootic periods make routine vaccination programs unfeasible. Coupling RVF prophylaxis with seasonal vaccination programmes by means of multivalent vaccine platforms would help to reduce the risk of new RVF outbreaks. Methodology/Principal findings In this work we generated recombinant attenuated Rift Valley fever viruses (RVFVs) encoding in place of the virulence factor NSs either the VP2 capsid protein or a truncated form of the non-structural NS1 protein of bluetongue virus serotype 4 (BTV-4). The recombinant viruses were able to carry and express the heterologous BTV genes upon consecutive passages in cell cultures. In murine models, a single immunization was sufficient to protect mice upon RVFV challenge and to elicit a specific immune response against BTV-4 antigens that was fully protective after a BTV-4 boost. In sheep, a natural host for RVFV and BTV, both vaccines proved immunogenic although conferred only partial protection after a virulent BTV-4 reassortant Morocco strain challenge. Conclusions/Significance Though additional optimization will be needed to improve the efficacy data against BTV in sheep, our findings warrant further developments of attenuated RVFV as a dual vaccine platform carrying heterologous immune relevant antigens for ruminant diseases in RVF risk areas. Live attenuated Rift Valley fever (RVF) vaccines constitute a reliable intervention measure to reduce the burden of the disease in endemic countries. In this work we report the generation of attenuated Rift Valley fever virus (RVFV) that express vaccine antigens of bluetongue virus (BTV) instead of the virulence factor NSs. The recombinant viruses were able to induce protective immune responses against both RVFV and BTV when administered as vaccines in mice and sheep respectively. Though further optimization is needed to enhance the level of protection in sheep upon a single dose, these results demonstrate the potential of attenuated RVFV as a vaccine vector for other ruminant diseases, in this case enabling bluetongue vaccination while immunizing against RVF. Since RVF outbreaks are sporadic events, preventive vaccination is often not perceived as a real need. In such scenario a bivalent vaccine strategy would make RVF vaccination more appealing.
Collapse
Affiliation(s)
- Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
| | - Stephanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
- * E-mail: (JO); (AB)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), Spain
- * E-mail: (JO); (AB)
| |
Collapse
|
12
|
Wichgers Schreur PJ, Oreshkova N, van Keulen L, Kant J, van de Water S, Soós P, Dehon Y, Kollár A, Pénzes Z, Kortekaas J. Safety and efficacy of four-segmented Rift Valley fever virus in young sheep, goats and cattle. NPJ Vaccines 2020; 5:65. [PMID: 32728479 PMCID: PMC7382487 DOI: 10.1038/s41541-020-00212-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. RVFV induces severe disease in newborns and abortion in pregnant ruminants. The viral genome consists of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M segment encodes a glycoprotein precursor protein that is co-translationally cleaved into the two structural glycoproteins Gn and Gc, which are involved in receptor attachment and cell entry. We previously constructed a four-segmented RVFV (RVFV-4s) by splitting the M genome segment into two M-type segments encoding either Gn or Gc. RVFV-4s replicates efficiently in cell culture but was shown to be completely avirulent in mice, lambs and pregnant ewes. Here, we show that a RVFV-4s candidate vaccine for veterinary use (vRVFV-4s) does not disseminate in vaccinated animals, is not shed or spread to the environment and does not revert to virulence. Furthermore, a single vaccination of lambs, goat kids and calves was shown to induce protective immunity against a homologous challenge. Finally, the vaccine was shown to provide full protection against a genetically distinct RVFV strain. Altogether, we demonstrate that vRVFV-4s optimally combines efficacy with safety, holding great promise as a next-generation RVF vaccine.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,BunyaVax B.V., Lelystad, The Netherlands
| | - Nadia Oreshkova
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jet Kant
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Sandra van de Water
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Pál Soós
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Yves Dehon
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Anna Kollár
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Zoltán Pénzes
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,BunyaVax B.V., Lelystad, The Netherlands.,Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Reverse genetics approaches for the development of bunyavirus vaccines. Curr Opin Virol 2020; 44:16-25. [PMID: 32619950 DOI: 10.1016/j.coviro.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022]
Abstract
The Bunyavirales order is the largest group of RNA viruses, which includes important human and animal pathogens, that cause serious diseases. Licensed vaccines are often not available for many of these pathogens. The establishment of bunyavirus reverse genetics systems has facilitated the generation of recombinant infectious viruses, which have been employed as powerful tools for understanding bunyavirus biology and identifying important virulence factors. Technological advances in this area have enabled the development of novel strategies, including codon-deoptimization, viral genome rearrangement and single-cycle replicable viruses, for the generation of live-attenuated vaccine candidates. In this review, we have summarized the current knowledge of the bunyavirus reverse genetics approaches for the generation of live-attenuated vaccine candidates and their evaluation in animal models.
