1
|
Mpabalwani EM, Sakala C, Kamiji E, Simwaka J, Soko J, Kabwe M, Chisanga A, Chisanga K, Sakala J, Kiulia NM, Sakubita P, Kalesha-Masumbu P, Bakyaita N, Worwui AK, Mwenda JM. Challenges and lessons learned during the switching of rotavirus vaccine from Rotarix to Rotavac in Zambia. Vaccine 2025; 55:127012. [PMID: 40107130 DOI: 10.1016/j.vaccine.2025.127012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Active Rotavirus diarrhea surveillance has been ongoing in Zambia at three dedicated sentinel sites since 2007, focusing on hospitalized children under five years of age. During 2021 and 2022, many African countries, including Zambia, experienced a severe shortage of rotavirus vaccines. This vaccine shortage resulted in many children who were eligible for vaccination remaining unvaccinated. Consequently, these children were exposed to a higher risk of severe acute gastroenteritis. METHODS To ascertain the impact of rotavirus vaccine stock-out and switch in Zambia, a comprehensive desk review was conducted focusing on the switch of the vaccine from Rotarix to Rotavac and the change of the Rotavac formulation. This review encompassed all children under five years of age recruited at the surveillance sites between 2017 and 2023 and the country's comparison of national administrative and WUENIC 2023 rotavirus vaccine coverage rate estimates for 2014 to 2023. March 2022 to April 2023 was defined as the Rotarix vaccine stock-out period. Hospitalization trends, demographic and clinical data, and rotavirus confirmed ELISA results were analyzed. RESULTS Following the introduction of rotavirus vaccine, the number of fully vaccinated children increased steadily over the years, reaching 4.73 million in 2023. However, 2.63 million children missed vaccination between 2016 and 2023. The administrative and WUENIC 2023 estimates for rotavirus coverage rates were the same during the period under review. Hospitalized diarrhea cases and rotavirus positivity rates remained essentially the same during the in-stock and stock-out periods of rotavirus vaccine. However, mortality rates increased three-fold during the vaccine stock-out period. CONCLUSION The impact of the Rotarix vaccine era was reversed due to the global supply chain disruptions, leading to missed vaccinations, increased diarrhea-related hospitalizations, and higher infant mortality in Zambia. The COVID-19 pandemic may also have further disrupted the vaccination sessions, further impacting rotavirus vaccination. Rotarix shortages likely contributed to rising rotavirus cases. There is an urgent need to completely replace the old under-5 vaccination card with a revised one to improve documentation for new rotavirus vaccines.
Collapse
Affiliation(s)
- E M Mpabalwani
- University of Zambia, School of Medicine, Department of Paediatrics & Child Health, Lusaka, Zambia; University Teaching Hospitals, Children's Hospital, Lusaka, Zambia.
| | - C Sakala
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - E Kamiji
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - J Simwaka
- Levy Mwanawasa Medical University, Institute of Basic and Biomedical Sciences, Lusaka, Zambia
| | - J Soko
- University Teaching Hospitals, Adult Hospital, Virology Laboratory, Lusaka, Zambia
| | - M Kabwe
- University Teaching Hospitals, Adult Hospital, Virology Laboratory, Lusaka, Zambia
| | - Andrew Chisanga
- University Teaching Hospitals, Children's Hospital, Lusaka, Zambia
| | - Kelly Chisanga
- University Teaching Hospitals, Children's Hospital, Lusaka, Zambia
| | - J Sakala
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - N M Kiulia
- Enteric Pathogens and Water Research Laboratory, Kenya Institute of Primate Research, Karen, Nairobi, Kenya
| | - P Sakubita
- WHO/Zambia Country Office, Lusaka, Zambia
| | | | - N Bakyaita
- WHO/Zambia Country Office, Lusaka, Zambia
| | - A K Worwui
- WHO Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of, Congo
| | - J M Mwenda
- WHO Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of, Congo
| |
Collapse
|
2
|
Mwenda JM, Mandomando I, Worwui AK, Gacic-Dobo M, Katsande R, Bwaka AM, Messa A, Kiulia NM, Massora S, Garrine M, Weldegebriel GG, Biey JNM, Mitula P, Wiysonge CS, Paluku G, Mumba M, Wanyoike SW, Impouma B. A decade of rotavirus vaccination in the World Health Organization African Region: An in-depth analysis of vaccine coverage from 2012 to 2023. Vaccine 2025; 48:126768. [PMID: 39890559 DOI: 10.1016/j.vaccine.2025.126768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Significant progress has been achieved in the introduction of rotavirus vaccines in the World Health Organization, African Region (WHO/AFR), with only 19% (9/47) of the countries yet to introduce the vaccines. Despite this achievement, a considerable number of eligible children in Africa still lack access to these lifesaving rotavirus vaccines. METHODOLOGY We performed in-depth data exploration and analysis on the WHO/UNICEF rotavirus vaccine uptake estimates of vaccine coverage to document progress and estimated the number of children missing vaccination through under- or un-vaccination between 2012 and 2023. RESULTS Thirty-eight countries have introduced the vaccine in the national immunization programs and the vaccine coverage rates have increased from 5% to 61% between 2012 and 2023 in the WHO/AFR, compared to 11% to 55% at the global level. Coverage by sub-regions ranged from 48% in Central African countries to 73% in the Southeast sub-region in 2023. Vaccine coverage has been increasing every year, yet some countries reported a significant drop during the COVID-19 pandemic (2020-2022) compared to the pre-pandemic (2019_or earlier) period. For instance, in Senegal, coverage declined from 94% to 70%; Namibia, 90% to 55%; Republic of Congo, 71% to 23 %; for 2019 and 2022, respectively. Four countries experienced a significant decline between 2021 and 2022. For instance, Botswana (85% to 65%), Kenya (95% to 23%), Zambia (87% to 32%), and Zimbabwe (86% to 55%); but coverage increased in 2023 (post-pandemic) in Kenya (71%), Senegal (83%), and Zambia (40%). The estimates of vaccinated children increased steadily over the years, reaching 23.5 million in 2023. However, 257.8 million children missed vaccination between 2012 and 2023, of which 18.5 million in 2022. CONCLUSIONS Although countries in the WHO/AFR have made significant progress in introducing rotavirus vaccines, reaching every eligible child remains a challenge; and more than half of children are missing the full benefit of protection against rotavirus diarrhoea. There is a need for accelerated actions and concerted efforts to reach missed children and support for the nine remaining countries to introduce the vaccine.
Collapse
Affiliation(s)
- Jason M Mwenda
- World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo.
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Instituto Nacional de Saúde (INS), Ministério da Saúde, Marracuene, Maputo, Mozambique; ISGlobal, Barcelona, Spain; Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | | | | | - Reggis Katsande
- World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo
| | - Ado Mpia Bwaka
- World Health Organization, Regional Office for Africa, Inter Country Support Team (IST) for West Africa, Ouagadougou, Burkina Faso
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ISGlobal, Barcelona, Spain; Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Nicholas M Kiulia
- Enteric Pathogens and Water Research Laboratory, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Sergio Massora
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | - Goitom G Weldegebriel
- World Health Organization (WHO), Regional Office for Africa, Inter-Country Support Team, East and Southern Africa, Harare, Zimbabwe
| | - Joseph Nsiari-Muzeyi Biey
- World Health Organization, Regional Office for Africa, Inter Country Support Team (IST) for West Africa, Ouagadougou, Burkina Faso
| | - Pamela Mitula
- World Health Organization, Regional Office for Africa, Inter Country Support Team (IST) for West Africa, Ouagadougou, Burkina Faso
| | | | - Gilson Paluku
- World Health Organization, Regional Office for Africa, Inter-Country Support Team, Central Africa, Libreville, Gabon
| | - Mutale Mumba
- World Health Organization, Regional Office for Africa, Inter Country Support Team (IST) for West Africa, Ouagadougou, Burkina Faso
| | - Sarah Waithera Wanyoike
- World Health Organization, Regional Office for Africa, Inter Country Support Team (IST) for West Africa, Ouagadougou, Burkina Faso
| | - Benido Impouma
- World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
3
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Garrine M, Messa A, Vubil D, Nobela N, Kotloff K, Nataro JP, Nhampossa T, Acácio S, Weldegebriel G, Tate JE, Parashar U, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic analysis of DS-1-like human rotavirus A strains uncovers genetic relatedness of NSP4 gene with animal strains in Manhiça District, Southern Mozambique. Sci Rep 2024; 14:30705. [PMID: 39730435 PMCID: PMC11680989 DOI: 10.1038/s41598-024-79767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024] Open
Abstract
Post rotavirus vaccine introduction in Mozambique (September 2015), we documented a decline in rotavirus-associated diarrhoea and genotypes changes in our diarrhoeal surveillance spanning 2008-2021. This study aimed to perform whole-genome sequencing of rotavirus strains from 2009 to 2012 (pre-vaccine) and 2017-2018 (post-vaccine). Rotavirus strains previously detected by conventional PCR as G2P[4], G2P[6], G3P[4], G8P[4], G8P[6], and G9P[6] from children with moderate-to-severe and less-severe diarrhoea and without diarrhoea (healthy community controls) were sequenced using Illumina MiSeq® platform and analysed using bioinformatics tools. All these G and P-type combinations exhibited DS-1-like constellation in the rest of the genome segments as, I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that strains from children with and without diarrhoea clustered together with other Mozambican and global strains. Notably, the NSP4 gene of strains G3P[4] and G8P[4] in children with diarrhoea clustered with animal strains, such as bovine and caprine, with similarity identities ranging from 89.1 to 97.0% nucleotide and 89.5-97.0% amino acids. Our findings revealed genetic similarities among rotavirus strains from children with and without diarrhoea, as well as with animal strains, reinforcing the need of implementing studies with One Health approach in our setting, to elucidate the genetic diversity of this important pathogen.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Eva D João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - James P Nataro
- Department of Paediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Jacqueline E Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique.