Collapse
|
14
|
Kroeker AL, Babiuk S, Pickering BS, Richt JA, Wilson WC. Livestock Challenge Models of Rift Valley Fever for Agricultural Vaccine Testing. Front Vet Sci 2020; 7:238. [PMID: 32528981 PMCID: PMC7266933 DOI: 10.3389/fvets.2020.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Since the discovery of Rift Valley Fever virus (RVFV) in Kenya in 1930, the virus has become widespread throughout most of Africa and is characterized by sporadic outbreaks. A mosquito-borne pathogen, RVFV is poised to move beyond the African continent and the Middle East and emerge in Europe and Asia. There is a risk that RVFV could also appear in the Americas, similar to the West Nile virus. In light of this potential threat, multiple studies have been undertaken to establish international surveillance programs and diagnostic tools, develop models of transmission dynamics and risk factors for infection, and to develop a variety of vaccines as countermeasures. Furthermore, considerable efforts to establish reliable challenge models of Rift Valley fever virus have been made and platforms for testing potential vaccines and therapeutics in target species have been established. This review emphasizes the progress and insights from a North American perspective to establish challenge models in target livestock such as cattle, sheep, and goats in comparisons to other researchers' reports. A brief summary of the potential role of wildlife, such as buffalo and white-tailed deer as reservoir species will also be discussed.
Collapse
Affiliation(s)
- Andrea Louise Kroeker
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley S Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Juergen A Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Manhattan, KS, United States
| | - William C Wilson
- USDA, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Manhattan, KS, United States
| |
Collapse
|
15
|
Monath TP, Kortekaas J, Watts DM, Christofferson RC, Desiree LaBeaud A, Gowen B, Peters CJ, Smith DR, Swanepoel R, Morrill JC, Ksiazek TG, Pittman PR, Bird BH, Bettinger G. Theoretical risk of genetic reassortment should not impede development of live, attenuated Rift Valley fever (RVF) vaccines commentary on the draft WHO RVF Target Product Profile. Vaccine X 2020; 5:100060. [PMID: 32337506 PMCID: PMC7176985 DOI: 10.1016/j.jvacx.2020.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 11/29/2022] Open
Abstract
WHO published draft Target Product Profiles (TPPs) for Rift Valley Fever virus (RVFV) vaccines. The TPPs contain restrictive requirements aimed at reducing the risk of genetic reassortment. We find no evidence for reassortment despite use of live RVFV vaccines. If genetic reassortment occurred with wild-type RVFV it would be of no consequence. The hypothetical risks of reassortment do not outweigh the benefits of vaccination
In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment.