- ISGlobal, Barcelona, 08036, Spain.
| |
Collapse
|
4
|
Valusenko-Mehrkens R, Schilling-Loeffler K, Johne R, Falkenhagen A. VP4 Mutation Boosts Replication of Recombinant Human/Simian Rotavirus in Cell Culture. Viruses 2024; 16:565. [PMID: 38675907 PMCID: PMC11054354 DOI: 10.3390/v16040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.
Collapse
Affiliation(s)
| | | | | | - Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (R.V.-M.); (K.S.-L.); (R.J.)
| |
Collapse
|
5
|
Wang G, Zhang K, Zhang R, Kong X, Guo C. Impact of vaccination with different types of rotavirus vaccines on the incidence of intussusception: a randomized controlled meta-analysis. Front Pediatr 2023; 11:1239423. [PMID: 37583623 PMCID: PMC10424850 DOI: 10.3389/fped.2023.1239423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Background Intussusception is a prevalent pediatric issue causing acute abdominal pain, with potential links to rotavirus vaccines. The variety of these vaccines has grown in recent years. This meta-analysis study aims to evaluate the impact of various rotavirus vaccines on intussusception incidence. Methods We executed a thorough search across databases like PubMed, Cochrane Library, Embase, and Web of Science, leading to the selection of 15 credible randomized controlled trials (RCTs) that encompass various types of rotavirus vaccines. From each study, we extracted essential details such as vaccine types and intussusception occurrences. We assessed the risk of bias using the Cochrane Collaboration's tool, conducted statistical analysis with R (version 4.2.3), determined relative risk (RR) using a random effects model, and performed a subgroup analysis for vaccines of differing brands and types. Results We included 15 randomized controlled studies from various countries. While intussusception incidence differed between vaccinated and control groups, this difference was not statistically significant. The overall risk ratio (RR), calculated using a random effects model, was 0.81, with a 95% confidence interval of [0.53, 1.23]. This crossing 1 shows that vaccination didn't notably change disease risk. Additionally, the 0% group heterogeneity suggests consistency across studies, strengthening our conclusions. Subgroup analysis for different vaccine brands and types (RV1 (Rotarix, Rotavac, RV3-BB), RV3 (LLR3), RV5 (RotasiiL, RotaTeq), and RV6) showed no significant variation in intussusception incidence. Despite variations in RR among subgroups, these differences were not statistically significant (P > 0.05). Conclusions Our study indicates that rotavirus vaccination does not significantly increase the incidence of intussusception. Despite varying impacts across different vaccine brands and types, these variations are insignificant. Given the substantial benefits outweighing the risks, promoting the use of newly developed rotavirus vaccines remains highly valuable. Systematic Review Registration www.crd.york.ac.uk/prospero/, Identifier CRD42023425279.
Collapse
Affiliation(s)
- Guoyong Wang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric General Surgery, Children's Hospital, Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
| | - Kaijun Zhang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric General Surgery, Children's Hospital, Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
| | - Rensen Zhang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiangru Kong
- Department of Pediatric General Surgery, Children's Hospital, Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
| | - Chunbao Guo
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics,Chongqing Medical University, Chongqing, China
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
6
|
Steele AD, Armah GE, Mwenda JM, Kirkwood CD. The Full Impact of Rotavirus Vaccines in Africa Has Yet to Be Realized. Clin Infect Dis 2023; 76:S1-S4. [PMID: 37074434 PMCID: PMC10116555 DOI: 10.1093/cid/ciad017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Africa bears the brunt of diarrheal mortality globally. Rotavirus vaccination rates are high across the continent and demonstrate impact on diarrheal disease reduction. Nevertheless, there is room for significant improvement in managing rotavirus vaccine coverage, in access to recognized public services such as appropriate medical care, including oral rehydration therapy and improved water and sanitation.
Collapse
Affiliation(s)
- A Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - George E Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Jason M Mwenda
- VPD Surveillance, World Health Organization (WHO) Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of Congo
| | - Carl D Kirkwood
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
7
|
Mandomando I, Augusto Messa, Biey JNM, Paluku G, Mumba M, Mwenda JM. Lessons Learned and Future Perspectives for Rotavirus Vaccines Switch in the World Health Organization, Regional Office for Africa. Vaccines (Basel) 2023; 11:788. [PMID: 37112700 PMCID: PMC10140870 DOI: 10.3390/vaccines11040788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Following the World Health Organization (WHO) recommendation, 38/47 countries have introduced rotavirus vaccines into the program of immunization in the WHO Regional Office for Africa (WHO/AFRO). Initially, two vaccines (Rotarix and Rotateq) were recommended and recently two additional vaccines (Rotavac and Rotasiil) have become available. However, the global supply challenges have increasingly forced some countries in Africa to switch vaccine products. Therefore, the recent WHO pre-qualified vaccines (Rotavac, Rotasiil) manufactured in India, offer alternatives and reduce global supply challenges related to rotavirus vaccines; Methods: Using a questionnaire, we administered to the Program Managers, Expanded Program for Immunization, we collected data on vaccine introduction and vaccine switch and the key drivers of the decisions for switching vaccines products, in the WHO/AFRO. Data was also collected fromliterature review and the global new vaccine introduction status data base maintained by WHO and other agencies. RESULTS Of the 38 countries that introduced the vaccine, 35 (92%) initially adopted Rotateq or Rotarix; and 23% (8/35) switched between products after rotavirus vaccine introduction to either Rotavac (n = 3), Rotasiil (n = 2) or Rotarix (n = 3). Three countries (Benin, Democratic Republic of Congo and Nigeria) introduced the rotavirus vaccines manufactured in India. The decision to either introduce or switch to the Indian vaccines was predominately driven by global supply challenges or supply shortage. The withdrawal of Rotateq from the African market, or cost-saving for countries that graduated or in transition from Gavi support was another reason to switch the vaccine; Conclusions: The recently WHO pre-qualified vaccines have offered the countries, opportunities to adopt these cost-effective products, particularly for countries that have graduated or transitioning from full Gavi support, to sustain the demand of vaccines products.
Collapse
Affiliation(s)
- Inacio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo P.O. Box 1929, Mozambique
- Instituto Nacional de Saúde (INS), Maputo P.O. Box 3943, Mozambique
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo P.O. Box 1929, Mozambique
| | - Joseph Nsiari-Muzeyi Biey
- Inter Country Support Team (IST) for West Africa, Regional Office for Africa, World Health Organization (WHO), Ouagadougou 03 BP 7019, Burkina Faso
| | - Gilson Paluku
- Inter Country Support Team (IST) for Central Africa, World Health Organization, Libreville P.O. Box 820, Gabon
| | - Mutale Mumba
- Inter Country Support Team (IST) for East and Southern Africa, Regional Office for Africa, World Health Organization, Harare P.O. Box 5160, Zimbabwe
| | - Jason M. Mwenda
- Regional Office for Africa, World Health Organization (WHO), Brazzaville P.O. Box 06, Congo
| |
Collapse
|
8
|
Evaluating the appropriateness of laboratory testing and antimicrobial use in South African children hospitalized for community-acquired infections. PLoS One 2022; 17:e0272119. [PMID: 35901088 PMCID: PMC9333228 DOI: 10.1371/journal.pone.0272119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Community acquired infection (CAI) is the leading indication for paediatric hospitalization in South Africa. Methods We conducted secondary data analysis of prospective, consecutive paediatric admissions to Tygerberg Hospital (May 2015-November 2015). Clinical characteristics, admission diagnosis, appropriateness of diagnostic tests, use of antimicrobial prescriptions, hospital outcome and costs were analyzed. Results CAI episodes were documented in (364/451; 81%) children admitted to the general paediatric ward; median age 4.8 months (Interquartile range, IQR, 1.5–17.5) and weight 5.4kg (IQR, 3.6–9.0). Male gender predominated (210/364; 58%), and Human Immunodeficiency Virus infection prevalence was 6.0% (22/364). Common CAI types included respiratory tract infections (197; 54%), gastroenteritis (51; 14%), and bloodstream infections (33; 9%). Pre-hospital antibiotics (ceftriaxone) were given to 152/364 (42%). Of 274 blood cultures and 140 cerebrospinal fluid samples submitted, 5% and 2% respectively yielded a pathogen. Common CAI antibiotic treatment regimens included: ampicillin alone (53%); ampicillin plus gentamicin (25%) and ampicillin plus cefotaxime (20%). Respiratory syncytial virus (RSV) was found in 39% of the children investigated for pneumonia. Most antibiotic prescriptions (323/364; 89%) complied with national guidelines and were appropriately adjusted based on the patient’s clinical condition and laboratory findings. The overall estimated cost of CAI episode management ZAR 22,535 (≈1423 USD) per CAI admission episode. Unfavourable outcomes were uncommon (1% died, 4% required re-admission within 30 days of discharge). Conclusion CAI is the most frequent reason for hospitalization and drives antimicrobial use. Improved diagnostic stewardship is needed to prevent inappropriate antimicrobial prescriptions. Clinical outcome of paediatric CAI episodes was generally favourable.
Collapse
|
9
|
Varghese T, Kang G, Steele AD. Understanding Rotavirus Vaccine Efficacy and Effectiveness in Countries with High Child Mortality. Vaccines (Basel) 2022; 10:346. [PMID: 35334978 PMCID: PMC8948967 DOI: 10.3390/vaccines10030346] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
Rotavirus claims thousands of lives of children globally every year with a disproportionately high burden in low- and lower-middle income countries where access to health care is limited. Oral, live-attenuated rotavirus vaccines have been evaluated in multiple settings in both low- and high-income populations and have been shown to be safe and efficacious. However, the vaccine efficacy observed in low-income settings with high rotavirus and diarrheal mortality was significantly lower than that seen in high-income populations where rotavirus mortality is less common. Rotavirus vaccines have been introduced and rolled out in more than 112 countries, providing the opportunity to assess effectiveness of the vaccines in these different settings. We provide an overview of the efficacy, effectiveness, and impact of rotavirus vaccines, focusing on high-mortality settings and identify the knowledge gaps for future research. Despite lower efficacy, rotavirus vaccines substantially reduce diarrheal disease and mortality and are cost-effective in countries with high burden. Continued evaluation of the effectiveness, impact, and cost-benefit of rotavirus vaccines, especially the new candidates that have been recently approved for global use, is a key factor for new vaccine introductions in countries, or for a switch of vaccine product in countries with limited resources.
Collapse
Affiliation(s)
- Tintu Varghese
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (G.K.)
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (G.K.)
| | - Andrew Duncan Steele
- Enteric and Diarrheal Disease, Bill & Melinda Gates Foundation, Seattle, WA 98102, USA
| |
Collapse
|
10
|
Omatola CA, Ogunsakin RE, Olaniran AO. Prevalence, Pattern and Genetic Diversity of Rotaviruses among Children under 5 Years of Age with Acute Gastroenteritis in South Africa: A Systematic Review and Meta-Analysis. Viruses 2021; 13:1905. [PMID: 34696335 PMCID: PMC8538439 DOI: 10.3390/v13101905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/26/2022] Open
Abstract
Rotavirus is the most significant cause of severe acute gastroenteritis among children under 5 years of age, worldwide. Sub-Saharan Africa particularly bears the brunt of the diarrheal deaths. A meta-analysis was conducted on 43 eligible studies published between 1982 and 2020 to estimate the pooled prevalence of rotavirus infection and changes in the main rotavirus strains circulating before and after vaccine introduction among under-five children in South Africa. The pooled national prevalence of rotavirus infection was estimated at 24% (95% CI: 21-27%) for the pre-vaccination period and decreased to 23% (95% CI: 21-25%) in the post-vaccination period. However, an increased number of cases was observed in the KwaZulu-Natal (21-28%) and Western Cape (18-24%) regions post-vaccination. The most dominant genotype combinations in the pre-vaccine era was G1P[8], followed by G2P[4], G3P[8], and G1P[6]. After vaccine introduction, a greater genotype diversity was observed, with G9P[8] emerging as the predominant genotype combination, followed by G2P[4], G12P[8], and G1P[8]. The introduction of the rotavirus vaccine was associated with a reduction in the burden of rotavirus-associated diarrhea in South Africa, although not without regional fluctuation. The observed changing patterns of genotype distribution highlights the need for ongoing surveillance to monitor the disease trend and to identify any potential effects associated with the dynamics of genotype changes on vaccine pressure/failure.
Collapse
Affiliation(s)
- Cornelius A. Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa;
| | - Ropo E. Ogunsakin
- Discipline of Public Health Medicine, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa;
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
11
|
Mwenda JM, Hallowell BD, Parashar U, Shaba K, Biey JNM, Weldegebriel GG, Paluku GK, Ntsama B, N'diaye A, Bello IM, Bwaka AM, Zawaira FR, Mihigo R, Tate JE. Impact of rotavirus vaccine introduction on rotavirus hospitalizations among children under 5 years of age - World Health Organization African Region, 2008-2018. Clin Infect Dis 2021; 73:1605-1608. [PMID: 34089588 DOI: 10.1093/cid/ciab520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rotavirus is the leading cause of acute gastroenteritis (AGE) among children worldwide. Prior to rotavirus vaccine introduction, over one third of AGE hospitalizations in Africa were due to rotavirus. We describe the impact of rotavirus vaccines using data from the African Rotavirus Surveillance Network (ARSN). METHODS For descriptive analysis, we included all sites reporting to ARSN for any length of time between 2008-2018. For vaccine impact analysis, continuous surveillance throughout the year was required to minimize potential bias due to enrollment of partial seasons and sites had to report a minimum of 100 AGE cases per year. We report the proportion of rotavirus AGE cases by year relative to vaccine introduction, and the relative reduction in the proportion of rotavirus AGE cases reported following vaccine introduction. RESULTS From 2008-2018, 97,366 prospectively enrolled hospitalized children <5 years of age met the case definition for AGE, and 34.1% tested positive for rotavirus. Among countries that had introduced rotavirus vaccine, the proportion of hospitalized AGE cases positive for rotavirus declined from 39.2% in the pre-vaccine period to 25.3% in the post-vaccine period, a 35.5% (95% CI: 33.7-37.3) decline. No declines were observed among countries that had not introduced the vaccine over the 11-year period. CONCLUSION Rotavirus vaccine introduction led to large and consistent declines in the proportion of hospitalized AGE cases that are positive for rotavirus. To maximize the public health benefit of these vaccines, efforts to introduce rotavirus vaccines to the remaining countries in the region and improve coverage should continue.