Collapse
Affiliation(s)
- Thomas P Monath
- Managing Partner and Chief Scientific Officer, Crozet BioPharma LLC, Devens, MA, USA
| | - Jeroen Kortekaas
- Professor of Veterinary Arbovirology, Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Douglas M Watts
- Executive Director of Vet Services, and Director of Biosafety Level 3 Laboratory and Co-Director of BBRC Infectious Disease and Immunology, University of Texas at El Paso, El Paso, TX, USA
| | - Rebecca C Christofferson
- Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Angelle Desiree LaBeaud
- Professor of Pediatrics (Infectious Diseases), Stanford University School of Medicine, Senior Fellow at the Woods Institute for the Environment and Professor of Health Research and Policy (Epidemiology) at the Lucile Salter Packard Children's Hospital, Stanford, CA, USA
| | | | - Clarence J Peters
- Professor (Emeritus) Departments of Microbiology & Immunology and Pathology Director (Emeritus) for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Darci R Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, USA
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng, South Africa
| | - John C Morrill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Phillip R Pittman
- U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
| | - Brian H Bird
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.,University of California, Davis, One Health Institute, School of Veterinary Medicine, Davis 956164, CA, USA
| | - George Bettinger
- USAID Rift Valley Fever Vaccine Project at The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
16
|
Stedman A, Wright D, Wichgers Schreur PJ, Clark MHA, Hill AVS, Gilbert SC, Francis MJ, van Keulen L, Kortekaas J, Charleston B, Warimwe GM. Safety and efficacy of ChAdOx1 RVF vaccine against Rift Valley fever in pregnant sheep and goats. NPJ Vaccines 2019; 4:44. [PMID: 31646004 PMCID: PMC6802222 DOI: 10.1038/s41541-019-0138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus that was first discovered in Kenya in 1930 and has since spread to become endemic in much of Africa and the Arabian Peninsula. Rift Valley fever (RVF) causes recurrent outbreaks of febrile illness associated with high levels of mortality and poor outcomes during pregnancy-including foetal malformations, spontaneous abortion and stillbirths-in livestock, and associated with miscarriage in humans. No vaccines are available for human use and those licensed for veterinary use have potential drawbacks, including residual virulence that may contraindicate their use in pregnancy. To address this gap, we previously developed a simian adenovirus vectored vaccine, ChAdOx1 RVF, that encodes RVFV envelope glycoproteins. ChAdOx1 RVF is fully protective against RVF in non-pregnant livestock and is also under development for human use. Here, we now demonstrate that when administered to pregnant sheep and goats, ChAdOx1 RVF is safe, elicits high titre RVFV neutralizing antibody, and provides protection against viraemia and foetal loss, although this protection is not as robust for the goats. In addition, we provide a description of RVFV challenge in pregnant goats and contrast this to the pathology observed in pregnant sheep. Together, our data further support the ongoing development of ChAdOx1 RVF vaccine for use in livestock and humans.
Collapse
Affiliation(s)
- Anna Stedman
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - Daniel Wright
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | | | - Madeleine H. A. Clark
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Adrian V. S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Michael J. Francis
- BioVacc Consulting Ltd, The Red House, 10 Market Square, Amersham, HP7 0DQ UK
| | - Lucien van Keulen
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - George M. Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ UK
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108 Kenya
| |
Collapse
|
17
|
Abstract
Introduction: Rift Valley fever (RVF) outbreaks can cause devastating economic loss and public health concerns. RVF virus (RVFV: genus Phlebovirus family Phenuiviridae) is transmitted by mosquitoes, causes abortion in sheep, cattle, and goats, and severe diseases in humans including hemorrhagic fever, encephalitis, or retinitis. RVFV has spread from sub-Saharan Africa into Madagascar, Egypt, Saudi Arabia, and Yemen.Area covered: There are a few licensed veterinary RVF vaccines in endemic countries, whereas no licensed RVF vaccines are available for human use. There are two Investigational New Drug (IND) RVF candidate vaccines used in clinical trials. This review will discuss the development of two IND vaccines for RVF over the past 20-40 years, and further innovation for future RVF vaccines applicable for the use in endemic areas.Expert opinion: Vaccination for human RVF can protect at-risk personnel against severe RVF illness. Formalin-inactivated RVF candidate vaccine requires three doses to induce protective immunity, whereas the live-attenuated MP-12 candidate vaccine retains strong immunogenicity. Further innovation in safety, immunogenicity, and thermostability will facilitate future RVF vaccines for humans.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that was first discovered in Kenya in 1930 and is now endemic throughout multiple African countries and the Arabian Peninsula. RVF virus primarily infects domestic livestock (sheep, goats, cattle) causing high rates of neonatal mortality and abortion, with human infection resulting in a wide variety of clinical outcomes, ranging from self-limiting febrile illness to life-threatening haemorrhagic diatheses, and miscarriage in pregnant women. Since its discovery, RVF has caused many outbreaks in Africa and the Arabian Peninsula with major impacts on human and animal health. However, options for the control of RVF outbreaks are limited by the lack of licensed human vaccines or therapeutics. For this reason, RVF is prioritized by the World Health Organization for urgent research and development of countermeasures for the prevention and control of future outbreaks. In this review, we highlight the current understanding of RVF, including its epidemiology, pathogenesis, clinical manifestations and status of vaccine development.