Collapse
Affiliation(s)
- Jason M Mwenda
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Benjamin D Hallowell
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, United States.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, United States
| | - Umesh Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - Keith Shaba
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | | | | | - Gilson Kipese Paluku
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Bernard Ntsama
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Aboubacar N'diaye
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Isah Mohammed Bello
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Ado Mpia Bwaka
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Felicitas R Zawaira
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Richard Mihigo
- World Health Organization Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Jacqueline E Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| |
Collapse
|
12
|
Mandomando I, Mumba M, Nsiari-Muzeyi Biey J, Kipese Paluku G, Weldegebriel G, Mwenda JM. Implementation of the World Health Organization recommendation on the use of rotavirus vaccine without age restriction by African countries. Vaccine 2021; 39:3111-3119. [PMID: 33958225 DOI: 10.1016/j.vaccine.2021.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
The World Health Organization (WHO) recommended the worldwide use of rotavirus vaccines initially in 2007 and 2009 applying a strict age restriction criterion due to the potential for age-related association with increased risk of intussusception in infants. The restriction was relaxed in the 2013 after detailed review of robust safety data generated in post-marketing surveillance studies. We assessed the status of the implementation of the 2013 recommendation to remove age restriction in the WHO African region (AFR). Of the approximately 75% (35/47) of countries that had introduced the vaccine by 2018, only 43% (15/35) removed age restriction, exclusively from South and East sub-region (78%, 14/18). Avoiding confusion at the health facilities and financial constraints particularly resources required for re-training the health workers, use of vaccine off-label were cited as the main reasons for not implementing the 2013 WHO recommendation on age restriction removal. The 2013 WHO recommendation has not been fully implemented by African countries, suggesting the need for technical advisory bodies to further guide the countries, continue monitoring the implementation status and impact on the rotavirus vaccine coverage and intussusception in the Africa region.
Collapse
Affiliation(s)
- Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Mutale Mumba
- World Health Organization (WHO), Inter Country Support Team (IST), Harare, Zimbabwe
| | | | - Gilson Kipese Paluku
- World Health Organization (WHO), Inter Country Support Team (IST), Libreville, Gabon
| | - Goitom Weldegebriel
- World Health Organization (WHO), Inter Country Support Team (IST), Harare, Zimbabwe
| | - Jason M Mwenda
- World Health Organization (WHO), Regional Office for Africa, Brazzaville, Congo.
| |
Collapse
|
13
|
Acácio S, Nhampossa T, Quintò L, Vubil D, Garrine M, Bassat Q, Farag T, Panchalingam S, Nataro JP, Kotloff KL, Levine MM, Tennant SM, Alonso PL, Mandomando I. Rotavirus disease burden pre-vaccine introduction in young children in Rural Southern Mozambique, an area of high HIV prevalence. PLoS One 2021; 16:e0249714. [PMID: 33831068 PMCID: PMC8031087 DOI: 10.1371/journal.pone.0249714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rotavirus vaccines have been adopted in African countries since 2009, including Mozambique (2015). Disease burden data are needed to evaluate the impact of rotavirus vaccine. We report the burden of rotavirus-associated diarrhea in Mozambique from the Global Enteric Multicenter Study (GEMS) before vaccine introduction. METHODS A case-control study (GEMS), was conducted in Manhiça district, recruiting children aged 0-59 months with moderate-to-severe diarrhea (MSD) and less-severe-diarrhea (LSD) between December 2007 and November 2012; including 1-3 matched (age, sex and neighborhood) healthy community controls. Clinical and epidemiological data and stool samples (for laboratory investigation) were collected. Association of rotavirus with MSD or LSD was determined by conditional logistic regression and adjusted attributable fractions (AF) calculated, and risk factors for rotavirus diarrhea assessed. RESULTS Overall 915 cases and 1,977 controls for MSD, and 431 cases and 430 controls for LSD were enrolled. Rotavirus positivity was 44% (217/495) for cases and 15% (160/1046) of controls, with AF = 34.9% (95% CI: 32.85-37.06) and adjusted Odds Ratio (aOR) of 6.4 p< 0.0001 in infants with MSD compared to 30% (46/155) in cases and 14% (22/154) in controls yielding AF = 18.7%, (95% CI: 12.02-25.39) and aOR = 2.8, p = 0.0011 in infants with LSD. The proportion of children with rotavirus was 32% (21/66) among HIV-positive children and 23% (128/566) among HIV-negative ones for MSD. Presence of animals in the compound (OR = 1.9; p = 0.0151) and giving stored water to the child (OR = 2.0, p = 0.0483) were risk factors for MSD; while animals in the compound (OR = 2.37, p = 0.007); not having routine access to water on a daily basis (OR = 1.53, p = 0.015) and washing hands before cooking (OR = 1.76, p = 0.0197) were risk factors for LSD. CONCLUSION The implementation of vaccination against rotavirus may likely result in a significant reduction of rotavirus-associated diarrhea, suggesting the need for monitoring of vaccine impact.
Collapse
Affiliation(s)
- Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Llorenç Quintò
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Lisbon, Portugal
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tamer Farag
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sandra Panchalingam
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - James P. Nataro
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Karen L. Kotloff
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Myron M. Levine
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- World Health Organization, Geneva, Switzerland
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
- * E-mail:
| |
Collapse
|
14
|
Wang Y, Li J, Dai P, Liu P, Zhu F. Effectiveness of the oral human attenuated pentavalent rotavirus vaccine (RotaTeq™) postlicensure: a meta-analysis-2006-2020. Expert Rev Vaccines 2021; 20:437-448. [PMID: 33709863 DOI: 10.1080/14760584.2021.1902808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Rotavirus (RV), which causes RV-associated gastroenteritis (RVGE), has accounted for considerable morbidity. We aimed to assess the effectiveness (VE) of the oral pentavalent RV vaccine (RotaTeq™) in real-world settings in children and infants with gastroenteritis. METHODS We performed a systematic search for peer-reviewed studies published between 1 January 2006 and 1 May 2020 and a meta-analysis to calculate the VE of RotaTeq™ vaccine. The primary outcome was the pooled three-dose vaccine VE. Stratified analysis of the vaccine VEs was performed according to dosages, study design, population age, socioeconomic status (SES), introduction condition, control group types, outcomes of RV disease, and RV strains. RESULTS After screening 2359 unique records, 28 studies were included and meta-analyzed. The overall VE estimate was 84% (95% confidence interval [CI], 80-87%). Stratified analyses revealed a nonnegligible impact of factors such as study design and SES. Other factors did not show great impart to VE with no significant differences between groups. CONCLUSIONS RotaTeq™ is effective against RV infection, especially in high-income countries. Adopting suitable study methods and expansion of RV surveillance in low-income regions is crucial to assess VE in real-life settings and provide feasible vaccine regimens to improve vaccine VE.
Collapse
Affiliation(s)
- Yuxiao Wang
- School of Public Health, Southeast University, Nanjing, China
| | - Jingxin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Pinyuan Dai
- School of Public Health, Southeast University, Nanjing, China
| | - Pei Liu
- School of Public Health, Southeast University, Nanjing, China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
15
|
Mphahlele MJ, Groome MJ, Page NA, Bhagwandin N, Mwenda JM, Steele AD. A decade of rotavirus vaccination in Africa - Saving lives and changing the face of diarrhoeal diseases: Report of the 12 th African Rotavirus Symposium. Vaccine 2021; 39:2319-2324. [PMID: 33775436 DOI: 10.1016/j.vaccine.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
The African Rotavirus Network organised the 12th African Rotavirus Symposium (ARS) from 30 July to 1 August 2019 in Johannesburg, South Africa. The symposium theme "A decade of rotavirus vaccination in Africa - Saving lives and changing the face of diarrhoeal diseases", included sessions aimed at sharing ideas and expertise on prevention and control of diarrhoeal disease in Africa. Inter alia, the delegates reviewed global and regional epidemiological trends on rotavirus diarrhoea, progress and experiences on rotavirus vaccine introduction, including vaccine safety monitoring and impact in Africa, scientific advances in developing newer rotavirus vaccines, surveillance and research on other diarrhoeal pathogens, and providing an enabling environment for networking. Importantly, the 12th ARS served to commemorate the 20th anniversary of the African Rotavirus Network (AfrRN) coinciding with the 50th anniversary of the South African Medical Research Council. Four oral, live-attenuated rotavirus vaccines are currently prequalified by the WHO (Rotarix, RotaTeq, Rotavac and RotaSiil). African countries utilising rotavirus vaccines in routine national immunisation programmes are realising their effectiveness and impact on diarrhoeal disease morbidity. An ~40% reduction in hospitalisations of <5-year-olds with acute gastroenteritis following rotavirus vaccine introduction, was reported between 2006 and 2018 in 92,000 children from the WHO-coordinated African Rotavirus Surveillance Network (AfrRSN) comprising 33 Member States. This was corroborated by a meta-analysis of published data, sourced from January 2000 to August 2018 that reported substantial reductions in rotavirus hospitalisations in countries using rotavirus vaccines. However, it was highlighted that the transition of some countries from Gavi-eligibility and vaccine supply shortfalls present significant challenges to achieving the full impact of rotavirus immunization in Africa. The wide diversity of rotavirus genotypes continues in Africa, with variation observed both geographically and temporally. There is currently no evidence to suggest that the emergence of rotavirus strains not included in the current vaccines do escape vaccine-induced immunity.
Collapse
Affiliation(s)
- M Jeffrey Mphahlele
- South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa; Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa.
| | - Michelle J Groome
- South African Medical Research Council/Wits Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola A Page
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Sandringham, Johannesburg 2131, South Africa
| | - Niresh Bhagwandin
- South African Medical Research Council, Francie van Zijl Drive, Parow Valley, Cape Town 7505, South Africa
| | - Jason M Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, People's Republic of Congo
| | - A Duncan Steele
- Diarrhoeal Pathogens Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa; Enteric and Diarrhoeal Diseases Programme, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
16
|
Wang Y, Li J, Liu P, Zhu F. The performance of licensed rotavirus vaccines and the development of a new generation of rotavirus vaccines: a review. Hum Vaccin Immunother 2021; 17:880-896. [PMID: 32966134 DOI: 10.1080/21645515.2020.1801071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rotavirus, which causes acute gastroenteritis and severe diarrhea, has posed a great threat to children worldwide over the last 30 y. Since no specific drugs and therapies against rotavirus are available, vaccination is considered the most effective method of decreasing the morbidity and mortality related to rotavirus-associated gastroenteritis. To date, six rotavirus vaccines have been developed and licensed by local governments. Notably, Rotarix™ and RotaTeq™ have been recommended as universal agents against rotavirus infection by the World Health Organization; however, lower efficacies were found in less-developed and developing regions with medium and high child mortality than well-developed ones with low child mortality. For now, two promising novel vaccines, Rotavac™ and RotaSiil™ were pre-qualified by the World Health Organization in 2018. Other rotavirus vaccines in the pipeline including neonatal strain (RV3-BB) and several non-replicating rotavirus vaccines with a parenteral delivery strategy are currently undergoing investigation, with the potential to improve the performance of, and eliminate the safety concerns associated with, previous live oral rotavirus vaccines. This paper reviews the important developments in rotavirus vaccines in the last 20 y and discusses problems and challenges that require investigation in the future.
Collapse
Affiliation(s)
- Yuxiao Wang
- School of Public Health, Southeast University, Nanjing, China
| | - Jingxin Li
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Pei Liu
- School of Public Health, Southeast University, Nanjing, China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
17
|
Epidemiology of Hospitalized Intussusception Cases from Northern States in India. Indian J Pediatr 2021; 88:118-123. [PMID: 33452646 DOI: 10.1007/s12098-020-03609-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To describe epidemiology of intussusception post-introduction of the rotavirus vaccine. METHODS Hospital-based active surveillance system was set up in three tertiary care hospitals in Chandigarh and Haryana, India, to enroll children <2 y of age admitted with intussusception as per Brighton Collaboration Level-I criteria. The clinical characteristics, treatment modalities, seasonal trends, and outcome of the illness episodes were described. RESULTS A total of 224 cases were reported. Majority were males (71%) and infants (69.5%). Number of intussusception was more in summer season. Location of intussusception was ileo-colic in 85% of the cases. Nearly 54% cases were treated conservatively and 46% needed surgical intervention. CONCLUSION Surveillance data provided the epidemiological description of intussusception cases post-introduction of the rotavirus vaccine in northern India. This data could be used to assess the impact of vaccine and safety with a special focus on intussusception.
Collapse
|
18
|
Steele AD, Groome MJ. Measuring Rotavirus Vaccine Impact in Sub-Saharan Africa. Clin Infect Dis 2021; 70:2314-2316. [PMID: 31544209 PMCID: PMC7245150 DOI: 10.1093/cid/ciz918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- A Duncan Steele
- Enteric and Diarrheal Disease, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Michelle J Groome
- Respiratory and Meningeal Pathogens Research Unit, South African Medical Research Council, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Agbla JM, Esona MD, Agbankpe AJ, Capo-Chichi A, Gautam R, Dougnon TV, Razack O, Bowen MD, Bankole HS. Molecular characteristics of rotavirus genotypes circulating in the south of Benin, 2016-2018. BMC Res Notes 2020; 13:485. [PMID: 33076976 PMCID: PMC7574571 DOI: 10.1186/s13104-020-05332-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Rotavirus remains the main causative agent of gastroenteritis in young children in countries that have not yet introduced the vaccine. In Benin, rotavirus vaccine was introduced late December 2019 into the EPI. This study aims to provide pre-vaccination era rotavirus genotyping data in Benin. These data can supplement data from the surveillance system of Ministry of Health of Benin which is supported by the World Health Organization (WHO). RESULTS Of the 420 diarrheal stool samples, actively collected in southern Benin from July 2016 through November 2018 from children under 5 years old and suffering from gastroenteritis, 167 (39.8%) samples were rotavirus EIA positive. 186 (44.3%) samples contained amplifiable rotavirus RNA detected by qRT-PCR method and were genotyped using one-step RT-PCR multiplex genotyping method. G1P[8] represents the predominant genotype (32%) followed by the G2P[4] (26%), G3P[6] (16%), G12P[8] (13%) and mixed G and P types (1%). Four samples (2%) could not be assigned both G and P type specificity.
Collapse
Affiliation(s)
- Jijoho Michel Agbla
- Ministry of Public Health, National Health Laboratory, 01 P.O. Box 418, Cotonou, Benin
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Mathew D. Esona
- Viral Gastroenteritis Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control CDC, 1600 Clifton Road, NE, Atlanta, GA 30329 USA
| | - Alidehou Jerrold Agbankpe
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Annick Capo-Chichi
- Epidemiological Surveillance Service, Ministry of Public Health, 01 P.O. Box 418, Cotonou, Benin
| | - Rashi Gautam
- Viral Gastroenteritis Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control CDC, 1600 Clifton Road, NE, Atlanta, GA 30329 USA
| | - Tamegnon Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Osseni Razack
- Central Clinic of Abomey Calavi, 01 P.O. Box 418, Cotonou, Benin
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control CDC, 1600 Clifton Road, NE, Atlanta, GA 30329 USA
| | - Honore Sourou Bankole
- Ministry of Public Health, National Health Laboratory, 01 P.O. Box 418, Cotonou, Benin
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| |
Collapse
|
20
|
Hughes HE, Elliot AJ, Hughes TC, Hungerford D, Morbey RA, Smith GE, Vivancos R, O’Brien SJ. Using emergency department syndromic surveillance to investigate the impact of a national vaccination program: A retrospective observational study. PLoS One 2020; 15:e0240021. [PMID: 33031389 PMCID: PMC7544051 DOI: 10.1371/journal.pone.0240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rotavirus infection is a common cause of gastroenteritis in children worldwide, with a high mortality burden in developing countries, particularly during the first two years of life. Rotavirus vaccination was introduced into the United Kingdom childhood vaccination schedule in July 2013, with high coverage (>90%) achieved by June 2016. We used an emergency department (ED) syndromic surveillance system to assess the impact of the rotavirus vaccination programme, specifically through the demonstration of any immediate and continuing impact on ED gastroenteritis visits in England. METHODS This retrospective, observational study used syndromic surveillance data collected from 3 EDs in the two years before (July 2011-June 2013) and 3 years post (July 2013-June 2016) introduction of rotavirus vaccination. The weekly levels of ED visits for gastroenteritis (by age group and in total) during the period before rotavirus vaccination was first described alongside the findings of laboratory surveillance of rotavirus during the same period. An interrupted time-series analysis was then performed to demonstrate the impact of rotavirus vaccination introduction on gastroenteritis ED visit levels. RESULTS During the two years before vaccine introduction ED visits for gastroenteritis in total and for the 0-4 years age group were seen to rise and fall in line with the seasonal rotavirus increases reported by laboratory surveillance. ED gastroenteritis visits by young children were lower in the three years following introduction of rotavirus vaccination (reduced from 8% of visits to 6% of visits). These attendance levels in young children (0-4years) remained higher than in older age groups, however the previously large seasonal increases in children were greatly reduced, from peaks of 16% to 3-10% of ED visits per week. CONCLUSIONS ED syndromic surveillance demonstrated a reduction in gastroenteritis visits following rotavirus vaccine introduction. This work establishes ED syndromic surveillance as a platform for rapid impact assessment of future vaccine programmes.