Collapse
Affiliation(s)
- Daniel Wright
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Thomas A. Bowden
- Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford OX1 2JD, UK
| | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
19
|
Evaluation of Fluorescence Microsphere Immunoassay for Detection of Antibodies to Rift Valley Fever Virus Nucleocapsid Protein and Glycoproteins. J Clin Microbiol 2018; 56:JCM.01626-17. [PMID: 29563201 DOI: 10.1128/jcm.01626-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne, zoonotic virus that infects ruminants, including cattle, sheep, goats, camels, and buffalo. Multiplexing diagnostic assays that can simultaneously detect antibodies against multiple RVFV antigens offer a high-throughput test for disease surveillance and vaccine evaluations. We describe the improvement and evaluation of a previously developed fluorescence microsphere immunoassay (FMIA) for the detection of IgG and IgM antibodies against the RVFV glycoprotein (Gn) and the immunogenic nucleocapsid protein (Np). Well-characterized vaccinated and experimentally infected ruminant sera were used for the evaluation of the assay. Recombinant viral proteins were produced and then coupled to polystyrene magnetic beads for analysis using the Luminex MAGPIX system with xMAP technology. The FMIA was performed in parallel with virus neutralization tests. Our results revealed the highest median fluorescence intensity (MFI) values for the detection of IgG antibodies against RVFV Np, indicating that this antigen would be a good candidate for a screening assay. The Np and Gn targets could differentiate infected animals from animals vaccinated with a candidate subunit vaccine formulation based on the RVFV Gn and Gc proteins. The results presented in this report demonstrate that FMIA provides a rapid and robust serological diagnostic tool for the detection of antibodies against RVFV. The targets developed in this assay provide the basis for the development of a companion diagnostic test for an RVFV Gn/Gc subunit vaccine that is capable of differentiating infected from vaccinated animals (DIVA), as well as a multiplex serodiagnostic assay that can simultaneously screen for several ruminant diseases.
Collapse
|
20
|
Lorenzo G, López-Gil E, Ortego J, Brun A. Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination. Vet Res 2018; 49:21. [PMID: 29467018 PMCID: PMC5822472 DOI: 10.1186/s13567-018-0516-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of this work was to evaluate the immunogenicity and efficacy of DNA and MVA vaccines encoding the RVFV glycoproteins Gn and Gc in an ovine model of RVFV infection. Adult sheep of both sexes were challenged 12 weeks after the last immunization and clinical, virological, biochemical and immunological consequences, were analyzed. Strategies based on immunization with homologous DNA or heterologous DNA/MVA prime-boost were able to induce a rapid in vitro neutralizing antibody response as well as IFNγ production after in vitro virus specific re-stimulation. In these animals we observed reduced viremia levels and less clinical signs when compared with mock-immunized controls. In contrast, sheep inoculated with a homologous MVA prime-boost showed increased viremia correlating with the absence of detectable neutralizing antibody responses, despite of inducing cellular responses after the last immunization. However, faster induction of neutralizing antibodies and IFNγ production after challenge were found in this group when compared to the mock vaccinated group, indicative of a primed immune response. In conclusion, these results suggest that vaccination strategies based on DNA priming were able to mount and maintain specific anti-RVFV glycoprotein immune responses upon homologous or heterologous booster doses, warranting further optimization in large animal models of infection.
Collapse
Affiliation(s)
- Gema Lorenzo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Elena López-Gil
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain.
| |
Collapse
|
21
|
Current Status of Rift Valley Fever Vaccine Development. Vaccines (Basel) 2017; 5:vaccines5030029. [PMID: 28925970 PMCID: PMC5620560 DOI: 10.3390/vaccines5030029] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.
Collapse
|