Collapse
Affiliation(s)
- Helen E. Hughes
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, United Kingdom
- Farr Institute at HeRC, University of Liverpool, Liverpool, United Kingdom
| | - Alex J. Elliot
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, United Kingdom
| | | | - Daniel Hungerford
- The Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Field Epidemiology North West, Field Service, National Infection Service, Public Health England, Liverpool, United Kingdom
| | - Roger A. Morbey
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, United Kingdom
| | - Gillian E. Smith
- Real-time Syndromic Surveillance Team, Field Service, National Infection Service, Public Health England, Birmingham, United Kingdom
| | - Roberto Vivancos
- Field Epidemiology North West, Field Service, National Infection Service, Public Health England, Liverpool, United Kingdom
| | - Sarah J. O’Brien
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
21
|
Pereira P, Vetter V, Standaert B, Benninghoff B. Fifteen years of experience with the oral live-attenuated human rotavirus vaccine: reflections on lessons learned. Expert Rev Vaccines 2020; 19:755-769. [PMID: 32729747 DOI: 10.1080/14760584.2020.1800459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Rotavirus (RV) disease remains a prominent cause of disease burden in children <5 years of age worldwide. However, implementation of RV vaccination has led to significant reductions in RV mortality, compared to the pre-vaccination era. This review presents 15 years of real-world experience with the oral live-attenuated human RV vaccine (HRV; Rotarix). HRV is currently introduced in ≥80 national immunization programs (NIPs), as 2 doses starting from 6 weeks of age. AREAS COVERED The clinical development of HRV and post-marketing experience indicating the impact of HRV vaccination on RV disease was reviewed. EXPERT OPINION In clinical trials, HRV displayed an acceptable safety profile and efficacy against RV-gastroenteritis, providing broad protection against heterotypic RV strains by reducing the consequences of severe RV disease in infants. Real-world evidence shows substantial, rapid reduction in the number of RV infections and associated hospitalizations following introduction of HRV in NIPs, regardless of economic setting. Indirect effects against RV disease are also observed, such as herd protection, decrease in nosocomial infections incidence, and a reduction of disease-related societal/healthcare costs. However, not all countries have implemented RV vaccination. Coverage remains suboptimal and should be improved to maximize the benefits of RV vaccination.
Collapse
|
22
|
Abstract
As of 2019, four rotavirus vaccines have been prequalified by the WHO for use worldwide. This review highlights current knowledge regarding rotavirus vaccines available, and provides a brief summary of the rotavirus vaccine pipeline.
Collapse
|
23
|
Mwanga MJ, Owor BE, Ochieng JB, Ngama MH, Ogwel B, Onyango C, Juma J, Njeru R, Gicheru E, Otieno GP, Khagayi S, Agoti CN, Bigogo GM, Omore R, Addo OY, Mapaseka S, Tate JE, Parashar UD, Hunsperger E, Verani JR, Breiman RF, Nokes DJ. Rotavirus group A genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010-2018. BMC Infect Dis 2020; 20:504. [PMID: 32660437 PMCID: PMC7359451 DOI: 10.1186/s12879-020-05230-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Kenya introduced the monovalent G1P [8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre- (January 2010-June 2014) and post- (July 2014-December 2018) RVA vaccine introduction. METHODS Stool samples were collected from children aged < 13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic Nairobi, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged < 5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and VP7 and VP4 genes sequenced to infer genotypes. RESULTS We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the pre-vaccine introduction period, the most frequent RVA genotypes were G1P [8] (45.8%), G8P [4] (15.8%), G9P [8] (13.2%), G2P [4] (7.0%) and G3P [6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P [8] (52.1%), G2P [4] (20.7%) and G3P [8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of vaccine heterotypic genotypes, such as the commonly DS-1-like G2P [4] (7.0 to 20.7%, P < .001) and G3P [8] (1.3 to 16.1%, P < .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P [4] (15.8 to 0.4%, P < .001) and G9P [8] (13.2 to 5.4%, P < .001) in the post-vaccine introduction period. Phylogenetic analysis of genotype G1P [8], revealed circulation of strains of lineages G1-I, G1-II and P [8]-1, P [8]-III and P [8]-IV. Considerable genetic diversity was observed between the pre and post-vaccine strains, evidenced by distinct clusters. CONCLUSION Genotype prevalence varied from before to after vaccine introduction. Such observations emphasize the need for long-term surveillance to monitor vaccine impact. These changes may represent natural secular variation or possible immuno-epidemiological changes arising from the introduction of the vaccine. Full genome sequencing could provide insights into post-vaccine evolutionary pressures and antigenic diversity.
Collapse
Affiliation(s)
- Mike J Mwanga
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya.
| | - Betty E Owor
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
| | - John B Ochieng
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Mwanajuma H Ngama
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
| | - Billy Ogwel
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Clayton Onyango
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Jane Juma
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Regina Njeru
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
| | - Elijah Gicheru
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
| | - Grieven P Otieno
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sammy Khagayi
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Charles N Agoti
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
| | - Godfrey M Bigogo
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Richard Omore
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - O Yaw Addo
- Global Health Institute, Emory University, Atlanta, GA, USA
| | - Seheri Mapaseka
- Department of Virology, South African Medical Research Council/Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jacqueline E Tate
- Division of Viral Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth Hunsperger
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Jennifer R Verani
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | | | - D James Nokes
- Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya.
- School of Life Science, and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
24
|
Overview of the Development, Impacts, and Challenges of Live-Attenuated Oral Rotavirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030341. [PMID: 32604982 PMCID: PMC7565912 DOI: 10.3390/vaccines8030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Safety, efficacy, and cost-effectiveness are paramount to vaccine development. Following the isolation of rotavirus particles in 1969 and its evidence as an aetiology of severe dehydrating diarrhoea in infants and young children worldwide, the quest to find not only an acceptable and reliable but cost-effective vaccine has continued until now. Four live-attenuated oral rotavirus vaccines (LAORoVs) (Rotarix®, RotaTeq®, Rotavac®, and RotaSIIL®) have been developed and licensed to be used against all forms of rotavirus-associated infection. The efficacy of these vaccines is more obvious in the high-income countries (HIC) compared with the low- to middle-income countries (LMICs); however, the impact is far exceeding in the low-income countries (LICs). Despite the rotavirus vaccine efficacy and effectiveness, more than 90 countries (mostly Asia, America, and Europe) are yet to implement any of these vaccines. Implementation of these vaccines has continued to suffer a setback in these countries due to the vaccine cost, policy, discharging of strategic preventive measures, and infrastructures. This review reappraises the impacts and effectiveness of the current live-attenuated oral rotavirus vaccines from many representative countries of the globe. It examines the problems associated with the low efficacy of these vaccines and the way forward. Lastly, forefront efforts put forward to develop initial procedures for oral rotavirus vaccines were examined and re-connected to today vaccines.
Collapse
|
25
|
Hallowell BD, Tate J, Parashar U. An overview of rotavirus vaccination programs in developing countries. Expert Rev Vaccines 2020; 19:529-537. [PMID: 32543239 DOI: 10.1080/14760584.2020.1775079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Rotavirus is the leading cause of acute diarrhea among children <5 years worldwide. As all children are equally susceptible to infection and disease development, rotavirus vaccination programs are the best upstream approach to preventing rotavirus disease, and the subsequent risk of hospitalization or death. AREAS COVERED We provide an overview of global rotavirus vaccine policy, summarize the burden of rotavirus disease in developing countries, review data on the effectiveness, impact, safety, and the cost-effectiveness of rotavirus vaccination programs, and identify areas for further research and improvement. EXPERT OPINION Rotavirus vaccines continue to be an effective, safe, and cost-effective solution to preventing rotavirus disease. As two new rotavirus vaccines enter the market (Rotasiil and Rotavac) and Asian countries continue to introduce rotavirus vaccines into their national immunization programs, documenting vaccine safety, effectiveness, and impact in these settings will be paramount.
Collapse
Affiliation(s)
- Benjamin D Hallowell
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA.,Epidemic Intelligence Service, CDC , Atlanta, GA, USA
| | - Jacqueline Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| |
Collapse
|
26
|
Eshete A, Shewasinad S, Hailemeskel S. Immunization coverage and its determinant factors among children aged 12-23 months in Ethiopia: a systematic review, and Meta- analysis of cross-sectional studies. BMC Pediatr 2020; 20:283. [PMID: 32513135 PMCID: PMC7278125 DOI: 10.1186/s12887-020-02163-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Immunization is the process by which a person is made immune or resistant to an infectious disease, typically by the administration of vaccine. Vaccination coverage for other single vaccines ranged from 49.1% for PCV to 69.2% for BCG vaccine. The vaccination coverage for basic vaccinations was 39.7% in Ethiopia. There have been epidemiological studies available on immunization in Ethiopia. Yet, these studies revealed a wide variation over time and across geographical areas. This systematic review and Meta-analysis aim to estimate the overall immunization coverage among 12-23 months children in Ethiopia. METHODS Cross-sectional studies that reported on immunization coverage from 2003 to August 2019 were systematically searched. Searches were conducted using PubMed, Google Scholar, Cochrane library, and gray literature. Information was extracted using a standardized form of Joanna Briggs Institute. The search was updated 20 Jan 2020 to decrease time-lag bias. The quality of studies assessed using Joanna Briggs Institute cross-sectional study quality assessment criteria. I-squared statistics applied to check the heterogeneity of studies. A funnel plot, Begg's test, and Egger's regression test was used to check for publication bias. RESULTS Out of 206 studies, 30 studies with 21,672 children with mothers were included in the Meta-analysis. The pooled full immunization coverage using the random-effect model in Ethiopia was 58.92% (95% CI: 51.26-66.58%). The trend of immunization coverage was improved from time to time, but there were great disparities among different regions. Amhara region had the highest pooled fully immunized coverage, 72.48 (95%CI: 62.81-82.16). The I2 statistics was I2 = 99.4% (p = 0.0001). A subgroup meta-analysis showed that region and study years were not the sources of heterogeneity. CONCLUSION This review showed that full immunization coverage in Ethiopia was 58.92% (95% CI: 51.26-66.58%). The study suggests that the child routine immunization program needs to discuss this low immunization coverage and the current practice needs revision.
Collapse
Affiliation(s)
- Akine Eshete
- College of Health Sciences, Department of Public Health, Debre Berhan University, Debre Berhan, Ethiopia.
| | - Sisay Shewasinad
- College of Health Sciences, Department of Nursing, Debre Berhan University, Debre Berhan, Ethiopia
| | - Solomon Hailemeskel
- College of Health Sciences, Department of Midwifery, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
27
|
Steele AD, Parashar UD. Rotavirus Vaccines Set to Make Inroads in Asia. Clin Infect Dis 2020; 69:2071-2073. [PMID: 30759190 PMCID: PMC6880325 DOI: 10.1093/cid/ciz137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- A Duncan Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
28
|
Inequalities in Rotavirus Vaccine Uptake in Ethiopia: A Decomposition Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082696. [PMID: 32295233 PMCID: PMC7216179 DOI: 10.3390/ijerph17082696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/04/2022]
Abstract
A previous study in Ethiopia reported significant variation in rotavirus vaccine uptake across socioeconomic strata. This study aims to quantify socioeconomic inequality of rotavirus vaccine uptake in Ethiopia and to identify the contributing factors for the inequality. The concentration curve (CC) and the Erreygers Normalized Concentration Index (ECI) were used to assess the socioeconomic related inequality in rotavirus vaccine uptake using data from the 2016 Ethiopian Demographic and Health Survey. Decomposition analysis was conducted to identify the drivers of inequalities. The CC for rotavirus vaccine uptake lay below the line of equality and the ECI was 0.270 (p < 0.001) indicating that uptake of rotavirus vaccine in Ethiopia was significantly concentrated among children from families with better socioeconomic status. The decomposition analysis showed that underlining inequalities in maternal health care services utilization, including antenatal care use (18.4%) and institutional delivery (8.1%), exposure to media (12.8%), and maternal educational level (9.7%) were responsible for the majority of observed inequalities in the uptake of rotavirus vaccine. The findings suggested that there is significant socioeconomic inequality in rotavirus vaccine uptake in Ethiopia. Multi-sectoral actions are required to reduce the inequalities, inclusive increasing maternal health care services, and educational attainments among economically disadvantaged mothers.
Collapse
|
29
|
Ugboko HU, Nwinyi OC, Oranusi SU, Oyewale JO. Childhood diarrhoeal diseases in developing countries. Heliyon 2020; 6:e03690. [PMID: 32322707 PMCID: PMC7160433 DOI: 10.1016/j.heliyon.2020.e03690] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Diarrhoeal diseases collectively constitute a serious public health challenge globally, especially as the leading cause of death in children (after respiratory diseases). Childhood diarrhoea affecting children under the age of five accounts for approximately 63% of the global burden. Accurate and timely detection of the aetiology of these diseases is very crucial; but conventional methods, apart from being laborious and time-consuming, often fail to identify difficult-to-culture pathogens. The aetiological agent of an average of up to 40% of cases of diarrhoea cannot be identified. This review gives an overview of the recent trends in the epidemiology and treatment of diarrhoea and aims at highlighting the potentials of metagenomics technique as a diagnostic method for enteric infections.
Collapse
Affiliation(s)
- Harriet U Ugboko
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - Obinna C Nwinyi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - Solomon U Oranusi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - John O Oyewale
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
30
|
Pérez-Ortín R, Santiso-Bellón C, Vila-Vicent S, Carmona-Vicente N, Rodríguez-Díaz J, Buesa J. Rotavirus symptomatic infection among unvaccinated and vaccinated children in Valencia, Spain. BMC Infect Dis 2019; 19:998. [PMID: 31771522 PMCID: PMC6880582 DOI: 10.1186/s12879-019-4550-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human group A rotavirus is the leading cause of severe acute gastroenteritis in young children worldwide. Immunization programs have reduced the disease burden in many countries. Vaccination coverage in the Autonomous Region of Valencia, Spain, is around 40%, as the rotavirus vaccine is not funded by the National Health System. Despite this low-medium vaccine coverage, rotavirus vaccination has substantially reduced hospitalizations due to rotavirus infection and hospital-related costs. However, there are very few studies evaluating symptomatic rotavirus infections not requiring hospitalization in vaccinated children. The objective of this study was to investigate symptomatic rotavirus infections among vaccinated children in the health area served by the Hospital Clínico Universitario of Valencia, Spain, from 2013 to 2015. METHODS A total of 133 children younger than 5 years of age with rotavirus infection were studied. Demographic and epidemiological data were collected and informed consent from their caretakers obtained. Rotavirus infection was detected by immunological methods and G/P rotavirus genotypes were determined by RT-PCR, following standard procedures from the EuroRotaNet network. RESULTS Forty infants (30.1%; 95% CI: 22.3-37.9) out of 133 were diagnosed with symptomatic rotavirus infection despite having been previously vaccinated, either with RotaTeq (85%) or with Rotarix (15%). Children fully vaccinated against rotavirus (24.8%), partially vaccinated (5.3%) and unvaccinated (69.9%) were found. The infecting genotypes showed high G-type diversity, although no significant differences were found between the G/P genotypes infecting vaccinated and unvaccinated children during the same time period. G9P[8], G12P[8] and G1P[8] were the most prevalent genotypes. Severity of gastroenteritis symptoms required 28 (66.6%) vaccinated and 67 (73.6%) unvaccinated children to be attended at the Emergency Room. CONCLUSION Rotavirus vaccine efficacy in reducing the incidence of severe rotavirus infection has been well documented, but symptomatic rotavirus infection can sometimes occur in vaccinees.
Collapse
Affiliation(s)
- Raúl Pérez-Ortín
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia and Microbiology Service, Hospital Clínico Universitario and Instituto de Investigación INCLIVA, Avda. Blasco Ibañez, 17, 46010, Valencia, Spain.
| |
Collapse
|
31
|
Motayo BO, Oluwasemowo OO, Olusola BA, Opayele AV, Faneye AO. Phylogeography and evolutionary analysis of African Rotavirus a genotype G12 reveals district genetic diversification within lineage III. Heliyon 2019; 5:e02680. [PMID: 31687512 PMCID: PMC6820252 DOI: 10.1016/j.heliyon.2019.e02680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Group A rotavirus (RVA) genotype G12 has spread globally and has become one of the most prevalent genotypes of rotavirus in Africa. To understand the drivers for its genetic diversity and rapid spread we investigated the Bayesian phylogeography, viral evolution and population demography of Rotavirus G12 in Africa. We downloaded and aligned VP7 gene sequences of Rotavirus genotype G12, from thirteen African countries (n = 96). Phylogenetic analysis, Evolutionary analysis and Bayesian Phylogeography was carried out, using MEGA Vs 6, BEAST, and SPREAD3. Phylogenetic analysis revealed that all the African sequences fell into lineage III diversifying into two major clades. The evolutionary rate of the African rotavirus G12 sequences was 1.678×10-3, (95% HPD, 1.201×10-3 - 2.198×10-3) substitutions/site/year, with TMRC of 16.8 years. The Maximum clade credibility (MCC) tree clustered into three lineages (II, III, IV), African strains fell within lineage III, and diversified into three clusters. Phylogeography suggested that South Africa seemed to be the epicentre of dispersal of the genotype. The demographic history of the G12 viruses revealed a steady increase between the years1998-2007, followed by a sharp decrease in effective population size between the years 2008-2011. We have shown the potential for genetic diversification of Rotavirus genotype G12 in Africa. We recommend the adoption of Molecular surveillance across Africa to further control spread and diversification of Rotavirus.
Collapse
Affiliation(s)
- Babatunde Olanrewaju Motayo
- Department of Virology, College of Medicine, University of Ibadan, Nigeria.,Department of Medical Microbiology, Federal Medical Center, Abeokuta, Nigeria
| | | | | | | | | |
Collapse
|
32
|
Gene-edited vero cells as rotavirus vaccine substrates. Vaccine X 2019; 3:100045. [PMID: 31660537 PMCID: PMC6806661 DOI: 10.1016/j.jvacx.2019.100045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Rotavirus (RV) is a leading cause of severe gastroenteritis globally and can cause substantial morbidity associated with gastroenteritis in children <5 years of age. Orally administered live-attenuated RV vaccines offer protection against disease but vaccination efforts have been hampered by high manufacturing costs and the need to maintain a cold chain. Methods A subset of Vero cell host genes was identified by siRNA that when knocked down increased RV replication and these anti-viral host genes were individually deleted using CRISPR-Cas9. Results Fully-sequenced gene knockout Vero cell substrates were assessed for increased RV replication and RV vaccine antigen expression compared to wild type Vero cells. The results showed that RV replication and antigen production were logs higher in Vero cells having an EMX2 gene deletion compared to other Vero cell substrates tested. Conclusions We used siRNAs to screen for host genes that negatively affected RV replication, then CRISPR-Cas9 gene editing to delete select genes. The gene editing led to the development of enhanced RV vaccine substrates supporting a potential path forward for improving RV vaccine production.
Collapse
|
33
|
Owor BE, Mwanga MJ, Njeru R, Mugo R, Ngama M, Otieno GP, Nokes DJ, Agoti CN. Molecular characterization of rotavirus group A strains circulating prior to vaccine introduction in rural coastal Kenya, 2002-2013. Wellcome Open Res 2019; 3:150. [PMID: 31020048 PMCID: PMC6464063 DOI: 10.12688/wellcomeopenres.14908.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Kenya introduced the monovalent Rotarix® rotavirus group A (RVA) vaccine nationally in mid-2014. Long-term surveillance data is important prior to wide-scale vaccine use to assess the impact on disease and to investigate the occurrence of heterotypic strains arising through immune selection. This report presents baseline data on RVA genotype circulation patterns and intra-genotype genetic diversity over a 7-year period in the pre-vaccine era in Kilifi, Kenya, from 2002 to 2004 and from 2010 to 2013. Methods: A total of 745 RVA strains identified in children admitted with acute gastroenteritis to a referral hospital in Coastal Kenya, were sequenced using the di-deoxy sequencing method in the VP4 and VP7 genomic segments (encoding P and G proteins, respectively). Sequencing successfully generated 569 (76%) and 572 (77%) consensus sequences for the VP4 and VP7 genes respectively. G and P genotypes were determined by use of BLAST and the online RotaC v2 RVA classification tool. Results: The most common GP combination was G1P[8] (51%), similar to the Rotarix® strain, followed by G9P[8] (15%) , G8P[4] (14%) and G2P[4] (5%). Unusual GP combinations—G1P[4], G2P[8], G3P[4,6], G8P[8,14], and G12P[4,6,8]—were observed at frequencies of <5%. Phylogenetic analysis showed that the infections were caused by both locally persistent strains as evidenced by divergence of local strains occurring over multiple seasons from the global ones, and newly introduced strains, which were closely related to global strains. The circulating RVA diversity showed temporal fluctuations both season by season and over the longer-term. None of the unusual strains increased in frequency over the observation period. Conclusions: The circulating RVA diversity showed temporal fluctuations with several unusual strains recorded, which rarely caused major outbreaks. These data will be useful in interpreting genotype patterns observed in the region during the vaccine era.
Collapse
Affiliation(s)
- Betty E Owor
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya
| | - Mike J Mwanga
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya
| | - Regina Njeru
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya
| | - Robert Mugo
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya
| | - Mwanajuma Ngama
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya
| | - Grieven P Otieno
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya
| | - D J Nokes
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya.,School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology, Warwick University, Coventry, Coventry, CV4 7AL, Kenya
| | - C N Agoti
- Epidemiology and Demography, KEMRI Wellcome Trust Research Program, Kilifi, Kilifi, 80108, Kenya.,School of Health and Human Sciences, Pwani University, Kilifi, Kilifi, 80108, Kenya
| |
Collapse
|
34
|
Owor BE, Mwanga MJ, Njeru R, Mugo R, Ngama M, Otieno GP, Nokes D, Agoti C. Molecular characterization of rotavirus group A strains circulating prior to vaccine introduction in rural coastal Kenya, 2002-2013. Wellcome Open Res 2018; 3:150. [DOI: 10.12688/wellcomeopenres.14908.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Kenya introduced the monovalent Rotarix® rotavirus group A (RVA) vaccine nationally in mid-2014. Long-term surveillance data is important prior to wide-scale vaccine use to assess the impact on disease and to investigate the occurrence of heterotypic strains arising through immune selection. This report presents baseline data on RVA genotype circulation patterns and intra-genotype genetic diversity over a 7-year period in the pre-vaccine era in Kilifi, Kenya, from 2002 to 2004 and from 2010 to 2013. Methods: A total of 745 RVA strains identified in children admitted with acute gastroenteritis to a referral hospital in Coastal Kenya, were sequenced using the di-deoxy sequencing method in the VP4 and VP7 genomic segments (encoding P and G proteins, respectively). Sequencing successfully generated 569 (76%) and 572 (77%) consensus sequences for the VP4 and VP7 genes respectively. G and P genotypes were determined by use of BLAST and the online RotaC v2 RVA classification tool. Results: The most common GP combination was G1P[8] (51%), similar to the Rotarix® strain, followed by G9P[8] (15%) , G8P[4] (14%) and G2P[4] (5%). Unusual GP combinations—G1P[4], G2P[8], G3P[4,6], G8P[8,14], and G12P[4,6,8]—were observed at frequencies of <5%. Phylogenetic analysis showed that the infections were caused by both locally persistent strains as evidenced by divergence of local strains occurring over multiple seasons from the global ones, and newly introduced strains, which were closely related to global strains. The circulating RVA diversity showed temporal fluctuations both season by season and over the longer-term. None of the unusual strains increased in frequency over the observation period. Conclusions: The circulating RVA diversity showed temporal fluctuations with several unusual strains recorded, which rarely caused major outbreaks. These data will be useful in interpreting genotype patterns observed in the region during the vaccine era.
Collapse
|
35
|
Using surveillance and economic data to make informed decisions about rotavirus vaccine introduction. Vaccine 2018; 36:7755-7758. [PMID: 30131194 DOI: 10.1016/j.vaccine.2018.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 11/20/2022]
Abstract
While rotavirus vaccines are available, safe, and effective, many countries are not yet widely using these vaccines. Surveillance for rotavirus disease and potential vaccine adverse events is critical for country decision making about rotavirus vaccine. This special issue shares rotavirus and intussusception disease surveillance data and rotavirus vaccine cost-effectiveness analyses from countries that have yet to introduce rotavirus vaccines into their routine infant immunization programs. The studies highlight the substantial burden of rotavirus disease and the cost-effectiveness of rotavirus vaccine in a broad set of countries without rotavirus vaccine in their routine immunization programs.
Collapse
|